forked from matenure/FastGCN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pubmed_inductive_appr2layers.py
executable file
·170 lines (136 loc) · 6.65 KB
/
pubmed_inductive_appr2layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import scipy.sparse as sp
from utils import *
from models import GCN, MLP, GCN_APPRO
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'pubmed', 'Dataset string.') # 'cora', 'citeseer', 'pubmed'
flags.DEFINE_string('model', 'gcn_appr', 'Model string.') # 'gcn', 'gcn_appr'
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 16, 'Number of units in hidden layer 1.')
flags.DEFINE_float('dropout', 0.0, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('early_stopping', 30, 'Tolerance for early stopping (# of epochs).')
flags.DEFINE_integer('max_degree', 3, 'Maximum Chebyshev polynomial degree.')
# Load data
def iterate_minibatches_listinputs(inputs, batchsize, shuffle=False):
assert inputs is not None
numSamples = inputs[0].shape[0]
if shuffle:
indices = np.arange(numSamples)
np.random.shuffle(indices)
for start_idx in range(0, numSamples - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield [input[excerpt] for input in inputs]
def main(rank1, rank0):
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(FLAGS.dataset)
train_index = np.where(train_mask)[0]
adj_train = adj[train_index, :][:, train_index]
train_mask = train_mask[train_index]
y_train = y_train[train_index]
val_index = np.where(val_mask)[0]
# adj_val = adj[val_index, :][:, val_index]
val_mask = val_mask[val_index]
y_val = y_val[val_index]
test_index = np.where(test_mask)[0]
# adj_test = adj[test_index, :][:, test_index]
test_mask = test_mask[test_index]
y_test = y_test[test_index]
numNode_train = adj_train.shape[0]
# print("numNode", numNode)
# Some preprocessing
features = nontuple_preprocess_features(features).todense()
train_features = features[train_index]
if FLAGS.model == 'gcn_appr':
normADJ_train = nontuple_preprocess_adj(adj_train)
normADJ = nontuple_preprocess_adj(adj)
# normADJ_val = nontuple_preprocess_adj(adj_val)
# normADJ_test = nontuple_preprocess_adj(adj_test)
num_supports = 2
model_func = GCN_APPRO
else:
raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
# Define placeholders
placeholders = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features': tf.placeholder(tf.float32, shape=(None, features.shape[1])),
'labels': tf.placeholder(tf.float32, shape=(None, y_train.shape[1])),
'labels_mask': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32) # helper variable for sparse dropout
}
# Create model
model = model_func(placeholders, input_dim=features.shape[-1], logging=True)
# Initialize session
sess = tf.Session()
# Define model evaluation function
def evaluate(features, support, labels, mask, placeholders):
t_test = time.time()
feed_dict_val = construct_feed_dict(features, support, labels, mask, placeholders)
outs_val = sess.run([model.loss, model.accuracy], feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], (time.time() - t_test)
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
p0 = column_prop(normADJ_train)
# testSupport = [sparse_to_tuple(normADJ), sparse_to_tuple(normADJ)]
valSupport = [sparse_to_tuple(normADJ), sparse_to_tuple(normADJ[val_index, :])]
testSupport = [sparse_to_tuple(normADJ), sparse_to_tuple(normADJ[test_index, :])]
t = time.time()
# Train model
for epoch in range(FLAGS.epochs):
t1 = time.time()
n = 0
for batch in iterate_minibatches_listinputs([normADJ_train, y_train, train_mask], batchsize=256, shuffle=True):
[normADJ_batch, y_train_batch, train_mask_batch] = batch
if sum(train_mask_batch) < 1:
continue
p1 = column_prop(normADJ_batch)
q1 = np.random.choice(np.arange(numNode_train), rank1, p=p1) # top layer
# q0 = np.random.choice(np.arange(numNode_train), rank0, p=p0) # bottom layer
support1 = sparse_to_tuple(normADJ_batch[:, q1].dot(sp.diags(1.0 / (p1[q1] * rank1))))
p2 = column_prop(normADJ_train[q1, :])
q0 = np.random.choice(np.arange(numNode_train), rank0, p=p2)
support0 = sparse_to_tuple(normADJ_train[q1, :][:, q0])
features_inputs = sp.diags(1.0 / (p2[q0] * rank0)).dot(train_features[q0, :]) # selected nodes for approximation
# Construct feed dictionary
feed_dict = construct_feed_dict(features_inputs, [support0, support1], y_train_batch, train_mask_batch,
placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
# Training step
outs = sess.run([model.opt_op, model.loss, model.accuracy], feed_dict=feed_dict)
# Validation
cost, acc, duration = evaluate(features, valSupport, y_val, val_mask, placeholders)
cost_val.append(cost)
# # Print results
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]),
"train_acc=", "{:.5f}".format(outs[2]), "val_loss=", "{:.5f}".format(cost),
"val_acc=", "{:.5f}".format(acc), "time=", "{:.5f}".format(time.time() - t1))
if epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping + 1):-1]):
# print("Early stopping...")
break
train_duration = time.time() - t
# Testing
test_cost, test_acc, test_duration = evaluate(features, testSupport, y_test, test_mask,
placeholders)
print("rank1 = {}".format(rank1), "rank0 = {}".format(rank0), "cost=", "{:.5f}".format(test_cost),
"accuracy=", "{:.5f}".format(test_acc), "training time per epoch=", "{:.5f}".format(train_duration/epoch))
if __name__=="__main__":
print("DATASET:", FLAGS.dataset)
for k in [5, 10, 25, 50]:
main(k, k)
# main(50,50)
# for k in [50, 100, 200, 400]:
# main(k, k)