-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo_continuous_action.py
436 lines (378 loc) · 19.9 KB
/
ppo_continuous_action.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy
import argparse
import os
import random
import time
import datetime
from distutils.util import strtobool
import gymnasium as gym
import numpy as np
import robosuite
import torch
import torch.nn as nn
import torch.optim as optim
from robosuite import load_controller_config
from robosuite.environments.manipulation.wipe import DEFAULT_WIPE_CONFIG
from robosuite.wrappers import GymWrapper
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to save model into the `runs/{run_name}` folder")
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to upload the saved model to huggingface")
parser.add_argument("--hf-entity", type=str, default="",
help="the user or org name of the model repository from the Hugging Face Hub")
parser.add_argument("--checkpoint-path", type=str, default=None,
help="File path for the checkpoint file to load model from")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="HalfCheetah-v4",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=1000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=3e-4,
help="the learning rate of the optimizer")
parser.add_argument("--num-envs", type=int, default=1,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=10242, # Modified from 2048
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=1,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=50,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.0,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args
def make_env(env_id, idx, capture_video, run_name, gamma):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
env = gym.wrappers.RecordEpisodeStatistics(env)
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
# env = gym.wrappers.NormalizeReward(env, gamma=gamma)
# env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
return env
return thunk
def make_robosuite_env(idx, capture_video, run_name, gamma):
def thunk():
controller_config = load_controller_config(default_controller="OSC_POSITION")
task_config = DEFAULT_WIPE_CONFIG
task_config['get_info'] = True
if capture_video and idx == 0:
env = robosuite.make(
"Wipe",
robots=["UR5e"],
task_config=task_config,
controller_configs=controller_config,
has_renderer=False, # on-screen rendering
has_offscreen_renderer=True, # off-screen rendering
control_freq=20, # 20 hz control for applied actions
horizon=400, # each episode terminates after 200 steps
use_object_obs=True, # no observations needed
use_camera_obs=False, # no observations needed
)
env = GymWrapper(env)
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = robosuite.make(
"Wipe",
robots=["UR5e"],
task_config=task_config,
controller_configs=controller_config,
has_renderer=False, # on-screen rendering
has_offscreen_renderer=False, # no off-screen rendering
control_freq=20, # 20 hz control for applied actions
horizon=400, # each episode terminates after 200 steps
use_object_obs=True, # no observations needed
use_camera_obs=False, # no observations needed
)
env = GymWrapper(env)
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
env = gym.wrappers.RecordEpisodeStatistics(env)
env = gym.wrappers.ClipAction(env)
# env = gym.wrappers.NormalizeObservation(env)
# env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
env = gym.wrappers.NormalizeReward(env, gamma=gamma)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
return env
return thunk
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, envs):
super().__init__()
self.critic = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 128)),
nn.ReLU6(),
layer_init(nn.Linear(128, 128)),
nn.ReLU6(),
layer_init(nn.Linear(128, 1), std=1.0),
)
self.actor_mean = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 128)),
nn.ReLU6(),
layer_init(nn.Linear(128, 128)),
nn.ReLU6(),
layer_init(nn.Linear(128, np.prod(envs.single_action_space.shape)), std=0.01),
)
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))
def get_value(self, x):
return self.critic(x)
def get_action_and_value(self, x, action=None):
action_mean = self.actor_mean(x)
action_logstd = self.actor_logstd.expand_as(action_mean)
action_std = torch.exp(action_logstd)
probs = Normal(action_mean, action_std)
if action is None:
action = probs.sample()
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
if __name__ == "__main__":
args = parse_args()
# Get the current date and time and store it in a variable called timestamp
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{timestamp}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
# envs = gym.vector.SyncVectorEnv(
# [make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
# )
envs = gym.vector.SyncVectorEnv(
[make_robosuite_env(i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
agent = Agent(envs).to(device)
if args.checkpoint_path:
agent.load_state_dict(torch.load(args.checkpoint_path))
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs, _ = envs.reset(seed=args.seed)
next_obs = torch.Tensor(next_obs).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size
# Tracking the best success rate achieved
best_success_rate = 0.0
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy())
done = np.logical_or(terminations, truncations)
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
# Only print when at least 1 env is done
if "final_info" not in infos:
continue
avg_success_rate = np.mean([info["percent_viapoints_"] for info in infos["final_info"] if info is not None])
if avg_success_rate >= best_success_rate - 0.1:
best_success_rate = max(best_success_rate, avg_success_rate)
# Save a checkpoint of the model with the best success rate
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save(agent.state_dict(), model_path)
print(f"model saved to {model_path}")
for info in infos["final_info"]:
# Skip the envs that are not done
if info is None:
continue
print(f"global_step={global_step}, episodic_return={info['episode']['r']}, success_rate={info['percent_viapoints_']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
writer.add_scalar("charts/success_rate", info["percent_viapoints_"], global_step)
writer.add_scalar("charts/collisions", info["colls"], global_step)
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl:
print(f"KL Divergence ({approx_kl}) exceeded threshold ({args.target_kl}). Early stopping.")
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
# torch.save(agent.state_dict(), model_path)
# print(f"model saved to {model_path}")
from cleanrl.cleanrl_utils.evals.ppo_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=Agent,
device=device,
gamma=args.gamma,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from cleanrl.cleanrl_utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")
envs.close()
writer.close()