-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
215 lines (192 loc) · 10.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#import h5py
import numpy as np
import scipy.io as sio
import torch
from sklearn import preprocessing
import sys
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def map_label(label, classes):
mapped_label = torch.LongTensor(label.size())
for i in range(classes.size(0)):
mapped_label[label==classes[i]] = i
return mapped_label
class Logger(object):
def __init__(self, filename):
self.filename = filename
f = open(self.filename+'.log', "a")
f.close()
def write(self, message):
f = open(self.filename+'.log', "a")
f.write(message)
f.close()
class DATA_LOADER(object):
def __init__(self, opt):
if opt.matdataset:
if opt.dataset == 'imageNet1K':
self.read_matimagenet(opt)
else:
self.read_matdataset(opt)
self.index_in_epoch = 0
self.epochs_completed = 0
# not tested
def read_h5dataset(self, opt):
# read image feature
fid = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".hdf5", 'r')
feature = fid['feature'][()]
label = fid['label'][()]
trainval_loc = fid['trainval_loc'][()]
train_loc = fid['train_loc'][()]
val_unseen_loc = fid['val_unseen_loc'][()]
test_seen_loc = fid['test_seen_loc'][()]
test_unseen_loc = fid['test_unseen_loc'][()]
fid.close()
# read attributes
fid = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.class_embedding + ".hdf5", 'r')
self.attribute = fid['attribute'][()]
fid.close()
if not opt.validation:
self.train_feature = feature[trainval_loc]
self.train_label = label[trainval_loc]
self.test_unseen_feature = feature[test_unseen_loc]
self.test_unseen_label = label[test_unseen_loc]
self.test_seen_feature = feature[test_seen_loc]
self.test_seen_label = label[test_seen_loc]
else:
self.train_feature = feature[train_loc]
self.train_label = label[train_loc]
self.test_unseen_feature = feature[val_unseen_loc]
self.test_unseen_label = label[val_unseen_loc]
self.seenclasses = np.unique(self.train_label)
self.unseenclasses = np.unique(self.test_unseen_label)
self.nclasses = self.seenclasses.size(0)
def read_matimagenet(self, opt):
if opt.preprocessing:
print('MinMaxScaler...')
scaler = preprocessing.MinMaxScaler()
matcontent = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".mat", 'r')
feature = scaler.fit_transform(np.array(matcontent['features']))
label = np.array(matcontent['labels']).astype(int).squeeze() - 1
feature_val = scaler.transform(np.array(matcontent['features_val']))
label_val = np.array(matcontent['labels_val']).astype(int).squeeze() - 1
matcontent.close()
matcontent = h5py.File('/BS/xian/work/data/imageNet21K/extract_res/res101_1crop_2hops_t.mat', 'r')
feature_unseen = scaler.transform(np.array(matcontent['features']))
label_unseen = np.array(matcontent['labels']).astype(int).squeeze() - 1
matcontent.close()
else:
matcontent = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".mat", 'r')
feature = np.array(matcontent['features'])
label = np.array(matcontent['labels']).astype(int).squeeze() - 1
feature_val = np.array(matcontent['features_val'])
label_val = np.array(matcontent['labels_val']).astype(int).squeeze() - 1
matcontent.close()
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.class_embedding + ".mat")
self.attribute = torch.from_numpy(matcontent['w2v']).float()
self.train_feature = torch.from_numpy(feature).float()
self.train_label = torch.from_numpy(label).long()
self.test_seen_feature = torch.from_numpy(feature_val).float()
self.test_seen_label = torch.from_numpy(label_val).long()
self.test_unseen_feature = torch.from_numpy(feature_unseen).float()
self.test_unseen_label = torch.from_numpy(label_unseen).long()
self.ntrain = self.train_feature.size()[0]
self.seenclasses = torch.from_numpy(np.unique(self.train_label.numpy()))
self.unseenclasses = torch.from_numpy(np.unique(self.test_unseen_label.numpy()))
self.train_class = torch.from_numpy(np.unique(self.train_label.numpy()))
self.ntrain_class = self.seenclasses.size(0)
self.ntest_class = self.unseenclasses.size(0)
def read_matdataset(self, opt):
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".mat")
feature = matcontent['features'].T
label = matcontent['labels'].astype(int).squeeze() - 1
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.class_embedding + "_splits.mat")
# numpy array index starts from 0, matlab starts from 1
trainval_loc = matcontent['trainval_loc'].squeeze() - 1
train_loc = matcontent['train_loc'].squeeze() - 1
val_unseen_loc = matcontent['val_loc'].squeeze() - 1
test_seen_loc = matcontent['test_seen_loc'].squeeze() - 1
test_unseen_loc = matcontent['test_unseen_loc'].squeeze() - 1
self.attribute = torch.from_numpy(matcontent['att'].T).float()
if not opt.validation:
if opt.preprocessing:
if opt.standardization:
print('standardization...')
scaler = preprocessing.StandardScaler()
else:
scaler = preprocessing.MinMaxScaler()
_train_feature = scaler.fit_transform(feature[trainval_loc])
_test_seen_feature = scaler.transform(feature[test_seen_loc])
_test_unseen_feature = scaler.transform(feature[test_unseen_loc])
self.train_feature = torch.from_numpy(_train_feature).float()
mx = self.train_feature.max()
self.train_feature.mul_(1/mx)
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(_test_unseen_feature).float()
self.test_unseen_feature.mul_(1/mx)
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(_test_seen_feature).float()
self.test_seen_feature.mul_(1/mx)
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[trainval_loc]).float()
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[test_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(feature[test_seen_loc]).float()
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[train_loc]).float()
self.train_label = torch.from_numpy(label[train_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[val_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[val_unseen_loc]).long()
self.seenclasses = torch.from_numpy(np.unique(self.train_label.numpy()))
self.unseenclasses = torch.from_numpy(np.unique(self.test_unseen_label.numpy()))
self.ntrain = self.train_feature.size()[0]
self.ntrain_class = self.seenclasses.size(0)
self.ntest_class = self.unseenclasses.size(0)
self.train_class = self.seenclasses.clone()
self.allclasses = torch.arange(0, self.ntrain_class+self.ntest_class).long()
self.train_mapped_label = map_label(self.train_label, self.seenclasses)
def next_batch_one_class(self, batch_size):
if self.index_in_epoch == self.ntrain_class:
self.index_in_epoch = 0
perm = torch.randperm(self.ntrain_class)
self.train_class[perm] = self.train_class[perm]
iclass = self.train_class[self.index_in_epoch]
idx = self.train_label.eq(iclass).nonzero().squeeze()
perm = torch.randperm(idx.size(0))
idx = idx[perm]
iclass_feature = self.train_feature[idx]
iclass_label = self.train_label[idx]
self.index_in_epoch += 1
return iclass_feature[0:batch_size], iclass_label[0:batch_size], self.attribute[iclass_label[0:batch_size]]
def next_batch(self, batch_size):
idx = torch.randperm(self.ntrain)[0:batch_size]
batch_feature = self.train_feature[idx]
batch_label = self.train_label[idx]
batch_att = self.attribute[batch_label]
return batch_feature, batch_label, batch_att
# select batch samples by randomly drawing batch_size classes
def next_batch_uniform_class(self, batch_size):
batch_class = torch.LongTensor(batch_size)
for i in range(batch_size):
idx = torch.randperm(self.ntrain_class)[0]
batch_class[i] = self.train_class[idx]
batch_feature = torch.FloatTensor(batch_size, self.train_feature.size(1))
batch_label = torch.LongTensor(batch_size)
batch_att = torch.FloatTensor(batch_size, self.attribute.size(1))
for i in range(batch_size):
iclass = batch_class[i]
idx_iclass = self.train_label.eq(iclass).nonzero().squeeze()
idx_in_iclass = torch.randperm(idx_iclass.size(0))[0]
idx_file = idx_iclass[idx_in_iclass]
batch_feature[i] = self.train_feature[idx_file]
batch_label[i] = self.train_label[idx_file]
batch_att[i] = self.attribute[batch_label[i]]
return batch_feature, batch_label, batch_att