-
Notifications
You must be signed in to change notification settings - Fork 102
/
tokenizer.py
581 lines (482 loc) · 16.8 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import math
from dataclasses import dataclass
from typing import Union, Tuple, Literal
import torch as T
import torch.nn as nn
from torch.nn.utils.parametrizations import weight_norm
from utils import load_ckpt
from utils.interp import print_colored
from utils import si_module, get_activation
# Adapted from https://github.com/facebookresearch/AudioDec
def Conv1d1x1(in_channels, out_channels, bias=True):
return nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=bias)
class NonCausalConv1d(nn.Module):
"""1D noncausal convolution w/ 2-sides padding."""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=-1,
dilation=1,
groups=1,
bias=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
if padding < 0:
padding = (kernel_size - 1) // 2 * dilation
self.dilation = dilation
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
def forward(self, x):
"""
Args:
x (Tensor): Float tensor variable with the shape (B, C, T).
Returns:
Tensor: Float tensor variable with the shape (B, C, T).
"""
x = self.conv(x)
return x
class NonCausalConvTranspose1d(nn.Module):
"""1D noncausal transpose convolution."""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding=-1,
output_padding=-1,
groups=1,
bias=True,
):
super().__init__()
if padding < 0:
padding = (stride+1) // 2
if output_padding < 0:
output_padding = 1 if stride % 2 else 0
self.deconv = nn.ConvTranspose1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
bias=bias,
)
def forward(self, x):
"""
Args:
x (Tensor): Float tensor variable with the shape (B, C, T).
Returns:
Tensor: Float tensor variable with the shape (B, C', T').
"""
x = self.deconv(x)
return x
class CausalConv1d(NonCausalConv1d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True
):
super(CausalConv1d, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
)
self.stride = stride
self.pad_length = (kernel_size - 1) * dilation
def forward(self, x):
pad = nn.ConstantPad1d((self.pad_length, 0), 0.0)
x = pad(x)
return self.conv(x)
class CausalConvTranspose1d(NonCausalConvTranspose1d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
bias=True,
pad_buffer=None,
):
super(CausalConvTranspose1d, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
output_padding=0,
bias=bias,
)
self.stride = stride
self.pad_length = (math.ceil(kernel_size/stride) - 1)
if pad_buffer is None:
pad_buffer = T.zeros(1, in_channels, self.pad_length)
self.register_buffer("pad_buffer", pad_buffer)
def forward(self, x):
pad = nn.ReplicationPad1d((self.pad_length, 0))
x = pad(x)
return self.deconv(x)[:, :, self.stride : -self.stride]
def inference(self, x):
x = T.cat((self.pad_buffer, x), -1)
self.pad_buffer = x[:, :, -self.pad_length:]
return self.deconv(x)[:, :, self.stride : -self.stride]
def reset_buffer(self):
self.pad_buffer.zero_()
class NonCausalResUnit(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=7,
dilation=1,
bias=False,
):
super().__init__()
self.activation = nn.ELU()
self.conv1 = NonCausalConv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
bias=bias,
)
self.conv2 = Conv1d1x1(out_channels, out_channels, bias)
def forward(self, x):
y = self.conv1(self.activation(x))
y = self.conv2(self.activation(y))
return x + y
class CausalResUnit(NonCausalResUnit):
def __init__(
self,
in_channels,
out_channels,
kernel_size=7,
dilation=1,
bias=False,
):
super(CausalResUnit, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
bias=bias,
)
self.conv1 = CausalConv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
bias=bias,
)
def inference(self, x):
y = self.conv1.inference(self.activation(x))
y = self.conv2(self.activation(y))
return x + y
class ResNetBlock(nn.Module):
def __init__(self,
in_channels,
out_channels,
stride,
kernel_size=7,
dilations=(1, 3, 9),
bias=True,
mode='encoder',
):
super().__init__()
assert mode in ('encoder', 'decoder'), f"Mode ({mode}) is not supported!"
self.mode = mode
self.stride = stride
ConvUnit = CausalConv1d if mode == 'encoder' else CausalConvTranspose1d
res_channels = in_channels if mode == 'encoder' else out_channels
res_units = [CausalResUnit(
res_channels,
res_channels,
kernel_size=kernel_size,
dilation=dilation,
) for dilation in dilations]
if in_channels == out_channels:
if mode == 'encoder':
self.pool = nn.AvgPool1d(kernel_size=stride, stride=stride)
if mode == 'decoder':
self.upsample = nn.Upsample(scale_factor=stride, mode='nearest')
conv_unit = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
bias=bias,
) if in_channels != out_channels else nn.Identity()
else:
conv_unit = ConvUnit(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(2 * stride),
stride=stride,
bias=bias,
)
if mode == 'encoder':
if in_channels == out_channels:
self.res_block = nn.Sequential(*res_units, self.pool, conv_unit)
else:
self.res_block = nn.Sequential(*res_units, conv_unit)
elif mode == 'decoder':
if in_channels == out_channels:
self.res_block = nn.Sequential(self.upsample, conv_unit, *res_units)
else:
self.res_block = nn.Sequential(conv_unit, *res_units)
def forward(self, x):
out = x
for unit in self.res_block:
out = unit(out)
return out
def inference(self, x):
for unit in self.res_block:
x = unit.inference(x)
return x
@si_module
class ResNetStack(nn.Module):
"""
ResNet encoder or decoder stack. Channel ratios
and strides take the default order of from
data/io-layer, to the middle of the model.
"""
class Config:
input_channels: int = 1
output_channels: int = 1
encode_channels: int = 32
decode_channel_multiplier: int = 1
latent_dim: int = None
kernel_size: int = 7
bias: bool = True
channel_ratios: Tuple[int, ...] = (2, 4, 8, 16)
strides: Tuple[int, ...] = (3, 4, 5, 5)
mode: Literal['encoder', 'decoder'] = 'encoder'
def __init__(self, c: Config):
super().__init__()
assert c.mode in ('encoder', 'decoder'), f"Mode ({c.mode}) is not supported!"
self.mode = c.mode
assert len(c.channel_ratios) == len(c.strides)
channel_ratios = (1,) + c.channel_ratios
strides = c.strides
self.middle_channels = c.encode_channels * channel_ratios[-1]
if c.mode == 'decoder':
channel_ratios = tuple(reversed(channel_ratios))
strides = tuple(reversed(strides))
self.multiplier = c.decode_channel_multiplier if c.mode == 'decoder' else 1
res_blocks = [ResNetBlock(
c.encode_channels * channel_ratios[s_idx] * self.multiplier,
c.encode_channels * channel_ratios[s_idx+1] * self.multiplier,
stride,
kernel_size=c.kernel_size,
bias=c.bias,
mode=c.mode,
) for s_idx, stride in enumerate(strides)]
data_conv = CausalConv1d(
in_channels=c.input_channels if c.mode == 'encoder' else c.encode_channels * self.multiplier,
out_channels=c.encode_channels if c.mode == 'encoder' else c.output_channels,
kernel_size=c.kernel_size,
stride=1,
bias=False,
)
if c.mode == 'encoder':
self.res_stack = nn.Sequential(data_conv, *res_blocks)
elif c.mode == 'decoder':
self.res_stack = nn.Sequential(*res_blocks, data_conv)
if c.latent_dim is not None:
self.latent_proj = Conv1d1x1(self.middle_channels, c.latent_dim, bias=c.bias) if c.mode == 'encoder' else Conv1d1x1(c.latent_dim, self.middle_channels, bias=c.bias)
if self.multiplier != 1:
self.multiplier_proj = Conv1d1x1(self.middle_channels, self.middle_channels * self.multiplier, bias=c.bias)
def forward(self, x, return_feats=False):
if self.c.latent_dim is not None and self.mode == 'decoder':
x = self.latent_proj(x)
if self.multiplier != 1:
x = self.multiplier_proj(x)
feats = []
for block in self.res_stack:
x = block(x)
if return_feats:
feats.append(x)
if self.c.latent_dim is not None and self.mode == 'encoder':
x = self.latent_proj(x)
if return_feats:
feats.append(x)
if return_feats:
return feats
return x
def inference(self, x):
for block in self.res_stack:
x = block.inference(x)
return x
def reset_buffer(self):
def _reset_buffer(m):
if isinstance(m, CausalConv1d) or isinstance(m, CausalConvTranspose1d):
m.reset_buffer()
self.apply(_reset_buffer)
def reset_parameters(self):
def _reset_parameters(m):
if isinstance(m, (nn.Conv1d, nn.ConvTranspose1d)):
m.weight.data.normal_(0.0, 0.01)
self.apply(_reset_parameters)
def apply_weight_norm(self):
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(
m, nn.ConvTranspose1d
):
nn.utils.parametrizations.weight_norm(m)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(m):
try:
print(m)
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
@si_module
class GaussianZ(nn.Module):
class Config:
dim: int
latent_dim: int
bias: bool = False
use_weight_norm: bool = False
def __init__(self, c: Config):
super().__init__()
self.proj_in = nn.Linear(c.dim, c.latent_dim * 2, bias=c.bias)
self.proj_out = nn.Linear(c.latent_dim, c.dim, bias=c.bias)
if c.use_weight_norm:
self.proj_in = weight_norm(self.proj_in)
self.proj_out = weight_norm(self.proj_out)
def reparam(self, mu, logvar):
std = T.exp(logvar / 2)
eps = T.randn_like(std)
return mu + eps * std
def kl_divergence(self, mu, logvar):
return T.mean(-0.5 * T.sum(
1 + logvar - mu.pow(2) - logvar.exp(),
dim=(1, 2))
)
def repr_from_latent(self, latent: Union[dict, T.Tensor]):
if isinstance(latent, T.Tensor):
z = latent
else:
z = self.reparam(latent['mu'], latent['logvar'])
l = self.proj_out(z)
return l
def forward(self, x: T.Tensor) -> Tuple[T.Tensor, dict]:
mu, logvar = self.proj_in(x).chunk(2, dim=-1)
kl_div = self.kl_divergence(mu, logvar)
z = self.reparam(mu, logvar)
xhat = self.proj_out(z)
latent = {'mu': mu, 'logvar': logvar, 'z': z, 'kl_divergence': kl_div}
return xhat, latent
@si_module
class WaveCodec(nn.Module):
class Config:
resnet_config: ResNetStack.Config = None
sample_rate: int = 16_000
use_weight_norm: bool = False
compressor_config: dataclass = None
norm_stddev: float = 1.0
def __init__(self, c: Config):
super().__init__()
self.norm_stddev = c.norm_stddev
self.encoder = c.resnet_config(mode='encoder')
self.sample_rate = c.sample_rate
self.total_stride = 1
for stride in c.resnet_config.strides:
self.total_stride *= stride
self.tokens_per_second = self.sample_rate / self.total_stride
self.compressor = c.compressor_config(dim=self.encoder.middle_channels)
self.decoder = c.resnet_config(mode='decoder')
if c.use_weight_norm:
self.encoder.apply_weight_norm()
self.decoder.apply_weight_norm()
self.encoder.reset_parameters()
self.decoder.reset_parameters()
def encode(self, data):
return self.encoder(data/self.norm_stddev)
def decode(self, latent):
return self.decoder(latent.transpose(1, 2))*self.norm_stddev
@T.no_grad()
def latent_from_data(self, data, get_parameters=False):
x = self.encode(data)
l_in = x.transpose(1, 2)
l, latent = self.compressor(l_in)
return latent['z'] if not get_parameters else {
'mu': latent['mu'],
'logvar': latent['logvar'],
'z': latent['z'],
}
@T.no_grad()
def data_from_latent(self, latent):
l = self.compressor.repr_from_latent(latent)
x = self.decode(l)
return x
def process(self, x):
return self.latent_from_data(x)
def unprocess(self, latent):
return self.data_from_latent(latent)
def forward(self, audio_input):
x = self.encode(audio_input)
l_in = x.transpose(1, 2)
l, latent = self.compressor(l_in)
xhat = self.decode(l)
return xhat, latent
def make_tokenizer(device='cuda'):
generator_config = WaveCodec.Config(
resnet_config=ResNetStack.Config(
input_channels=1,
output_channels=1,
encode_channels=16,
decode_channel_multiplier=4,
kernel_size=7,
bias=True,
channel_ratios=(4, 8, 16, 16, 16, 16),
strides=(2, 2, 4, 5, 5, 5),
mode=None,
),
use_weight_norm=True,
compressor_config=GaussianZ.Config(
dim=None,
latent_dim=32,
bias=True,
use_weight_norm=True
),
norm_stddev=0.05,
)
checkpoint = load_ckpt("inference_apatosaurus_95000", expected_hash="ba876edb97b988e9196e449dd176ca97")
tokenizer = generator_config()
load_result = tokenizer.load_state_dict(checkpoint, strict=False)
print_colored(f"Loaded tokenizer state dict: {load_result}", "grey")
tokenizer = tokenizer.eval()
# Only convert to bfloat16 if using CUDA
if device == 'cuda':
tokenizer = tokenizer.bfloat16()
tokenizer = tokenizer.to(device)
tokenizer.requires_grad_ = False
return tokenizer