-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
128 lines (114 loc) · 4.9 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import numpy as np
import util
from sklearn.preprocessing import MinMaxScaler
import sys
class CLASSIFIER:
# train_Y is interger
def __init__(self, _train_X, _train_Y, _nclass, _input_dim, _cuda, _lr=0.001, _beta1=0.5, _nepoch=20, _batch_size=100, pretrain_classifer=''):
self.train_X = _train_X
self.train_Y = _train_Y
self.batch_size = _batch_size
self.nepoch = _nepoch
self.nclass = _nclass
self.input_dim = _input_dim
self.cuda = _cuda
self.model = LINEAR_LOGSOFTMAX(self.input_dim, self.nclass)
self.model.apply(util.weights_init)
self.criterion = nn.NLLLoss()
self.input = torch.FloatTensor(_batch_size, self.input_dim)
self.label = torch.LongTensor(_batch_size)
self.lr = _lr
self.beta1 = _beta1
# setup optimizer
self.optimizer = optim.Adam(self.model.parameters(), lr=_lr, betas=(_beta1, 0.999))
if self.cuda:
self.model.cuda()
self.criterion.cuda()
self.input = self.input.cuda()
self.label = self.label.cuda()
self.index_in_epoch = 0
self.epochs_completed = 0
self.ntrain = self.train_X.size()[0]
if pretrain_classifer == '':
self.fit()
else:
self.model.load_state_dict(torch.load(pretrain_classifier))
def fit(self):
for epoch in range(self.nepoch):
for i in range(0, self.ntrain, self.batch_size):
self.model.zero_grad()
batch_input, batch_label = self.next_batch(self.batch_size)
self.input.copy_(batch_input)
self.label.copy_(batch_label)
inputv = Variable(self.input)
labelv = Variable(self.label)
output = self.model(inputv)
loss = self.criterion(output, labelv)
loss.backward()
self.optimizer.step()
def next_batch(self, batch_size):
start = self.index_in_epoch
# shuffle the data at the first epoch
if self.epochs_completed == 0 and start == 0:
perm = torch.randperm(self.ntrain)
self.train_X = self.train_X[perm]
self.train_Y = self.train_Y[perm]
# the last batch
if start + batch_size > self.ntrain:
self.epochs_completed += 1
rest_num_examples = self.ntrain - start
if rest_num_examples > 0:
X_rest_part = self.train_X[start:self.ntrain]
Y_rest_part = self.train_Y[start:self.ntrain]
# shuffle the data
perm = torch.randperm(self.ntrain)
self.train_X = self.train_X[perm]
self.train_Y = self.train_Y[perm]
# start next epoch
start = 0
self.index_in_epoch = batch_size - rest_num_examples
end = self.index_in_epoch
X_new_part = self.train_X[start:end]
Y_new_part = self.train_Y[start:end]
if rest_num_examples > 0:
return torch.cat((X_rest_part, X_new_part), 0) , torch.cat((Y_rest_part, Y_new_part), 0)
else:
return X_new_part, Y_new_part
else:
self.index_in_epoch += batch_size
end = self.index_in_epoch
# from index start to index end-1
return self.train_X[start:end], self.train_Y[start:end]
# test_label is integer
def val(self, test_X, test_label, target_classes):
start = 0
ntest = test_X.size()[0]
predicted_label = torch.LongTensor(test_label.size())
for i in range(0, ntest, self.batch_size):
end = min(ntest, start+self.batch_size)
if self.cuda:
output = self.model(Variable(test_X[start:end].cuda(), volatile=True))
else:
output = self.model(Variable(test_X[start:end], volatile=True))
_, predicted_label[start:end] = torch.max(output.data, 1)
start = end
acc = self.compute_per_class_acc(util.map_label(test_label, target_classes), predicted_label, target_classes.size(0))
return acc
def compute_per_class_acc(self, test_label, predicted_label, nclass):
acc_per_class = torch.FloatTensor(nclass).fill_(0)
for i in range(nclass):
idx = (test_label == i)
acc_per_class[i] = torch.sum(test_label[idx]==predicted_label[idx]) / torch.sum(idx)
return acc_per_class.mean()
class LINEAR_LOGSOFTMAX(nn.Module):
def __init__(self, input_dim, nclass):
super(LINEAR_LOGSOFTMAX, self).__init__()
self.fc = nn.Linear(input_dim, nclass)
self.logic = nn.LogSoftmax(dim=1)
def forward(self, x):
o = self.logic(self.fc(x))
return o