Skip to content

Latest commit

 

History

History
45 lines (37 loc) · 2.21 KB

File metadata and controls

45 lines (37 loc) · 2.21 KB

TODO: Describe what is MobileLiteNets. How we explain FeatherNet?

Train

Dataset

We use 2 dataset to train. One is CASIA-SURF Dataset, another is created by ourselves, named Multi-Modality Face Dataset', abbreviated as MMFD.

How to train

TODO: data preparation, training script, where is the training model located

Commands to train the model:

Train MobileLiteNet54

python main.py --config="cfgs/MobileLiteNet54-32.yaml" --every-decay 60 -b 32 --lr 0.01 --fl-gamma 3 >>FNet54-bs32-train.log

Train MobileLiteNet54-SE

python main.py --config="cfgs/MobileLiteNet54-se-64.yaml" --b 64 --lr 0.01  --every-decay 60 --fl-gamma 3 >> FNet54-se-bs64-train.log

Train FeatherNetA

python main.py --config="cfgs/FeatherNetA-32.yaml" --b 32 --lr 0.01  --every-decay 60 --fl-gamma 3 >> MobileLiteNetA-bs32-train.log

Train FeatherNetB

python main.py --config="cfgs/FeatherNetB-32.yaml" --b 32 --lr 0.01  --every-decay 60 --fl-gamma 3 >> MobileLiteNetB-bs32--train.log

TODO: Describe where is the trained model located?

Peformance

TODO: framework used, model size, performance data (can use the following table as performance data)

model name ACER TPR@FPR=10E-2 TPR@FPR=10E-3 FP FN epoch params FLOPs
MobileLiteNet54 0.00242 1.0 0.99846 32 0 41 0.57M 270.91M
MobileLiteNet54-se 0.00242 1.0 0.996994 32 0 69 0.57M 270.91M
FeatherNetA 0.00261 1.00 0.961590 19 7 51 0.35M 79.99M
FeatherNetB 0.00168 1.0 0.997662 20 1 48 0.35M 83.05M

Test

TODO: Inference time for FeatherNet and MobileLiteNet

[1] ChaLearn Face Anti-spoofing Attack Detection Challenge@CVPR2019,link [2] Shifeng Zhang, Xiaobo Wang, Ajian Liu, Chenxu Zhao, Jun Wan, Sergio Escalera, Hailin Shi, Zezheng Wang, Stan Z. Li, " CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing ", arXiv, 2018 PDF