We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
嗨,你好,最近在复现你们的工作,使用depth图的时候,我的最好效果比文章中只用CASIA数据集还要好一点,但是只使用ir时的效果会很差,这是可以理解的,所以想问下,你们用ir单独训练的效果在验证集上的结果。同时,在训练depth和ir中均出现了严重的过拟合,网络会把召回率降为0,但此时查准率就会变差很多,而且不同模型都是这个趋势,请问,有什么思路解决嘛?
The text was updated successfully, but these errors were encountered:
ir图像和depth图像的归一化参数应该是不一样的,这个是否更改后会提高效果。
Sorry, something went wrong.
我的最好效果比文章中只用CASIA数据集还要好一点,
请问你的depth图的数据是怎么来的?
你好,最好也在复现他们的工作,但是刚入门深度学习不是特别了解,请问可以提供一些指导吗,有偿求指导。只需要depth单模态模型的训练方法不会很复杂。
No branches or pull requests
嗨,你好,最近在复现你们的工作,使用depth图的时候,我的最好效果比文章中只用CASIA数据集还要好一点,但是只使用ir时的效果会很差,这是可以理解的,所以想问下,你们用ir单独训练的效果在验证集上的结果。同时,在训练depth和ir中均出现了严重的过拟合,网络会把召回率降为0,但此时查准率就会变差很多,而且不同模型都是这个趋势,请问,有什么思路解决嘛?
The text was updated successfully, but these errors were encountered: