forked from exo-explore/exo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llama.py
282 lines (228 loc) · 11.7 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from typing import Tuple, Union, Optional, Dict, Any, List
from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
from tinygrad.helpers import getenv
from collections import OrderedDict
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, dtype=dtypes.half, rope_scaling: Optional[Dict[str, float]] = None) -> Tensor:
freqs = 1.0/(theta**(Tensor.arange(0, dim, 2)[:(dim // 2)]/dim))
if rope_scaling:
factor = rope_scaling.get('factor', 1.0)
low_freq_factor = rope_scaling.get('low_freq_factor', 1.0)
high_freq_factor = rope_scaling.get('high_freq_factor', 1.0)
original_max_pos_emb = rope_scaling.get('original_max_position_embeddings', end)
freqs[:dim // 4] *= low_freq_factor
freqs[dim // 4:] = freqs[dim // 4:].contiguous()*high_freq_factor
freqs *= (original_max_pos_emb/end)**(1.0/factor)
freqs = Tensor.arange(end).unsqueeze(dim=1)*freqs.unsqueeze(dim=0)
# TODO: move dtype outside this
return Tensor.stack(freqs.cos().cast(dtype), freqs.sin().cast(dtype), dim=-1).reshape(1, end, 1, dim // 2, 2)
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
def complex_mult(A, c, d):
a, b = A[..., 0:1], A[..., 1:2]
ro = a*c - b*d
co = a*d + b*c
return ro.cat(co, dim=-1)
def apply_rotary_emb(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> Tuple[Tensor, Tensor]:
assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
xq_out = complex_mult(xq, c, d)
xk_out = complex_mult(xk, c, d)
return xq_out.flatten(3), xk_out.flatten(3)
def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
bs, seqlen, n_kv_heads, head_dim = x.shape
if n_rep == 1: return x
# NOTE: this is different from x.repeat((1, 1, n_rep, 1))
return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads*n_rep, head_dim)
class Attention:
def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
self.head_dim = dim // n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.max_context = max_context
self.wq = linear(dim, self.n_heads*self.head_dim, bias=False)
self.wk = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
self.wv = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
self.wo = linear(self.n_heads*self.head_dim, dim, bias=False)
def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None) -> Tensor:
if getenv("WQKV"):
if not hasattr(self, 'wqkv'): self.wqkv = Tensor.cat(self.wq.weight, self.wk.weight, self.wv.weight)
xqkv = x @ self.wqkv.T
xq, xk, xv = xqkv.split([self.wq.weight.shape[0], self.wk.weight.shape[0], self.wv.weight.shape[0]], dim=2)
else:
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
bsz, seqlen, _, _ = xq.shape
if cache is not None:
# update the cache
assert xk.dtype == xv.dtype == cache.dtype, f"{xk.dtype=}, {xv.dtype=}, {cache.dtype=}"
cache.shrink((None, None, (start_pos, start_pos + seqlen), None, None)).assign(Tensor.stack(xk, xv)).realize()
keys = cache[0].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xk
values = cache[1].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xv
else:
keys = xk
values = xv
keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
attn = attn.reshape(bsz, seqlen, -1)
return self.wo(attn)
class FeedForward:
def __init__(self, dim: int, hidden_dim: int, linear=nn.Linear):
self.w1 = linear(dim, hidden_dim, bias=False)
self.w2 = linear(hidden_dim, dim, bias=False)
self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
def __call__(self, x: Tensor) -> Tensor:
return self.w2(self.w1(x).silu()*self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
class TransformerBlock:
def __init__(self, dim: int, hidden_dim: int, n_heads: int, n_kv_heads: int, norm_eps: float, max_context: int, linear=nn.Linear, feed_forward=FeedForward):
self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
self.feed_forward = feed_forward(dim, hidden_dim, linear)
self.attention_norm = nn.RMSNorm(dim, norm_eps)
self.ffn_norm = nn.RMSNorm(dim, norm_eps)
def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask, cache=cache)
return (h + self.feed_forward(self.ffn_norm(h))).contiguous()
# standard openai sampling
def sample_logits(logits: Tensor, temp: float, k: int, p: float, af: float, ap: float):
assert logits.ndim == 1, "only works on 1d tensors"
assert 0 <= p <= 1, "p must be between 0 and 1"
assert 0 <= k <= logits.numel(), "k must be between 0 and numel"
# if temperature is very low just use argmax
if temp < 1e-6: return logits.argmax().reshape(1)
# alpha sampling
if af or ap:
if not hasattr(sample, "alpha_counter"):
setattr(sample, "alpha_counter", Tensor.zeros_like(logits, dtype=dtypes.int32).contiguous())
logits = logits - (sample.alpha_counter*af + (sample.alpha_counter > 0)*ap)
# replace NaNs with -inf
logits = (logits != logits).where(-float("inf"), logits)
# softmax
t = (logits/temp).softmax()
counter, counter2 = Tensor.arange(t.numel(), device=logits.device).contiguous(), Tensor.arange(t.numel() - 1, -1, -1, device=logits.device).contiguous()
# top k
if k:
output, output_indices = Tensor.zeros(k, device=logits.device).contiguous(), Tensor.zeros(k, device=logits.device, dtype=dtypes.int32).contiguous()
for i in range(k):
t_argmax = (t.numel() - ((t == (t_max := t.max()))*counter2).max() - 1).cast(dtypes.default_int)
output = output + t_max.unsqueeze(0).pad(((i, k - i - 1),))
output_indices = output_indices + t_argmax.unsqueeze(0).pad(((i, k - i - 1),))
t = (counter == t_argmax).where(0, t)
# approximate top p
# because we are already limited to top k elements we can do top p "without sorting"
output_cumsum = output[::-1]._cumsum()[::-1] + t.sum()
output = (output_cumsum >= (1 - p))*output
output_indices = (output_cumsum >= (1 - p))*output_indices
# sample
output_idx = output.multinomial()
output_token = output_indices[output_idx]
else:
output_token = t.multinomial()
# increase alpha counter
if af or ap:
sample.alpha_counter = (counter == output_token).where(sample.alpha_counter + 1, sample.alpha_counter)
return output_token
from exo.inference.shard import Shard
class Transformer:
def __init__(
self,
dim: int,
hidden_dim: int,
n_heads: int,
n_layers: int,
norm_eps: float,
vocab_size,
shard: Shard = None,
linear=nn.Linear,
n_kv_heads=None,
rope_theta=10000,
max_context=1024,
jit=True,
feed_forward=FeedForward,
rope_scaling: Optional[Dict[str, float]] = None,
tie_word_embeddings=False,
):
self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
self.norm = nn.RMSNorm(dim, norm_eps)
self.tok_embeddings = nn.Embedding(vocab_size, dim)
self.output = nn.Linear(dim, vocab_size, bias=False)
if tie_word_embeddings:
self.output.weight = self.tok_embeddings.weight
self.max_context = max_context
self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context*2, rope_theta, rope_scaling=rope_scaling).contiguous()
self.forward_jit = TinyJit(self.forward_base) if jit else None
self.shard = shard
def forward_base(self, x: Tensor, start_pos: Union[Variable, int], cache: Optional[List[Tensor]] = None):
seqlen = x.shape[1]
freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos + seqlen), None, None, None))
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-100000000"), dtype=x.dtype, device=x.device).triu(start_pos + 1).realize() if seqlen > 1 else None
h = x
if cache is None:
cache = [None for _ in range(self.shard.start_layer, self.shard.end_layer + 1)]
for i, c in zip(range(self.shard.start_layer, self.shard.end_layer + 1), cache):
layer = self.layers[i]
h = layer(h, start_pos, freqs_cis, mask, cache=c)
if self.shard.is_last_layer():
logits = self.output(self.norm(h)).float().realize()
return logits
else:
return h
def embed(self, inputs: Tensor):
if self.shard.is_first_layer():
h = self.tok_embeddings(inputs)
else:
h = inputs
return h
def forward(self, x: Tensor, start_pos: int, cache: Optional[List[Tensor]] = None):
if x.shape[0:2] == (1, 1) and self.forward_jit is not None and start_pos != 0:
return self.forward_jit(x, Variable("start_pos", 1, self.max_context).bind(start_pos), cache=cache)
return self.forward_base(x, start_pos, cache=cache)
def __call__(self, tokens: Tensor, start_pos: Variable, cache: Optional[List[Tensor]] = None):
# TODO: better way to handle the first call v.s. the rest?
h = self.embed(x)
return self.forward(h, start_pos, cache=cache)
# *** helpers ***
def convert_from_huggingface(weights: Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
def permute(v: Tensor, n_heads: int):
return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
keymap = {
"model.embed_tokens.weight": "tok_embeddings.weight",
**{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight"
for l in range(len(model.layers))},
**{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight"
for x in ["q", "k", "v", "o"]
for l in range(len(model.layers))},
**{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight"
for l in range(len(model.layers))},
**{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight"
for x, y in {"gate": "1", "down": "2", "up": "3"}.items()
for l in range(len(model.layers))},
"model.norm.weight": "norm.weight",
"lm_head.weight": "output.weight",
}
sd = {}
for k, v in weights.items():
if ".rotary_emb." in k: continue
v = v.to(Device.DEFAULT)
if "model.layers" in k:
if "q_proj" in k:
v = permute(v, n_heads)
elif "k_proj" in k:
v = permute(v, n_kv_heads)
if k in keymap:
sd[keymap[k]] = v
else:
sd[k] = v
return sd
def fix_bf16(weights: Dict[Any, Tensor]):
if getenv("SUPPORT_BF16", 1):
# TODO: without casting to float16, 70B llama OOM on tinybox.
return {k: v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}
# TODO: check if device supports bf16
return {k: v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}