From 58368a75cc05519cfe9f1f1527958b78e06c0a80 Mon Sep 17 00:00:00 2001 From: Mostafa Farrag Date: Sat, 7 Dec 2024 01:00:51 +0100 Subject: [PATCH 1/4] fix the issue in cleopatra version (#104) * fix the issue in cleopatra version * update miniconda workflow action * activate use mamba * update notebooks * update dependencies * reduce loguru version to match pypi and conda-forge * update the name attribute in the ogr.DataSource * update gdal in the workflow * add libgdal-netcdf, libgdal-hdf4 to the conda dependencies * update notebook * ogr.Open now returns a Dataset not DataSource * update check list files * update gdal in readthedocs --- .github/workflows/conda-deployment.yml | 16 +- .github/workflows/pypi-deployment.yml | 4 +- HISTORY.rst | 7 + README.md | 4 +- docs/environment.yml | 2 +- docs/source/installation.rst | 4 +- environment-optional-packages.yml | 24 +- environment.yml | 22 +- .../02spatial-operation-methods.ipynb | 911 +- examples/notebooks/03convert-longitude.ipynb | 580 +- examples/notebooks/04datacube.ipynb | 8502 +++++++++-------- examples/notebooks/south-america.ipynb | 3032 +++--- pyramids/datacube.py | 10 +- pyramids/dataset.py | 6 +- pyramids/featurecollection.py | 6 +- requirements-optional-packages.txt | 18 +- requirements.txt | 16 +- setup.py | 2 +- tests/dataset/test_plot.py | 4 +- tests/feature/conftest.py | 6 +- tests/feature/test_feature.py | 10 +- 21 files changed, 6732 insertions(+), 6454 deletions(-) diff --git a/.github/workflows/conda-deployment.yml b/.github/workflows/conda-deployment.yml index 24ba287ed..53bbc5ceb 100644 --- a/.github/workflows/conda-deployment.yml +++ b/.github/workflows/conda-deployment.yml @@ -13,14 +13,14 @@ jobs: OS: ${{ matrix.os }} steps: - - uses: actions/checkout@v3 - - uses: conda-incubator/setup-miniconda@v2 + - uses: actions/checkout@v4 + - uses: conda-incubator/setup-miniconda@v3 with: mamba-version: "*" - #use-mamba: true + use-mamba: true auto-update-conda: false - environment-file: environment.yml auto-activate-base: false + environment-file: environment.yml activate-environment: test python-version: ${{ matrix.python-version }} channels: conda-forge,defaults @@ -50,14 +50,14 @@ jobs: OS: ${{ matrix.os }} steps: - - uses: actions/checkout@v3 - - uses: conda-incubator/setup-miniconda@v2 + - uses: actions/checkout@v4 + - uses: conda-incubator/setup-miniconda@v3 with: mamba-version: "*" - #use-mamba: true + use-mamba: true auto-update-conda: false - environment-file: environment-optional-packages.yml auto-activate-base: false + environment-file: environment-optional-packages.yml activate-environment: test python-version: ${{ matrix.python-version }} channels: conda-forge,defaults diff --git a/.github/workflows/pypi-deployment.yml b/.github/workflows/pypi-deployment.yml index 07ac70721..c9995f10c 100644 --- a/.github/workflows/pypi-deployment.yml +++ b/.github/workflows/pypi-deployment.yml @@ -24,7 +24,7 @@ jobs: run: | python -m pip install --upgrade pip pip install --no-cache-dir Cython - pip install --find-links=https://girder.github.io/large_image_wheels --no-cache GDAL==3.9.0 + pip install --find-links=https://girder.github.io/large_image_wheels --no-cache GDAL==3.10.0 - name: Test GDAL installation run: | @@ -64,7 +64,7 @@ jobs: run: | python -m pip install --upgrade pip pip install --no-cache-dir Cython - pip install --find-links=https://girder.github.io/large_image_wheels --no-cache GDAL==3.9.0 + pip install --find-links=https://girder.github.io/large_image_wheels --no-cache GDAL==3.10.0 - name: Test GDAL installation run: | diff --git a/HISTORY.rst b/HISTORY.rst index 0414aed81..92538a68a 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -229,3 +229,10 @@ Deprecated *Cropping a raster using a polygon is done now directly using gdal.wrap nand the the `_crop_with_polygon_by_rasterizing` is deprecated. * rename the interpolation method `nearest neighbour` to `nearest neighbor`. + +0.7.1 (2024-12-07) +------------------ +* update `cleopatra` package version to 0.5.1 and update the api to use the new version. +* update the miniconda workflow in ci. +* update gdal to 3.10 and update the DataSource to Dataset in the `FeatureCollection.file_name`. +* add `libgdal-netcdf` and `libgdal-hdf4` to the conda dependencies. diff --git a/README.md b/README.md index a26b95209..9dccbc204 100644 --- a/README.md +++ b/README.md @@ -46,7 +46,7 @@ Installing pyramids Installing `pyramids` from the `conda-forge` channel can be achieved by: ``` -conda install -c conda-forge pyramids=0.7.0 +conda install -c conda-forge pyramids=0.7.1 ``` It is possible to list all the versions of `pyramids` available on your platform with: @@ -68,7 +68,7 @@ pip install git+https://github.com/Serapieum-of-alex/pyramids to install the last release, you can easily use pip ``` -pip install pyramids-gis==0.7.0 +pip install pyramids-gis==0.7.1 ``` Quick start diff --git a/docs/environment.yml b/docs/environment.yml index 9fc3caeba..50374d883 100644 --- a/docs/environment.yml +++ b/docs/environment.yml @@ -5,7 +5,7 @@ dependencies: - numpy >=2.0.0 - numpydoc==1.1.0 - typing-extensions==3.10.* - - gdal==3.9.0 + - gdal==3.10.0 - pip: - pydata_sphinx_theme>=0.15.2 - sphinxcontrib-napoleon diff --git a/docs/source/installation.rst b/docs/source/installation.rst index 7e7142d42..fe43e170f 100644 --- a/docs/source/installation.rst +++ b/docs/source/installation.rst @@ -8,9 +8,9 @@ dependencies Required dependencies ===================== -- Python (3.9 or later) +- Python (3.11 or later) - `numpy `__ (1.21 or later) -- `GDAL `__ (3.6.2 or later) +- `GDAL `__ (3.9.0 or later) - `pandas `__ (2 or later) - `geopandas `__ (0.12.2 or later) - `Shapely `__ (1.8.4 or later) diff --git a/environment-optional-packages.yml b/environment-optional-packages.yml index aa6fcdaf3..abb220003 100644 --- a/environment-optional-packages.yml +++ b/environment-optional-packages.yml @@ -1,17 +1,19 @@ channels: - conda-forge dependencies: - - numpy >=2.0.0 + - numpy >=2.1.3 - hpc >=0.1.4 - - pip >=24.0.0 - - gdal ==3.9.0 - - pandas >=2.1.0 - - geopandas >=0.14.1 - - Shapely >=2.0.2 - - pyproj >=3.6.1 - - cleopatra >=0.4.2 - - PyYAML >=6.0.1 + - pip >=24.3.1 + - gdal ==3.10.0 + - libgdal-netcdf ==3.10.0 + - libgdal-hdf4 ==3.10.0 + - pandas >=2.2.3 + - geopandas >=1.0.1 + - Shapely >=2.0.6 + - pyproj >=3.7.0 + - cleopatra >=0.5.1 + - PyYAML >=6.0.2 - loguru >=0.7.2 - - pytest >=8.2.2 - - pytest-cov >=5.0.0 + - pytest >=8.3.4 + - pytest-cov >=6.0.0 - nbval >=0.11.0 diff --git a/environment.yml b/environment.yml index ceb141f17..a9c599621 100644 --- a/environment.yml +++ b/environment.yml @@ -1,16 +1,18 @@ channels: - conda-forge dependencies: - - numpy >=2.0.0 + - numpy >=2.1.3 - hpc >=0.1.4 - - pip >=24.0.0 - - gdal ==3.9.0 - - pandas >=2.1.0 - - geopandas >=0.14.1 - - Shapely >=2.0.2 - - pyproj >=3.6.1 - - PyYAML >=6.0.1 + - pip >=24.3.1 + - gdal ==3.10.0 + - libgdal-netcdf ==3.10.0 + - libgdal-hdf4 ==3.10.0 + - pandas >=2.2.3 + - geopandas >=1.0.1 + - Shapely >=2.0.6 + - pyproj >=3.7.0 + - PyYAML >=6.0.2 - loguru >=0.7.2 - - pytest >=8.2.2 - - pytest-cov >=5.0.0 + - pytest >=8.3.4 + - pytest-cov >=6.0.0 - nbval >=0.11.0 diff --git a/examples/notebooks/02spatial-operation-methods.ipynb b/examples/notebooks/02spatial-operation-methods.ipynb index 6e3f88117..684b36bbf 100644 --- a/examples/notebooks/02spatial-operation-methods.ipynb +++ b/examples/notebooks/02spatial-operation-methods.ipynb @@ -1,343 +1,574 @@ { - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Dataset Spatial operation methods" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "

\n", - " \"dataset\n", - "

" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "from pyramids.dataset import Dataset\n", - "path = \"../../examples/data/dem/DEM5km_Rhine_burned_fill.tif\"" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T21:46:46.740046Z", - "start_time": "2024-06-19T21:46:46.015814Z" - } - }, - "outputs": [], - "execution_count": 1 - }, - { - "cell_type": "code", - "source": [ - "dataset = Dataset.read_file(path)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T21:46:54.017857Z", - "start_time": "2024-06-19T21:46:53.935336Z" - } - }, - "outputs": [], - "execution_count": 2 - }, - { - "cell_type": "code", - "source": [ - "print(dataset)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T21:46:58.685845Z", - "start_time": "2024-06-19T21:46:58.681667Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 5000.0\n", - " Dimension: 125 * 93\n", - " EPSG: 4647\n", - " Number of Bands: 1\n", - " Band names: ['Band_1']\n", - " Mask: -3.4028234663852886e+38\n", - " Data type: float32\n", - " File: ../../examples/data/dem/DEM5km_Rhine_burned_fill.tif\n", - " \n" - ] - } - ], - "execution_count": 3 - }, - { - "cell_type": "code", - "source": [ - "dataset.plot(vmin=0, title=\"Rhine River Basin\", cbar_label=\"Elevation(m)\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T21:47:27.292139Z", - "start_time": "2024-06-19T21:47:26.537391Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(
,\n", - " )" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAALDCAYAAACYU00/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4PklEQVR4nOzdd3hUdfY/8Pf0TCqkQQJJ6B0RhKWICIoISlPEukqz7K4VF11Z1xV3EdC1N2xUFVEWsaEISlMRVhBUEDEgSAsd0jMpc39/8GO+zpwDuZOZQJi8X8+TR3Ny+9wJn9w553MshmEYICIiIqKznvVMHwARERERhQcHdkREREQRggM7IiIiogjBgR0RERFRhODAjoiIiChCcGBHREREFCE4sCMiIiKKEBzYEREREUUIDuyIiIiIIgQHdhRxLBaL35fVakVCQgK6deuGp59+GmVlZep6vXv3hsViwY4dO0zva8KECbBYLJg5c2Z4Dj5MduzYIa6DzWZDYmIiLrzwQsycORMnazpTletQE5x4LQK/4uPj8Yc//AHPPPMMysvLT/txjRw5EhaLBcuXLz/t+yai2sd+pg+AqLqMGDECAFBRUYEdO3Zg1apVWLNmDRYuXIhFixbBbo/82z8mJgZXXXUVAKCsrAzZ2dlYuXIlVq5cieXLl9e4AWk4dOjQAeeeey6A46/9zp078fXXX+Pbb7/FokWL8Mknn8Bq5d+0RBShDKIIA8DQbu3Vq1cbUVFRBgDjjTfeED+/8MILDQDG9u3bTe/r4MGDxubNm41jx46Fcshht337dgOAkZWVJX62YMEC3zX68ssvxc9/++03Y/PmzUZpaelpONLwefjhhw0AxsMPPyx+9t133xlut9sAYMyfP/+0HtfevXuNzZs3G4WFhad1v0RUO/HPVqo1unbtipEjRwIAPvvss7BsMzk5Ga1atUJCQkJYtnc6DB06FP379wegX4fMzEy0atUKDofjdB9atenYsaPvyeXKlStP677T0tLQqlUrREdHn9b9ElHtxIEd1Spt27YFABw4cOCUy73//vvo1q0bYmJikJiYiOuuuw67d+8Wy50sx+73eWpmtwUAhmFg1qxZ6NWrF+rUqQO3241zzjkHTzzxxElzA6viVNchMMfuwIEDsNvtaNCgAbxer7q9d999FxaLBTfccENI59OoUSNYLBYYhoHnn38eHTp0QHR0tO+j1VDUq1cPAESeXUlJCaZNm4YhQ4agSZMmcLvdqFOnDnr16oW5c+eq2yorK8Mrr7yCP/zhD0hOTkZ0dDQaNWqEgQMHinVOlmN34lwB4PXXX8c555wDt9uN+vXr47bbbsOxY8dCPmciqn04sKNaJT8/HwCQmpp60mVeeuklDBs2DIZhoH///oiNjcXcuXNx0UUXobi4OKj9BbMtr9eLa665BiNHjsT333+Pzp0749JLL8XBgwdx3333YejQoScdWAXLzHU4ITU1FX379sXevXuxbNkydZk5c+YAgN/ALpTz+dOf/oS//vWvSE1NxeDBg9GkSZNgT1FYt24dAKB169Z+8R07duDmm2/GmjVrkJmZiSFDhuDcc8/F6tWrcd1112HChAliWzfeeCP+9Kc/Yfv27ejRowcGDx6MjIwMfPnll3j55ZeDOq77778ft99+O+Lj49G/f38YhoFXX30VgwcPPmmBCxHRSZ3Bj4GJqgVOkmNnGIbRq1cvA4Dx5ptvip+dyLGLiYkxvvjiC1+8sLDQ6NGjhwHAmDZtmt86J/K6ZsyYEfK2HnvsMQOAcckllxgHDhzwxQsKCoxBgwYZAIwXXnjB1DU4VY5daWmp0axZMwOA8dVXX530Ovw+13D27NkGAGP06NFi+aNHjxpOp9NITk42ysrKQjqfrKwsA4CRnJxsbNy40dS5nqDl2JWXlxvbt2837rvvPgOAkZGRYeTm5vqtd+jQIeOzzz4zKioq/OK//vqr0ahRI8NqtfpdixPXtkuXLkZxcbHfOkVFRcaqVav8YiNGjDAAGMuWLVPPNS0tzVi/fr0vfvDgQd/r8/t7h4jIDA7sKOIEDuwqKiqMrVu3Gn/6058MAMbgwYP9BiAnnBjQ/OMf/xA/mz9/vgHAGDFihF+8soGd2W2VlZUZycnJRlxcnHHw4EGxzr59+wyXy2W0b9++krM/ThvYlZaWGps2bTKuvPJKA4Dxl7/8RV1XG9jl5+cb0dHRRkJCglFSUuK3/GuvvWYAMG6//faQz+fEYOc///mPqfP8vROvxcm+rr32WmP37t1BbfPEuT333HO+2Jo1awwAxt13321qG5UN7F5//XWxzpNPPnnSQhAiolOJ/PkeqNY6kb/0e2PGjMGrr756yuku+vXrJ2ItWrQAAOTk5AR1DGa3tX79ehw6dAgDBgxAcnKyWKdevXpo3rw5Nm7ciOLiYrjdblP7/+2339Tr8Mgjj+Cf//yn2dNAbGwsBg8ejLlz52LhwoW48sorfT/TPoYN9XwGDx5s+tgC/X66EwA4ePAg1q9fj3nz5sHtdmPq1KlwuVxiva+++grLly/Hnj17UFJSAsMwfK9Rdna2b7lWrVohJiYGM2bMQNu2bXHllVciKSmpyscbzvuNiIgDO4pYJ+axKykpwYYNG7BlyxZMmzYN3bt3x5gxY066XsOGDUUsNjYWAODxeII6BrPbOlGo8Omnn6oDsd87cuQIGjRoYGr/v5/HrqCgAN9++y127tyJiRMnomvXrrj00ktNbQc4PnCbO3cu3nrrLd/Abu/evVixYgUaN26M7t27h+18MjMzTR9XoKFDh4q8uNLSUvzlL3/BtGnTYLfb8eqrr/p+lpubiyuvvBJLly496TZP5CQCQHx8PF577TXceuutuPXWW3HbbbehZcuW6NOnD2666SZ069YtqOMN5/1GRMSBHUWswErVxx9/HH/7299w5513om/fvsjKylLXq2wgEgyz26qoqAAANG/eHD169DjlstrTppNJTk72uw4VFRW4++678eKLL2LEiBHIzs5GXFycqW1deumlSE5OxsKFC5Gbm4uEhATMnTsXXq9XVMOGej5RUVGmjsksp9OJp59+GtOnT8f06dPx+OOPo06dOgCAv/3tb1i6dCl69eqFf/3rX2jXrh3q1KkDm82GxYsX49JLLxVFDNdddx369u2LDz74AIsXL8aKFSswdepUTJ06Fffddx8ef/xx08cWzvuNiIgDO6o17r//fnzxxRdYvHgxHnnkEUyfPv1MH5LPiac27dq1q9ZuEDabDc888wyWL1+OTZs24emnnzb9kazD4cDw4cMxdepUzJ8/H6NHj/Z9DHv99df7LXu6zicYcXFxSE5OxsGDB7F161Z07twZALBgwQLYbDZ8+OGHYj7CX3/99aTbS0lJwc0334ybb74ZhmHgs88+wzXXXIP//Oc/GDlyJNq0aVOt50NEpOF0J1SrPPbYY7BYLHjjjTfw22+/nenD8enSpQsSEhKwbNky5OXlVeu+7HY7Jk6cCAB49tlnUVBQYHrdE0/m5syZg19++QXr1q1Dp06dxBQip/N8zMrPz8ehQ4cAHP+I+oSjR48iLi5OnWT63XffNbVti8WC/v374/LLLwcAbNy4MQxHTEQUPA7sqFY599xzMWTIEJSXlwf1cVl1c7lcGDduHI4dO4Zhw4apg84ffvgB77zzTlj2N3ToUHTs2BFHjhzB1KlTTa/Xo0cPNGrUCMuWLcOTTz4JAOJjWOD0n09lSktLMXbsWBiGgcaNG6NVq1a+n7Vo0QLHjh0Tx/L000+r8/atX78e7733nphg+ejRo1izZg2A0HIEiYhCwY9iqdaZMGECPvjgA0yfPh0PPfQQ6tevf6YPCQDw97//HT/99BPefvtttGzZEp06dUJmZiYOHTqEX3/9Fdu3b8eQIUNwzTXXhGV/EyZMwJAhQ/DUU0/hzjvvNJXXZrFYcP3112PSpEm+6uJrr722RpzPCe+//76veAMADh06hPXr12Pv3r2Ijo7G9OnT/fLaxo8fjz/+8Y+49tpr8eKLL6Jhw4b4/vvv8fPPP2Ps2LF4+umn/bb/22+/YdiwYUhISEDnzp1Rv359HDt2DF9++SXy8vJwxRVXBF1AQUQULnxiR7VOhw4dcMUVV6CkpARPPfXUmT4cH6vVijlz5uC///0v+vTpg+zsbLz33nv46aefUK9ePUyYMAGPPfZY2PY3ePBgdO7cGfv27Qsq3/D3T+h69+6N9PR0dbnTfT4nfP/995g1a5bv6/PPP0d0dDRuu+02fP/99+jdu7c4n4ULF6Jbt27YsGEDPv30U6Snp2Pp0qXqtCvdunXDxIkTcd5552HLli2YN28e1q5di3POOQezZs0y/fEtEVF1sBiB5V5EREREdFbiEzsiIiKiCMGBHREREVGE4MCOiIiIKEJwYEdEREQUITiwIyIiIooQHNgRERERRQgO7IiIiIgiBAd2RERERBGCAzsiIqJqtnLlSgwaNAjp6emwWCx4//33g1p/woQJsFgs4ismJqZ6DpjOWhzYERERVbPCwkJ06NABL7zwQpXWHzduHHJycvy+2rRpg+HDh4f5SOlsx4EdERFRNRswYAAmTpyIK6+8Uv15aWkp7r//fjRo0AAxMTHo2rUrli9f7vt5bGws6tev7/vav38/fvrpJ4wZM+Y0nQGdLexn+gCIiIhqu1GjRmHHjh2YO3cu0tPTsWDBAvTv3x8//vgjmjdvLpZ//fXX0aJFC1xwwQVn4GipJuMTOyIiojNo27ZtePvttzFv3jxccMEFaNq0KcaNG4eePXtixowZYnmPx4O33nqLT+tIxSd2REREZ9B3330HwzDQokULv7jH40FSUpJY/r333kN+fj5uuumm03WIdBbhwI6IiOgM8nq9sNlsWLduHWw2m9/PYmNjxfKvv/46Bg4ciPr165+uQ6SzCAd2REREZ1DHjh1RUVGBAwcOVJozt337dixbtgwffvjhaTo6OttwYEdERFTNCgoKsHXrVt/327dvx4YNG5CYmIgWLVrghhtuwE033YQnn3wSHTt2xKFDh7B06VK0b98el112mW+96dOnIy0tDQMGDDgTp0FnAYthGMaZPggiIqJItnz5cvTp00fER4wYgZkzZ6KsrAwTJ07E7NmzsWfPHiQlJaF79+545JFH0L59ewDHP7LNysrCTTfdhEcfffR0nwKdJTiwIyIiIooQnO6EiIiIKEJwYEdEREQUITiwIyIiIooQHNgRERERRQgO7IiIiIgiBAd2RERERBGCAzsiIiKiCMGBXTWaOnUqzjnnHMTHxyM+Ph7du3fHp59+etLl33vvPVxyySVISUnxLf/ZZ5+JZTp37ow6deogJiYG5557Lt54443qPpWzXnW8Fr83d+5cWCwWDB06tBqOPnJUx+swc+ZMWCwW8VVSUlLdp3NWq673xLFjx3D77bcjLS0NUVFRaN26NT755JPqPJWzXnW8Fr1791bfF5dffnl1nw6dYRzYVaOGDRtiypQpWLt2LdauXYuLLroIQ4YMwaZNm9TlV65ciUsuuQSffPIJ1q1bhz59+mDQoEFYv369b5nExEQ8+OCD+Oabb/DDDz9g1KhRGDVq1CkHHVQ9r8UJv/32G8aNG1dpj0eqvtchPj4eOTk5fl9RUVGn45TOWtXxWpSWluKSSy7Bjh078N///hdbtmzBa6+9hgYNGpyu0zorVcdr8d577/m9HzZu3AibzYbhw4efrtOiM8Wg06pu3brG66+/bnr5Nm3aGI888sgpl+nYsaPxj3/8I9RDq3XC8VqUl5cb559/vvH6668bI0aMMIYMGRLmo4x8ob4OM2bMMBISEqrhyGqfUF+LqVOnGk2aNDFKS0ur4/BqlXD/W/H0008bcXFxRkFBQTgOj2owPrE7TSoqKjB37lwUFhaie/fuptbxer3Iz89HYmKi+nPDMPDFF19gy5Yt6NWrVzgPN6KF87X417/+hZSUFIwZM6Y6DjWihfN1KCgoQFZWFho2bIiBAweqT1bp5ML1Wnz44Yfo3r07br/9dtSrVw/t2rXDpEmTUFFRUV2HHnGq498KAJg2bRquvfZaxMTEhOtQqaY60yPLSPfDDz8YMTExhs1mMxISEoyFCxeaXvfxxx83EhMTjf379/vFjx07ZsTExBh2u91wuVzGtGnTwn3YESncr8VXX31lNGjQwDh48KBhGAaf2JkU7tfhm2++Md544w1jw4YNxsqVK41hw4YZbrfb+OWXX6rj8CNKuF+Lli1bGi6Xyxg9erSxdu1a4+233zYSExMr/dSBquffihPWrFljADDWrFkTrsOlGowDu2rm8XiM7Oxs49tvvzUeeOABIzk52di0aVOl682ZM8eIjo42lixZIn5WUVFhZGdnG+vXrzeeeOIJIyEhwVi2bFk1HH1kCedrkZeXZzRq1Mj45JNPfDEO7MypjvfE71VUVBgdOnQw7rzzznAdcsQK92vRvHlzIyMjwygvL/fFnnzySaN+/fphP/ZIU53vi1tvvdVo165dOA+XajAO7E6ziy++2Lj11ltPuczcuXMNt9ttfPzxx6a2OWbMGKNfv37hOLxaJZTXYv369QYAw2az+b4sFothsVgMm81mbN26tToPPaJUx3vi5ptvNvr37x+Ow6tVQn0tevXqZVx88cV+sU8++cQAYHg8nrAea6QL1/uisLDQiI+PN5555plwHyLVUPYz/ElwrWMYBjwez0l//vbbb2P06NF4++23TZelV7ZN0oXyWrRq1Qo//vijX+wf//gH8vPz8eyzzyIjI6NajjkShfs9YRgGNmzYgPbt24fzMGuFUF+L888/H3PmzIHX64XVejyF+5dffkFaWhqcTme1HXckCtf74t1334XH48Ef//jH6jhMqonO4KAy4o0fP95YuXKlsX37duOHH34w/v73vxtWq9VYvHixYRiG8cADDxg33nijb/k5c+YYdrvdePHFF42cnBzf17Fjx3zLTJo0yVi8eLGxbds2Y/PmzcaTTz5p2O1247XXXjvt53c2qY7XIhA/iq1cdbwOEyZMMBYtWmRs27bNWL9+vTFq1CjDbrczn6gS1fFa7Ny504iNjTXuuOMOY8uWLcbHH39spKamGhMnTjzt53c2qc7fTz179jSuueaa03YudOadVQO7FStWGAMHDjTS0tIMAMaCBQuC3obX6zX+85//GM2bNzecTqfRsGFD49FHHw3/wRqGMXr0aCMrK8twOp1GSkqKcfHFF/veqIZxfCBw4YUX+r6/8MILDQDia8SIEb5lHnzwQaNZs2ZGVFSUUbduXaN79+7G3Llzq+X4I0l1vBaBOLCrXHW8Dvfcc4+RmZnp22a/fv2MVatWncazOjtV13ti1apVRteuXQ2Xy2U0adLEePTRR/1y7kiqrtdiy5YtBgC/bVHksxiGYZymh4Mh+/TTT/H111+jU6dOGDZsGBYsWBD0TP933XUXFi9ejMcffxzt27dHbm4uDh06hL59+1bPQRMRERGdJmfVwO73LBaLGNiVlpbiH//4B9566y0cO3YM7dq1w2OPPYbevXsDADZv3oxzzjkHGzduRMuWLc/MgRMRERFVk4iaoHjUqFH4+uuvMXfuXPzwww8YPnw4+vfvj+zsbADARx99hCZNmuDjjz9G48aN0ahRI9x88804cuTIGT5yIiIiotBFzMBu27ZtePvttzFv3jxccMEFaNq0KcaNG4eePXtixowZAIBff/0Vv/32G+bNm4fZs2dj5syZWLduHa666qozfPREREREoYuY6U6+++47GIaBFi1a+MU9Hg+SkpIAHG+74vF4MHv2bN9y06ZNw3nnnYctW7bw41kiIiI6q0XMwM7r9cJms2HdunWw2Wx+P4uNjQUApKWlwW63+w3+WrduDQDYuXMnB3ZERER0VouYgV3Hjh1RUVGBAwcO4IILLlCXOf/881FeXo5t27ahadOmAI5PngkAWVlZp+1YiYiIiKrDWVUVW1BQgK1btwI4PpB76qmn0KdPHyQmJiIzMxN//OMf8fXXX+PJJ59Ex44dcejQISxduhTt27fHZZddBq/Xiy5duiA2NhbPPPMMvF4vbr/9dsTHx2Px4sVn+OyIiIiIQnNWFU+sXbsWHTt2RMeOHQEA9957Lzp27Ih//vOfAIAZM2bgpptuwl//+le0bNkSgwcPxpo1a3ztnaxWKz766CMkJyejV69euPzyy9G6dWvMnTv3jJ2TxuPxYMKECWwTdobxdag5+FrUDHwdag6+FnQyZ9UTu9oiLy8PCQkJyM3NRXx8/Jk+nFqLr0PNwdeiZuDrUHPwtaCTOaue2BERERHRyXFgR0RERBQhzoqqWK/Xi7179yIuLg4Wi+VMH061y8vL8/svnRl8HWoOvhY1A1+HmiPwtTAMA/n5+UhPT4fVymc2tdlZkWO3e/duXwEEERER6Xbt2oWGDRue6cOgM+iseGIXFxcH4PgNyyRROpUvO/cQMaNc/u3Sa8M3p+NwiIhOi7y8PGRkZPj+vaTa66wY2J34+DU+Pp4DOzqlmICuIwBgeOXAjvcREUWi2pCuRKfGD+KJiIiIIgQHdkREREQR4qz4KJZql88btKvyuhaH/BjCKKvx9UFERERhwSd2RERERBGCAzsiIiKiCMGBHREREVGE4MCOiIiIKEKweOIs9rG9panlBpZvEbFP3K1E7LLin0M+pnDQCiAqir2m1jX7l8riem1NLddv/yaTW6Sq2ji4j4i1+3DZGTgSIqKzH5/YEREREUUIDuyIiIiIIgQHdkREREQRggM7IiIiogjB4olaQCuysCoFCuFmpkDBapfHYXPLvzescTYR0woqvOWyy4S2D7O0Lhh992ys8vbC6ctzOolYRVmFjJksPNFcvONHEVveuoOpdW0O+ZrZHPK1jU6ODv7AiIhIxSd2RERERBGCAzsiIiKiCMGBHREREVGE4MCOiIiIKEKweOIspnWUMNuNwlsmiwzCzTCxjwqTx1Gyv6zKx+GIV5L4lQINrfAi3KpajLGybUcR83plUYSZa36y5bTz1wpgSg+Xm9qHJqlTvKnlfh5+iYi1mrekyvslIqot+MSOiIiIKEJwYEdEREQUITiwIyIiIooQHNgRERERRQgWT0QYW7Qcq1cUVb3zgFlmizbMKMuT3RPCvT0tFlXPYWp74TxXs/vQXletAETrMnE6Xv+ULgkidvDbXBFzRstrbHfJ4hYiIqoaPrEjIiIiihAc2BERERFFCA7siIiIiCIEB3ZEREREEYLFExHGareImOGQMa3zxOkoCjBDKxSISpVJ9zYl6b6sUHZFKN5damq/dqVDRUF2ial1Q2HmumsFEKejKEKT0CZGxMpLZDFKYoc4EbO5zP3KYZcJIqKq4RM7IiIiogjBgR0RERFRhODAjoiIiChCWAzDkMlWNUxeXh4SEhKQm5uL+Pj4M304Z51P41uLmKHk2Gl5d2Y5k2TuVGC+n7dcbl/LCTTLouQOauelLWc2705j5lxPtl9tOe26BE40bPa8zB6HNrmxzSFzDG0OZTmnjFlsMuZwy7xIi1Uei7acXcnFa/nOZyJGRMfx30k6gU/siIiIiCIEB3ZEREREEYIDOyIiIqIIwYEdERERUYTgBMW1wIC8zaaWOxMTFAcWCQB6sr8qhGIMd0OnqXW1wgatkMEsbXsaR5wsZAikFkWEUAChFSxoEwpbbcp+neaW81Yor5myHAsliIiqhk/siIiIiCIEB3ZEREREEYIDOyIiIqIIwYEdERERUYRg8UQtpXWjsEXLcX5FkSxu0JQeLq90GUd85QUBwdC6Jzhi5C3t9cpz0Io2zO4DbmU5pWihoqxCxAqyS0ztN6mT/8zxWoGB1WShhNVubjmteEIrdtBo27NYtaINeR4t3l5kah9ERFQ5PrEjIiIiihAc2BERERFFCA7siIiIiCIEB3ZEREREEYLFE3RGacUJJfvLRCymkUvE7NHy9i3aLYsTohtGiZgjSq5rj5JFBge/zRWx08EecHwOt0MsoxZU2M0VMejryvO3R8l1Da8sqLBYzW2v6ayPRYyIiMKHT+yIiIiIIkRQA7sJEybAYrH4fdWvX/+ky48cOVIsb7FY0LZt25APnIiIiIj8Bf3Erm3btsjJyfF9/fjjjydd9tlnn/VbdteuXUhMTMTw4cNDOmgiIiIikoLOsbPb7ad8Svd7CQkJSEhI8H3//vvv4+jRoxg1alSwuyUiIiKiSgQ9sMvOzkZ6ejpcLhe6du2KSZMmoUmTJqbWnTZtGvr27YusrKxTLufxeODxeHzf5+XlBXuYVIkBeZtFTOtG4UySt4iZLhMaVz1ZAGC2E0PhDo8S1WJS7k+FppYzy93QKWNJsrhDY3fL63lg9VER27/qiN/3jS5LF8tEJUSLmLdcdrvQaIUNWuGFtpy2jyYzPjK1XyIiql5BfRTbtWtXzJ49G5999hlee+017Nu3Dz169MDhw4crXTcnJweffvopbr755kqXnTx5su9pX0JCAjIyMoI5TCIiIqJaKaiB3YABAzBs2DC0b98effv2xcKFCwEAs2bNqnTdmTNnok6dOhg6dGily44fPx65ubm+r127dgVzmERERES1Ukjz2MXExKB9+/bIzs4+5XKGYWD69Om48cYb4XTKj7ECuVwuuFzmPtoiIiIiouNCmsfO4/Fg8+bNSEtLO+VyK1aswNatWzFmzJhQdkdEREREpxDUE7tx48Zh0KBByMzMxIEDBzBx4kTk5eVhxIgRAI5/hLpnzx7Mnj3bb71p06aha9euaNeuXfiOnEzTiiLMMlso4YiXSfZlef5J9mYLJcxK6hQvYjanPA6tOCEUxbtLRSylTaKpdb0VsmtD82GNRCx7/g6/73d8stfU9jvd2VHu02RBhbfcK2JaQUVFqewyQURENUNQA7vdu3fjuuuuw6FDh5CSkoJu3bph9erVvirXnJwc7Ny502+d3NxczJ8/H88++2z4jpqIiIiIhKAGdnPnzj3lz2fOnCliCQkJKCoqCuqgiIiIiCh47BVLREREFCE4sCMiIiKKECFNd0JnB63LhOazxDYiZi7tXhfTyH/KGq17RL0esujA5pB/b1is5v4GMbyyACCtZ5KIOaJlF4x96w6JmNnikYQMeR5aMULR4QIRK/fIfQQWVFissmDB8MpCjLzdcrJwrXuEzSnf+no3Cjk9UdYrC0SMiIhqBj6xIyIiIooQHNgRERERRQgO7IiIiIgiBAd2RERERBGCxRMUFhZH5d0IEjvEiZi3TJZnWJVCAYvyJ4hWKKEWCrjlyq64KBFL65IiYs4Y2bM4sCsEAPw47ScRa3ZFpog53LJoQxNYLOGMlcdbUWqusEMTnVJHxAxDXk+LduGJiKjG4m9tIiIiogjBgR0RERFRhODAjoiIiChCcGBHREREFCFYPEGnZFWKIrxlsuOB1qHBEedfyFBRJpPz9X3K7duUggqbw9zta7Zgwe6S29M6NMS3jBaxvC1FIrZ1wU5T+211XTMRi0lN8Pu+orRMLGO2eEIrvNBYbUrhSZTsPEFERDUXn9gRERERRQg+sSMiIqKQlJSUoLS0tFq27XQ6ERVl7pMH4sCOiIiIQlBSUoL4Og1Q5jlSLduvX78+tm/fzsGdSRzYERERUZWVlpaizHMEnS9+FzZ7TFi3XVFeiLVfXI3S0lIO7EziwI6qTVm+f1cJb7ksiohOlW9UrfOE4ZXrWl0y2V+jdaPQYhqtQKHhHxqKmKWbTFctL5EfS2x551cR+/ntrSLWYnhjv+/dibFiGe0ctOvkiHGLmLOO7AICQ65LRGSW3RkHuyO8AzuLlaUAweIVIyIiIooQfGJHREREIbNYLaLPdTi2ScHhEzsiIiKiCMEndkRERBQyi8UKiyW8z4vCvb3agAM78inLq6h8oSAEdqNwJsnbraxQFidYbfLRu0OJmU2qNduhQStG0D4GsCvdGLTlrHZ5fG1HtBKx7I9l8UTREf9OFvYo2T3DFS87YJQVeWSssFjENK7EBBGrc//zptYlIuJHsTUDh8JEREREEYJP7IiIiChkFqs17NOTcLqT4PGKEREREUUIPrEjIiKikFmt+gTzoW6TgsOBXS31sb1lldd1xMsiAzOFF0aZ7Gzg9XplrEIuZyixsuIyEbM5tN8CSucJpUODoRyL1S7fIloyrxbzlsvtacUNjS7KUI7F//jMfhzhiHaJWINn3zG1LhERnf04sCMiIqKQcbqTmoFXjIiIiChC8IkdERERhYzz2NUMHNgRERFRyCyWapjuhB/FBo0Du1pgWbNzqrxuVD3Z8cBbLgsPzNAKLOxKIUa5Qy5nc8rlANlRwvDK5WxKoYTW3UJjtct1PXmyk4PNqXTVUAoltO4Wrnh3pcdRXiILRbzl8jplvPjfSrdFRESRiwM7IiIiChk/iq0Z+IyTiIiIKELwiR0RERGFzGqxwhrmnLhwb6824BUjIiIiihB8YkdBs9plzoMzSd5KFcX+nRcqimQnhsBlAKDCLYsCjAq5HOzy75JyjyyosFhlAYjWtcKh1DAUHy0VMZtDK+Qwx6ocs76c/z6csUr3DKVg42y05ZpLRUy7Ts3f+vR0HA4RVVU15NiBOXZB4xM7IiIioggRGX/yExER0RnFqtiagQM7IiIiChl7xdYMHNhFGG0yYotD/sVji5ZvFi0HrmS/zEWLbR4lYqVHZG6bM9H/9ioukvlqpYfleo44mU/mrZATBVeUK3l3igol705m8en5eQ63MkGzcizaX5XapMUabSLjQNrExo2efcfU9jUH/j5CxFInzTK17i/X9RcxLWfR8MrXx+4yd01KC+VrQURElePAjoiIiELGj2JrBj7jJCIiIooQfGJHREREIbNarbBawzxBcZi3VxvwihERERFFCD6xizB9tv4gYstbdxCxwMIGQC9u0BhlsnhAm7RYiwWKqqdMHpwvSxucceYKJaw2pYghxmlqOa0owvAq56qsqy2n5YZ4lYKPilJZKBBYeGCPkuew5+5r5LEpBRteZfvecnmNd9wyVDkO7bWWhRwVpcUipp2/tj3tumvH9/PwS0Ss1bwlIkZEZ4bFYoHFEuYcuzBvrzbgEzsiIiKiCMEndkRERBQyVsXWDBzYERERUcgs1vAPxDg/cfB4yYiIiIgiBJ/Y1QK9N39vajmta0XhDtkVQYvVbR8rYiVHKy/G0DpbaNz1tKR7mWDvipdFBlpXBJtD/k2jdUWw2uVyWvGA1j1C6zyhFUpo2wssMtCKCbR9RrmUQhFl+xpPniyA0Gjn4FQKVIqPlYhYKH/NV5SZK6AhojPDCiusYX7EZuXzp6DxihERERFFCD6xIyIiopCxeKJm4BM7IiIiogjBJ3ZEREQUMj6xqxk4sCMfi0O+gWIauURMK544+mOBiCW0ifH7vhjmOlu4G8pE/NyfCk2tm9JFu6Xlg2lD6XagJefrXRHMFQVoRRtaMUZVaQUV5cXy2DTlJeaOrUzpRlJaKF9/zZ5lB0wtp2l0WbqIaUUbRETkjx/FEhERUchOtBQL91cwJk+ejC5duiAuLg6pqakYOnQotmzZ4rfM/v37MXLkSKSnpyM6Ohr9+/dHdna23zK9e/cWx3Httdf6LfPLL79gyJAhSE5ORnx8PM4//3wsW7asahcvjDiwIyIiopBZrZZq+QrGihUrcPvtt2P16tVYsmQJysvL0a9fPxQWHv/UxzAMDB06FL/++is++OADrF+/HllZWejbt69vmRNuueUW5OTk+L5eeeUVv59ffvnlKC8vx9KlS7Fu3Tqce+65GDhwIPbt2xfahQwRP4olIiKiiLBo0SK/72fMmIHU1FSsW7cOvXr1QnZ2NlavXo2NGzeibdu2AICXXnoJqampePvtt3HzzTf71o2Ojkb9+vXV/Rw6dAhbt27F9OnTcc45x+eAnTJlCl566SVs2rTppOudDnxiR0RERCGzWK3V8gUAeXl5fl8ej7lc39zcXABAYmIiAPjWi4qK8i1js9ngdDrx1Vdf+a371ltvITk5GW3btsW4ceOQn5/v+1lSUhJat26N2bNno7CwEOXl5XjllVdQr149nHfeeVW/iGHAJ3bkY3MoHQocMhTTSMa0wovAAgVHvNKxIU8WABTvNldkoTn4bW6V1z1TWgxvXOkyjmhZxGK22EErstC2Z4+SL3ZgB4zjMVlkUlpY9ddM61qida1wuOXxbRzcx+/7dh+e+fwWIgq/jIwMv+8ffvhhTJgw4ZTrGIaBe++9Fz179kS7du0AAK1atUJWVhbGjx+PV155BTExMXjqqaewb98+5OTk+Na94YYb0LhxY9SvXx8bN27E+PHj8f3332PJkiUAjucTLlmyBEOGDEFcXBysVivq1auHRYsWoU6dOmE992BxYEdEREQhq0qxg5ltAsCuXbsQHx/vi7tc8o/TQHfccQd++OEHvydxDocD8+fPx5gxY5CYmAibzYa+fftiwIABfuvecsstvv9v164dmjdvjs6dO+O7775Dp06dYBgG/vKXvyA1NRVffvkl3G43Xn/9dQwcOBDffvst0tLSQj31KuNHsURERFSjxcfH+31VNrC788478eGHH2LZsmVo2LCh38/OO+88bNiwAceOHUNOTg4WLVqEw4cPo3Hjk3960qlTJzgcDl/17NKlS/Hxxx9j7ty5OP/889GpUye89NJLcLvdmDVrVugnHAI+sSMiIqKQ1YQJig3DwJ133okFCxZg+fLlpxysJSQkAACys7Oxdu1a/Pvf/z7psps2bUJZWZnvSVxRUREAwGr1fz5mtVrhVdJVTicO7IiIiCgi3H777ZgzZw4++OADxMXF+aYeSUhIgNvtBgDMmzcPKSkpyMzMxI8//oi7774bQ4cORb9+/QAA27Ztw1tvvYXLLrsMycnJ+Omnn/DXv/4VHTt2xPnnnw8A6N69O+rWrYsRI0bgn//8J9xuN1577TVs374dl19++Zk5+f+PAzvysdrM/WVkj5a3jdbJweb0/0smNsstltE6Vphli5aZBBVFZ/Yvpd9L7BAnYvENZEz7i9Tm9L/GWqFEaYEsMNC6MwRuC9ALKrSiCK1DhdZRw+xf1do1cSfK+6Lco5yHg5kjRDWZpQrzzpnZZjCmTp0K4PgEw783Y8YMjBw5EgCQk5ODe++9F/v370daWhpuuukmPPTQQ75lnU4nvvjiCzz77LMoKChARkYGLr/8cjz88MOw2Y4XASYnJ2PRokV48MEHcdFFF6GsrAxt27bFBx98gA4dOlT9hMOAAzsiIiIKWXUWT5hlGPIhQ6C77roLd91110l/npGRgRUrVlS6nc6dO+Ozzz4L6vhOB/4JTERERBQh+MSOiIiIQlYTiieIT+yIiIiIIgaf2NVS3118vohZleR0rShC/WvAROGFtv34ltEilrelqNJtAUCdVrJjgT1K3tJa0r3dJZerKJPFA9q62l+QWszhdopYVB15vhar3IcjNsrve69SFOEtl8erdYrw5MsiC21djXZeVrvsILL9492mtqcVj5h9LbTiDu3aEdGZYYUF1jDn2FnBJ3bB4m9FIiIiogjBJ3ZEREQUMubY1Qx8YkdEREQUIfjEjoiIiELGJ3Y1Awd2tVSnL74WsXW9e4hYhZJkX1EquxZoAgsvtEIMR4y8BVO6JIjYwW9zK90+ALhiZcGCV1lOi2m05exKFwiN2U4O0cnxImZz+F8Xu0uel1XpKKF1o9AKKjRatweN2Q4lGu1YtE4WWkFFebnS3cTBX/pENUVNmKCY+FEsERERUcTgEzsiIiIKmdWKsPeK5YxGweMlIyIiIooQfGJHREREIWOOXc3AgV0tteWaS0XMFe8SMS3ZXe8KIJcLLB7Q1vOWyUIMR7RDxDTFhz0iVrdRHRHzFJSa2p7aZUEpFLA5ZOcFm1LI4Ip3i5jW8aGsSJ5HRal/QYHdHSWWMcrltdP2qRVFFB8rFjGHW153rfOGVuxgltkKtwrlvjCzvW0jBoplms762NS2iIgiAQd2REREFDJOd1IzMMeOiIiIKELwiR0RERGFzGo5/hXubVJw+MSOiIiIKELwiV0t1fKdz0Rs642Xi5jWPUErANCKBypK/ZP2tVyJwkOFIrZn2QER0xTvlkUR5e1koYBWAGFVukdo3Q5KC5V9KMUI2rkFnv/x/crCC225itLKl9EKVrTOE9r5H9spO3kUZMt1Q9GgT6qIaddTo10nu0vGApdzxsoik0hW8NLfRMxbJu+Voj3yPVX/8Teq5Zio9mKOXc3AgR0RERGFjAO7miGoj2InTJjgm6fmxFf9+vVPuY7H48GDDz6IrKwsuFwuNG3aFNOnTw/poImIiIhICvqJXdu2bfH555/7vrfZ5Mcjv3f11Vdj//79mDZtGpo1a4YDBw6gvNxcs3EiIiI6O1gsFlg5QfEZF/TAzm63V/qU7oRFixZhxYoV+PXXX5GYmAgAaNSoUbC7JCIiIiITgh7YZWdnIz09HS6XC127dsWkSZPQpEkTddkPP/wQnTt3xuOPP4433ngDMTExGDx4MP7973/D7ZYz5J/g8Xjg8fzfbPx5eXnBHiZVgda1QEva9yodD+xRzkrX3TTr5yofm9Uh/2rzlsnigd8W5YhYVv80EdO6R2hFEVo3Bq3zghZzRMtOHtq1KyuSBQVlxf4xh1teX82xnUdF7OC3slDCrPQLk0Ws5JjslGFRCjS0riKaCqUYx2Kyu4krzr9YQrsPI1nsXx4TsaNTbhex8mJZGLPzz8P8vs+cOj98B0a1ksVSDTl2fGIXtKAGdl27dsXs2bPRokUL7N+/HxMnTkSPHj2wadMmJCUlieV//fVXfPXVV4iKisKCBQtw6NAh/OUvf8GRI0dOmWc3efJkPPLII8GfDREREVEtFlTxxIABAzBs2DC0b98effv2xcKFCwEAs2bNUpf3er2wWCx466238Ic//AGXXXYZnnrqKcycORPFxbJX5Qnjx49Hbm6u72vXrl3BHCYRERGdZhZL9XxRcEKa7iQmJgbt27dHdna2+vO0tDQ0aNAACQkJvljr1q1hGAZ2796N5s2bq+u5XC64XPJjLCIiIiI6uZA6T3g8HmzevBlpaTKHCQDOP/987N27FwUFBb7YL7/8AqvVioYNG4ayayIiIqpBrFZLtXxRcIJ6Yjdu3DgMGjQImZmZOHDgACZOnIi8vDyMGDECwPGPUPfs2YPZs2cDAK6//nr8+9//xqhRo/DII4/g0KFDuO+++zB69OhTFk/QmZHx4n9FbO/Ya0VMK6goL1EKCor8k+xbDG8sltE6BWhJ8oUHZQFN0RH5cf6B1bJ4QNte3l65PXddeU9qXTa05GCtU4LWBUKjFW2UFvgXT2jHUaEUGGiFErHN5TVOalpXxLTrZDYR2mKVfyNq56UVVHgr5H61bhmGQ+4jsJOFJ69ILHPwn6NFLOVfkTGXZsErfxcx7bXQCnQCC3m2jRgoltHu68bTPgjmEGuEvGf/amq5CqXIJPB61rn/+bAcUyQ6Mb9tuLdJwQnqid3u3btx3XXXoWXLlrjyyivhdDqxevVqZGVlAQBycnKwc+dO3/KxsbFYsmQJjh07hs6dO+OGG27AoEGD8Nxzz4X3LIiIiIgouCd2c+fOPeXPZ86cKWKtWrXCkiVLgjooIiIiOrtYq2GC4nBvrzYIKceOiIiIiGqOkKpiiYiIiADAYj3+Fe5tUnA4sCMfs4USGq2jQmDitdbZQkvO15O/ZbcDLdm/bvtYEdu5eJ+I6WThgdZ5IbDbAaB3qCjJPflcjb+nFQ+UFvkXo+TtLhDL2Fyn7tN8givOXDcGq11ed61Dh/aaefLk61NeIu8drSjCqxSBaB8mlBXJAp3Ae0wrWLEdloUyu26/SsS0+6mmd2PwlsjrXnpMnq/2/gx8b2vvdZtT/hPxy3X9TR1bi7cXmVou3PY/cJOIORPk7wWL0ufcW6b8vvP635+HJtwst6V8XGh1yt8Jdce/JLdPFGYc2BEREVHIWBVbM/AhJxEREUWEyZMno0uXLoiLi0NqaiqGDh2KLVu2iOU2b96MwYMHIyEhAXFxcejWrZtvVo8jR47gzjvvRMuWLREdHY3MzEzcddddyM31/1Tnu+++wyWXXII6deogKSkJt956q9+8vWcKB3ZEREQUspowQfGKFStw++23Y/Xq1ViyZAnKy8vRr18/FBYW+pbZtm0bevbsiVatWmH58uX4/vvv8dBDDyEq6niazd69e7F371488cQT+PHHHzFz5kwsWrQIY8aM8W1j79696Nu3L5o1a4Y1a9Zg0aJF2LRpE0aOHBmWaxkKfhRLREREIauO3q7Bbm/RIv/czhkzZiA1NRXr1q1Dr169AAAPPvggLrvsMjz++OO+5Zo0aeL7/3bt2mH+/P/Lr23atCkeffRR/PGPf0R5eTnsdjs+/vhjOBwOvPjii7D+/7zwF198ER07dsTWrVvRrFmzYE81bDiwO0sc/McoU8sZXq1DgZYQLBPFteRxLaFaW04TmHitJWJbHTLBuKxQFh1oHSrKimUyvVMpFIhvGS1ieVtkhwLN3hWHRKzpkAwR02bo1woqtG4Mu00Xd1RNbGqMiGmvoVYUor1mWpcRrQuIRisUUTtPyEsHi00r7vCPaferJ08em9mOGlo3BrNFBvYoeRJZrywQsZz7bhAxd0qi3K9H6R5RJl+Lwv3H5HJK8YQWC6TdJ9rvGG257BsGmFpOo72fmr2xUMS0IhjtvErz5fvdHiV/V9hc8jVTf38GrueQr7+3Qh7H4UdukSsrxWJJD71S6T7JnBMfnyYmHn9Peb1eLFy4EPfffz8uvfRSrF+/Ho0bN8b48eMxdOjQU24nPj4edvvx19rj8cDpdPoGdQB8HbW++uqrMzqw40exREREFDKL1VItXwCQl5fn9+XxyIrwQIZh4N5770XPnj3Rrl07AMCBAwdQUFCAKVOmoH///li8eDGuuOIKXHnllVixYoW6ncOHD+Pf//43brvtNl/soosuwr59+/Cf//wHpaWlOHr0KP7+9+Mt/nJyckK9lCHhwI6IiIhqtIyMDCQkJPi+Jk+eXOk6d9xxB3744Qe8/fbbvpj3/z9xHjJkCMaOHYtzzz0XDzzwAAYOHIiXX35ZbCMvLw+XX3452rRpg4cfftgXb9u2LWbNmoUnn3wS0dHRqF+/Ppo0aYJ69erBpkylczrxo1giIiIKmdVy/Cvc2wSAXbt2IT4+3hd3uVynXO/OO+/Ehx9+iJUrV6Jhw4a+eHJyMux2O9q0aeO3fOvWrfHVV1/5xfLz89G/f3/ExsZiwYIFcASkDl1//fW4/vrrsX//fsTExMBiseCpp55C48aNq3KqYcOB3Rm27/4bRcwwlAlbtdwU5R2k5XposfJi+Rhbyx3Sctu0nCUtx8gR7f/GU3P4lLwhjZbX5cmXk9Fq+4hLl5OTprRKErFtH+wydSzacvV6yJyoxMbaPrJN7cOZ5H8947JknqCh5KZpkxG768ocO+3aabR7oqxYvmbOGLnf4lJ5n+iTEUvauVWUypylco9/zO6S96E2ubXZibHVyZiVa6ftV3tP/HbbFSLmjJevbVmenDLBouSdlam5YzJPTJu4eeuCnSIWSMsn1a6JlidpdnJz7bqXl8h7bMs1l4qY9vtJm2hb/f1hMvcy8PeYeu/EyH0aHrlPLYfPHiMnbicpPj7eb2B3MoZh4M4778SCBQuwfPlyMchyOp3o0qWLmALll19+QVZWlu/7vLw8XHrppXC5XPjwww99FbOaevXqAQCmT5+OqKgoXHLJJcGcWthxYEdEREQhqwkTFN9+++2YM2cOPvjgA8TFxWHfvuPFaQkJCb7ihvvuuw/XXHMNevXqhT59+mDRokX46KOPsHz5cgDHn9T169cPRUVFePPNN315fQCQkpLi+6j1hRdeQI8ePRAbG4slS5bgvvvuw5QpU1CnTp3wnHwVcWBHREREEWHq1KkAgN69e/vFZ8yY4Ztj7oorrsDLL7+MyZMn46677kLLli0xf/589OzZEwCwbt06rFmzBgBEdev27dvRqFEjAMD//vc/PPzwwygoKECrVq3wyiuv4MYb5adwpxsHdkRERBQyi1WdvSXkbQbDMMxNqTN69GiMHj1a/Vnv3r1NbWf27NlBHdvpwoEdERERhcyCavgoFuwVGywO7E6jPXdfI2LaZJ8abcJOu1IVpCVYG8qEnVrCskZLgHZEy0R5bXuBx6ydq5bUre1TS6bWEvYryuT2CvYXitieZQdELBT7Vx0xFTMr9Vz/wosKZWJjjU1J4tcmbI1JiTO1nJZg7ozRqtFkgUJ5idxe7k/ytajbXha3WGzyl7lWUOEt89+HNgG0drzFx8xNqKzRJp7WkvjNTmRcmicLILxRynkkyCIYrTDkx2k/iZgZaT1lsY92PbXfRRqtkEktvFDuO20f2nIlx+T9pO1Du+5mizsCl3PFy2KH8mL5e0f7nahOgKwUshGFggM7IiIiCpnFGvxHp2a2ScHhJSMiIiKKEHxiR0RERCGzWiywhjnHLtzbqw34xI6IiIgoQvCJXTXZfedwEfOWmyuU0GjJxGonh0JlVny3TB7XEpHNsrtlori3TM6yHlgsYTZJ2myCtZbYrV0TLWFf44hXZvbPk/vVkszjGySIWP6+PBGLTZVFC5qSXP/kfkcdmbBtc8i/y0ryZCK2du207gS2KJmcryWAawnrxcfkfWf2uluV89A6VNij5OsTeA9oxSMas/e/9npp96zW2UC7jzVmCwWKD+aa2p4mtrl8z9Zvl+r3vfZam33PaoVRZgu0DK/ch7Zfs91CtGPRfi+Yve6B+9UKvuxRspArqo58P6kFJfbIeSJlsRz/Cvc2KTh8YkdEREQUIfjEjoiIiELGJ3Y1Awd2REREFDKr1QKryRSEYLZJweFHsUREREQRgk/sqonZYgctpiW2a7Okm505XU9sNvdXkD1aKbxQCiW05HEzx6EvZ+465e3JF7Ej38uYJrNffRE7+JPsFKEVT1QoRTBqhw6lQ4HGoV3jgCRu7fy19TR6Urw8B3e87ABRdEAm7BcclEURZYWVv/4no3WU0Fhs8jwqSv2vk9aho/BQgantRydGi5j2Pta6GGidUWxOrUOLucIgb7k817IiuQ+r3dzf5unnpsntFQe+ZvKesCodQLTz12jvCe38zRYxaO8B7ZjN/v7Q9rHtg10i1uo6/ybwZn+faveEXfu9Kxc7a/Gj2JqBT+yIiIiIIgSf2BEREVHIrJbjX+HeJgWHT+yIiIiIIgSf2BEREVHILFaL6fztYLZJweHALgy0LhOh0JOEq76cPpu6fFirJkUr+ygrkt0N9P36JxmbnZ1+26JtIlayv+rJ+Q0vridiWmFD00uaitiW+b+I2IHVR+VOuslQgtKNwmwyvpnCCO0XniteFgBoM+V78oqU2E4R07pnHNpwTMQqiswVxsS3lMdnlnrdA9RtLwtAYlJlBwC7S74O2rXTmP2HRnufaK+1dk9or1nhIVm0svuL/aaORaN1Lgmk/Y7x5Mtj04os9OtkrlOE2YKKCqVDibbcb0pRhFk/v73V7/u2I1qZWk8rKNMKSrT7bt/9N4qYViiTOmmWqWOh2oUDOyIiIgoZq2JrBg7siIiIKGQsnqgZWDxBREREFCH4xI6IiIhCxo9iawYO7KogsFhCm8XfbIK1ljisJf+aXVcrRtASdrXkZH32dCVh2eT2Ao9Pn/3dXPcMTUoXWZwQkyIT5Z0xshBBS2LXjq/lsBYitnHGZhHTEvsTr0sSMS0B2kySvdkCGG22+7Jic1PbFx+TSfGl+XJds4USmrwtsmgjFIH3gCNaFsVExZt7/c12RTCb7K/dT7/M2y5i4dbosnQRk10mZAGR2XPVft+VFsp7WNue3aUVT8jrZFE+S9K6QmgdZHYu3idXVrQY3tjUcoGv2aZZP5taL7BjxckYXlkU44p3i5jFKjuZEGk4sCMiIqKQWayA8vdmyNuk4PCSEREREUUIPrEjIiKikDHHrmbgEzsiIiKiCMEndpXYdftVlS6jJV1rBQZ6krC5de1RMilco62r0RKg1c4TJtc1s1+zs9ib7TKR0NBcZwftGmvXUytG0IodGvRJFbE9yw6IWEmuLBSwu6raZUIex5FtB0XMoxQ72N1yn84YmYhdckwmwOf+JBO7Q2GLVop7TBZjxDaPErHA66l1FCnJk+cVmyrPX7tPzHaP0O6ngz9XvSuEWVoBgPZe1IonAgtySgvkvROXFi9iZgvDtG4U2nUyvPJ6mu1uY7ZQosNt7U0tp/2Oaj+mjd/3Jcfk+7pgf76yLXPFbdpyaoeKRPn7rqaxWCywhPkRW7i3VxtwYEdEREQhs6IaJigO7+ZqBV4zIiIiogjBJ3ZEREQUMhZP1Ax8YkdEREQUIWrtE7u9Y68VMS1xVosF0mb712hJ11ohgpawryXTqjPAF8hiBLPJztp5mO1uoG7P43/M2ra0hG2znLEymd5sAYj2ulaUymPRijHqZCaK2B7I4okdn+wVsXajWiv7la/t0R2H/bevFGeYpXXo8OTJ+8RsoURUPZkAb3PL1zYqURaFeMvMFUoc/bFAxAqy5TEnNa3r973Z97DWyUN772jvsfISWYigJcAf/DZXxDRa9wTtPavFtOIjvQhEHnPOV4dFTCyDypcJhtaNQbt2Zt/HZpktSNPulcDfAdHJcWIZ7XeRVgCiTbZrZp8AYHdXXmR1pvGJXc3AJ3ZEREREEaLWPrEjIiKi8LFWQ0uxcG+vNuAlIyIiIooQHNgRERFRyE7k2IX7KxiTJ09Gly5dEBcXh9TUVAwdOhRbtmzxW2bChAlo1aoVYmJiULduXfTt2xdr1qzxW8bj8eDOO+9EcnIyYmJiMHjwYOzevdtvmaNHj+LGG29EQkICEhIScOONN+LYsWNVuXRhVSs+it195/Cwbi+weMBMgYXZbQGAPUrOiq8tpyV2lxXL5WwOmYjrrVASdpWZ4rXltGTn0kK534qARPn9q46IZcxqdkWmPDbl/C1WLSbPS0uAN5uwriU2d773DyK29qn/idjGGZtFrKriW0aLWN4WOSu+2SR+jdbtwap8NmJzVv1vRO0eq9s+VsS0gorfFuX4fZ/QJkYs44xRun0o3TiiEuT1dETL5bTE/h+n/SRiZl8frXtCo8vSRUy73zVqYZCJdev1kEVB2ntW6x5itSsFG3myQOXnt7dWehyA3lHDrObDGomYJ69YxLTXUXu/BxbaaO9/rXhC+z2p/d7RjkMr9igvNteN40yyWqphguIgt7dixQrcfvvt6NKlC8rLy/Hggw+iX79++OmnnxATc/z3Q4sWLfDCCy+gSZMmKC4uxtNPP41+/fph69atSElJAQDcc889+OijjzB37lwkJSXhr3/9KwYOHIh169bBZjt+D1x//fXYvXs3Fi1aBAC49dZbceONN+Kjjz4K3wWogloxsCMiIqLId2KQdcKMGTOQmpqKdevWoVevXgCOD8h+76mnnsK0adPwww8/4OKLL0Zubi6mTZuGN954A3379gUAvPnmm8jIyMDnn3+OSy+9FJs3b8aiRYuwevVqdO3aFQDw2muvoXv37tiyZQtatmx5Gs5Wx49iiYiIKGQ14aPYQLm5xz+xSEyUT6QBoLS0FK+++ioSEhLQoUMHAMC6detQVlaGfv36+ZZLT09Hu3btsGrVKgDAN998g4SEBN+gDgC6deuGhIQE3zJnCp/YERERUY2Wl5fn973L5YLLdeq5/QzDwL333ouePXuiXbt2fj/7+OOPce2116KoqAhpaWlYsmQJkpOTAQD79u2D0+lE3br+82TWq1cP+/bt8y2Tmpoq9pmamupb5kzhEzsiIiIKWXU+scvIyPAVKSQkJGDy5MmVHs8dd9yBH374AW+//bb4WZ8+fbBhwwasWrUK/fv3x9VXX40DB049EbxhGLD87hGiRXmcGLjMmRBxT+x23X6ViGmzzJulJbEG0hJut8yXScIVRTKZtuU1TUQsd/dREXPFyoIKvbBBmWVfWc7mkGN6bV1tudJCeU0CCyXCzRUvE9G1Dh16VwBzxS3aTPROZb+leTIB/ui2HBFrOiRDxLZ9sEvuI0m+DeOy/PfrjJbH5tVer/bymmhFBxrtODRerVOA8jeiVoxjVCi/8JT7s6oFFVr3DK2zg91lrigilN8dsfXlveNOkkn2WoFCuUfu1+6SSfvava2ta4b2Xk+/MFnEHG55L0YluEVMKzLQbH4rW8R+mbfd1LpawYdWQBZbT3Zf0V5v7fdHILP3hHb+Vrt872jb02JJD71iar+RateuXYiPj/d9X9nTujvvvBMffvghVq5ciYYNG4qfx8TEoFmzZmjWrBm6deuG5s2bY9q0aRg/fjzq16+P0tJSHD161O+p3YEDB9CjRw8AQP369bF//36x3YMHD6JevXpVPc2w4BM7IiIiCtmJqthwfwFAfHy839fJBnaGYeCOO+7Ae++9h6VLl6JxY3MV1oZhwOM5Xnl83nnnweFwYMmSJb6f5+TkYOPGjb6BXffu3ZGbm4v//e//Zj9Ys2YNcnNzfcucKRH3xI6IiIhqp9tvvx1z5szBBx98gLi4OF++W0JCAtxuNwoLC/Hoo49i8ODBSEtLw+HDh/HSSy9h9+7dGD58uG/ZMWPG4K9//SuSkpKQmJiIcePGoX379r4q2datW6N///645ZZb8Morx5+m3nrrrRg4cOAZrYgFOLAjIiKiMAhHFau2zWBMnToVANC7d2+/+IwZMzBy5EjYbDb8/PPPmDVrFg4dOoSkpCR06dIFX375Jdq2betb/umnn4bdbsfVV1+N4uJiXHzxxZg5c6ZvDjsAeOutt3DXXXf5qmcHDx6MF154oWonGkYc2BEREVFEMIxT51RHRUXhvffeq3Q7UVFReP755/H888+fdJnExES8+eabQR9jdYu4gZ3ZRHmzy+kJsP4xbYbxRpc0EDEtcX7LO7+aOg5N44EyIVRLnHYryc5bF+w0tY9W1zUTMa3LRChdJQK1H9NGxLTXIZTEdo0zViaAe7UZ4JUE63KPspzJJPbYhnK/rjj/YpmSY3LWee0edsbJIhuzHHFKcn6Z3IfFEd4/ybUiC6uSyK8t54j3P2at24GWJK91d9FoBTVmCqpOJq6eLADZD/ne2f2FTMrWOipo9532S33PslNX+52MRekyYuZ3IqDfn9rvSu288nLyREz7HaPFtN+L+rFUvWNQIO13kd6hQrtO8ppox6YVBma8+F+zh3haWCwGLJbwXdcT26TgRNzAjoiIiE4/SzW0FDvDM4eclVgVS0RERBQh+MSOiIiIQlYTiieIT+yIiIiIIkbEPbHLnDo/rNv77bYrRCwwebq8RBYTlBVXPoM5AMQ0kpMsOuNkwrbWPWD7x7tN7SOhTYyINegje9xpCda/fSmLLIp3y/M1QyuKcETL89eLApQOEPmyA0RZkTw2rTOIllBfViQLFDxKlwmteELrvGE2Yd1M9wC7W5klv1gmzpcVymNL6SJn3T/4ba6IaUURWvGEVUuo14odHErBi9JRQhNYPALoifyuev6vmVY8ob0XtS4LWicT7W9fs0n3B9fLDjINesrzSu1WV8QOrJbravdxOAuIPPnyveOuKwt7NGrHG5MdFbR13XVkh45mV2SKmFYEpv1ebHNjC2W/1dstR7ufbE75u13796OmFUWYxSd2NQOf2BERERFFiIh7YkdERESnn9ViwBrm6UnCvb3agE/siIiIiCIEn9gRERFRyJhjVzNwYPc7W2+8XMS0WeYDZ3s3m8Cc2a++iEUlyORkbZ+JTWSCdUmeTPbXEvZzfyoUsfrt6ylHKNetaqEEANRt7z/LfmlBian13EnxppbTZ3uXD6GLj8oCCLOFJ2aLTMzSChnKS5SE/4AiCEeMTLo2y2zBglYUUVYu70WLQyadq10hlI4nWqK8VhRgd8lfTWbPI1CF0p3BapfFOBqz96xGK+TQxKfFidgByOKJX+ZtF7H0C5NFTLvuZhTuKRaxqARZxGC28ER7XTXa+9imFN5oRTANL5a/x7SuHT+98YuIacVcP077ScQ63n6u3/dasYNGK/ZRz1Up5DpbcWBXM/CjWCIiIqIIETl/KhAREdEZY0X4W4rx6VPweM2IiIiIIgSf2BEREVHILDBgQXinJwn39mqDWjuw2zZioIhpSbFasnfgjOWhJH9r27faZeKwRpudvV6PRBHbv+qIiG1551dT+9AKPtx1ZeK5M1YeS+C5aedlj5KJ3lZldvYypcuERusKYbZQQhNKoYR27QILbwDAYqv8wblRIQsWLErBglbEUFFqbob9vC3yGmudUTQxKbK7iXZv25Qke61DhcbuksslNfUvKirIzhHLaNdJK0Q4HbSEeu2eaD6skYhlz98hYntXHBKxxgMbVunYktvJ3x0aLdlfK/jylpu777T7pKLMXIcK7Z4wSyuU0AQWPGi/x9RzUK6J9m+F2SITIrNq7cCOiIiIwodVsTUDc+yIiIiIIgSf2BEREVHIrJZqqIrlE7ug1dqBXdNZH5tabss1l1Zp+1rehNnHo4E5fIA+OacW0/LpzNJywrTJTqPqyHwqe7TMxSov8p9A2Rknc/McSqzCI3MdSwvk5KllRXI5Lf+l2RWZppbTXjOzuYhNh2TI41NeH2eMU4nJ7QXmJ2l5WIaSs1laJPeZv91cfqJZjij5a0PLHXPFyXPV7ic171DZnva+cNdVLl4ALQ9No032G5McK2JarptGm9xao03Gq92LZvNnzU6YHkjLV3O45WuovTYai1Xen9qxabnHOz7Za2of4dZieONKl9FyDNXcSZM521V9vWoii8WAJcy9XcO9vdqAH8USERERRYha+8SOiIiIwofFEzUDn9gRERERRQg+sSMiIqKQWWHAGuYJhcO9vdqAA7tKaAnb5tYzdzNalQlby0tkMq2WTF18pMTUPpxJ8mUuPSwT1mNS4kRMS+x1xLhFzDDkdQosqLC7ZYFFRbFHxEqO5ouYNvGwdk20wo6yIrkPbXs/v71VxDRpPZNETEsAV48vQRaLaMcXWDyhTXjtKVCSs5XjKMszl5xtdjJibcJj7T7RksxLC+Uxu+Lk5Nba5Lbae9ER7Z/c3+q6ZmIZ7XXN6p8mYto11l5Dbd3fFsmJkbXJrbXJg7V9aJPbxiqTQO+HLJ7QjkUTWCxiNrFfex204gHtd5u23IGN+095nCcktJHnn9BQ/s7Srqd2TbRiMW3C9MDtadfJYjc38bDZfxeIQsGBHREREYWMOXY1Q1A5dhMmTIDFYvH7ql9f/tVzwvLly8XyFosFP//8c8gHTkRERET+gn5i17ZtW3z++ee+7222ynv1bdmyBfHx8b7vU1JSgt0tERER1WTVMI8dOI9d0IIe2Nnt9lM+pdOkpqaiTp06we6KiIiIzhLsPFEzBD2wy87ORnp6OlwuF7p27YpJkyahSZMmp1ynY8eOKCkpQZs2bfCPf/wDffr0qfIBn26t5i2pdJnNw/qKWEVZ1WcT1xLxi47IzgtHfywQMS0heOfifab2qyW7O5SOEt4yWXigCUy89iiJ2FqSuFZMoNESnbXtaQng2nIarXtAdKIsgNASyrVkfGesLBQoyZWdIbRuDIG8yj0WSnK2xaEke5cpCfXKuWr7zd19TMRikpWuJVGyu4F2D9iccrnADiLabP9aVxDtvjZbFKB1u9D2se2DXSJWeKhQxOLqye4WZl5/AGh4cT0RM3sP2Bz+56bdr9rvBLV7hMkiC+3YUtrIYqSUNiKkHl9FmdzH9o93y5UVUQlKEZhyfMVH/H/PuhPl62Uo56936JDHq3XBIQpFUAO7rl27Yvbs2WjRogX279+PiRMnokePHti0aROSkuSbMy0tDa+++irOO+88eDwevPHGG7j44ouxfPly9OrV66T78Xg88Hj+7xd7Xl5eMIdJREREp5kFBixhnp4k3NurDYIa2A0YMMD3/+3bt0f37t3RtGlTzJo1C/fee69YvmXLlmjZsqXv++7du2PXrl144oknTjmwmzx5Mh555JFgDo2IiIio1gup80RMTAzat2+P7Oxs0+t069at0uXHjx+P3Nxc39euXfIjDSIiIqo5Tkx3Eu4vCk5I89h5PB5s3rwZF1xwgel11q9fj7Q0OcHn77lcLrhc5iZLJSIiIqLjghrYjRs3DoMGDUJmZiYOHDiAiRMnIi8vDyNGjABw/Enbnj17MHv2bADAM888g0aNGqFt27YoLS3Fm2++ifnz52P+/PnhP5MzSCt2sDlkQqyWEG22yOLA6qOmlnPGyARzW7R8MFtRJJN4SwtkJ4u6TeUgvKxQFnIUHZLdIgJnXtcKB7QkeS3p2BEtCyXMzpTvyZPHW1YsC0BaDG8sYlqRhdluJNqxlByTyfNlxXIfgQnVVpv8s7XkmNKxQrkXtY4ShTvkugXZ8vWPbS5fM62goqzIXEGNloyvdSjQEsoDu0wA8vXR7p2oOjJJXi/OkMdm9h7TugxotPexu7+8xmYT6s3uV/t9FHivaPs030FH2b5WZKHcn84Yc3/Eq91NHOY+dNK6VpgtAgk8t8BiCkDveKO9NmZjZytLNUx3EvbpU2qgWbNmBbX8iTHXyQQ1sNu9ezeuu+46HDp0CCkpKejWrRtWr16NrKwsAEBOTg527tzpW760tBTjxo3Dnj174Ha70bZtWyxcuBCXXXZZUCdBREREFIlGjx4NwzBgCfjc+WSxygZ2QeXYzZ07F3v37kVpaSn27NmD+fPno02b/6tLnzlzJpYvX+77/v7778fWrVtRXFyMI0eO4Msvv+SgjoiIKAJZYVTLV7BWrlyJQYMGIT09HRaLBe+//77fz/fv34+RI0ciPT0d0dHR6N+/v1/u/44dO9SuWRaLBfPmzfMtM2bMGDRu3BhutxtNmzbFww8/jNJSOeWSGTNmzMC3337r+3rjjTcAAKtXr/bFZs6caWpb7BVLREREIaspvWILCwvRoUMHjBo1CsOGDfP7mWEYGDp0KBwOBz744APEx8fjqaeeQt++ffHTTz8hJiYGGRkZyMnJ8Vvv1VdfxeOPP+6bHeTnn3+G1+vFK6+8gmbNmmHjxo245ZZbUFhYiCeeeCLoY27VqhU6deok4p06dfJ1+CovNze/JQd2REREFDEGDBjgNz3b72VnZ2P16tXYuHEj2rZtCwB46aWXkJqairfffhs333wzbDab6LC1YMECXHPNNYiNPT5Bdf/+/dG/f3/fz5s0aYItW7Zg6tSpVRrYhRMHdtXEbFGEljgfSjKtlsSsFUqYXTf3twMipiWea+frivNPCi8vkQn2enK6Vkwgswa0RHmtOEFL2I5OkrPHa4nTGu2YtWtX7pGP5LXrFBUvk8c9Bf7rmu1EULBDFoqYff01WtJ9BeQ5aMcXkyITytX7UylQ0V5vM4UM0clxpravdwWQtH1q62qFF2a7wJR75PWMiZMFFWoHFXM1KyqzhQdmmCk6AAB7VNX3afY10zhj5OujdTzRfvcWHvQvDNNeQ0e8PNdmg2RHJq3jCYsnKt8mIBsVVHX2jBPND6Ki/u89ZrPZ4HQ68dVXX+Hmm28W66xbtw4bNmzAiy++eMpt5+bmIjExMehjCrfwvbOJiIiIqkFGRgYSEhJ8X5MnT67Sdlq1aoWsrCyMHz8eR48eRWlpKaZMmYJ9+/aJj19PmDZtGlq3bo0ePXqcdLvbtm3D888/jz/96U9VOq5w4hM7IiIiCll1thTbtWsX4uPjffGqznXrcDgwf/58jBkzBomJibDZbOjbt+9JP7otLi7GnDlz8NBDD510m3v37kX//v0xfPhw9YlfVVgsFtjtdlEVG/i9hgM7IiIiqtHi4+P9BnahOO+887Bhwwbk5uaitLQUKSkp6Nq1Kzp37iyW/e9//4uioiLcdNNN6rb27t2LPn36oHv37nj11VerdDyvvfYamjZt6hfr2LGjqLBt06YNli1bVun2OLAjIiKikFktx7/Cvc3qkpCQAOB4QcXatWvx73//Wywzbdo0DB48GCkpKeJne/bsQZ8+fXDeeedhxowZsFYxD3T06NGmlouNjUWvXr0qXY4DuzDQuj14y2XCuidfzuyvdTEoKzaXxK/RkrjNKj4qCw/sLrk9rQBAS7IPTDzXii70Wfy1Qgn57jY7K752jbXXQuvuoHWo0DhkcwP1PLR9aK+Zu07lnQcKD8pCCUecXM+ZKLdfvNvcXEu5P8l7wuqQ5xDTJVoei1t7X8jXW3sd7VGy04hWGOOK99+vdi31fcp7oqJUxrT3sUYr9nC45Tlo9iyTBUpmNbsiU8TMFhkEXiv9mmidV5ROO8p1115DbV1tHxqzHV80B7/NFbHDG/JEzKt0VQmk3f/pPVJFTDv/UH4/k3kFBQXYunWr7/vt27djw4YNSExMRGZmJubNm4eUlBRkZmbixx9/xN13342hQ4eiX79+ftvZunUrVq5ciU8++UTsY+/evejduzcyMzPxxBNP4ODBg76fBVbUVqZJkyYwDJP/nhkGduzYccpleJcRERFRyKozxy4Ya9euRZ8+fXzf33vvvQCOt+KaOXMmcnJycO+992L//v1IS0vDTTfdpObQTZ8+HQ0aNBADPgBYvHgxtm7diq1bt6Jhw4Z+PzM7SDuhT58+Qa9zKhzYERERUchqSq/Y3r17n3KgdNddd+Guu+6qdDuTJk3CpEmT1J+NHDkSI0eODPrYNNOmTQvLdk7gdCdEREREEYIDOyIiIgrZiY9iw/1VGxQVFWHSpEno0aMHWrRogQsuuABTpkxBcbHMpa4MP4qtJloytdYBwZMvk9gPfyeTejUpXRJETCtQaDokQ8S2fbBLxIqPyYICrTBEm7FeKzIILLLQkrq17WsdKsrloakFFRVl5hKstYTtqpes6OevJUprs/FrAu+f4qNFptazKzPgG0pCuDNJHlvpYXNJ7FqCuXZPOKLla6slz//89lYR00TVk8noba/v4Pd9WYG8UcqK5HtMK4ow23lEL+QxVxSjFTuUFsrj27fukFxOeX20Tgbava0l8gfyKi+/3mXDXBcY7RprBRDae0JbLtyFB9p97G4o79mGXdMrPQ5XvKyeUt//DqWgxKh6UQhFhuLiYvTq1QtbtmxB06ZNsW3bNsTExOChhx7CO++8g5UrVyIuTnbVORk+sSMiIqKQncixC/dXpJsyZQoOHDiAjRs3YsaMGTAMA2vXrsX//vc/7N27F4888khQ2+PAjoiIiOgMmTdvHsaOHYusrCy/oo+OHTviwQcfxHvvvRfU9vhRLBEREYXMgvA/LarG+YlrjO3bt+Occ85Rf9a+fXvs2bMnqO3xiR0RERHRGeJ2u+E9yQTcmzZtUrtenAqf2FXi5+GXVLqM2Q4IxUdldYvZQomGF9cTMS1hXUvE1oo2NAdWHxWxtJ5JypJKUrDSUSHwutiUGdvNzjpvltntaQnwWhK3do2119vs9swKTEZ315WdHfJzCkSswlyjDLVDhdniCc3eFTLZfy9kzCytMEjrHrDu6bV+32vFCWYLatSEfaWjikYrntm5dK+IZV6ULmKuuCgRa9KvkTwWJRlfu+/MFhkEFos0e2OhqfU0O/88zNRyatGS6c4T5n6PaffA1gU7RaxBH9ktIjpRvs8Cr6dWGKedg9n3f9p/3jK13Nmgpsxjd7bJzMzEzp3+92hxcTGWLFmChx56KOj58vjEjoiIiELG6U6qpm/fvli8eLHve4vFgoSEBAwbNgydO3fGo48+GtT2+MSOiIiI6Az529/+5uv/mpycjNGjRyM5ORm9e/fGpZdeGvT2OLAjIiKikPGj2KpJSUnx5dFlZmbitddeC2l7/CiWiIiIqIY5cuQInn/+eXTq1Cmo9fjErhLlHpkUG5jEqyUwa7Oumy2U0AoWzM6Kr9n9xf4qr5vz1WER05KOtfR0u5JkHEhLiA7sWHGymHaNNVp3Cy2x2Wyys/ZaaDP7a9vT1tU6bQQmY5cWyo4iFaXmzt+iFK2EIr6lTDDXKrrqt5P3yfbPdotY8rl1RCwqXnZUsDrk+yewe4DWPcXhlr/mtKKI8nJ5L2rv/9ICWaCkvU802z+W569pN6q1qeW03z1aFwitMCSczG5fP14tVvXCI7Pv4z3LDohYi+GNRUyem9Z5w1xhmLbc/gduErF6U2aL2NnAAoQ9J642THfye16vF5999hmmT5+Ojz76CGVlZejZs2dQ2+DAjoiIiOgMys7OxvTp0/HGG28gJycHDRo0wH333YeRI0eiadOmQW2LAzsiIiIKGXPsqqZnz55YtWoVoqKiMHToUIwaNQqXXFL5VGsnw4EdERER0RnyzTffoGHDhpgzZ07QH7tqWDxBREREIeM8dlXzxz/+EUeOHEGvXr3QpUsXvPTSSzh27FiVt2cxft9xtobKy8tDQkICvunfE7GO/3vIqHVZMEx2WThv+SpTy224tFely9hdMlm38GChiGkz52u04gmrkuytJeKaLZTQ9hGdJJPit32wS8SSOsWLWFz9WBELTFDXCiA0WkGF2VnnHW5ZxKBdJ43ZpGttOUe0LNDQkti14gm9GMN/ewc354hlCg/KTiYna0tjRkG2LDxwJsmH+s5EJRYtr7srTl4TrRhBu7c1VuV1NFO00Ogy2e1hxyeyK8TpkNU/TcR+WyRfW+26t77KXEGFRkvkD7zvmsz4qMrb1/x22xUiZva9rb1nteW09462XNFh2aVl5+J9ItZ8WCMRC+w8YbZDh3b+Wa8sMLVuVZz4dzI3Nxfx8fJ3dHU6se+vv9uK2Ni4sG67oCAf53dqdkbO63TKz8/Hu+++i2nTpmHNmjVwOp0YPHgwRo4ciUsvvRRW5d+Tk+ETOyIiIqIzKC4uDmPGjMGqVauwadMm3HPPPfjyyy8xcOBAZGRkBLUtDuyIiIgoZBYYvgKKsH3Vgo9iA7Vq1QqTJ0/G7t278dFHH6F79+5Brc/iCSIiIqIaxmq14rLLLsNll10W1Hoc2BEREVHIqqPYobY8sVu2bBkWLlwIwzBw7bXXokuXLlXe1lk1sLNYrWpC+u95lcRZLen6u4vPN7VPrRjD5vK/bOFOxLbYzM3ObragoF6PRBGLquMWseJjMhk/tVtdETuw+qiIHUblXTW0JHazSvJk5wXtODTNrsgUMbXjhZJgHpg4DZif7V+jJXtrxRhlRf7nqxUdaMwm2OZtKTK1XFSyLIDQCjTKS+R5OWKU96JSKKG9P80WVCR28E/UPvJ9vljG7PszcFsn214otEIJq9IZpPSwfL0DC2oAoLRAvmfNCnexRCCtUEArKNCY/d1mtjBKK6rS9yvvbbP7CFSdhRIUWWbNmoXRo0cjNjYW5eXleO655/DZZ5/hoosuwpgxY5CVlYV//vOfprfHHDsiIiIKGac7qZrHHnsMw4YNw5EjR3Ds2DFcdNFFmDx5MgCgV69e+OSTT4LaHgd2RERERGfIjh07cOutt8Jms8HhcOCWW27Bt99+CwDIyMhAdnZ2UNs7qz6KJSIiopqJOXZV06BBAxw6dMj3fcOGDZGXl4cT0wyXl5tLxTmBT+yIiIiIzpBbb70VTz75JIqLj+fMOp3H82m9Xi9Wr16NZs2aBbW9s+qJnc1hhc3xf2NRPWFdJr9WlCuz8SsDYJtdbs/MzPaaltc0EbGtH+0QsYoic50Cfn/eJ+TtMZfY7YpVEuCVJH7tejpjZBJ7w4vrmdre3hWH/L7XktibDpETL2rFBFrSuXYcWpJ0RZm5a6yta7ZThNkZ8LXltMKIco//cl6tiMcpX6+KUiX5WynG0TjizRUsaOxRcl2v0mlEK4pQC56UfWjvAa27RVWZLZQw27VFu4+1RPxf5m03td+fP9go95sSJWKpbWR3C6vyu+1MMFtQoV0nr/Z7XKGte/Bnc7/HzRZBke7E3HPh3makS05ORn5+Plq1aoUbb7wRFsvxe3jy5MmYMmUKnnvuuaC2d1YN7IiIiKhm4kexVXPzzTf7/v9E0YTFYsFzzz2HBx54AKNHjw5qexzYEREREZ0h27fLp/ZutxspKSlV2h4HdkRERBQyPrGrmsxMOddqKJhQQERERFQDff/992jcuHFQ65xVT+xazP4A8fHxvu9/HNhbLKMlbGspt1piu9nZ/Rv0SfX73hkjE7i1LgZmCyU02vEe/bHA1Lrq8WkFBR4l2V1JvNfWtbvkrZTV3z+JWyuA2PbBLnkcJmnHZrazg5aIryVda+tqr21pYelJj/P3tJntNYHb8yrXXCuo0OT+VGhqOXeaS+7D5PFqtHvCbCGH9j7WBG7PmST3qXVxCLw3Af09pt0T2v1foRyvM1YWNpQWlIiYpsVw+Ys8d0+uiBUelB1Eqtop4Uwx26Fh55+HiZj2ftKKLJKay+47qW2SRcweJQuozrbreSbxiV3V7Ny5Ew8//DB+/PFHeDz+XYeKi4uxc+dOtG/fHgDwl7/8BX/+859Pub2zamBHREREFEluu+02rFixAh06dPB7eAXAN5/diXy76GhZgR+IAzsiIiIKGZ/YVc0333yDmTNn4uqrrxY/+/bbb9G1a1csXbrU9PaYY0dEREQRY+XKlRg0aBDS09NhsVjw/vvvi2U2b96MwYMHIyEhAXFxcejWrRt27twpljMMAwMGDFC3M3jwYGRmZiIqKgppaWm48cYbsXevnK+1Mvn5+WjSRM59e2L/weLAjoiIiMLAC0uYv/Qs+VMrLCxEhw4d8MILL6g/37ZtG3r27IlWrVph+fLl+P777/HQQw8hKkrmxT7zzDO+CYMD9enTB++++y62bNmC+fPnY9u2bbjqqquCPt6srCx13wDgcrnQqFGjoLZ3Vn8U2/7j5SK2/pILRMyrFEVoCbEWq0yUT79QJtgGrqsl8G5dsFvEQqElbAcWcQB6UYCWFK4VHmjragn6dpe5GfVtSpeBcLI5zd2+eqGEub9pzCbUG2aT/ZX9asUYRkXViha0bhRmmS2UMPu6ah1fbMrfkmrnCe0aK8dnBNyfWqGEemwmu5FoVzM6sfIcF0Avntj8lrlm3to9ltJSdlpJaSnX1QqIzL5XajLtvMxy15WvmXZNzBZykK6mdJ4YMGAABgwYcNKfP/jgg7jsssvw+OOP+2LaE7Pvv/8eTz31FL799lukpcmCq7Fjx/r+PysrCw888ACGDh2KsrIyOByyEOdkfv3115P+rEOHDqf8uebsf7cTERFRRMvLy/P73uVyweWSlfyV8Xq9WLhwIe6//35ceumlWL9+PRo3bozx48dj6NChvuWKiopw3XXX4YUXXkD9+vUr3e6RI0fw1ltvoUePHkEN6gDgt99+q3SZrKwslJaWIicnB1lZWadclh/FEhERUcgshlEtXwCQkZGBhIQE39eJ1lvBOnDgAAoKCjBlyhT0798fixcvxhVXXIErr7wSK1as8C03duxY9OjRA0OGDDnl9v72t78hJiYGSUlJ2LlzJz744IOgj6lJkyZo3LjxKb8AYMOGDabmtOMTOyIiIqrRdu3a5TcVSFWe1gH/l3IyZMgQ30ep5557LlatWoWXX34ZF154IT788EMsXboU69evr3R79913H8aMGYPffvsNjzzyCG666SZ8/PHHJ83L08yYMcPUck2bNsXMmTMrXS7iBnZR8fLFLj6mTSha9YlXA3O2yorN5fVoEjvEiVhg3hAAWJRnq1qum9nJU9XJY7UJeuVuTzK5s9xH4HWp10NOErp/1RERi6onH2Nn9Gyg7FNed7P5dGq+ltfchMcabR/asdij5GTReXuPiVhFqf/xabmO2n2St6P4VIfpo11jq3IO2oTCzhht4mHlGit5gl7lHjN7L2qKjskJegMldYoXMe29o+UOuuLdcjmT+Wpm7x1HvNyvNjG22dw5s/mju+8c7vd9w+fnmVrvTGn02vumlts+Rj5h0a4n8+nCrzqnO4mPjxdzvFVFcnIy7HY72rRp4xdv3bo1vvrqKwDA0qVLsW3bNtSpU8dvmWHDhuGCCy7A8uXL/baXnJyMFi1aoHXr1sjIyMDq1avRvXt308d00003mVouKSnJ1LIRN7AjIiIi0jidTnTp0gVbtmzxi//yyy++3LUHHngAN998s9/P27dvj6effhqDBg066bZPTE0S2D0iGEVFRTh69Cjq1q1rajJiDQd2REREFLLjOXFV/zTsZNsMVkFBAbZu3er7fvv27diwYQMSExORmZmJ++67D9dccw169eqFPn36YNGiRfjoo498T+Lq16+vFkxkZmb6ctz+97//4X//+x969uyJunXr4tdff8U///lPNG3aNKindSesXLkS48ePx5o1a+D1emGxWPCHP/wBU6ZMwYUXXhjUtjiwIyIiooixdu1a9OnTx/f9vffeCwAYMWIEZs6ciSuuuAIvv/wyJk+ejLvuugstW7bE/Pnz0bNnT9P7cLvdeO+99/Dwww+jsLAQaWlp6N+/P+bOnRt0/t+qVavQr18/JCUl4c9//jPS0tKwb98+zJs3D/369cMXX3wR1LFxYEdEREQhqyktxXr37l1px4bRo0dj9OjRprcZuL327dsH1ebrVB5++GF07NgRy5cv9xsUPvbYY+jduzcefvhhfPHFF6a3F3EDu9bzPxexjYP7iJgnz9xn4FrSbWCBwp5lB0wenVReIhOi3Ylyn1qyf1mxjGnHqxU2aDGNVgCgFWhoxxfI4TY3t0/J/jJT29cmWdYSx7Wkc7UYQSkKMVt44lCS2LX9Fh0uEDFPfqmpYxHbV65JRZG5j0HsSsK+ulyUktivFBlox+uIVgo0lPtTK2TQ7k/tepq5Tk7lOLzK5MmuODmhsFacoBXAhDJ5rsWhFC0p10l9DyjLmS2eiFRqEZhynSj8LPCG/6PYKnSeONusWbMGM2bMEE/63G437r//fowaNSqo7dXu3wBEREREZ5DX6z3ppMZOpxMVFcH94ciBHREREYXsxEex4f6KdB06dMBLL70kPu71er146aWXcO655wa1vYj7KJaIiIjobPGPf/wDgwYNQocOHfDHP/4RDRo0wN69e/HGG29g06ZN+Oijj4LaHgd2REREFDKLUQ05dmHeXk00YMAAzJ07F3/9618xfvx4X7xhw4aYO3cuLrvssqC2VysGdloysTajvlladwuxjDKzv1YU4E6SCdt6RwlzXRG0ZHKtAEKjFRRoSexq1wZ1Xf/OEAe/PSSWaTokw9RxlBXLa6cVY5jtWKBfO7mu1o1ALbIolV0wtITt4qOyM4R27czQjk3jTJJvc7NdJmxOrUOD1mXC3Dlo97bDLYsRXHFatxC5D63wJFDOV4dFLLOfnKOqvETeY9rvDm05R7T8naDdY82HNZLH98M+EbPatfM3d29r62rFIrWpyMIeFVxTdqLT7aqrrsJVV12F7OxsHDp0CElJSWjRokWVtlUrBnZERERUvWrKdCdns+bNm6N58+YhbYMDOyIiIqIzZNasWZUuM2LECNPb48COiIiIQna8pViYn9iFeXs10ejRo2EYBiwW/3SL31fJcmBHREREpxWLJ6rm22+/FbHDhw/jo48+wqefforXXnstqO3VioGdlnhvltnCg0BaoYRm/6ojIuZQugI07JUmYmUyD9/UTPyA+c4LZjpKAHrifUVp5etu+2CXiDW6LF3EzM6wryWsa90jNFpHidJCmZxvtvOGVnhi5poAsgjEphSFHPk+39S2rHZzSffRibKQx2vyfoqq45b7Ve4J7fXWxDaXx+JR3lNleVXr+OApkK+r1mWiJLdIxLQOFRqtkMedGCtijXs1ETGtGMdsxwttOSiz9wfes3vuvkYs0+DZd5Rt1WyNXnv/TB8CUVA6deqkxi+55BLcc889ePfdd9G7d2/T26s9ZVFERERUbThBcfgNHDgQ8+bNC2odDuyIiIiIaqBdu3aJjhSVqRUfxRIREVH1Yo5d1axYsULEPB4PfvjhB0yePDmoj2EBDuyIiIiIzpiLLrpIrYoFgD59+uCFF14IansRN7DbPKyviGlJ3F6Zm6wm6Gu05Plw0hLCtQIQs10mzCb76+evzYBv7vxj68X4fX8E5pL9taIIbZ9a4nhJnkfEtGuiJbYXHiyU+zBZPFBeonSeMNndRHsdA4/PbKGEVnSgqZMVL2JaQY3V5D0WSqGEpiC7pErraR0ldi6WnR28SkGNdo9p96JWUOOKjxYxrRuFRruPtfei3hlDXnf9PLTljIBlTnmYRJXidCdVs2zZMhFzu93IyspCampq0NuLuIEdERER0dmiV69eYd0eB3ZEREQUMgu8sChT64S6TQoOB3ZEREQUOgNAuD86jfxPYvHrr79izpw5WL58OX7++WccOnQIbrcb6enp6N69Oy677DIMGTIENpu5dDEO7IiIiIhOs02bNmH8+PFYuHAh7HY72rdvj/PPPx+JiYkoKSnBgQMHsHDhQsyYMQPp6ekYN24cbr/9dtjtpx66RdzATptRXktO1mhJ7Hrhgf9yaT2TxDI5Xx0WsfQLk0XM4XaI2G+LckRs9xf7RUzr0KB1OzBfKCGZ7jyhJJkHXrsGfWQSaFS8TDDXOkXYHOaOV0vsLyuSSecV5eYSzLUke42hFB6Umyyy0YoWoMVM0K5TXJrsduCuK5P9teR87bXQOi9seedXU8fXfkwbuQ+ly4IW8yqvWbnHfzmzBSsHv80VsfghsqDE7PuktEAWe2idLMy/n+R52KPk7wrtd5t2nbTtZbz4X1PHQmQWpzsxb86cORg1ahT69u2Ld999F5dffjmiovTit59//hlvvvkmpkyZgpdffhmbN28+5bYjbmBHREREVJMlJCRg1apVOO+88ypdtlWrVpg4cSIefPBBPP/885Uuz4EdERERhaw6WoBFakuxyy+/POh13G437r///kqX48xFRERERBGCT+yIiIgodNWQY4cIzbH7vUceeeSUPzcMAxMmTDC9vYgb2J372UoRW3/JBabWVbsblCmz8Uf7JzFrifiavSsOiVizKzJFLL6lTGy3Rykz0SuFEloytVbYYLagJBSBCdtaYruWnK/RltPOS13XZDK5VYlBKUYoKzTXBUSjFUpo52am84LWZUIrHtEKdKLqxIiY2slEKQCwKrFzbpH3rLZueYksbtKW0xheed3FsZksdtAKj7TXQS9YkPeTVuzhySsSMe2e1e5Fs7Tz1Y7Z7HuFiE6/f/3rXyf9mfH/p4+p1QM7IiIiOgMMoxrmsYvMHLvfO3jwoIgdOXIECxcuxCuvvIJ33nknqO1xYEdEREQh43QnVZOYmKjG7r77bhQWFuLf//433n33XdPb4/N5IiIiohqoW7duWLx4cVDr8IkdERERhcxiGLCE+aPTcG/vbLNkyRLTrcROqBUDu45LvjS1nFZkYbXLxOadi/eFfEwnlBXLhPD4hnEips8wb7ajRpgfjZtMADfTBUBL2Ne2pe1T236R0nnE7H7LTRZy2JzmHnRr3Q3CKTrJLWLOGKeIefJlIUZUXXmPWV1yXZi8d+xu2UGk5HCeiJkt5NGLAuR+zRZLBCo8WChiyS1kZxS9GEned1oBiN4BQinGUs5BfT8py2VOnS9imkMTbja1HBGdfqNGjRKx0tJSbN68GRs2bMDYsWOD2l6tGNgRERFRNTO84Z+epBbk2L333nu+6tcTioqKYBgG7rjjDjz++ONBbS+oHLsJEybAYrH4fdWvX9/Uul9//TXsdjvOPffcoA6QiIiIKFLl5uYiLy/P76uoqAgLFizA559/jq1btwa1vaCf2LVt2xaff/6573szn/3m5ubipptuwsUXX4z9+2UzeyIiIjq7sSo2fJxOJwYPHoxdu3bhnnvuwaeffmp63aCrYu12O+rXr+/7SklJqXSd2267Dddffz26d+8e7O6IiIiIaqXWrVvj66+/DmqdoJ/YZWdnIz09HS6XC127dsWkSZPQpEmTky4/Y8YMbNu2DW+++SYmTpxoah8ejwcej8f3fV6eTMIO1YZLe4mYNmu/mUKJhhfXEzEtsV/b1m+LckxtL5SChYqy8P7Fo10nTeDxme3OYFO6PWjnqp2X2WIMbTmrst/yEtlR4PB34b8fA8U08i9GsEfLt2pcvVgR0zpbOGNklwmbUuzgTJZzKXkOHBYxtWBBqVkxWwBgtrjHGSurJwILFLQOEE2HZIjYtg92iZhW7KJ1qIhJiRcxraOGWvCjnL/VLpdzJ8l9WJ2yo4RZyRNer/K6RGZZYMCCMFfFVmF7K1euxH/+8x+sW7cOOTk5WLBgAYYOHer7+YQJEzB37lzs2rULTqcT5513Hh599FF07drVt8yrr76KOXPm4LvvvkN+fj6OHj2KOnXqqPvzeDzo2rUrvv/+e6xfvz5sKWcVFRWYM2cOkpKSglovqIFd165dMXv2bLRo0QL79+/HxIkT0aNHD2zatEndcXZ2Nh544AF8+eWXsNvN72ry5MmV9k4jIiKiGqSGFE8UFhaiQ4cOGDVqFIYNGyZ+3qJFC7zwwgto0qQJiouL8fTTT6Nfv37YunWr71PIoqIi9O/fH/3798f48eNPub/7778f6enp+P7774M+VgDo06ePiJWWlmLr1q04ePAgHnvssaC2F9TAbsCAAb7/b9++Pbp3746mTZti1qxZuPfee/2WraiowPXXX49HHnkELVq0COqgxo8f77e9vLw8ZGTIv7qJiIiIfm/AgAF+45VA119/vd/3Tz31FKZNm4YffvgBF198MQDgnnvuAQAsX778lPv69NNPsXjxYsyfPz+oPLjfO3LkiKiKjYqKQq9evXDDDTf4PW00I6TpTmJiYtC+fXtkZ2eLn+Xn52Pt2rVYv3497rjjDgCA1+uFYRiw2+1YvHgxLrroInW7LpcLLpf8qIiIiIhqpuqcoDgwJStc44TS0lK8+uqrSEhIQIcOHYJad//+/bjlllvw/vvvIzo6usrHUNUnfScTUksxj8eDzZs3Iy0tTfwsPj4eP/74IzZs2OD7+tOf/oSWLVtiw4YNfp9lExEREZ1MRkYGEhISfF+TJ08OaXsff/wxYmNjERUVhaeffhpLlixBcnKy6fUNw8DIkSPxpz/9CZ07dw7pWMItqCd248aNw6BBg5CZmYkDBw5g4sSJyMvLw4gRIwAc/wh1z549mD17NqxWK9q1a+e3fmpqKqKiokT8TLC7ZBKzJ8+jLFm53V/IKVyaD2skYgltZBJ77k9yBnxte+kXyhvOYpXnEO5CCbO0RHkznDHyLy5tFn97lEwc9+QVy+WU11VjKEUGXpPFHbHNZRJ/Qbbs7hCKwGIJZ4y8JrH168hYhiy8KTl8TMSiMhqImLewSB6HUmShdkGp0Do0KMUDymtrNdlVRe/kEFigI5fR7qdmV2SK2NYFO0Vsxyd7RazRZSIEh1vp2gF5LFpxh1YUUuGRHWlsWmcQoprEMKohx+747+Vdu3YhPv7/iopCfVrXp08fbNiwAYcOHcJrr72Gq6++GmvWrEFqquxAo3n++eeRl5dXaf7dyezYsQMZGRlBtwvLzs5G8+bNT7lMUE/sdu/ejeuuuw4tW7bElVdeCafTidWrVyMrKwsAkJOTg5075S9HIiIioqqKj4/3+wp1YBcTE4NmzZqhW7dumDZtGux2O6ZNm2Z6/aVLl2L16tVwuVyw2+1o1qwZAKBz586+h12n8uabb6JNmzaYNm0aCgvlA55A3333HUaPHm3qwVhQT+zmzp17yp/PnDnzlD+fMGECJkyYEMwuiYiI6GxgGL4nbGHd5mlgGIbfNGuVee655/ymcNu7dy8uvfRSvPPOO6ZSze6//37Y7XaMHTsWd999Ny6++GJ069YNTZo0QWJiIkpKSnDgwAF89913WL58OTZv3oxevXphzZo1lW6bvWKJiIgoYhQUFPi14dq+fTs2bNiAxMREJCUl4dFHH8XgwYORlpaGw4cP46WXXsLu3bsxfPhw3zr79u3Dvn37fNv58ccfERcXh8zMTCQmJiIz0z+dIzb2+LyiTZs2RcOGDSs9RqfTiQceeAB//vOfMXPmTLz55pv45z//6SsytViOp5kkJydjwIABmDZtGrp162bq/DmwIyIiopBZUA0txZRc1cqsXbvWb264E9OnjRgxAi+//DJ+/vlnzJo1C4cOHUJSUhK6dOmCL7/8Em3btvWt8/LLL/vNp9ur1/GmBjNmzMDIkSOreDZSQkIC7r77btx9993Izc3Fli1bcOjQIbjdbjRo0CDo6eIAwGIETp5SA+Xl5SEhIQG5ubl+yZOnw/96yhGyw+2fyL9n2YEqb99sIr4tWqZDNuhpLslT60ag0bpWaLRkdG3dwP1qy2iJ41qhhDYTf9FB2Smg8GC+iJUVy0T0Co9MYi8tkstpRRaaI9/L/ZpVt33lHSRSW8vWfWnd2oiYLU5uq/Sg7B6hdZkwypTrVCI/migvlEUrWqzCo3RjUDovVChdG7TOIFossMjCzDIAcGCzLFDSOoponSfMFvw4ouVyWpcJjTNOTp1gj3GLWOKDL5vaHkW+M/nv5Il97/n8bcTHVH3aD3XbhUVo0Pe6M3JeZ6uQpjshIiIiopqDH8USERFRyCxGNXwUG+7pU2oBPrEjIiIiihB8YkdEREShM7zVMEExn9gFiwO7SkQnyoRlu8v/smkJ1tqM9RqtUMKZJF+W0sMy2X/n4n2m9lGvh0yUd8XKWey1Igu1KEJJRje8crnA2fi1BHNXvLy+rrpxSixBxDQlx+REjyXH5LWrULoYaOdaoVyTgt2yUCAUWtcOZ5R/kYE7URZFOJQZ0isKlCIOi9y+ob2GSkwtiiiW96zZzhMwWRSh3SvacmbWW//ihkrXAwBHvCzsiE6S192qFIBohRJRyXVEzFCuk9Ytw+x1IiIKxIEdERERhcxiGLCEeaKNcG+vNmCOHREREVGE4BM7IiIiCp3Xe/wr3NukoHBgR0RERKE7i3vFRhIO7CrhipOdEbxK4n04aYUS6Rcmi1iZ0inh4LeyG8P+VUdM7TezX31Ty2nJ/jaHllDuXzwRVSdGLONKlEURNpcs7CjeL7snHN2WI5c7JhP7LVpRRJGSxK4USoTSUcJsVxHt+Fzx/utq19zrUbalFCzY3PI4ynJllwVtXS3ZX73/TSb2a4U3ZUVKd4sSeW8H3k+ALJb5Zd52U8fR8pomIqZ1QXHGy1n0o5R71uqQv0otNvmeiB/7tKnjIyKqKg7siIiIKHSc7qRGYPEEERERUYTgEzsiIiIKGac7qRn4xI6IiIgoQvCJXRUEzhSvzQif1T9NxH5bJJP9WwxvLGJaAnh0okziLrHLpPPMfrKTQ7lHFmPsXXFIxLROFmYLKrSZ9+1R/snujhh5bFope+kxmdhfkCMLQLRiDE3RkSJTy2lFDKHQCiU0UQkyaT+QVkzgLZBdNqAUQGidIrTuCRqL0rXCFuWQx1dsrqBCK57Qija05TZM/eFkh/l/xxYtt9VkQKaIubSiiLqyy4RWeKIVSiSMe67SYyOKeMyxqxH4xI6IiIgoQvCJHREREYXOMKrhiR1z7ILFJ3ZEREREEYJP7CphNhcpUEWZ/Kul6ZAMETM7oaqWJ2d3yWPT8v2cMXJiV7M5gFrenbauXcm7sjn9by+7kmNnj5G5Tse27BCxxNZZImZ1yn3mb98jY/sLRCzckxGHQpt8OLVNut/3Ws5Z4e79Ihbftrm5nWq5jUfl5NZazp7hKRWxsgKZx7dtSbaIVSi5eCX7Zf6gWe1Gtfb7Xp082yl/zTV8fp6IHX7kFhHT3v9Wp3w/ERGrYmsKDuyIiIgodOwVWyPwo1giIiKiCMEndkRERBQ6wwh/sQM/ig0an9gRERERRQg+satE01kfV7rMlmsuFTHDK4sdLMrEpmY5Y+QEwBWlch9epShAS7zXksIbD2woYts/3i1iWpFF+zF1K92vdhyeI8dEzJ1SR8SiGsniibL9snjALLOFElH1ZIGGluwf00i+PlGJMnb4Ozn58u4v5HkkNUv1+96VICdj1opRKvJloUhIlPyWLR//KGLlRfJedMbJa5d3QE4WrRXjJGQkiVjgxOCAnNw4c+p8sczRKbeLmCbp4ddMLUdEJ8EJimsEPrEjIiIiihB8YkdEREShY45djcAndkREREQRgk/siIiIKHRGNcxjxxy7oHFgFwZaVwizy5ktWNA6VDQf1kjZiyxQUOo4VK64KBFrfYPsZFCSWyz3qhRyOKL9iwdsLjljf1lBoYgFJsQDQO53MmFf6zJQqnRA0LpxmOVKksesFU9ohRJad4tW1zUTsZ/f3ipiBzbt9fu+XvsGYhlveeXFBCejFbIYykceWsFCXFqsiB3ddkzEmlzUUsTKe8iuFRqtW4TVIYsxHDHyng1U94EXTe2TiELE4okagR/FEhEREUUIPrEjIiKi0LF4okbgEzsiIiKiCMEndkRERBQ6bzUUT4R7e7UAB3ZhYLXJJP4K5V60u8xdbrMFFVoxhs0hH8JqXSY0WjGClsSuFVloifyBye6Few6YOja7WxYilObLjgVFh2QXB82xbHNdJhLayO4OuT/J4g6NzSnPwxkjCy88+bK4Q7N/zRG/7zN7tRLLlByW52+PltfOYpGvq7dMuXeU664tV++cDBFLP6+xiJUXe+Q+lPtJK/iw2OT1dMRFi5jWfYOIqDbjwI6IiIhCxxy7GoE5dkRERBQx8vPzcc899yArKwtutxs9evTAt99+6/t5QUEB7rjjDjRs2BButxutW7fG1KlTxXa++eYbXHTRRYiJiUGdOnXQu3dvFBfL6b5qGj6xIyIiotAZRjXMYxf8E7ubb74ZGzduxBtvvIH09HS8+eab6Nu3L3766Sc0aNAAY8eOxbJly/Dmm2+iUaNGWLx4Mf7yl78gPT0dQ4YMAXB8UNe/f3+MHz8ezz//PJxOJ77//ntYTc4VeibV/CMkIiKims9rVM9XEIqLizF//nw8/vjj6NWrF5o1a4YJEyagcePGvqdy33zzDUaMGIHevXujUaNGuPXWW9GhQwesXbvWt52xY8firrvuwgMPPIC2bduiefPmuOqqq+ByyVzkmoZP7MJAKzrQEsIryuRfMlpBhcNtrthBK6hodkWmiGkFFWrCunIegd0jAMBVRxYZeI7JIoOCHP8CAHuU7BwQl1lPxCqKzRUYaB0lCg7K4yg9bK71hlYEY5Z27aITZbK/JrNffRHbuXif3/dHtuwRyziiZXGGvdDcxwRRiQmmltOKGGwOec9qXUU0apGNXd6LqZNmiVjha/8QsYqimv+xCBGdPuXl5aioqEBUlH+Rn9vtxldffQUA6NmzJz788EOMHj0a6enpWL58OX755Rc8++yzAIADBw5gzZo1uOGGG9CjRw9s27YNrVq1wqOPPoqePXue9nMKFp/YERERUehOtBQL9xeAvLw8vy+PR1bdA0BcXBy6d++Of//739i7dy8qKirw5ptvYs2aNcjJyQEAPPfcc2jTpg0aNmwIp9OJ/v3746WXXvIN2n799VcAwIQJE3DLLbdg0aJF6NSpEy6++GJkZ2efhgsZGg7siIiIqEbLyMhAQkKC72vy5MknXfaNN96AYRho0KABXC4XnnvuOVx//fWw/f9PIJ577jmsXr0aH374IdatW4cnn3wSf/nLX/D5558DALz/f+682267DaNGjULHjh3x9NNPo2XLlpg+fXr1n2yI+FEsERERha4aJyjetWsX4uPjfeFT5bo1bdoUK1asQGFhIfLy8pCWloZrrrkGjRs3RnFxMf7+979jwYIFuPzyywEA55xzDjZs2IAnnngCffv2RVpaGgCgTZs2fttt3bo1du7cGd7zqwZ8YkdEREQ1Wnx8vN+XmSKGmJgYpKWl4ejRo/jss88wZMgQlJWVoaysTFS32mw235O6Ro0aIT09HVu2bPFb5pdffkFWVlb4Tqqa8IldGGiFCDZZJ6Am+xvKXzdWu3xZ6raPFbGjPxYo68pkd7W7g1LIoBeByJhRXmFqH85Y/1hM/USxjCNenpeWiK9d4xKlYMNbJo/NLO1cQ+FVrpM7UZ5vXMMkEYtK8O+oEJ0cp2xf3jsx6akiVq4VGCjdKLRpBcwWBhnKuja37FCilQVp907BS38Tsdi/PKasTUQ1Rg2ZoPizzz6DYRho2bIltm7divvuuw8tW7bEqFGj4HA4cOGFF+K+++6D2+1GVlYWVqxYgdmzZ+Opp54CcLxbz3333YeHH34YHTp0wLnnnotZs2bh559/xn//+9/wnl814MCOiIiIIkZubi7Gjx+P3bt3IzExEcOGDcOjjz4Kx/9vczl37lyMHz8eN9xwA44cOYKsrCw8+uij+NOf/uTbxj333IOSkhKMHTsWR44cQYcOHbBkyRI0bdr0TJ2WaRzYERERUeh+V8Ua1m0G6eqrr8bVV1990p/Xr18fM2bMqHQ7DzzwAB544IGg93+mcWBHREREoavChMKmtklBYfEEERERUYTgE7swUAsMlKfHWpJ4y3c+M7WPoz27ye055H6dsTJhXaMdi9p5IsYtYuWeUrlctPwbwR7jfyxRGeliGUPZlkYrMik8JIsnDn6ba2p7CW1k94wj3+ebWlfjipUFHzanfHs542U3Cq2TQ2CxRFzjBmIZz6GjIqZ1irBHy9cQSgGEV3sttCIL5T6xmuxGYXXKWNxdT8h9ENFZxzC8MML8UWy4t1cb8IkdERERUYTgEzsiIiIKnVENOXbhnj6lFuATOyIiIqIIwSd2REREFLoaMt1JbceBXRi0eHuRiP08/JKw7iOlZT0RO7BaJs9vnLFZxNqOaCVijmjZjsUZLwsKvGXlIhZdT3ZKsEbJoo3ARH5rfILcfp4sdji64WcR8+TJ7gllxWUiZpYzxtytn9ZTnmu5R16TijJzv3yKD+WJmD1KFhS4k+L9vncky+OwxchCDE1g6xzgJIUSJlmVAg2tq4pWoMFCCSKi6sWBHREREYXM8HrVGQxC3SYFhwM7IiIiCl0N6RVb27F4goiIiChC8IkdERERhc5rAOH+6JQtxYLGgV01aTVvSVi313jaB0p0iIgUHpTJ+VoHhKiUuqb260ySy2ndDWxxsXJlV+VdMCryC0QsJk0WCuTnbKt0W8HQOlTUbS/PITpJFigUHJQdL7RCjrw9ch8JGfJ62qMcIuZM9C80sSjFKTabfF29xUUiFnPzv0Us/4X7RUzrPKI91LcoXUuIiKhm4MCOiIiIQsccuxqBOXZEREREEYJP7IiIiChknO6kZuATOyIiIqIIwSd2ZzFXvFvEnLEyyd6qJLtrnQesLtkBQSuUsEbJrhWWaNm1Anb/ooCSn2VHieKDR0SsvMgjYs4Yuc+9aw7IfSoSO8SJ2JHv80XMESOLGDwF8jppXRa0wgOLTca0Qok658jOIN4S/2vgvvo+sUwo4u54XMTynv2rXLBMFoUkPviyqX3kPT026OMiorOY1wh/FSurYoPGgR0RERGFzDC8MMLc2zXc26sN+FEsERERUYTgEzsiIiIKHT+KrRH4xI6IiIgoQvCJ3Vks/em5ppbbO/ZaESvNk90TnHXkON8aLQs0jIoKUzEUF/tvSynOiGvcUMQKduyVmzoiO1SUHi6X+1S44uR+NQdWHxWxtJ6yC4ZWKGFVYvHpdUQsqq4s5Cg7ekzE7HX8O08UvzVZLOO+YbyIhSL+7ifDu72xT4d1ezXZ4UduEbGkh187A0dCdAYZ3uNf4d4mBYVP7IiIiIgiBJ/YERERUcgMr6FOBxXqNik4fGJHREREFCH4xI6IiIhCZ3iBcLcAY45d0DiwqwXsbtm1wR6jFEWUywKI4p17RMyd2UDupFR2aLC4/ffhbNxELFO2Y7uIeXKVQolC2Y3CLK/yKL9ej0QR279KdsHQukfYlJi7jrkuIAU5ch+auPiAIguXfA3pzNAKJQxD3mMH/zlaxFL+Nb1ajomoJjAMQ30vhLpNCg4/iiUiIiKKEHxiR0RERKHzVsNHseHeXi3AJ3ZEREREEYJP7IiIiChknO6kZuDArhZInTRLxLTEbrvSZcIeGyNiRlmZiJUfyxUxi8W/yMCeWFcsU3JIFhN48opFrKzYXJeJqHoOEbM55IPpvSsOiZhWUFFRJj8GcNeRRREJmckiFt+isdxeoez44UhNETFrHf9jMUpl8Ujxu/+Rx3b1fSJW0+U+dY+IJdz7zGk/DrO0ZO6KElk8pNn/wE0iVm/K7JCPiYjoBA7siIiIKHSGUQ0txfjELljMsSMiIiKKEBzYERERUchO5NiF+ytYe/bswR//+EckJSUhOjoa5557LtatW+f7+ciRI2GxWPy+unXr5vv5jh07xM9PfM2bNy8s16o68aNYIiIiCpnh9cII8/QkwW7v6NGjOP/889GnTx98+umnSE1NxbZt21CnTh2/5fr3748ZM2b4vnc6nb7/z8jIQE5Ojt/yr776Kh5//HEMGDAg+JM4zTiwq6W0GfBzn7hLxLRCCUtMtIhZo2RnhKLf/LtWRCm5EtEZ6SK2f4PsRlHuMVc8EZcpj63cIztqaMpL5D7cdWVBiStOFk+4U2XhhT2rkYjZLPIhueGWBSrIPxZwcMr5V8jzKpz+sNy+8hp6S2QxhrZcwrjn5H4VBVPHi1hZbp7cb5k8D0M5D624B8pf7ha7zf97i+wKohU7aIVCde5/Xu5Tof1DY7HK/VZ45PW0OuSv3EMTbhax5AmvmzoWIvL32GOPISMjw2/Q1qhRI7Gcy+VC/fr11W3YbDbxswULFuCaa65BbGxsWI+3OgT1UeyECRPEY8mTXRgA+Oqrr3D++ecjKSkJbrcbrVq1wtNPPx3yQRMREVEN4zWq5ysIH374ITp37ozhw4cjNTUVHTt2xGuvvSaWW758OVJTU9GiRQvccsstOHDgwEm3uW7dOmzYsAFjxowJ+pKcCUE/sWvbti0+//xz3/c2m+2ky8bExOCOO+7AOeecg5iYGHz11Ve47bbbEBMTg1tvvbVqR0xERES1Sl6e/ycALpcLLqWH9q+//oqpU6fi3nvvxd///nf873//w1133QWXy4Wbbjo+3dCAAQMwfPhwZGVlYfv27XjooYdw0UUXYd26deo2p02bhtatW6NHjx7Vc3JhFvTAzm63n/Ip3e917NgRHTt29H3fqFEjvPfee/jyyy85sCMiIooghuGFEebpTk5sLyMjwy/+8MMPY8KECWJ5r9eLzp07Y9KkSQCOj0M2bdqEqVOn+gZ211xzjW/5du3aoXPnzsjKysLChQtx5ZVX+m2vuLgYc+bMwUMPPRTO06pWQQ/ssrOzkZ6eDpfLha5du2LSpElo0qSJqXXXr1+PVatWYeLEiUEfKFU/LZ+q+M1HRUzLxarILxAxd33/iXcLd+8Xy5QVysmIveXyF4PdZe5W9VbIx/ZGqbn8PKtN5knFJMv8t7rNG4iYs56cZBgemceGwnwRsqRlilhg3p1FezKubd9TIrel5LVp/Re95eZyEbVcTG3d8oIiESvNlzEtZ02rhLPa5TWwu12n/B4ADOXYtLw+7bzKi+U1tjrkJNhlJcp7olTJT1VeRy0v8OiU2+VyVpk5YzYvkOhst2vXLsTHx/u+156sAUBaWhratGnjF2vdujXmz59/0m2npaUhKysL2dnZ4mf//e9/UVRU5BsUng2CGth17doVs2fPRosWLbB//35MnDgRPXr0wKZNm5CUlHTS9Ro2bIiDBw+ivLwcEyZMwM03y2Th3/N4PPD87h+twEewREREVMNUQ0uxEzl28fHxfgO7kzn//POxZcsWv9gvv/yCrKysk65z+PBh7Nq1C2lpaeJn06ZNw+DBg5GSovzxXkMFVTwxYMAADBs2DO3bt0ffvn2xcOFCAMCsWbJl1e99+eWXWLt2LV5++WU888wzePvtt0+5/OTJk5GQkOD7CnwES0RERBRo7NixWL16NSZNmoStW7dizpw5ePXVV3H77cefghcUFGDcuHH45ptvsGPHDixfvhyDBg1CcnIyrrjiCr9tbd26FStXrqz0YVRNE9J0JzExMWjfvr36+PL3Gjc+3jOzffv22L9/PyZMmIDrrrvupMuPHz8e9957r+/7vLw8Du6IiIhqMsOrpnmEvM0gdOnSBQsWLMD48ePxr3/9C40bN8YzzzyDG264AcDxgs8ff/wRs2fPxrFjx5CWloY+ffrgnXfeQVxcnN+2pk+fjgYNGqBfv35hO53TIaSBncfjwebNm3HBBReYXscwDL+PWTUnq3YhIiIiOpWBAwdi4MCB6s/cbjc+++wzU9uZNGmSrwjjbBLUwG7cuHEYNGgQMjMzceDAAUycOBF5eXkYMWIEgONP2vbs2YPZs2cDAF588UVkZmaiVatWAI7Pa/fEE0/gzjvvDPNpUHVx//FBU8tpk6yW5vrPC1R8RBZYFB8tNLV9sxMUu+KcIlawTybsa+LTZf5GYouGIhbdTBYLGRXy+DzbfxUxZ5qsKLfkHa384JQJcLW/ZK1Oef5GiSyo8CqT9no9pSJmtlCi9JgsCtFybbRCiQqluMXmNPerKbAYw6sURXiV7WtFHM4EZaJojXJeXqWgSGOPln+wWl3Ka6acB5uhU01X1RZglW2TghPUwG737t247rrrcOjQIaSkpKBbt25YvXq1LykxJycHO3fu9C3v9Xoxfvx4bN++HXa7HU2bNsWUKVNw2223hfcsiIiI6IyqCS3FKMiB3dy5c0/585kzZ/p9f+edd/LpHBEREdFpwl6xREREFDLDMNTezKFuk4IT1HQnRERERFRz8YkdhUXyhNdFLPuGAX7fax0lzNISaJM6yWIHbXZ+s7SEfe2vxfKjstjBWyoLD7RCBktUtKljMcr8K8e1Agh1PaXivKJExsrzZdFKWaHchyM+VtmHPNcKJaYVWWj3gB6T27NHyY4PgUqUAh2LUnhiNmZTChu0cy1XOk9ox2t1KPeYUiihJ4zL66R1qKj7wIvKukSngbcapjthjl3Q+MSOiIiIKELwiR0RERGFjNOd1Ax8YkdEREQUIfjEjoiIiEJmeMP/hC3IjmIEDuyoGgUmxWvJ9GZFJ7pFzOawiVhJniwUyNsiuwykdEkQMe34PEdlRwVvqUyU14o2XEl15Lr5uXJdp9I+r9x/H4ZSnFGepxybkthfphRKVHjkOVQo51WUc0jENr61XsTMatBNdt5IbJ4uYgd/2iVihQflebjr+t8XUQnyPnEo3R40pQWyeMSmdK3Q7hP9HzNZPFFeWCxiZgt+tMILi02+B3KfukfEbFHyGtji/YuPzHaZIToZTlBcM/CjWCIiIqIIwSd2REREFDIWT9QMfGJHREREFCH4xI6IiIhCxhy7moEDOzptvBXykbr2mF3rAGG1ya4AGrtLJpNrDn4rixhi68WJWNGhPHksx2QSv9ZloEQpvEhMkN0yoHQeKDt6zD+g/HIrL5aFIp4j8ry0ZH+tU4JWZJC/RxZPaLSiiEPZR0Rs3/cHTMU0KW2SRCx3l//rk58jO09oMns0FjHtXtSunVbsYHjNFVRUlMliDI3FIvdhsSv3ttIZxWJRumpERclVlfuOiM5+HNgRERFRyAyjGnLslD9e6NSYY0dEREQUIfjEjoiIiEJnGGp6QMjbpKBwYEdEREQhY/FEzcCBHVWblu985vf9lmsulQu55C1o9o2sFlkoCeb1eiSK2P5VMrHfky87DzhjnCJmscrk9D1rZaeEon1ye11bNxGx8nyZ8F+w27+gYMv7P4tlQtF8YHMR0657hdJ5QbNn9T4Ry+qdIWJRdWJEzJUgY3vXbRcxj9JVJKun//WMSpIdRbZ8IDtl7Fwltx9uGd0amVpOu2dtbnlvO2KjzW0vWnbfsNiV90qsLBYiorMfB3ZEREQUMk5QXDOweIKIiIgoQvCJHREREYWMOXY1A5/YEREREUUIPrGj00YrdtBoxQlanoXVLv8usclaB8SnyW4P+yGLJ/au0LosmOu8YNaayZ+EdXtVlf1xdpXXja4vuxg4YmTnjd+Wy4KScDua7d95wp0qu2c0vaSNiBUflh1F9n63W8QSMuS9E1tPFmho92d5SamIacUozlh5Pd0ZaSLmLSoWMavSUULrjBF900MiRhRuzLGrGfjEjoiIiChC8IkdERERhYxP7GoGDuyIiIgoZCyeqBn4USwRERFRhOATOzptmr2xUMR23DJUxLTiCY23XP4lpxVUaAnrddvHitjRH2UHCE2DPqkiltgkWcRKC2TnifKSMnl8ZRUiFpPin7QfnSIT9n984zsRazG4pYg5omVBgab4SL6IlRXJAoCYVFlQoH1cktbB3Ouo0boxWJRYRUCBws/vbRbLbHxLdp5oc3U7EWv4h0wR2/2/nac8zhNccbKIQSsW0p4+2Fyy4qeisEiuWy7vE1uc3IctKUXEipe+JWLui24QMaJQ8KPYmoFP7IiIiIgiBJ/YERERUcgMrwFvBZ/YnWl8YkdEREQUIfjEjoiIiEJ2PMcu3FWxfGIXLA7s6Ixq9Nr7IpZzn0zqtisJ5qX5MsHcqySYxzWQhQ1bP9ph6vjOu/s8ESs5VihiWoGCMz5axGwO+ZbTzsMW5X++WqGE5pcPt4hY476NRCymXl0R0woWourIc7C7ZaGAt0wWhWgdEOwx5jollBd5RMww5D8YUUn+RSXtbugoltm+/GcRc8Rp5yVfw0a9monYjpVbRQyQnSzM2yuPJUq+Fs0HdhIxrfOEN1EW93idbhHL/59/F5S4P1x2yqMkorMDP4olIiKikJ2oig33VzCmTp2Kc845B/Hx8YiPj0f37t3x6aefAgDKysrwt7/9De3bt0dMTAzS09Nx0003Ye9e/z+utm3bhiuuuAIpKSmIj4/H1Vdfjf3794ftOlU3DuyIiIgoZDVhYNewYUNMmTIFa9euxdq1a3HRRRdhyJAh2LRpE4qKivDdd9/hoYcewnfffYf33nsPv/zyCwYPHuxbv7CwEP369YPFYsHSpUvx9ddfo7S0FIMGDYL3LJksmR/FEhERUUQYNGiQ3/ePPvoopk6ditWrV2PMmDFYsmSJ38+ff/55/OEPf8DOnTuRmZmJr7/+Gjt27MD69esRH398zs4ZM2YgMTERS5cuRd++fU/buVQVn9gRERFRyKrziV1eXp7fl8cj83ADVVRUYO7cuSgsLET37t3VZXJzc2GxWFCnTh0AgMfjgcVigcv1fzm3UVFRsFqt+Oqrr0K/SKcBn9hRjROVVEfEtAR7m5LsXlEs3+ybF2yQyxXJR+rtRrWWB6N0wXDFy0R0rSuCVvDhTJQdJGxKMcLhn36TxxIgvrHsnpG3XXbP2P75DhFrPtAhYmY/8igrLBYxe5RyrvExprZnj1Gup0XpWqHcAxXF/t09tK4lzfq3FzFXXfk6VHhklw1nHdllo9O4c+W6ebJ44vtXF4uYJiFD7qPpH2UhQ9keWWThLZHdTawH5XJIbyJCLJags0lGRobf9w8//DAmTJigLvvjjz+ie/fuKCkpQWxsLBYsWIA2bdqI5UpKSvDAAw/g+uuv9z2d69atG2JiYvC3v/0NkyZNgmEY+Nvf/gav14ucnJywn1d14BM7IiIiCpnh9VbLFwDs2rULubm5vq/x48ef9DhatmyJDRs2YPXq1fjzn/+MESNG4KeffvJbpqysDNdeey28Xi9eeuklXzwlJQXz5s3DRx99hNjYWCQkJCA3NxedOnWCzSb/gK+J+MSOiIiIarQTVa5mOJ1ONGt2fKqizp0749tvv8Wzzz6LV155BcDxQd3VV1+N7du3Y+nSpWK7/fr1w7Zt23Do0CHY7XbUqVMH9evXR+PGjcN7UtWEAzsiIiIKWVWqWM1sM+RtGIYvJ+/EoC47OxvLli1DUlLSSddLTj4+B+rSpUtx4MABv+rZmowDOyIiIooIf//73zFgwABkZGQgPz8fc+fOxfLly7Fo0SKUl5fjqquuwnfffYePP/4YFRUV2LdvHwAgMTERTufxXOEZM2agdevWSElJwTfffIO7774bY8eORcuWLc/kqZnGgR3VOFoHBG9ZuYiVKR0bNC0HyeR5x/Wy84BTSag3lE4W5UWyeMCmFEr89sV6ESstkAn6R7Mr71qgFUrUb99AxIoOy64IjXrKjw+yP86udJ8A4EqS59X4wqYiVlEqO0+UK4UszjpxImZxyEIOV6osvDCU7hZlAcUS9mhZiGEY5v7it8fKfdqTEpUF5fGW58uiFbMyL5YdJYz6mSJmPXRIxCzNZMFPhUueh6246sdHZJa3woDXGt4ndt6K4La3f/9+3HjjjcjJyUFCQgLOOeccLFq0CJdccgl27NiBDz/8EABw7rnn+q23bNky9O7dGwCwZcsWjB8/HkeOHEGjRo3w4IMPYuzYseE4ndOCAzsiIiIKWU34KHbatGkn/VmjRo1M/aE3ZcoUTJkyJaj91iSsiiUiIiKKEHxiR0RERCEzjP+bniSc26Tg8IkdERERUYTgEzs6bYrfljkLFUePipiaU6F0InDEmSuAgEXpWhEnixHKj8hj8ZbKYgctyb7gtz0idmDjYXksiqzeGSIWW7+u/3EoRRxalwXN1k9kQUW7GzqKmNZ5YfN/N8nlSmUhi9YZRNueUSHPwxYjX0drjLzG3sJCuW65/7FYleIJa5Ts7GFRJhrVijOgHC+U+3PbJ+vkcorGvZuLmK1TN3ksyv1u6dBVxgqPyZ045fV0X3SDqeMjCkVNyLEjPrEjIiIiihh8YkdEREQh81YY8FrO7HQnxCd2RERERBGDT+yIiIgoZMyxqxk4sKNqU/zuf/wDSsK67f/34vOLxcukezhlBwRvnuzYoHUxsMTIQgkjX66rJfZrHS9yt20TsexPfxExTctBrUTMFiXPzRJQ8OGMkQUAWueNtsPPE7Hvp/1PxA5s3CliDc+XXQycdeT13PeDLBTJukC22ikrlB06KpRuFNAmDHXIa2JtIHs62hFwHkoRh7VOXRGDVd6LiJGFN5aifBErS5YdP0py/yu3p4hv1URuL1Z2t8iLTRexQotsgF63bJ+IOcrkdZfvAKLwM7zVMN1JmLdXG/CjWCIiIqIIwSd2REREFDKjwoAR5uIJg8UTQeMTOyIiIqIIwSd2REREFDKjAmGf7sRQ5ginU+PAjqqN5f+1d++xcZV3GsffGc+cGY/HHl/ia+LcbyQEhSY0CZBQWMIqTSNaECBEKQhaiS1qQYitGnXVRLQCiVVRaCtoQStR2gIpW7YVJTRNKbdyKUuaFkoCJMGJndiO4zj2jC9zP/sHS8r4eUPGsRM7h+9Hyh9+cubMmXPG9jvH7+/9hXTC/3CupbODrVDC1gHANine54T0oV06wbz9+Tclix/sk6x3n06eL9b8yxdIZpsIHAjp6y0pLXwdtiIOG6dCp8mHanT/mUHtsmB7joVXL5XsnV/puRs4pF07QhXaBWLoiBatZC0dKpzoId1fnaXQpnJYwYOlgs6NVupzRvW9015zjmSxzGHJkvd9T7Ji2Tp0+LOW7iZ5zerS+yRLB7VDx6GIFmj07v1AslmzdDsAZz4GdgAAYNRc9xQsd2KrmscnYo4dAACAR3DHDgAAjFo+55q8oaXYeGNghzEx9OzDkvmGLQLrDg3oA21z7CwLGRuf3lzOtrdL9o9fvCjZYFdS91ekyec1SOZEde5g6SRdPNaJRiRL9+uiwrn0iefPBS1z52zz9TKW/Ueq9XgHe/ScDB3ulSxcVS7Zoi+vkOztX7wm2VgLVehiyed892uFgWOZ15nW15oJ6euaNKiLNpft0fmE299sk2z6qtmSJdp7JPvbA89K1rx8l2R1l10kWXrKHMl6I42SdSd1oeVVC3XBY2Csubm8cY1vzPeJkeFPsQAAAB7BHTsAADBqbv4ULFBMr9gR444dAACAR3DHDgAAjBrFExMDAzuMWPJ3P9HQUvDghocVDwR08rsvqwvldm15TrLdz75f/AGepLlr50kWLNNFdksc/bbxBfT1+x19vYFSywLKST0HUlDRr4UnwaguTpvs7pUsmypucWPbnzxsRRvBSdWSLb3zct1fVp/XF9BzlzmiRQb5rC5I/fbPX5Us17Kn8DmXrNRtHL2GbonlOAKW7SJaZGFTfZ4ublyyZI1k099/RbLDf9CCny5LVnOdFkBEMrrgc0NY34u79vRKFs8Wvn+Wza+UbQCceRjYAQCAUXNzrnHH+I6dyx27EWOOHQAAgEdwxw4AAIxaPuea/Bi3AMtTFTti3LEDAADwCO7YYcTcsE4y9yWHdMNMYVcJN94rm/zvvb+WLB3XYoKSUv0MMmPVTN3OUtjwwZ/2SJYZ0In9gYgWNgTLtXtE0NJRIp+xFAr4dQV2f1YLKlxLocDwwgtbl4lUT59ku3//jmQ24Up9rYGwHpvTUKcPzlmOt1Y7dLiJXn1sje7PaZgsWbZGs6WN9ZLtffJPBV/PsBTxBCyf+G0/+CLT9f3UOudfJfMHtXho76/+KJmz4suS9S78omR107TwYqi0Sp/371slizr6XsxV6qvr9ddIRrEExpqbcY3rZx278cbADgAAjFo+65r8GA/s+FPsyPGnWAAAAI/gjh0AABg1/hQ7MXDHDgAAwCO4Y4djBl94TDKf7dNS5wGJ8hkteOh44c2Cr/e9uL+o47AVSsy6ZI5kgbAjmc8yeX7u2rMlcy0FAIGQ7s+JFdd5IBDRghIbX1ALFGzFGNnBwmKUktKwbDPQ1lnUc05dMU2yUMzSUcJSKOIvj+kOLd0j3JAeX7rxM5I5Rzsky5dVSjZQrsUY0TlaZDD72sLzeWD5tbJNaa5fs5QWnoT+/DvJpiV/I5n2yTBm6sWLJXsrpR06bA4FzpMs5tNOIzWl2mnE5PV97HO10OZAvxZP6HcFMDr5nDvmc+LGevmUTwPu2AEAAHgEd+wAAMCouZm8cX26zNOo9mm5A41Pxh07AADgKQ888ICZMWOGCYfDZsmSJebll18e70M6bRjYAQCAUXOz7odr2Y3hPzc78jl2mzdvNrfffrv5zne+Y3bs2GFWrlxp1qxZY1pbW0/Bq554+FMsjvFltQDCbddvhFS7TtrvbzskWbHFEsPlhvTWu60rRKhSCxsSrXocZY06cdxWZGEs3R1yyZQei6WgIlCnk/2N5TncVFKftq9XMv+wQo7coHb2KGvW53TKPpCsr02n+5cl9VpP/tyFkmX27JYs1dOr+7tAH5t1dLJ/tn62ZANhLTLI+Sw/mqqmShRrL3y9iZxem/f7tYtFYzQuWdPntACm9NlH9TgsnDnzJIsE0pK5rv6ZatCS7Y9r54n8vGskqzNajJIs0fPu9zEBHaeem3GNO8bvNfckiifuu+8+c/PNN5uvfvWrxhhjNm3aZLZu3WoefPBBc88994zp8U1EDOwAAMCoDZq8MWP8GWLQfPiBOx4v/DAWCoVMKKQf+NPptNm+fbv59re/XZBfdtll5tVXXx3bg5ugGNgBAICT5jiOaWhoMDd2tpyS/UejUdPc3FyQbdiwwWzcuFG27e7uNrlcztTXF/aWrq+vN52dxS0RdaZjYAcAAE5aOBw2LS0tJp3W6QdjwXVd4xtWbWu7W/dxw7e37cOrGNgBAIBRCYfDJhzWhcpPt0mTJpmSkhK5O9fV1SV38byKgd2nwNDv/0syX1on8btHDkvWt1MnzycOHJGs7bWDkjWvmHzCbYq188m3TvqxC67Sjgrls7Ubg5uyTHa3dKgwtpXV/ZZPgpZPh74y7fhgEjqRP9DQWLj7SY2yzVDVFMnOLtf9v/vLP0nWu18LKnrv/Zkem0XtWXos0SHtlBDp1PfOoKV4oj3bJFl/Rj+Nzy098Z95GvNtkmUi00/4OGOMGXQqJGv9/AbJzqncJNmOu/R7bPG3BvVJyrS4I9mo5+T96LmS9aW1uCMX1MKQhly7ZPUR7bRhTJ0lA85sjuOYJUuWmG3btpkvfelLx/Jt27aZyy+/fByP7PRhYAcAADzjjjvuMNdff71ZunSpWbFihXnooYdMa2urueWWW8b70E6LEa1jt3HjRuPz+Qr+NTRYlnn4f0899ZRZvXq1qa2tNRUVFWbFihVm69atoz5oAAAAm2uuucZs2rTJ3HXXXWbx4sXmpZdeMlu2bDHTpulfarxoxAsUL1y40HR0dBz79/bbbx9325deesmsXr3abNmyxWzfvt1cfPHFZt26dWbHjh2jOmgAAIDj+frXv2727dtnUqmU2b59u1m1atV4H9JpM+I/xQYCgU+8S/dxmzZtKvj67rvvNr/97W/N008/bc49V+eQAAAA4OSNeGC3e/du09TUZEKhkFm2bJm5++67zcyZM4t6bD6fN4lEwlRX60rzH5dKpUwq9c8V/4cvTIgP2YoiTKJXs6hOCnfDOhE71dkl2e4tOyXLDGQlm7Nmrj7HsE4Oc9fq6vyBsCPZzl/rXeAFV50jmd/S2eEfT+jd4Hhrt2ThmkrJnLpJktnk+7VQIN97VI+vWveX79ZzXFKnxQiZusIuC8mIfs+Uf7BdsoFOLYCZ/YWlkgWWrZTM+PV8lhzSziOJv/5dsv0L1uljfVp4Es7puRtKByWLBrXjR+2eP0u265wbCr6ud7VAx2dZub4tHpOsx9Ipw+bwqus0/MkWzSq140m+VIsnnH4tRqot1/fsy52zJCvx6/fxIUuBTnlIO40A8KYR/Sl22bJl5tFHHzVbt241Dz/8sOns7DTnn3++OXJEfzDZ/OAHPzADAwPm6quv/sTt7rnnHhOLxY79G74wIQAAANSIBnZr1qwxV155pVm0aJG59NJLzTPPPGOMMeZnPzvxMgmPP/642bhxo9m8ebOpq/vkMvv169ebvr6+Y//a2nQJAwAAABQa1XInZWVlZtGiRWb3bl2v6uM2b95sbr75ZvPkk0+aSy+99IT7PV4POAAAABzfiKtiPy6VSpldu3aZxkadI/SRxx9/3Nx4443mscceM2vXrh3N0wEAAOATjOiO3Z133mnWrVtnpk6darq6usz3v/99E4/HzQ03fDiBef369ebgwYPm0UcfNcZ8OKj7yle+Yu6//36zfPnyYy0+SktLTSymk5dxfEPbHpHMjegk6XxMJ+z700O63bvayeHtX7wmWbRBuzZMmqtV0fmsTpQvcQrfXk657stW7FA+RSexO1F9rD+khRfLv3uFZG/c/T+SDXT3Szb7C5+VLFBdVVTmi+gxu/1a9JM9SwsZskF9bYORwon3lUf2yjYDf9drGJmjE+xtk/gzpZYuC5VaoDJrsLjCpVhGizZ2ZhdIlspqgUZdRK/F5Pw+yQ7MXS1ZMlX4Hog7+lr/urdSMlvLyMGkfs69eL7OH+7IFLcqQMeMCyTLuPqejeQTklUldPrJvzRpt5jnOxZKtrddf6yn0vraLjpbIgAeMKI7dgcOHDDXXnutmTdvnrniiiuM4zjm9ddfP7boX0dHh2lt/WcV3U9/+lOTzWbNrbfeahobG4/9u+2228b2VQAAAGBkd+yeeOKJT/z/Rx55pODrF154YaTHAwAAgJM0qjl2AAAAmDgY2AEAAHjEqJY7wWlk6QrgS+tkavct7UZwdPd+yfb+8X3JqmdVSlY5TYsxcmntPBGM6PI04erCCfp7tx2/r/DHzb9yRVHb2YonfJZuFAuv1vZ1Lc/vksxWFOGv0sn4bnJQDyag3RNsHT8yIe08EEzp5PlwuvC15d94SbaJzJwu2dBZyyXz57XrQGe5dgrZc7RWsp6mqyT7TJOeO3NUJ/vPr9EfLztd7T7y5n497/lpWt3wxnuVkiUGCrubhEJaxDK1Pi/ZvBrtAFLu9klWt+dlyY7+4TnJUouaJMsYfU8cTutrPTKoj+0f0sKTpVE9x9MmWd6LRotx3t2r37PfvL+wC8gPb9P3K4AzD3fsAAAAPIKBHQAAgEcwsAMAAPAIBnYAAAAeQfHEOBt67ucaujrZ21YoMbD9r5q1dxf1vLMv00nswbJSyWwdJfyBtGShau0k4vMXToBPHk3JNqU1WnRhK4ooqdCJ3fmknhMbv2MpbLDI9urk+aBjKdCI6QT4TLVOgM85ej6HwpWSHY5Mk6w8d7Tg67K582WbPbPXSRbw6fXKWT6/DeXCkmWyut2eQzoR/+zzP6/bhbVrRTKr5+69A3q9u7q1uKOrW4tMYpa5/WsXF3a8aEjtk21Czz0pWf++g7ozi6O28Jb1ElX3H5KszdJlotbRPXYP6PtkUrl+j+3rr5ess1ef44bPWdpqXGTrvU0/bsCLuGMHAADgEQzsAAAAPIKBHQAAgEcwsAMAAPAIiifGW14nu7sdusJ85mivZIOdRyTzB3SsHopFdbugXnpb0UIm3i9ZaV11UY9NtBROUK+cprPfZ3x+me6rVCeTm7Bm7syFkuUDehxOj3UKvNj1hHYZOOd7t0o2WDtDsoFS7VBR4upq/7Gj+ySradkpmS9UWNyQbdACi56Unk+nRJ8zkdZJ8rsP6nmKap2EqYpqIU/G0Q1nJ9+S7F3nM5LlXX2OBbP1vdgU044KC3J/k6z0YGvB17m3tKAoYSmUCN58u2Q+owfnPvGQZAd8kyXLRqdK9l57pWShoOUEWDRXxCX7oEf3Zy2UAPCpxh07AAAAj2BgBwAA4BEM7AAAADyCgR0AAIBHUDxxGg2+8JhktqnPvkiZZG7XYcn8gRLJAqXFdXKwFU8YVyd2ByzdKEoixWWhqsLuAZEanRDvX/xZPY6srrpvK4oYqmiQLF5aJ1ntSj1P1W++K1nPB1qM0vP0FsnKbviaZDWvPyWZjc/R63N4iXaQyPoLu2U07n5Rtjkv9Rvd12QtWNiZnKnHYflI1xPX6794sp6Toz4977v6tfNG2wF9kvnNem3Pcd6RLJjR98ru4CLJ3PrCjhczVmuHjqilK8QrGT1Psyo6JKu1VJTMe+XHkrWtvEmyYEC7sZQ6Wiw1pbxXstdbJknmo04CQBG4YwcAAOARDOwAAAA8goEdAACARzCwAwAA8Aif61pmzE8w8XjcxGIx09fXZyoqdLX9iaj/1d9IVpIckKz0kutO+bH03vsNyXyWwot8OiNZMFbc+S6pqpJscPfegq+dKp1MbpaulChTqtv1R2olC+R1In5l5y7JfJmUZgO6sn/8L29K1re/S7JiTf7a9ZK9XHmlZP0pLWQJBQo7PtREhmSbGWaPZC1mtmR/3KEFAMmkTuKfOkULVM6b3iNZT1KLe47062MX1x2QLJrrleyd5DzJwgHtoPF+h76O+U2FnVHOTr0h2/zFd6FkwRLtqBENJiWbkX1Pt+vUzG1rkSx31hLJMmH9fnrTt1yyXa16Pm3FE9/8AhUV+NCZ+HsSpwZ37AAAADyCgR0AAIBHMLADAADwCBYoHgMDf/5vyXyWqYunYz6dTeW3fiRZ/4PrdcO8zjuyzcXzOTr/xyZUV1PwdaBxsmzjDupct1RUF2f1uzonrPxoq2TxujmSlSV0gdq+qTr/KTp1gWRTutskOzx9mWRJv87/iqe7JZvhdEpmyjX65SuNBV8PDQVlm8bGxZLNmaznKW95L6bTut2kmF7/waxe60RSjyVQos/xSmuzZBURfQ8cPKyfL29bpws57/hAn6N7oHBh7L0V58o2PYf1eJ2g7mt3X1iyipl6vFsdvf6LLtQFxGvzuuDxa71n63ZRndtXXqbn/aZLmE8H4MS4YwcAAOARDOwAAAA8goEdAACARzCwAwAA8AiKJ06CrVhiuLKVV52GIzl50X+7RzLbQsZuRhctLpmsk+KTDbMkCx0qXLQ1V66LGLc0XKCP8+mCwmXZPslyIUvBgqOFF4maGsmcvE5YD1kKJfqmLJKsPdskWcsRrYBY3qALKG/v0HO3t02LFvbvLSy8qG3UBUdLQzqZvm9Qv6U3XKfb3fvr4j7TXbjAUtlh8Z9P6WswRgsUbrpEi3GK1XVYz+fk2sLXe3goKtt06hrLJuTo6184RReBtunr16ylt1oyp0q/d/qH9HmvXKYLPq9aWNShAIDgjh0AAIBHMLADAADwCAZ2AAAAHsHADgAAwCMonjgBa1eJfOGq/ZFV15yuwzml/EF9O7h5nQBvLJk/r50MhrMVStRktStEpkS7DjiZwRPu3xhjetKVur+8TthvDrVLdnDmRZoN1UvWn9ZOBhURff0749Mlu/ZC22cpzS5Y917B19lFs2WbkhItiqiv13NnjG6X6Nfj3XvAUtigTRas/v2KU/8Z0W95ve+2FL4Xq2J6bWY26WttjCYkOzKkRQzvJRsli2rNjulJ6Ln7R1Yfe+iIrcjk5AtKAGA47tgBAAB4BAM7AAAAj2BgBwAA4BEM7AAAADzC57quZXb8xBKPx00sFjN9fX2mokJX4Mf46/nbi5IFk/GCrzOlsZPef1+ZTkR3ctopIFMSlmx/copkkaB2t/BbOiUMZh3JVi7U7gY/ekYf+421OtkfY+v2HxYWQWz6ZnGdMor1yPN6XUssH4cPdmlRRGOtbpiz1E7cdAnvE4wevyfxEe7YAQAAeAQDOwAAAI9gYAcAAOARDOwAAAA8gs4TGBOp8IkLI7IBLWzoC9dJVpbtk8z16QTzbn+DZPWZA3psOV3Zv6NPjzfs6Mz2L55X3LcIhRLjY6yLJYazFTtkLU1WyiL6GXkgqduFtDEGAIwp7tgBAAB4BAM7AAAAj2BgBwAA4BEM7AAAADyC4gmMicb5i0/qcVo6Ycx7e1ol68voJPnPzq8qao9aYnE8fM5Bob6Edp6IlmmhTF9cKyr+41p+vAI4/fhNBgAA4BEM7AAAADyCgR0AAIBHMLADAADwCGb3YsJ5v7dJsnVLeavi9Lvji8V+9uX9CWBi4I4dAACARzCwAwAA8AgGdgAAAB5xRkwMcd0PFwmNx+PjfCQ4HQb7s5LF42fEWxUAxsVHvx8/+n2JT68z4rdlIpEwxhjT3Nw8zkcCAMDElUgkTCwWG+/DwDjyuWfA8D6fz5v29nZTXl5ufD5t5+M18XjcNDc3m7a2NlNRUTHeh/OpxXWYOLgWEwPXYeIYfi1c1zWJRMI0NTUZv59ZVp9mZ8QdO7/fb6ZMmTLeh3HaVVRU8MNzAuA6TBxci4mB6zBxfPxacKcOxlA8AQAA4BkM7AAAADyCgd0EFAqFzIYNG0woFBrvQ/lU4zpMHFyLiYHrMHFwLXA8Z0TxBAAAAE6MO3YAAAAewcAOAADAIxjYAQAAeAQDOwAAAI9gYAcAAOARDOwAAAA8goEdAACARzCwAwAA8Ij/A2MhQoMah0RfAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 4 - }, - { - "cell_type": "markdown", - "source": [ - "### Resampling" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "print(f\"Cell size: {dataset.cell_size}\")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "dataset_8km = dataset.resample(cell_size=8000, method=\"bilinear\")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "dataset_8km.plot(vmin=0, title=\"Rhine River Basin (resampled to 8 km)\", cbar_label=\"Elevation(m)\")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "markdown", - "source": [ - "### Reproject" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "print(f\"EPSG: {dataset.epsg}\")\n", - "print(f\"Coordinate reference system: {dataset.crs}\")\n", - "print(f\"Dataset dimensions: {dataset.shape}\")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "resampled_dataset = dataset.to_crs(4326)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "print(resampled_dataset)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "resampled_dataset.plot(vmin=0, title=\"Rhine River Basin (reprojected to WGS 84)\", cbar_label=\"Elevation(m)\")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "markdown", - "source": [ - "### Crop/Clip" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "path = \"../../examples/data/geotiff/noah-precipitation-1979-europe.tif\"\n", - "meteo_data = Dataset.read_file(path)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "print(meteo_data)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "fig, ax = meteo_data.plot(\n", - " band=0, figsize=(10, 5), title=\"Noah daily Precipitation 1979-01-01\", cbar_label=\"Raindall mm/day\", vmax=30,\n", - " cbar_length=0.85\n", - ")" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "meteo_data_r = meteo_data.to_crs(4647)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "meteo_data_r.plot(band=0)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "rhine_meteo_data = meteo_data_r.crop(dataset)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "rhine_meteo_data.plot(band=0)" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - }, - { - "cell_type": "code", - "source": [ - "rhine_meteo_data" - ], - "metadata": { - "collapsed": false - }, - "outputs": [], - "execution_count": null - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Dataset Spatial operation methods" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "

\n", + " \"dataset\n", + "

" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "from pyramids.dataset import Dataset\n", + "path = \"../../examples/data/dem/DEM5km_Rhine_burned_fill.tif\"" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:26:43.986080Z", + "start_time": "2024-12-06T22:26:43.982806Z" + } + }, + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "code", + "source": [ + "dataset = Dataset.read_file(path)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:26:46.587737Z", + "start_time": "2024-12-06T22:26:46.507070Z" + } + }, + "outputs": [], + "execution_count": 3 + }, + { + "cell_type": "code", + "source": [ + "print(dataset)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:26:55.696830Z", + "start_time": "2024-12-06T22:26:55.692795Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 5000.0\n", + " Dimension: 125 * 93\n", + " EPSG: 4647\n", + " Number of Bands: 1\n", + " Band names: ['Band_1']\n", + " Mask: -3.4028234663852886e+38\n", + " Data type: float32\n", + " File: ../../examples/data/dem/DEM5km_Rhine_burned_fill.tif\n", + " \n" + ] + } + ], + "execution_count": 4 + }, + { + "cell_type": "code", + "source": [ + "dataset.plot(vmin=0, title=\"Rhine River Basin\", cbar_label=\"Elevation(m)\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:26:58.918851Z", + "start_time": "2024-12-06T22:26:57.996575Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAALDCAYAAACYU00/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8ZklEQVR4nOzdd3xUZfY/8M+0TJJJJiEJgQRS6F2KIEVEUERQKYqIZREEy65tVxddsaz4XRQXUezYqDZcRJRFRXARsMFKFZQSkE7okJA2KXN/f/Aj68w5kDuZCQnD5/16zUvz5N7n1hme3DnnORbDMAwQERER0TnPWt07QEREREShwYEdERERUZjgwI6IiIgoTHBgR0RERBQmOLAjIiIiChMc2BERERGFCQ7siIiIiMIEB3ZEREREYYIDOyIiIqIwwYEdhR2LxeLzslqtiIuLQ5cuXTBp0iSUlJSo6/Xs2RMWiwU7duwwva2xY8fCYrFg+vTpodn5ENmxY4c4DzabDQkJCbj00ksxffp0nK7oTGXOQ01w6lr4v9xuNy666CK8+OKLKC0tPev7NWLECFgsFixZsuSsb5uIzj/26t4BoqoyfPhwAEBZWRl27NiBH374AStWrMDnn3+OBQsWwG4P/9vf5XLh+uuvBwCUlJQgKysLy5Ytw7Jly7BkyZIaNyANhbZt26Jdu3YATl77Xbt24fvvv8dPP/2EBQsW4IsvvoDVyr9piShMGURhBoCh3drLly83IiMjDQDGu+++K35/6aWXGgCM7du3m97WoUOHjI0bNxrHjx8PZpdDbvv27QYAIyMjQ/xu7ty55efo22+/Fb/fuXOnsXHjRqO4uPgs7GnoPPnkkwYA48knnxS/W716tREVFWUAMObMmXNW92vfvn3Gxo0bjfz8/LO6XSI6P/HPVjpvdO7cGSNGjAAAfPXVVyHpMykpCc2bN0dcXFxI+jsbBg0ahL59+wLQz0N6ejqaN28Oh8NxtnetyrRv3778yeWyZcvO6rZTUlLQvHlzREdHn9XtEtH5iQM7Oq+0atUKAHDw4MEzLvfpp5+iS5cucLlcSEhIwE033YQ9e/aI5U4XY/f7ODWzfQGAYRiYMWMGevTogfj4eERFReGCCy7AxIkTTxsbWBlnOg/+MXYHDx6E3W5HvXr14PV61f7+9a9/wWKx4JZbbgnqeDIzM2GxWGAYBl555RW0bdsW0dHR5V+tBqNOnToAIOLsioqKMGXKFAwcOBANGzZEVFQU4uPj0aNHD8yaNUvtq6SkBG+++SYuuugiJCUlITo6GpmZmbjmmmvEOqeLsTt1rADwzjvv4IILLkBUVBTq1q2Lu+66C8ePHw/6mIno/MOBHZ1XTpw4AQBITk4+7TKvv/46Bg8eDMMw0LdvX8TExGDWrFm47LLLUFhYGND2AunL6/Vi6NChGDFiBNatW4eOHTviyiuvxKFDh/DQQw9h0KBBpx1YBcrMeTglOTkZvXv3xr59+/DNN9+oy3zwwQcA4DOwC+Z4/vjHP+Kvf/0rkpOTMWDAADRs2DDQQxRWrVoFAGjRooVP+44dO3D77bdjxYoVSE9Px8CBA9GuXTssX74cN910E8aOHSv6GjZsGP74xz9i+/bt6NatGwYMGIC0tDR8++23eOONNwLar4cffhj33HMP3G43+vbtC8Mw8NZbb2HAgAGnTXAhIjqtavwamKhK4DQxdoZhGD169DAAGO+995743akYO5fLZfznP/8pb8/Pzze6detmADCmTJnis86puK5p06YF3dc///lPA4BxxRVXGAcPHixvz8vLM/r3728AMF599VVT5+BMMXbFxcVG48aNDQDGd999d9rz8PtYw5kzZxoAjJEjR4rljx07ZkRERBhJSUlGSUlJUMeTkZFhADCSkpKMDRs2mDrWU7QYu9LSUmP79u3GQw89ZAAw0tLSjJycHJ/1Dh8+bHz11VdGWVmZT/tvv/1mZGZmGlar1edcnDq3nTp1MgoLC33WKSgoMH744QeftuHDhxsAjG+++UY91pSUFGPNmjXl7YcOHSq/Pr+/d4iIzODAjsKO/8CurKzM2Lp1q/HHP/7RAGAMGDDAZwByyqkBzeOPPy5+N2fOHAOAMXz4cJ/2igZ2ZvsqKSkxkpKSjNjYWOPQoUNinf379xtOp9No06ZNBUd/kjawKy4uNn755RfjuuuuMwAYd999t7quNrA7ceKEER0dbcTFxRlFRUU+y7/99tsGAOOee+4J+nhODXaee+45U8f5e6euxeleN954o7Fnz56A+jx1bC+//HJ524oVKwwAxp///GdTfVQ0sHvnnXfEOs8///xpE0GIiM4k/Od7oPPWqfil3xs1ahTeeuutM0530adPH9HWtGlTAEB2dnZA+2C2rzVr1uDw4cPo168fkpKSxDp16tRBkyZNsGHDBhQWFiIqKsrU9nfu3Kmeh6eeegp///vfzR4GYmJiMGDAAMyaNQuff/45rrvuuvLfaV/DBns8AwYMML1v/n4/3QkAHDp0CGvWrMHs2bMRFRWFyZMnw+l0ivW+++47LFmyBHv37kVRUREMwyi/RllZWeXLNW/eHC6XC9OmTUOrVq1w3XXXITExsdL7G8r7jYiIAzsKW6fmsSsqKsLatWuxefNmTJkyBV27dsWoUaNOu179+vVFW0xMDADA4/EEtA9m+zqVqPDll1+qA7HfO3r0KOrVq2dq+7+fxy4vLw8//fQTdu3ahXHjxqFz58648sorTfUDnBy4zZo1C++//375wG7fvn1YunQpGjRogK5du4bseNLT003vl79BgwaJuLji4mLcfffdmDJlCux2O956663y3+Xk5OC6667D4sWLT9vnqZhEAHC73Xj77bdx55134s4778Rdd92FZs2aoVevXrj11lvRpUuXgPY3lPcbEREHdhS2/DNVJ0yYgL/97W+477770Lt3b2RkZKjrVTQQCYTZvsrKygAATZo0Qbdu3c64rPa06XSSkpJ8zkNZWRn+/Oc/47XXXsPw4cORlZWF2NhYU31deeWVSEpKwueff46cnBzExcVh1qxZ8Hq9Ihs22OOJjIw0tU9mRUREYNKkSZg6dSqmTp2KCRMmID4+HgDwt7/9DYsXL0aPHj3wf//3f2jdujXi4+Nhs9mwcOFCXHnllSKJ4aabbkLv3r3x2WefYeHChVi6dCkmT56MyZMn46GHHsKECRNM71so7zciIg7s6Lzx8MMP4z//+Q8WLlyIp556ClOnTq3uXSp36qlN69atq7QahM1mw4svvoglS5bgl19+waRJk0x/JetwODBkyBBMnjwZc+bMwciRI8u/hr355pt9lj1bxxOI2NhYJCUl4dChQ9i6dSs6duwIAJg7dy5sNhvmzZsn5iP87bffTttf7dq1cfvtt+P222+HYRj46quvMHToUDz33HMYMWIEWrZsWaXHQ0Sk4XQndF755z//CYvFgnfffRc7d+6s7t0p16lTJ8TFxeGbb75Bbm5ulW7Lbrdj3LhxAICXXnoJeXl5ptc99WTugw8+wJYtW7Bq1Sp06NBBTCFyNo/HrBMnTuDw4cMATn5FfcqxY8cQGxurTjL9r3/9y1TfFosFffv2xdVXXw0A2LBhQwj2mIgocBzY0XmlXbt2GDhwIEpLSwP6uqyqOZ1OjB49GsePH8fgwYPVQefPP/+Mjz76KCTbGzRoENq3b4+jR49i8uTJptfr1q0bMjMz8c033+D5558HAPE1LHD2j6cixcXFeOCBB2AYBho0aIDmzZuX/65p06Y4fvy42JdJkyap8/atWbMGn3zyiZhg+dixY1ixYgWA4GIEiYiCwa9i6bwzduxYfPbZZ5g6dSqeeOIJ1K1bt7p3CQDw6KOP4tdff8WHH36IZs2aoUOHDkhPT8fhw4fx22+/Yfv27Rg4cCCGDh0aku2NHTsWAwcOxAsvvID77rvPVFybxWLBzTffjGeeeaY8u/jGG2+sEcdzyqefflqevAEAhw8fxpo1a7Bv3z5ER0dj6tSpPnFtY8aMwR/+8AfceOONeO2111C/fn2sW7cOmzZtwgMPPIBJkyb59L9z504MHjwYcXFx6NixI+rWrYvjx4/j22+/RW5uLq699tqAEyiIiEKFT+zovNO2bVtce+21KCoqwgsvvFDdu1POarXigw8+wMcff4xevXohKysLn3zyCX799VfUqVMHY8eOxT//+c+QbW/AgAHo2LEj9u/fH1C84e+f0PXs2ROpqanqcmf7eE5Zt24dZsyYUf76+uuvER0djbvuugvr1q1Dz549xfF8/vnn6NKlC9auXYsvv/wSqampWLx4sTrtSpcuXTBu3DhceOGF2Lx5M2bPno2VK1figgsuwIwZM0x/fUtEVBUshn+6FxERERGdk/jEjoiIiChMcGBHREREFCY4sCMiIiIKExzYEREREYUJDuyIiIiIwgQHdkRERERhggM7IiIiojDBgR0RERFRmODAjoiIqIotW7YM/fv3R2pqKiwWCz799NOA1h87diwsFot4uVyuqtlhOmdxYEdERFTF8vPz0bZtW7z66quVWn/06NHIzs72ebVs2RJDhgwJ8Z7SuY4DOyIioirWr18/jBs3Dtddd536++LiYjz88MOoV68eXC4XOnfujCVLlpT/PiYmBnXr1i1/HThwAL/++itGjRp1lo6AzhX26t4BIiKi891tt92GHTt2YNasWUhNTcXcuXPRt29frF+/Hk2aNBHLv/POO2jatCkuueSSathbqsn4xI6IiKgabdu2DR9++CFmz56NSy65BI0aNcLo0aPRvXt3TJs2TSzv8Xjw/vvv82kdqfjEjoiIqBqtXr0ahmGgadOmPu0ejweJiYli+U8++QQnTpzArbfeerZ2kc4hHNgRERFVI6/XC5vNhlWrVsFms/n8LiYmRiz/zjvv4JprrkHdunXP1i7SOYQDOyIiomrUvn17lJWV4eDBgxXGzG3fvh3ffPMN5s2bd5b2js41HNgRERFVsby8PGzdurX85+3bt2Pt2rVISEhA06ZNccstt+DWW2/F888/j/bt2+Pw4cNYvHgx2rRpg6uuuqp8valTpyIlJQX9+vWrjsOgc4DFMAyjuneCiIgonC1ZsgS9evUS7cOHD8f06dNRUlKCcePGYebMmdi7dy8SExPRtWtXPPXUU2jTpg2Ak1/ZZmRk4NZbb8XTTz99tg+BzhEc2BERERGFCU53QkRERBQmOLAjIiIiChMc2BERERGFCQ7siIiIiMIEB3ZEREREYYIDOyIiIqIwwYEdERERUZjgwK4KTZ48GRdccAHcbjfcbje6du2KL7/88rTLf/LJJ7jiiitQu3bt8uW/+uorsUzHjh0RHx8Pl8uFdu3a4d13363qQznnVcW1+L1Zs2bBYrFg0KBBVbD34aMqrsP06dNhsVjEq6ioqKoP55xWVe+J48eP45577kFKSgoiIyPRokULfPHFF1V5KOe8qrgWPXv2VN8XV199dVUfDlUzDuyqUP369fHss89i5cqVWLlyJS677DIMHDgQv/zyi7r8smXLcMUVV+CLL77AqlWr0KtXL/Tv3x9r1qwpXyYhIQGPPfYYfvzxR/z888+47bbbcNttt51x0EFVcy1O2blzJ0aPHl1hjUequuvgdruRnZ3t84qMjDwbh3TOqoprUVxcjCuuuAI7duzAxx9/jM2bN+Ptt99GvXr1ztZhnZOq4lp88sknPu+HDRs2wGazYciQIWfrsKi6GHRW1apVy3jnnXdML9+yZUvjqaeeOuMy7du3Nx5//PFgd+28E4prUVpaalx88cXGO++8YwwfPtwYOHBgiPcy/AV7HaZNm2bExcVVwZ6df4K9FpMnTzYaNmxoFBcXV8XunVdC/W/FpEmTjNjYWCMvLy8Uu0c1GJ/YnSVlZWWYNWsW8vPz0bVrV1PreL1enDhxAgkJCervDcPAf/7zH2zevBk9evQI5e6GtVBei//7v/9D7dq1MWrUqKrY1bAWyuuQl5eHjIwM1K9fH9dcc436ZJVOL1TXYt68eejatSvuuece1KlTB61bt8YzzzyDsrKyqtr1sFMV/1YAwJQpU3DjjTfC5XKFaleppqrukWW4+/nnnw2Xy2XYbDYjLi7O+Pzzz02vO2HCBCMhIcE4cOCAT/vx48cNl8tl2O12w+l0GlOmTAn1boelUF+L7777zqhXr55x6NAhwzAMPrEzKdTX4ccffzTeffddY+3atcayZcuMwYMHG1FRUcaWLVuqYvfDSqivRbNmzQyn02mMHDnSWLlypfHhhx8aCQkJFX7rQFXzb8UpK1asMAAYK1asCNXuUg3GgV0V83g8RlZWlvHTTz8ZjzzyiJGUlGT88ssvFa73wQcfGNHR0caiRYvE78rKyoysrCxjzZo1xsSJE424uDjjm2++qYK9Dy+hvBa5ublGZmam8cUXX5S3cWBnTlW8J36vrKzMaNu2rXHfffeFapfDVqivRZMmTYy0tDSjtLS0vO3555836tatG/J9DzdV+b648847jdatW4dyd6kG48DuLLv88suNO++884zLzJo1y4iKijLmz59vqs9Ro0YZffr0CcXunVeCuRZr1qwxABg2m638ZbFYDIvFYthsNmPr1q1VuethpSreE7fffrvRt2/fUOzeeSXYa9GjRw/j8ssv92n74osvDACGx+MJ6b6Gu1C9L/Lz8w232228+OKLod5FqqHs1fxN8HnHMAx4PJ7T/v7DDz/EyJEj8eGHH5pOS6+oT9IFcy2aN2+O9evX+7Q9/vjjOHHiBF566SWkpaVVyT6Ho1C/JwzDwNq1a9GmTZtQ7uZ5IdhrcfHFF+ODDz6A1+uF1XoyhHvLli1ISUlBREREle13OArV++Jf//oXPB4P/vCHP1TFblJNVI2DyrA3ZswYY9myZcb27duNn3/+2Xj00UcNq9VqLFy40DAMw3jkkUeMYcOGlS//wQcfGHa73XjttdeM7Ozs8tfx48fLl3nmmWeMhQsXGtu2bTM2btxoPP/884bdbjfefvvts35855KquBb++FVsxariOowdO9ZYsGCBsW3bNmPNmjXGbbfdZtjtdsYTVaAqrsWuXbuMmJgY49577zU2b95szJ8/30hOTjbGjRt31o/vXFKVn0/du3c3hg4detaOharfOTWwW7p0qXHNNdcYKSkpBgBj7ty5Affh9XqN5557zmjSpIkRERFh1K9f33j66adDv7OGYYwcOdLIyMgwIiIijNq1axuXX355+RvVME4OBC699NLyny+99FIDgHgNHz68fJnHHnvMaNy4sREZGWnUqlXL6Nq1qzFr1qwq2f9wUhXXwh8HdhWriuvwl7/8xUhPTy/vs0+fPsYPP/xwFo/q3FRV74kffvjB6Ny5s+F0Oo2GDRsaTz/9tE/MHUlVdS02b95sAPDpi8KfxTAM4yw9HAzal19+ie+//x4dOnTA4MGDMXfu3IBn+r///vuxcOFCTJgwAW3atEFOTg4OHz6M3r17V81OExEREZ0l59TA7vcsFosY2BUXF+Pxxx/H+++/j+PHj6N169b45z//iZ49ewIANm7ciAsuuAAbNmxAs2bNqmfHiYiIiKpIWE1QfNttt+H777/HrFmz8PPPP2PIkCHo27cvsrKyAAD//ve/0bBhQ8yfPx8NGjRAZmYmbr/9dhw9erSa95yIiIgoeGEzsNu2bRs+/PBDzJ49G5dccgkaNWqE0aNHo3v37pg2bRoA4LfffsPOnTsxe/ZszJw5E9OnT8eqVatw/fXXV/PeExEREQUvbKY7Wb16NQzDQNOmTX3aPR4PEhMTAZwsu+LxeDBz5szy5aZMmYILL7wQmzdv5tezREREdE4Lm4Gd1+uFzWbDqlWrYLPZfH4XExMDAEhJSYHdbvcZ/LVo0QIAsGvXLg7siIiI6JwWNgO79u3bo6ysDAcPHsQll1yiLnPxxRejtLQU27ZtQ6NGjQCcnDwTADIyMs7avhIRERFVhXMqKzYvLw9bt24FcHIg98ILL6BXr15ISEhAeno6/vCHP+D777/H888/j/bt2+Pw4cNYvHgx2rRpg6uuugperxedOnVCTEwMXnzxRXi9Xtxzzz1wu91YuHBhNR8dERERUXDOqeSJlStXon379mjfvj0A4MEHH0T79u3x97//HQAwbdo03HrrrfjrX/+KZs2aYcCAAVixYkV5eSer1Yp///vfSEpKQo8ePXD11VejRYsWmDVrVrUdk8bj8WDs2LEsE1bNeB1qDl6LmoHXoebgtaDTOaee2J0vcnNzERcXh5ycHLjd7urenfMWr0PNwWtRM/A61By8FnQ659QTOyIiIiI6PQ7siIiIiMLEOZEV6/V6sW/fPsTGxsJisVT37lS53Nxcn/9S9eB1qDl4LWoGXoeaw/9aGIaBEydOIDU1FVYrn9mcz86JGLs9e/aUJ0AQERGRbvfu3ahfv3517wZVo3PiiV1sbCyAkzcsg0TpTL7t2E20GaXyb5cea388G7tDRHRW5ObmIi0trfzfSzp/nRMDu1Nfv7rdbg7s6IxcflVHAMDwyoEd7yMiCkfnQ7gSnRm/iCciIiIKExzYEREREYWJc+KrWDq/fF2vdaXXtTjk1xBGSY3PDyIiIgoJPrEjIiIiChMc2BERERGFCQ7siIiIiMIEB3ZEREREYYLJE+ew+fZmppa7pnSzaPsiqrlou6pwU9D7FApaAkRZodfUumb/UllYp5Wp5foc+MVkj1RZGwb0Em2t531TDXtCRHTu4xM7IiIiojDBgR0RERFRmODAjoiIiChMcGBHREREFCaYPHEe0JIsrEqCQqiZSVCw2uV+2KLk3xvWWJto0xIqvKWyyoS2DbO0Khi9926odH+h9O0FHURbWUmZbDOZeKK5fMd60bakRVtT69oc8prZHPLaRidFB75jRESk4hM7IiIiojDBgR0RERFRmODAjoiIiChMcGBHREREFCaYPHEO0ypKmK1G4S2RSQahZpjYRpnJ/Sg6UFLp/XC4lSB+JUFDS7wItcomYyxr1V60eb0yKcLMOT/dctrxawkwxUdKTW1Dk9jBbWq5TUOuEG3NZy+q9HaJiM4XfGJHREREFCY4sCMiIiIKExzYEREREYUJDuyIiIiIwgSTJ8KMLVqO1csKKl95wCyzSRtmlOTK6gmh7k9ri6zjMNVfKI/V7Da066olgGhVJs7G9a/dKU60HfopR7RFRMtzbHfK5BYiIqocPrEjIiIiChMc2BERERGFCQ7siIiIiMIEB3ZEREREYYLJE2HGareINsMh27TKE2cjKcAMLVEgMlkG3duUoPuSfFkVoXBPsant2pUKFXlZRabWDYaZ864lQJyNpAhNXEuXaCstkskoCW1jRZvNae4jh1UmiIgqh0/siIiIiMIEB3ZEREREYYIDOyIiIqIwYTEMQwZb1TC5ubmIi4tDTk4O3G53de/OOedLdwvRZigxdlrcnVkRiTJ2yj/ez1sq+9diAs2yKLGD2nFpy5mNu9OYOdbTbVdbTjsv/hMNmz0us/uhTW5sc8gYQ5tDWS5Ctllsss0RJeMiLVa5L9pydiUWr9lHX4k2IjqJ/07SKXxiR0RERBQmOLAjIiIiChMc2BERERGFCQ7siIiIiMIEJyg+D/TL3WhqueqYoNg/SQDQg/1VQSRjRNWPMLWultigJTKYpfWnccTKRAZ/alJEEAkQWsKCNqGw1aZsN8Lcct4y5ZopyzFRgoiocvjEjoiIiChMcGBHREREFCY4sCMiIiIKExzYEREREYUJJk+cp7RqFLZoOc4vK5DJDZriI6UVLuNwV5wQEAiteoLDJW9pr1ceg5a0YXYbiFKWU5IWykrKRFteVpGp7SZ28J05XkswsJpMlLDazS2nJU9oyQ4arT+LVUvakMfR9MMFprZBREQV4xM7IiIiojDBgR0RERFRmODAjoiIiChMcGBHREREFCaYPEHVSktOKDpQItpcmU7RZo+Wt2/BHpmcEF0/UrQ5IuW69kiZZHDopxzRdjbY/fbPEeUQy6gJFXZzSQz6uvL47ZFyXcMrEyosVnP9NZoxX7QREVHo8IkdERERUZgIaGA3duxYWCwWn1fdunVPu/yIESPE8haLBa1atQp6x4mIiIjIV8BP7Fq1aoXs7Ozy1/r160+77EsvveSz7O7du5GQkIAhQ4YEtdNEREREJAUcY2e328/4lO734uLiEBcXV/7zp59+imPHjuG2224LdLNEREREVIGAB3ZZWVlITU2F0+lE586d8cwzz6Bhw4am1p0yZQp69+6NjIyMMy7n8Xjg8XjKf87NzQ10N6kC/XI3ijatGkVEorxFzFSZ0DjryAQAs5UY8nd4lFatTcr5Nd/UcmZF1Y+QbYkyuUNjj5Ln8+DyY6LtwA9HfX7OvCpVLBMZFy3avKWy2oVGS2zQEi+05bRtNJz2b1PbJSKiqhXQV7GdO3fGzJkz8dVXX+Htt9/G/v370a1bNxw5cqTCdbOzs/Hll1/i9ttvr3DZ8ePHlz/ti4uLQ1paWiC7SURERHReCmhg169fPwwePBht2rRB79698fnnnwMAZsyYUeG606dPR3x8PAYNGlThsmPGjEFOTk75a/fu3YHsJhEREdF5Kah57FwuF9q0aYOsrKwzLmcYBqZOnYphw4YhIkJ+jeXP6XTC6TT31RYRERERnRTUPHYejwcbN25ESkrKGZdbunQptm7dilGjRgWzOSIiIiI6g4Ce2I0ePRr9+/dHeno6Dh48iHHjxiE3NxfDhw8HcPIr1L1792LmzJk+602ZMgWdO3dG69atQ7fnZJqWFGGW2UQJh1sG2Zfk+gbZm02UMCuxg1u02SLkfmjJCcEo3FMs2mq3TDC1rrdMVm1oMjhTtGXN2eHz844v9pnqv8N97eU2TSZUeEu9ok1LqCgrllUmiIioZghoYLdnzx7cdNNNOHz4MGrXro0uXbpg+fLl5Vmu2dnZ2LVrl886OTk5mDNnDl566aXQ7TURERERCQEN7GbNmnXG30+fPl20xcXFoaCgIKCdIiIiIqLAsVYsERERUZjgwI6IiIgoTAQ13QmdG7QqE5qvElqKNnNh9zpXpu+UNVr1iDrdZNKBzSH/3rBYzf0NYnhlAkBK90TR5oiWVTD2rzos2swmj8SlyePQkhEKjuSJtlKP3IZ/QoXFKhMWDK9MxMjdIycL16pH2CLkW1+vRiGnJ8p4c65oIyKimoFP7IiIiIjCBAd2RERERGGCAzsiIiKiMMGBHREREVGYYPIEhYTFUXE1goS2saLNWyLTM6xKooBF+RNES5RQEwWi5MrO2EjRltKptmiLcMmaxf5VIQBg/ZRfRVvja9NFmyNKJm1o/JMlImLk/pYVm0vs0ETXjhdthiHPp0U78UREVGPxU5uIiIgoTHBgR0RERBQmOLAjIiIiChMc2BEREVFYmDx5Mi644AK43W643W507doVX375JQCgpKQEf/vb39CmTRu4XC6kpqbi1ltvxb59+3z62L9/P4YNG4a6devC5XKhQ4cO+Pjjj8W2Pv/8c3Tu3BlRUVFISkrCddddd1aOsSJMnqAzsipJEd4SWfFAq9DgiPVNZCgrkcH5+jZl/zYlocLmMHf7mk1YsDtlf1qFBnezaNGWu7lAtG2du8vUdpvf1Fi0uZLjfH4uKy4Ry5hNntASLzRWm5J4EikrTxAR1VT169fHs88+i8aNT36uzpgxAwMHDsSaNWtQv359rF69Gk888QTatm2LY8eO4S9/+QsGDBiAlStXlvcxbNgw5OTkYN68eUhKSsIHH3yAoUOHYuXKlWjfvj0AYM6cObjjjjvwzDPP4LLLLoNhGFi/fn21HLM/i2EY8l/RGiY3NxdxcXHIycmB2+2u7t0JW2pJsUI5GNMGdhr/kmL2aGXgpJQPc7jkQEwbnFltFWfiAkCESw5OtOxZbaDkiJZZsftW7xNt2sDOrMoO7Irzikz1rw3s7FGyTStbpg3sksa+Y2q7RHT28N/J00tISMBzzz2HUaNGid/99NNPuOiii7Bz506kp5+cySAmJgaTJ0/GsGHDypdLTEzEhAkTMGrUKJSWliIzMxNPPfWU2md14xM7IiIiCkpRURGKi4urpG/DMGCx+P7h6XQ64XTKP7x/r6ysDLNnz0Z+fj66du2qLpOTkwOLxYL4+Pjytu7du+Ojjz7C1Vdfjfj4ePzrX/+Cx+NBz549AQCrV6/G3r17YbVa0b59e+zfvx/t2rXDxIkT0apVq6CONRQ4sCMiIqJKKyoqgju+Hko8R6uk/5iYGOTl5fm0Pfnkkxg7dqy6/Pr169G1a1cUFRUhJiYGc+fORcuW8hupoqIiPPLII7j55pt9nnJ+9NFHGDp0KBITE2G32xEdHY25c+eiUaNGAIDffvsNADB27Fi88MILyMzMxPPPP49LL70UW7ZsQUJCQoiOvHI4sCMiIqJKKy4uRonnKDpe/i/Y7K6Q9l1Wmo+V/7kBu3fv9hl8nelpXbNmzbB27VocP34cc+bMwfDhw7F06VKfwV1JSQluvPFGeL1evP766z7rP/744zh27Bi+/vprJCUl4dNPP8WQIUPw7bffok2bNvD+/8nxH3vsMQwePBgAMG3aNNSvXx+zZ8/GXXfdFcpTEDAO7KjKlJzwrSrhLZWxedHJMtZLqzxheOW6VqeMk9No8XRam0aLu6t/UX3RZukiYwVLi+TXEps/+k20bfpwq2hrOqSBz89RCTFiGe0YtPPkcEWJtoh4WQUENT/clohqMHtELOyO0A7sLNaTn62nslzNiIiIKE+e6NixI3766Se89NJLePPNNwGcHNTdcMMN2L59OxYvXuzT77Zt2/Dqq69iw4YN5V+rtm3bFt9++y1ee+01vPHGG0hJSQEAn4Gi0+lEw4YNsWuXuaS5qsTpToiIiChsGYYBj8cD4H+DuqysLHz99ddITEz0Wbag4GQinNXqOzyy2WzlT+ouvPBCOJ1ObN68ufz3JSUl2LFjBzIyMqryUEzhEzsiIiIKmsVqUbPrg+0zEI8++ij69euHtLQ0nDhxArNmzcKSJUuwYMEClJaW4vrrr8fq1asxf/58lJWVYf/+/QBOZs5GRESgefPmaNy4Me666y5MnDgRiYmJ+PTTT7Fo0SLMnz8fwMmnh3/84x/x5JNPIi0tDRkZGXjuuecAAEOGDAnp8VcGB3ZEREQUFg4cOIBhw4YhOzsbcXFxuOCCC7BgwQJcccUV2LFjB+bNmwcAaNeunc9633zzDXr27AmHw4EvvvgCjzzyCPr374+8vDw0btwYM2bMwFVXXVW+/HPPPQe73Y5hw4ahsLAQnTt3xuLFi1GrVq2zebgqDuyIiIgoaBaLFRZLaCO8Au1vypQpp/1dZmYmzEzd26RJE8yZM+eMyzgcDkycOBETJ04MaP/OBg7sqFxJblnFCwXAvxpFRKK83UryZXKCNvGwQ2mzWM294c1WaNCSEbSvAezKpL3acla73L9Ww5uLtqz5Mnmi4KjvhMf2SDlBs9MtK2CUFHhkW36haNM4E+JEW/zDr5hal4ioJnwVS0yeICIiIgobfGJHREREQbNYraa/SQmkTwoMzxgRERFRmOATOyIiIgqa1apPMB9snxQYDuzOU/PtzSq9rsMtkwzMJF4YJTIb6dSEjz5tZXI5Q2krKSwRbTaH9imgVJ5QKjQYyr5Y7fItogXzam3eUtmfltyQeVmasi+++2f26whHtCyzU++lj0ytS0RE5z4O7IiIiChoNWG6E2KMHREREVHY4BM7IiIiChrnsasZOLAjIiKioFksVTDdCb+KDRgHdueBbxpfUOl1I+vIigfe0opLsmi0BAu7kohR6pDL2SLkcoCsKGF45XI2JVFCq26hsdrlup5cWcnBFqFU1VASJbTqFk53VIX7UVokE0W8pfI8pb32cYV9ERFR+OLAjoiIiILGr2JrBj7jJCIiIgoTfGJHREREQbNarLCGOCYu1P2dD3jGiIiIiMIEn9hRwKx2GfMQkShvpbJC38oLZQWyEoP/MgBQFiWTAowyuRzs8u+SUo9MqLBYZQKIVrXCoeQwFB4rFm02h5bIYY5V2Wd9Od9tRMQo1TOUhI1z0eahV4o27Tw1ef/Ls7E7RFRZVRBjB8bYBYxP7IiIiIjCRHj8yU9ERETVilmxNQMHdkRERBQ01oqtGTiwCzPaZMQWh/yLxxYt3yxaDFzRARmLFtMkUrQVH5WxbREJvrdXYYGMVys+ItdzxMp4Mm+ZnCi4rFSJu1OUKXF3MopPj89zRCkTNCv7ov1VqU1arNEmMvanTWyc+dJHpvrXHHx0uGhLfmaGqXW33NRXtGkxi4ZXXh+709w5Kc6X14KIiCrGgR0REREFjV/F1gx8xklEREQUJvjEjoiIiIJmtVphtYZ4guIQ93c+4BkjIiIiChN8Yhdmem39WbQtadFWtPknNgB6coPGKJHJA9qkxVqbv8g6yuTBJ2RqQ0SsuUQJq01JYnBFmFpOS4owvMqxKutqy2mxIV4l4aOsWCYK+Cce2CPlMez981C5b0rChlfp31sqz/GOOwYp+6Fda5nIUVZcKNq049f60867tn+bhlwh2prPXiTaiKh6WCwWWCwhjrELcX/nAz6xIyIiIgoTfGJHREREQWNWbM3AgR0REREFzWIN/UCM8xMHjqeMiIiIKEzwid15oOfGdaaW06pW5O+QVRG0tlptYkRb0bGKkzG0yhaaqDpa0L0MsHe6ZZKBVhXB5pB/02hVEax2uZyWPKBVj9AqT2iJElp//kkGWjKBts1Ip5IoovSv8eTKBAiNdgwRSoJK4fEi0RbMX/NlJeYSaIioelhhhTXEj9isfP4UMJ4xIiIiojDBJ3ZEREQUNCZP1Ax8YkdEREQUJvjEjoiIiILGJ3Y1Awd2VM7ikG8gV6ZTtGnJE8fW54m2uJYun58LYa6yRVR9GYif82u+qXVrd9Juaflg2lCqHWjB+XpVBHNJAVrShpaMUVlaQkVpodw3TWmRuX0rUaqRFOfL66/Z+81BU8tpMq9KFW1a0gYREfniV7FEREQUtFMlxUL9CsT48ePRqVMnxMbGIjk5GYMGDcLmzZt9ljlw4ABGjBiB1NRUREdHo2/fvsjKyvJZpmfPnmI/brzxRp9ltmzZgoEDByIpKQlutxsXX3wxvvnmm8qdvBDiwI6IiIiCZrVaquQViKVLl+Kee+7B8uXLsWjRIpSWlqJPnz7Izz/5rY9hGBg0aBB+++03fPbZZ1izZg0yMjLQu3fv8mVOueOOO5CdnV3+evPNN31+f/XVV6O0tBSLFy/GqlWr0K5dO1xzzTXYv39/cCcySPwqloiIiMLCggULfH6eNm0akpOTsWrVKvTo0QNZWVlYvnw5NmzYgFatWgEAXn/9dSQnJ+PDDz/E7bffXr5udHQ06tatq27n8OHD2Lp1K6ZOnYoLLjg5B+yzzz6L119/Hb/88stp1zsb+MSOiIiIgmaxWqvkBQC5ubk+L4/HXKxvTk4OACAhIQEAyteLjIwsX8ZmsyEiIgLfffedz7rvv/8+kpKS0KpVK4wePRonTpwo/11iYiJatGiBmTNnIj8/H6WlpXjzzTdRp04dXHjhhZU/iSHAJ3ZUzuZQKhQ4ZJMrU7ZpiRf+CQoOt1KxIVcmABTuMZdkoTn0U06l160uTYc0qHAZR7RMYjGb7KAlWWj92SPlxfavgHGyTSaZFOdX/pppVUu0qhWOKLl/Gwb08vm59bzqj28hotBLS0vz+fnJJ5/E2LFjz7iOYRh48MEH0b17d7Ru3RoA0Lx5c2RkZGDMmDF488034XK58MILL2D//v3Izs4uX/eWW25BgwYNULduXWzYsAFjxozBunXrsGjRIgAn4wkXLVqEgQMHIjY2FlarFXXq1MGCBQsQHx8f0mMPFAd2REREFLTKJDuY6RMAdu/eDbfbXd7udMo/Tv3de++9+Pnnn32exDkcDsyZMwejRo1CQkICbDYbevfujX79+vmse8cdd5T/f+vWrdGkSRN07NgRq1evRocOHWAYBu6++24kJyfj22+/RVRUFN555x1cc801+Omnn5CSkhLsoVcav4olIiKiGs3tdvu8KhrY3XfffZg3bx6++eYb1K9f3+d3F154IdauXYvjx48jOzsbCxYswJEjR9Cgwem/PenQoQMcDkd59uzixYsxf/58zJo1CxdffDE6dOiA119/HVFRUZgxY0bwBxwEPrEjIiKioNWECYoNw8B9992HuXPnYsmSJWccrMXFxQEAsrKysHLlSvzjH/847bK//PILSkpKyp/EFRQUAACsVt/nY1arFV4lXOVs4sCOiIiIwsI999yDDz74AJ999hliY2PLpx6Ji4tDVFQUAGD27NmoXbs20tPTsX79evz5z3/GoEGD0KdPHwDAtm3b8P777+Oqq65CUlISfv31V/z1r39F+/btcfHFFwMAunbtilq1amH48OH4+9//jqioKLz99tvYvn07rr766uo5+P+PAzsqZ7WZ+8vIHi1vG62Sgy3C9y+ZmIwosYxWscIsW7SMJCgrqN6/lH4voW2saHPXk23aX6S2CN9zrCVKFOfJBAOtOoN/X4CeUKElRWgVKrSKGmb/qtbOSVSCvC9KPcpxOBg5QlSTWSox75yZPgMxefJkACcnGP69adOmYcSIEQCA7OxsPPjggzhw4ABSUlJw66234oknnihfNiIiAv/5z3/w0ksvIS8vD2lpabj66qvx5JNPwmY7mQSYlJSEBQsW4LHHHsNll12GkpIStGrVCp999hnatm1b+QMOAQ7siIiIKGhVmTxhlmHIhwz+7r//ftx///2n/X1aWhqWLl1aYT8dO3bEV199FdD+nQ38E5iIiIgoTPCJHREREQWtJiRPEJ/YEREREYUNPrE7T62+/GLRZlWC07WkCPWvAROJF1r/7mbRoi13c0GFfQFAfHNZscAeKW9pLeje7pTLlZXI5AFtXe0vSK3NERUh2iLj5fFarHIbjphIn5+9SlKEt1Tur1YpwnNCJllo62q047LaZQWR7fP3mOpPSx4xey205A7t3BFR9bDCAmuIY+ys4BO7QPFTkYiIiChM8IkdERERBY0xdjUDn9gRERERhQk+sSMiIqKg8YldzcCB3Xmqw3++F22renYTbWVKkH1ZsaxaoPFPvNASMRwueQvW7hQn2g79lFNh/wDgjJEJC15lOa1Noy1nV6pAaMxWcohOcos2m8P3vNid8risSkUJrRqFllCh0ao9aMxWKNFo+6JVstASKkpLleomDn7oE9UUNWGCYuJXsURERERhg0/siIiIKGhWK0JeK5YzGgWOp4yIiIgoTPCJHREREQWNMXY1Awd256nNQ68UbU63U7Rpwe56VQC5nH/ygLaet0QmYjiiHaJNU3jEI9pqZcaLNk9esan+1CoLSqKAzSErL9iURAanO0q0aRUfSgrkcZQV+yYU2KMixTJGqTx32ja1pIjC44WizRElz7tWeUNLdjDLbIZbmXJfmOlv2/BrxDKNZsw31RcRUTjgwI6IiIiCxulOagbG2BERERGFCT6xIyIioqBZLSdfoe6TAsMndkRERERhgk/szlPNPvpKtG0ddrVo06onaAkAWvJAWbFv0L4WK5F/OF+07f3moGjTFO6RSRGlrWWigJYAYVWqR2jVDorzlW0oyQjasfkf/8ntysQLbbmy4oqX0RJWtMoT2vEf3yUreeRlyXWDUa9XsmjTzqdGO092p2zzXy4iRiaZhLO81/8m2rwl8l4p2CvfU3UnvFsl+0TnL8bY1Qwc2BEREVHQOLCrGQL6Knbs2LHl89ScetWtW/eM63g8Hjz22GPIyMiA0+lEo0aNMHXq1KB2moiIiIikgJ/YtWrVCl9//XX5zzab/Hrk92644QYcOHAAU6ZMQePGjXHw4EGUlporNk5ERETnBovFAisnKK52AQ/s7HZ7hU/pTlmwYAGWLl2K3377DQkJCQCAzMzMQDdJRERERCYEPLDLyspCamoqnE4nOnfujGeeeQYNGzZUl503bx46duyICRMm4N1334XL5cKAAQPwj3/8A1FRcob8UzweDzye/83Gn5ubG+huUiVoVQu0oH2vUvHAHhlR4bq/zNhU6X2zOuRfbd4SmTywc0G2aMvomyLatOoRWlKEVo1Bq7ygtTmiZSUP7dyVFMiEgpJC3zZHlDy/muO7jom2Qz/JRAmzUi9NEm1Fx2WlDIuSoKFVFdGUKck4FpPVTZyxvskS2n0YzmLu/qdoO/bsPaKttFAmxuz602Cfn9MnzwndjtF5yWKpghg7PrELWEADu86dO2PmzJlo2rQpDhw4gHHjxqFbt2745ZdfkJiYKJb/7bff8N133yEyMhJz587F4cOHcffdd+Po0aNnjLMbP348nnrqqcCPhoiIiOg8FlDyRL9+/TB48GC0adMGvXv3xueffw4AmDFjhrq81+uFxWLB+++/j4suughXXXUVXnjhBUyfPh2FhbJW5SljxoxBTk5O+Wv37t2B7CYRERGdZRZL1bwoMEFNd+JyudCmTRtkZWWpv09JSUG9evUQFxdX3taiRQsYhoE9e/agSZMm6npOpxNOp/wai4iIiIhOL6jKEx6PBxs3bkRKioxhAoCLL74Y+/btQ15eXnnbli1bYLVaUb9+/WA2TURERDWI1WqpkhcFJqAndqNHj0b//v2Rnp6OgwcPYty4ccjNzcXw4cMBnPwKde/evZg5cyYA4Oabb8Y//vEP3HbbbXjqqadw+PBhPPTQQxg5cuQZkyeoeqS99rFo2/fAjaJNS6goLVISCgp8g+ybDmkgltEqBWhB8vmHZAJNwVH5df7B5TJ5QOsvd5/sL6qWvCe1KhtacLBWKUGrAqHRkjaK83yTJ7T9KFMSDLREiZgm8hwnNqol2rTzZDYQ2mKVfyNqx6UlVHjL5Ha1ahmGQ27Dv5KFJ7dALHPo7yNFW+3/C4+5NPPefFS0addCS9DxT+TZNvwasYx2XzeY8lkgu1gj5L70V1PLlSlJJv7nM/7hV0KyT+Ho1Py2oe6TAhPQE7s9e/bgpptuQrNmzXDdddchIiICy5cvR0ZGBgAgOzsbu3btKl8+JiYGixYtwvHjx9GxY0fccsst6N+/P15++eXQHgURERERBfbEbtasWWf8/fTp00Vb8+bNsWjRooB2ioiIiM4t1iqYoDjU/Z0PgoqxIyIiIqKaI6isWCIiIiIAsFhPvkLdJwWGAzsqZzZRQqNVVPAPvNYqW2jB+Xrwt6x2oAX712oTI9p2Ldwv2nQy8UCrvOBf7QDQK1QU5Zx+rsbf05IHigt8k1Fy9+SJZWzOM9dpPsUZa64ag9Uuz7tWoUO7Zp5ceX1Ki+S9oyVFeJUkEO3LhJICmaDjf49pCSu2IzJRZvc914s27X6q6dUYvEXyvBcfl8ervT/939vae90WIf+J2HJTX1P71vTDBaaWC7UDj9wq2iLi5OeCRalz7i1RPu+8vvfn4bG3y76UrwutEfIzodaY12X/RCHGgR0REREFjVmxNQMfchIREVFYGD9+PDp16oTY2FgkJydj0KBB2Lx5s1hu48aNGDBgAOLi4hAbG4suXbqUz+px9OhR3HfffWjWrBmio6ORnp6O+++/Hzk5vt/qrF69GldccQXi4+ORmJiIO++802fe3urCgR0REREFrSZMULx06VLcc889WL58ORYtWoTS0lL06dMH+fn55cts27YN3bt3R/PmzbFkyRKsW7cOTzzxBCIjT4bZ7Nu3D/v27cPEiROxfv16TJ8+HQsWLMCoUaPK+9i3bx969+6Nxo0bY8WKFViwYAF++eUXjBgxIiTnMhj8KpaIiIiCVhW1XQPtb8EC39jOadOmITk5GatWrUKPHj0AAI899hiuuuoqTJgwoXy5hg0blv9/69atMWfO/+JrGzVqhKeffhp/+MMfUFpaCrvdjvnz58PhcOC1116D9f/Hhb/22mto3749tm7disaNGwd6qCHDgd054tDjt5lazvBqFQq0gGAZKK4Fj2sB1dpyGv/Aay0Q2+qQAcYl+TLpQKtQUVIog+kjlEQBd7No0Za7WVYo0Oxbeli0NRqYJtq0Gfq1hAqtGsMe08kdlROT7BJt2jXUkkK0a6ZVGdGqgGi0RBG18oQ8dbDYtOQO3zbtfvXkyn0zW1FDq8ZgNsnAHikPIuPNuaIt+6FbRFtU7QS5XY9SPaJEXov8A8flckryhNbmT7tPtM8YbbmsW/qZWk6jvZ8av/u5aNOSYLTjKj4h3+/2SPlZYXPKa6Z+fvqv55DX31sm9+PIU3fIlZVkscQn3qxwm2TOqa9PExJOvqe8Xi8+//xzPPzww7jyyiuxZs0aNGjQAGPGjMGgQYPO2I/b7YbdfvJaezweRERElA/qAJRX1Pruu++qdWDHr2KJiIgoaBarpUpeAJCbm+vz8nhkRrg/wzDw4IMPonv37mjdujUA4ODBg8jLy8Ozzz6Lvn37YuHChbj22mtx3XXXYenSpWo/R44cwT/+8Q/cdddd5W2XXXYZ9u/fj+eeew7FxcU4duwYHn30ZIm/7OzsYE9lUDiwIyIiohotLS0NcXFx5a/x48dXuM69996Ln3/+GR9++GF5m/f/P3EeOHAgHnjgAbRr1w6PPPIIrrnmGrzxxhuij9zcXFx99dVo2bIlnnzyyfL2Vq1aYcaMGXj++ecRHR2NunXromHDhqhTpw5sylQ6ZxO/iiUiIqKgWS0nX6HuEwB2794Nt9td3u50Os+43n333Yd58+Zh2bJlqF+/fnl7UlIS7HY7WrZs6bN8ixYt8N133/m0nThxAn379kVMTAzmzp0Lh1/o0M0334ybb74ZBw4cgMvlgsViwQsvvIAGDRpU5lBDhgO7arb/4WGizTCUCVu12BTlHaTFemhtpYXyMbYWO6TFtmkxS1qMkSPa942nxvApcUMaLa7Lc0JORqttIzZVTk5au3miaNv22W5T+6ItV6ebjIlKaKBtI8vUNiISfc9nbIaMEzSU2DRtMuKoWjLGTjt3Gu2eKCmU1yzCJbdbWCzvE30yYkk7trJiGbNU6vFtszvlfahNbm12Ymx1Mmbl3Gnb1d4TO++6VrRFuOW1LcmVUyZYlLizEjV2TMaJaRM3b527S7T50+JJtXOixUmandxcO++lRfIe2zz0StGmfT5pE22rnx8mYy/9P8fUe8clt2l45Da1GD67S07cTpLb7fYZ2J2OYRi47777MHfuXCxZskQMsiIiItCpUycxBcqWLVuQkZFR/nNubi6uvPJKOJ1OzJs3rzxjVlOnTh0AwNSpUxEZGYkrrrgikEMLOQ7siIiIKGg1YYLie+65Bx988AE+++wzxMbGYv/+k8lpcXFx5ckNDz30EIYOHYoePXqgV69eWLBgAf79739jyZIlAE4+qevTpw8KCgrw3nvvlcf1AUDt2rXLv2p99dVX0a1bN8TExGDRokV46KGH8OyzzyI+Pj40B19JHNgRERFRWJg8eTIAoGfPnj7t06ZNK59j7tprr8Ubb7yB8ePH4/7770ezZs0wZ84cdO/eHQCwatUqrFixAgBEduv27duRmZkJAPjvf/+LJ598Enl5eWjevDnefPNNDBsmv4U72ziwIyIioqBZrOrsLUH3GQjDMDelzsiRIzFy5Ej1dz179jTVz8yZMwPat7OFAzsiIiIKmgVV8FUsWCs2UBzYnUV7/zxUtGmTfWq0CTvtSlaQFmBtKBN2agHLGi0A2hEtA+W1/vz3WTtWLahb26YWTK0F7JeVyP7yDuSLtr3fHBRtwTjww1FTbWYlt/NNvChTJjbW2JQgfm3CVlftWFPLaQHmES4tG00mKJQWyf5yfpXXolYbmdxisckPcy2hwlviuw1tAmhtfwuPm5tQWaNNPK0F8ZudyLg4VyZAeCOV44iTSTBaYsj6Kb+KNjNSustkH+18ap9FGi2RSU28UO47bRvackXH5f2kbUM772aTO/yXc7plskNpofzc0T4T1QmQlUQ2omBwYEdERERBs1gD/+rUTJ8UGJ4yIiIiojDBJ3ZEREQUNKvFAmuIY+xC3d/5gE/siIiIiMIEn9hVkT33DRFt3lJziRIaLZhYreSQr8yKHyWDx7VAZLPsUTJQ3FsiZ1n3T5YwGyRtNsBaC+zWzokWsK9xuJWZ/XPldrUgc3e9ONF2Yn+uaItJlkkLmqIc3+B+R7wM2LY55N9lRbkyEFs7d1p1AlukDM7XAsC1gPXC4/K+M3vercpxaBUq7JHy+vjfA1ryiMbs/a9dL+2e1SobaPexxmyiQOGhHFP9aWKayPds3dbJPj9r19rse1ZLjDKboGV45Ta07ZqtFqLti/a5YPa8+29XS/iyR8pErsh4+X5SE0rs4fNEymI5+Qp1nxQYPrEjIiIiChN8YkdERERB4xO7moEDOyIiIgqa1WqB1WQIQiB9UmD4VSwRERFRmOATuypiNtlBa9MC27VZ0s3OnK4HNpv7K8gerSReKIkSWvC4mf3QlzN3nnL3nhBtR9fJNk16n7qi7dCvslKEljxRpiTBqBU6lAoFGod2jv2CuLXj19bT6EHx8hii3LICRMFBGbCfd0gmRZTkV3z9T0erKKGx2ORxlBX7nietQkf+4TxT/UcnRIs27X2sVTHQKqPYIrQKLeYSg7yl8lhLCuQ2rHZzf5untkuR/RX6XzN5T1iVCiDa8Wu094R2/GaTGLT3gLbPZj8/tG1s+2y3aGt+k28ReLOfp9o9Ydc+d+Vi5yx+FVsz8IkdERERUZjgEzsiIiIKmtVy8hXqPikwfGJHREREFCb4xI6IiIiCZrFaTMdvB9InBYYDuxDQqkwEQw8Srvxy+mzq8mGtGhStbKOkQFY30LfrG2Rsdnb6bQu2ibaiA5UPzq9/eR3RpiU2NLqikWjbPGeLaDu4/JjcSBfZFKdUozAbjG8mMUL7wHO6ZQKANlO+J7dAadsl2rTqGYfXHhdtZQXmEmPczeT+maWedz+12sgEEFeyrABgd8rroJ07jdl/aLT3iXattXtCu2b5h2XSyp7/HDC1Lxqtcok/7TPGc0Lum5ZkoZ8nc5UizCZUlCkVSrTldipJEWZt+nCrz8+thjc3tZ6WUKYllGj33f6Hh4k2LVEm+ZkZpvaFzi8c2BEREVHQmBVbM3BgR0REREFj8kTNwOQJIiIiojDBJ3ZEREQUNH4VWzNwYFcJ/skS2iz+ZgOstcBhLfjX7LpaMoIWsKsFJ+uzpysByyb7898/ffZ3c9UzNLU7yeQEV20ZKB/hkokIWhC7tn/NBjcVbRumbRRtWmB/wk2Jok0LgDYTZG82AUab7b6k0NzU9oXHZVB88Qm5rtlECU3uZpm0EQz/e8ARLZNiIt3mrr/Zqghmg/21+2nL7O2iLdQyr0oVbbLKhEwgMnus2uddcb68h7X+7E4teUKeJ4vyXZJWFUKrILNr4X65sqLpkAamlvO/Zr/M2GRqPf+KFadjeGVSjNMdJdosVlnJhEjDgR0REREFzWIFlL83g+6TAsNTRkRERBQm+MSOiIiIgsYYu5qBT+yIiIiIwgSf2FVg9z3XV7iMFnStJRjoQcLm1rVHyqBwjbauRguAVitPmFzXzHbNzmJvtspEXH1zlR20c6ydTy0ZQUt2qNcrWbTt/eagaCvKkYkCdmdlq0zI/Ti67ZBo8yjJDvYouc0IlwzELjouA+BzfpWB3cGwRSvJPSaTMWKaRIo2//OpVRQpypXHFZMsj1+7T8xWj9Dup0ObKl8VwiwtAUB7L2rJE/4JOcV58t6JTXGLNrOJYVo1Cu08GV55Ps1WtzGbKNH2rjamltM+o9qMaunzc9Fx+b7OO3BC6ctccpu2nFqhIkF+3tU0FosFlhA/Ygt1f+cDDuyIiIgoaFZUwQTFoe3uvMBzRkRERBQm+MSOiIiIgsbkiZqBT+yIiIiIwsR5+8Ru3wM3ijYtcFZr86fN9q/Rgq61RAQtYF8LplVngM+TyQhmg5214zBb3UDtz+O7z1pfWsC2WRExMpjebAKIdl3LiuW+aMkY8ekJom0vZPLEji/2ibbWt7VQtiuv7bEdR3z7V5IzzNIqdHhy5X1iNlEiso4MgLdFyWsbmSCTQrwl5hIljq3PE215WXKfExvV8vnZ7HtYq+ShvXe091hpkUxE0ALgD/2UI9o0WvUE7T2rtWnJR3oSiNzn7O+OiDaxDCpeJhBaNQbt3Jl9H5tlNiFNu1f8PwOik2LFMtpnkZYAok22a2abAGCPqjjJqrrxiV3NwCd2RERERGHivH1iR0RERKFjrYKSYqHu73zAU0ZEREQUJjiwIyIioqCdirEL9SsQ48ePR6dOnRAbG4vk5GQMGjQImzdv9llm7NixaN68OVwuF2rVqoXevXtjxYoVPst4PB7cd999SEpKgsvlwoABA7Bnzx6fZY4dO4Zhw4YhLi4OcXFxGDZsGI4fP16ZUxdS58VXsXvuGxLS/vyTB8wkWJjtCwDskXJWfG05LbC7pFAuZ3PIQFxvmRKwq8wUry2nBTsX58vtlvkFyh/44ahYxqzG16bLfVOO32LV2uRxaQHwZgPWtcDmjg9eJNpWvvBf0bZh2kbRVlnuZtGiLXeznBXfbBC/Rqv2YFW+G7FFVP5vRO0eq9UmRrRpCRU7F2T7/BzX0iWWiXAp1T6UahyRcfJ8OqLlclpg//opv4o2s9dHq56QeVWqaNPud42aGGRi3TrdZFKQ9p7VqodY7UrCRq5MUNn04dYK9wPQK2qY1WRwpmjz5BaKNu06au93/0Qb7f2vJU9on5Pa5462H1qyR2mhuWoc1clqqYIJigPsb+nSpbjnnnvQqVMnlJaW4rHHHkOfPn3w66+/wuU6+fnQtGlTvPrqq2jYsCEKCwsxadIk9OnTB1u3bkXt2rUBAH/5y1/w73//G7NmzUJiYiL++te/4pprrsGqVatgs528B26++Wbs2bMHCxYsAADceeedGDZsGP7973+H7gRUwnkxsCMiIqLwd2qQdcq0adOQnJyMVatWoUePHgBODsh+74UXXsCUKVPw888/4/LLL0dOTg6mTJmCd999F7179wYAvPfee0hLS8PXX3+NK6+8Ehs3bsSCBQuwfPlydO7cGQDw9ttvo2vXrti8eTOaNWt2Fo5Wx69iiYiIKGg14atYfzk5J7+xSEiQT6QBoLi4GG+99Rbi4uLQtm1bAMCqVatQUlKCPn36lC+XmpqK1q1b44cffgAA/Pjjj4iLiysf1AFAly5dEBcXV75MdeETOyIiIqrRcnNzfX52Op1wOs88t59hGHjwwQfRvXt3tG7d2ud38+fPx4033oiCggKkpKRg0aJFSEpKAgDs378fERERqFXLd57MOnXqYP/+/eXLJCcni20mJyeXL1Nd+MSOiIiIglaVT+zS0tLKkxTi4uIwfvz4Cvfn3nvvxc8//4wPP/xQ/K5Xr15Yu3YtfvjhB/Tt2xc33HADDh4880TwhmHA8rtHiBblcaL/MtUh7J7Y7b7netGmzTJvlhbE6k8LuN08RwYJlxXIYNpmQxuKtpw9x0SbM0YmVOiJDcos+8pyNocc02vrassV58tz4p8oEWpOtwxE1yp06FUBzCW3aDPRRyjbLc6VAfDHtmWLtkYD00Tbts92y20kyrdhbIbvdiOi5b55tevVRp4TLelAo+2HxqtVClD+RtSScYwy5QNPuT8rm1ChVc/QKjvYneaSIoL57IipK++dqEQZZK8lKJR65HbtThm0r93b2rpmaO/11EuTRJsjSt6LkXFRok1LMtBsfD9LtG2Zvd3UulrCh5ZAFlNHVl/Rrrf2+eHP7D2hHb/VLt87Wn9aW+ITb5rabrjavXs33G53+c8VPa277777MG/ePCxbtgz169cXv3e5XGjcuDEaN26MLl26oEmTJpgyZQrGjBmDunXrori4GMeOHfN5anfw4EF069YNAFC3bl0cOHBA9Hvo0CHUqVOnsocZEnxiR0REREE7lRUb6hcAuN1un9fpBnaGYeDee+/FJ598gsWLF6NBA3MZ1oZhwOM5mXl84YUXwuFwYNGiReW/z87OxoYNG8oHdl27dkVOTg7++9//zX6wYsUK5OTklC9TXcLuiR0RERGdn+655x588MEH+OyzzxAbG1se7xYXF4eoqCjk5+fj6aefxoABA5CSkoIjR47g9ddfx549ezBkyJDyZUeNGoW//vWvSExMREJCAkaPHo02bdqUZ8m2aNECffv2xR133IE33zz5NPXOO+/ENddcU60ZsQAHdkRERBQCochi1foMxOTJkwEAPXv29GmfNm0aRowYAZvNhk2bNmHGjBk4fPgwEhMT0alTJ3z77bdo1apV+fKTJk2C3W7HDTfcgMLCQlx++eWYPn16+Rx2APD+++/j/vvvL8+eHTBgAF599dXKHWgIcWBHREREYcEwzhxTHRkZiU8++aTCfiIjI/HKK6/glVdeOe0yCQkJeO+99wLex6oWdgM7s4HyZpfTA2B927QZxjOvqCfatMD5zR/9Zmo/NA2ukQGhWuB0lBLsvHXuLlPbaH5TY9GmVZkIpqqEvzajWoo27ToEE9iuiYiRAeBebQZ4JcC61KMsZzKIPaa+3K4z1jdZpui4nHVeu4cjYmWSjVmOWCU4v0Ruw+II7Z/kWpKFVQnk15ZzuH33Wat2oAXJa9VdNFpCjZmEqtOJrSMTQA5Avnf2/EcGZWsVFbT7TvtQ3/vNmbP9TseiVBkx85kI6Pen9lmpHVdudq5o0z5jtDbtc1Hfl8pXDPKnfRbpFSq08yTPibZvWmJg2msfm93Fs8JiMWCxhO68nuqTAhN2AzsiIiI6+yxVUFKsmmcOOScxK5aIiIgoTPCJHREREQWtJiRPEJ/YEREREYWNsHtilz55Tkj723nXtaLNP3i6tEgmE5QUVjyDOQC4MuUkixGxMmBbqx6wff4eU9uIa+kSbfV6yRp3WoD1zm9lkkXhHnm8ZmhJEY5oefx6UoBSAeKErABRUiD3TasMogXUlxTIBAWPUmVCS57QKm+YDVg3Uz3AHqXMkl8oA+dL8uW+1e4kZ90/9FOOaNOSIrTkCasWUK8lOziUhBelooTGP3kE0AP5nXV8r5mWPKG9F7UqC1olE+1vX7NB94fWyAoy9brL40ruUku0HVwu19Xu41AmEHlOyPdOVC2Z2KNRK96YrKigrRsVLyt0NL42XbRpSWDa52LLYU2V7VZttRztfrJFyM927d+PmpYUYRaf2NUMfGJHREREFCbC7okdERERnX1WiwFriKcnCXV/5wM+sSMiIiIKE3xiR0REREFjjF3NwIHd72wddrVo02aZ95/t3WwAc3qfuqItMk4GJ2vbTGgoA6yLcmWwvxawn/Nrvmir26aOsody3comSgBArTa+s+wX5xWZWi8q0W1qOX22d/kQuvCYTIAwm3hiNsnELC2RobRICfj3S4JwuGTQtVlmExa0pIiSUnkvWhwy6FytCqFUPNEC5bWkALtTfjSZPQ5/ZUp1BqtdJuNozN6zGi2RQ+NOiRVtByGTJ7bM3i7aUi9NEm3aeTcjf2+haIuMk0kMZhNPtOuq0d7HNiXxRkuCqX+5/BzTqnb8+u4W0aYlc62f8qtoa39PO5+ftWQHjZbsox6rksh1ruLArmbgV7FEREREYSJ8/lQgIiKiamNF6EuK8elT4HjOiIiIiMIEn9gRERFR0CwwYEFopycJdX/ng/N2YLdt+DWiTQuK1YK9/WcsDyb4W+vfapeBwxptdvY63RJE24Efjoq2zR/9ZmobWsJHVC0ZeB4RI/fF/9i047JHykBvqzI7e4lSZUKjVYUwmyihCSZRQjt3/ok3AGCxVfzg3CiTCQsWJWFBS2IoKzY3w37uZnmOtcooGldtWd1Eu7dtSpC9VqFCY3fK5RIb+SYV5WVli2W086QlIpwNWkC9dk80GZwp2rLm7BBt+5YeFm0NrqlfqX1Lai0/OzRasL+W8OUtNXffafdJWYm5ChXaPWGWliih8U940D7H1GNQzon2b4XZJBMis87bgR0RERGFDrNiawbG2BERERGFCT6xIyIioqBZLVWQFcsndgE7bwd2jWbMN7Xc5qFXVqp/LW7C7ONR/xg+QJ+cU2vT4unM0mLCtMlOI+NlPJU9WsZilRb4TqAcEStj8xxKW5lHxjoW58nJU0sK5HJa/Evja9NNLaddM7OxiI0Gpsn9U65PhCtCaZP9+ccnaXFYhhKzWVwgt3liu7n4RLMckfJjQ4sdc8bKY9XuJzXuUOlPe19E1VJOnh8tDk2jTfbrSooRbVqsm0ab3FqjTcar3Ytm42fNTpjuT4tXc0TJa6hdG43FKu9Pbd+02OMdX+wztY1QazqkQYXLaDGGauykyZjtyl6vmshiMWAJcW3XUPd3PuBXsURERERh4rx9YkdEREShw+SJmoFP7IiIiIjCBJ/YERERUdCsMGAN8YTCoe7vfMCBXQW0gG1z65m7Ga3KhK2lRTKYVgumLjxaZGobEYnyMhcfkQHrrtqxok0L7HW4okSbYcjz5J9QYY+SCRZlhR7RVnTshGjTJh7WzomW2FFSILeh9bfpw62iTZPSPVG0aQHg6v7FyWQRbf/8kye0Ca89eUpwtrIfJbnmgrPNTkasTXis3SdakHlxvtxnZ6yc3Fqb3FZ7LzqifYP7m9/UWCyjXdeMvimiTTvH2jXU1t25QE6MrE1urU0erG1Dm9w2RpkE+gBk8oS2Lxr/ZBGzgf3addCSB7TPNm25gxsOnHE/T4lrKY8/rr78zNLOp3ZOtGQxbcJ0//6082Sxm5t42Oy/C0TB4MCOiIiIgsYYu5ohoBi7sWPHwmKx+Lzq1pV/9ZyyZMkSsbzFYsGmTZuC3nEiIiIi8hXwE7tWrVrh66+/Lv/ZZqu4Vt/mzZvhdrvLf65du3agmyUiIqKarArmsQPnsQtYwAM7u91+xqd0muTkZMTHxwe6KSIiIjpHsPJEzRDwwC4rKwupqalwOp3o3LkznnnmGTRs2PCM67Rv3x5FRUVo2bIlHn/8cfTq1avSO3y2NZ+9qMJlNg7uLdrKSio/m7gWiF9wVFZeOLY+T7RpAcG7Fu43tV0t2N2hVJTwlsjEA41/4LVHCcTWgsS1ZAKNFuis9acFgGvLabTqAdEJMgFCCyjXgvEjYmSiQFGOrAyhVWPw51XusWCCsy0OJdi7RAmoV45V227OnuOizZWkVC2JlNUNtHvAFiGX868gos32r1UF0e5rs0kBWrULbRvbPtst2vIP54u22DqyuoWZ6w8A9S+vI9rM3gM2h++xafer9pmgVo8wmWSh7VvtljIZqXZL0aTuX1mJ3Mb2+XvkyorIOCUJTNm/wqO+n7NRCfJ6Gcrx6xU65P5qVXCIghHQwK5z586YOXMmmjZtigMHDmDcuHHo1q0bfvnlFyQmyjdnSkoK3nrrLVx44YXweDx49913cfnll2PJkiXo0aPHabfj8Xjg8fzvgz03NzeQ3SQiIqKzzAIDlhBPTxLq/s4HAQ3s+vXrV/7/bdq0QdeuXdGoUSPMmDEDDz74oFi+WbNmaNasWfnPXbt2xe7duzFx4sQzDuzGjx+Pp556KpBdIyIiIjrvBVV5wuVyoU2bNsjKyjK9TpcuXSpcfsyYMcjJySl/7d4tv9IgIiKimuPUdCehflFggprHzuPxYOPGjbjkkktMr7NmzRqkpMgJPn/P6XTC6TQ3WSoRERERnRTQwG706NHo378/0tPTcfDgQYwbNw65ubkYPnw4gJNP2vbu3YuZM2cCAF588UVkZmaiVatWKC4uxnvvvYc5c+Zgzpw5oT+SaqQlO9gcMiBWC4g2m2RxcPkxU8tFuGSAuS1aPpgtK5BBvMV5spJFrUZyEF6SLxM5Cg7LahH+M69riQNakLwWdOyIlokSZmfK9+TK/S0plAkgTYc0EG1akoXZaiTavhQdl8HzJYVyG/4B1Vab/LO16LhSsUK5F7WKEvk75Lp5WfL6xzSR10xLqCgpMJdQowXjaxUKtIBy/yoTgLw+2r0TGS+D5PXkDLlvZu8xrcqARnsfR/WV59hsQL3Z7WqfR/73irZN8xV0lP61JAvl/oxwmfsjXq1u4jD3pZNWtcJsEoj/sfknUwB6xRvt2phtO1dZqmC6k5BPn3IeCGhgt2fPHtx00004fPgwateujS5dumD58uXIyMgAAGRnZ2PXrl3lyxcXF2P06NHYu3cvoqKi0KpVK3z++ee46qqrQnsURERERBRYjN2sWbOwb98+FBcXY+/evZgzZw5atvxfXvr06dOxZMmS8p8ffvhhbN26FYWFhTh69Ci+/fZbDuqIiIjCkBVGlbwCtWzZMvTv3x+pqamwWCz49NNPfX5/4MABjBgxAqmpqYiOjkbfvn19Yv937NihVs2yWCyYPXt2+TKjRo1CgwYNEBUVhUaNGuHJJ59EcbGcculsY61YIiIiClpNqRWbn5+Ptm3b4rbbbsPgwYN9fmcYBgYNGgSHw4HPPvsMbrcbL7zwAnr37o1ff/0VLpcLaWlpyM7O9lnvrbfewoQJE8pnB9m0aRO8Xi/efPNNNG7cGBs2bMAdd9yB/Px8TJw4MeB93rJlC/bu3YvCwkIkJSWhWbNmiIuLC/zgwYEdERERhZF+/fr5TM/2e1lZWVi+fDk2bNiAVq1aAQBef/11JCcn48MPP8Ttt98Om80mKmzNnTsXQ4cORUzMyQmq+/bti759+5b/vmHDhti8eTMmT55semC3fPlyvPHGG/jyyy9x+PBhACcHnhaLBVarFe3atcMf/vAHjBgxIqBBHgd2VcRsUoQWOB9MMK0WxKwlSphdN2fnQdGmBZ5rx+uM9Q0KLy2SAfZ6cLqWTCCjBrRAeS05QQvYjk6Us8drgdMabZ+1c1fqkY/ktfMU6ZbB454833XNViLI2yETRcxef40WdF8GeQza/rlqy4By9f5UElS0620mkSE6KdZU/3pVAEnbpraulnhhtgpMqUeeT1esTKhQK6iYy1lRmU08MMNM0gEA2CMrv02z10wT4ZLXR6t4on325h/yTQzTrqHDLY+1cX9ZkUmreMLkiYr7BGShgsrOnnGq+EFk5P/eYzabDREREfjuu+9w++23i3VWrVqFtWvX4rXXXjtj3zk5OUhISKhwH9auXYu//OUvWLZsGVq0aIHrr78eHTp0QHJyMiIjI3H06FH89ttvWL58OR577DE88cQTePTRR/Hggw8iQqnA448DOyIiIqrR0tJ8y/Y9+eSTGDt2bMD9NG/eHBkZGRgzZgzefPNNuFwuvPDCC9i/f7/4+vWUKVOmoEWLFujWrdtp+922bRteeeUVPP/88xXuQ+fOnXHLLbfghRdeQIcOHc64bH5+PmbNmoUJEyagtLQUjz/+eIX9c2BHREREQavKkmK7d++G2+0ub6/sXLcOhwNz5szBqFGjkJCQAJvNht69e5/2q9vCwkJ88MEHeOKJJ07b5759+9C3b18MGTJEfeLnb8OGDWjSpImp/XW5XBg1ahRGjBhhulgDB3ZERERUo7ndbp+BXTAuvPBCrF27Fjk5OSguLkbt2rXRuXNndOzYUSz78ccfo6CgALfeeqva1759+9CrVy907doVb731lqntmx3U/Z7NZkNmZqapZUMXZEFERETnLaulal5VJS4uDrVr10ZWVhZWrlyJgQMHimWmTJmCAQMGoHbt2uJ3e/fuRc+ePdGhQwdMmzYN1iDiQEOJT+xCQKv24C2VAeueE3Jmf62KQUmhuSB+jRbEbVbhMZl4YHfK/rQEAC3I3j/wXEu60Gfx1xIl5Lvb7Kz42jnWroVW3UGrUKFxyOIG6nFo29CuWVR8xZUH8g/JRAlHrFwvIkH2X7jH3FxLOb/Ke8LqkMfg6hQt9yVKe1/I661dR3ukrDSiJcY43b7b1c6lvk15T5QVyzbtfazRkj0cUfIYNHu/kQlKZjW+Nl20mU0y8D9X+jnRKq8olXaU865dQ21dbRsasxVfNId+yhFtR9bmijavUlXFn3b/p3ZLFm3a8Qfz+Uzm5eXlYevWreU/b9++HWvXrkVCQgLS09Mxe/Zs1K5dG+np6Vi/fj3+/Oc/Y9CgQejTp49PP1u3bsWyZcvwxRdfiG3s27cPPXv2RHp6OiZOnIhDhw6V/84/o7Yin376Kd5//33s3LkTRUW+/zZZLBasW7cuoP54lxEREVHQqjLGLhArV65Er169yn9+8MEHAQDDhw/H9OnTkZ2djQcffBAHDhxASkoKbr31VjWGburUqahXr54Y8AHAwoULsXXrVmzduhX169f3+Z1hmN/n5557Dn/7299Qu3ZtNG7cGC6XnE0gUBzYERERUdBqSq3Ynj17nnFwdf/99+P++++vsJ9nnnkGzzzzjPq7ESNGYMSIEQHvm7/XX38dI0eOxJtvvgmbzVyN6IrUjC+EiYiIiM4zR44cwc033xyyQR3AgR0RERGFwKmvYkP9CmcXX3wxNm7cGNI++VVsFdGCqbUKCJ4TMoj9yGoZ1Kup3UmWGNESFBoNTBNt2z6T8+EUHpcJBVpiiDZjvZZk4J9koQV1a/1rFSpK5a6pCRVlJeYCrLWA7cqnrOjHrwVKa7Pxa/zvn8JjBabWsysz4BtKQHhEoty34iPmgti1AHPtnnBEy2urBc9v+nCraNNE1pHB6K1ubuvzc0mevFFKCuR7TEuKMFt5RE/kMZcUoyU7FOfL/du/6rBcTrk+WiUD7d7WAvn9eZXLr1fZMFcFRjvHWgKE9p7Qlgt14oF2H0fVl/ds/c6pFe6H0y2zp9T3v0NJKDEqnxRC574XX3wR1157LdLS0tC3b19TlSUqwoEdERERBa2mxNidSxo3bozevXvj2muvhcViQXS0b6a/xWJBTo7M6j4TDuyIiIiIqsHDDz+MV199Fe3atUOLFi34xI6IiIhqBgtCH7hfhfMT1wjTp0/H3/72N4wfPz5kfTJ5goiIiKgalJWV4Yorrghpn3xiV4FNQyo+4WYrIBQek5UCzCZK1L+8jmjTAta1QGwtaUNzcPkx0ZbSPVFZUgkKVioq+J8XmzJju9lZ580y258WAK8FcWvnWLveZvszyz8YPaqWrOxwIjtPtJWZK5ShVqgwmzyh2bdUBvvvg2wzS0sM0qoHrJq00udnLTnBbEKNGrCvVFTRaMkzuxbvE23pl6WKNmdspGhr2CdT7osSjK/dd2aTDPyTRRq/+7mp9TS7/jTY1HJq0pLpyhPmPse0e2Dr3F2irV4vWS0iOkG+z/zPp5YYpx2D2fd/ynPvm1ruXMAYu8D16dMHy5cvx2WXXRayPjmwIyIioqDVlMoT55InnngCQ4cOhcvlwtVXX42EhASxjNZ2JhzYEREREVWDtm1PTtn04IMPlpc+81dWFthkXBzYERERUdD4VWzg/v73v8NiCW2KCAd2RERERNVg7NixIe+TA7sKlHpkUKx/EK8WwKzNum42UUJLWDA7K75mz38OVHrd7O+OiDYt6FgLT7crQcb+tIBo/4oVp2vTzrFGq26hBTabDXbWroU2s7/Wn7auVmnDPxi7OF9WFCkrNnf8FiVpJRjuZjLA3KskHtRtLe+T7V/tEW1J7eJFW6RbVlSwOuT7x796gFY9xRElP+a0pIjSUnkvau//4jyZoKS9TzTb58vj17S+rYWp5bTPHq0KhJYYEkpm+9f3V2urfOKR2ffx3m8OiramQxqINnlsWuUNc4lh2nIHHrlVtNV5dqZoOxdYEPqYuHCf7qQqcLoTIiIiorNkwoQJKCyUs2ScyapVq/D55+Yy1zmwIyIioqCdirEL9SvcTJs2DQ0bNsTjjz+OTZs2nXa5oqIizJkzB1dffTW6detmurQYv4olIiIiOkvWr1+P1157DRMnTsT48eORnJyMDh06IDk5GZGRkTh69Ci2bduG9evXo7S0FFdffTVWr16NVq1ameqfAzsiIiIKGuexM8dut+PPf/4z7r33Xnz22Wf44osv8OOPP+KHH35AYWEhkpKS0Lx5czzxxBO4+eab0bBhw8D6r6L9rhK/Dr0aMY7/7bJWZcEwWWXhwiU/mFqu1FNx0oLdKYN1tSoTwdACojVmEyW0BI3oRBkUv+2z3aKtKEcGqMfWjRFt/gHqWgKERkuoMDvrvCNKJjFogklGUStUqFUBzF0zuyw8AHukb8JH3oET5nYuxCIS5XFpiRIR0fK85x/KF20JrWJNbbcoVyaL1OksJ+n0T1rQAuIzr5LVHrT7+mzI6Jsi2nYuyBZtW+ZlibYW15tLqNB4lcSQUMp4c65o23nXtabW1d5PWpKB9hlg9n2c3qeuaNu1cL+pbfjvX8Np/za1Te34UyfNMrXuucoKA9YQD8RC3V9NYrPZcN111+G6664Lab+MsSMiIiIKE+fUEzsiIiKqmSyoggmKw/iJ3e8dPHgQO3fuVLNle/ToEVBfHNgRERERVYPs7GwMGzYM33zzjfidYRiwWCwsKUZERERnH5MnAnfvvfdizZo1+Oc//4kLLrgATqecnD1Q59TAzmK1VhiQ7tWCX5VA3NWXX2xqm1oyhs3pe9p2fLHPVF9mWWzmZmc3m1BQp5sMOo+MjxJthcflI+DkLrVE28Hlx0TbEVRcVUMLYjdLC6bX9kPT+Np00aZWvFBmiteTIszN9q/Rgr214PGSAt/j1SogaKwm9yN3c4Gp5SKTZNUOLXmitEgel8OlvBeVig/a+1NbTpPQ1jcZ4+g6mWRi9v3p39fp+guGlihhVSqDFB+R19s/oQYAivMqn6RlNgmgsoJJqDD72aa9FzVmk6q0Chpmt+FPO34if0uXLsXEiRNx2223hazPc2pgR0RERDUTn9gFzmKxIC0tLaR9MiuWiIiIqBoMGTIE8+fPD2mffGJHREREQeMTu8DdcMMNuOOOO+D1etG/f38kJso5Zjt06BBQnxzYEREREVWDyy67DADw6quv4rXXXvP53XmRFWtzWGFz/O/bYz1gXQa/lpXKNiix6Da77M9/Znuzmg2VJUC2/nuHaCsrUPZN8fvjPiV3r7nAbmeMEgCvBPFr5zPCJYPY619ex1R/+5Ye9vlZC2JvNFDGFmjJBFrQubYfWpB0WYm5c6ytqx2X2TazM+VriRH+FU+8WhJPhLxeZcVK8LeSjKNxuM0lLGjskXJdr1JpREuKUBOelG1o7wFnrLy3K8tsooTZqi1mKypsmb3d1HY3fbZBbre2LFuS3FJWt7Aqn23VwWxChXaevNrnuEJb99Amc5/jZpOgSGexVME8diHur6aZNm1ayPs8pwZ2REREVDPxq9jADR8+POR9cmBHREREVM22bNmCI0eOICkpCU2aNKl0P3zuTEREREE79cQu1K9wN3v2bGRkZKBFixbo3r07mjdvjoyMDHz88ceV6o8DOyIiIqJq8MUXX+DGG29EXFwcnn32WcycORPjx49HXFwcbrzxRnz55ZcB93lOfRXbdOZncLvd5T+vv6anWEYL2NZCbrXAdrOz+9frlezzc4RLBnBrVQzMJkpotP09tj7P1Lrq/mkJBR4l2F0JvNfWtTvlrZTR1zeIW0uA2PbZbrkfJmn7ZraygxaIrwVda+tq17Y4v/i0+/l72sz2Gv/+vMo51xIqNDm/5ptaLipFlrLRqkyYpd0TZhM5tPexxr+/iES5Ta2Kg/+9CejvMe2e0O7/MmV/I2JkYkNxXpFo0zQd0kC05ezNEW35h2QFkcpWSqguZis07PrTYNGmvZ+0JIvEJrL6TnLLJNFmj5QJVOfa+axOjLEL3NNPP40+ffrg888/96kc9NBDD6Ffv34YN24c+vXrF1CffGJHREREVA3Wrl2Lu+++W5SDtFgsuPvuu7Fu3bqA+zynntgRERFRzcQndoGz2WwoLta/8SkpKTFd//v3+MSOiIiIwsayZcvQv39/pKamwmKx4NNPPxXLbNy4EQMGDEBcXBxiY2PRpUsX7Nq1SyxnGAb69eun9jNgwACkp6cjMjISKSkpGDZsGPbtk/O1nkmnTp0wYcIEFBYW+rR7PB5MnDgRnTt3Dqg/gE/siIiIKCS8sKhR7cH1Gaj8/Hy0bdsWt912GwYPlrGZ27ZtQ/fu3TFq1Cg89dRTiIuLw8aNGxEZKeNiX3zxRVgsepxlr1698OijjyIlJQV79+7F6NGjcf311+OHH34wva9PPfUULr/8cjRs2BBDhgxB3bp1kZ2djU8++QRHjhzB4sWLzR/4/3dOD+zazF8i2tZccYlo8ypJEVpArMUqA+VTL5UBtv7ragG8W+fuEW3B0AK2/ZM4AD0pQAsK1xIPtHW1AH2709yM+jalykAo2SLM3b56ooS5h9VmA+oNs8H+yna1ZAyjrHIfjlo1CrPMJkqYva5axReb8iWBWnlCO8fK/hl+96eWKKHum8lqJNrZjE6QVSY0WvLExvezTK2r3WO1m8lKK7WbyXW1BCKz75WaTDsus6JqyWumnROziRykqymVJ/r163fGhIPHHnsMV111FSZMmFDe1rChrBa1bt06vPDCC/jpp5+QkiITrh544IHy/8/IyMAjjzyCQYMGoaSkBA6HTMTRdO/eHQsXLsQjjzyC1157DYZhwGq1onPnzvjwww/RrVs3U/38Hr+KJSIiohotNzfX5+XxeCrVj9frxeeff46mTZviyiuvRHJyMjp37iy+Zi0oKMBNN92EV199FXXr1q2w36NHj+L9999Ht27dTA/qTrn00kvx448/4sSJE9i9ezdyc3Px/fffo0ePHgH1cwoHdkRERBQ0i2FUyQsA0tLSEBcXV/4aP358pfbx4MGDyMvLw7PPPou+ffti4cKFuPbaa3Hddddh6dKl5cs98MAD6NatGwYOHHjG/v72t7/B5XIhMTERu3btwmeffVap/QKA6Oho1KtXD9HR5r4VOJ1z//k8ERERhbXdu3f7zGPrdMp5N804FXIycODA8q9S27Vrhx9++AFvvPEGLr30UsybNw+LFy/GmjVrKuzvoYcewqhRo7Bz50489dRTuPXWWzF//vzTxuUBwMyZM3H11VcjMTERM2fOrHAbt956q8mjOynsBnaRbnmxC49rE4pWPsDTP2arpNBcXI8moW2saPOPGwIAi/JsVYt1Mzt5qjp5rDZBr9zsaSZ3ltvwPy91uslJQg/8cFS0RdaRj7HTutdTtinPu9l4OjVey2tuwmONtg1tX+yRcrLo3H3HRVtZse/+abGO2n2Su6NQtGm0c6yl1WsTCke4tImHlXOsxAl6lXvM7L2oKTguJ+j1l9jBLdq0944WO+h0R8nlTMarmb13HG65XW1ibLOxc2bjR/fcN8Tn5/qvzDa1XnXJfPtTU8ttHyWfsGjnk/F0oVeV05243W6fgV1lJSUlwW63o2XLlj7tLVq0wHfffQcAWLx4MbZt24b4+HifZQYPHoxLLrkES5Ys8ekvKSkJTZs2RYsWLZCWlobly5eja9eup92HESNGYPny5UhMTMSIESPOuL8Wi4UDOyIiIiJNREQEOnXqhM2bN/u0b9myBRkZGQCARx55BLfffrvP79u0aYNJkyahf//+p+3b+P9fG1cU/7d9+/byZIzt27cHfAwV4cCOiIiIgnYyJi60052cirELRF5eHrZu3Vr+8/bt27F27VokJCQgPT0dDz30EIYOHYoePXqgV69eWLBgAf7973+XP4mrW7eumjCRnp6OBg1Olvv773//i//+97/o3r07atWqhd9++w1///vf0ahRozM+rQNQPoD0//9QYfIEERERhY2VK1eiffv2aN++PQDgwQcfRPv27fH3v/8dAHDttdfijTfewIQJE9CmTRu88847mDNnDrp37256G1FRUfjkk09w+eWXo1mzZhg5ciRat26NpUuXBhT/17Bhw9OWDduwYYM6DUtF+MSOiIiIglZTSor17Nmz/GvR0xk5ciRGjhxpuk///tq0aVOpyYP97dix47Rf3RYVFWHnzp0B9xl2A7sWc74WbRsG9BJtnlxzc+BoQbf+CQp7vzlocu+k0iIZEB2VILepBfuXFMo2bX+1xAatTaMlAGgJGtr++XNEmZvbp+hAian+tUmWtcBxLehcTUZQkkLMJp44lCB2bbsFR/JEm+eErBOo7YvoXzknZQXmvgaxKwH76nKRSmC/kmSg7a8jWknQUO5PLZFBuz+182nmPEUo++FVJk92xsoJhbXkBC0BJpjJcy0OJWlJOU/qe0BZzmzyRLhSk8CU80ShZ4E39F/FhrySRc1zugza3377DbGxMsGyImE3sCMiIiKqqWbMmIEZM2aU//ynP/1JZPwWFhZi3bp1uPTSSwPunwM7IiIiClpN+Sq2pisoKMChQ4cAnHxad/z4cfF1rNPpxNChQ/HUU08F3D8HdkRERERnyZ/+9Cf86U9/AgA0aNAAc+bMQdu2bUPWPwd2REREFDSLUQUxdiHur6bhPHaVpAUTazPqm6VVtxDLKDP7a0kBUYkyYFuvKGGuKoIWTK4lQGi0hAItiF2t2qCu61sZ4tBPh8UyjQammdqPkkJ57rRkDLMVC/RzJ9fVqhGoSRbFsgqGFrBdeExWhtDOnRnavmkiEuXb3GyVCVuEVqFBqzJh7hi0e9sRJZMRnLFatRC5DS3xxF/2d0dEW3ofOUdVaZG8x7TPDm05R7T8TNDusSaDM+X+/bxftFnt2vGbu7e1dbVkkfMpycIeGVhRdqLqcOjQIRQWyn8j0tPTA+rnvBjYERERUdVijF3ljBs3Di+//DKOHJF/hAJAWVlgWffnz59sRERERDXI1KlT8eyzz+L++++HYRh49NFHMWbMGNSvXx9NmjTBO++8E3CfHNgRERFR0E6WFAv9K5y99tpr5YM54GRVjHHjxmHTpk2IjY3F4cMyhKkiHNgRERFR0E4lT4T6Fc62bt2KLl26lMc9FxefjBuOiorCX//6V7z11lsB93lexNhpgfdmmU088KclSmgO/HBUtDmUqgD1e6SIthIZY2lqJn7AfOUFMxUlAD3wvqy44nW3fbZbtGVelSrazM6wrwWsa9UjNFpFieJ8GZxvtvKGlnhi5pwAMgnEpiSFHF13wlRfVru5oPvoBJnI4zV5P0XGR8ntKveEdr01MU3kvniU91RJbuUqPnjy5HXVqkwU5RSINq1ChUZL5IlKiBFtDXrIWpBaMo7ZihfaclBm7/e/Z/f+eahYpt5LHyl91WyZb39a3btAZJrdfvJzx2KxwO12Y8+ePeW/S0pKwt69ewPuk0/siIiIKGinkidC/QpnTZo0we7dJ//g7dSpE95++22UlJSgrKwMb731FjIzMwPu87x4YkdERERU01x11VVYtmwZhg8fjjFjxuDKK69EfHw87HY78vLyMHXq1ID75MCOiIiIgsYJigP397//vfz/L7vsMvzwww+YNWsWLBYLrr76avTq1SvgPjmwIyIiIqoBOnXqhE6dOgXVR9gN7DYO7i3atCBur4xNVgP0NVrwfChpAeFaAojZKhNmg/3149dmwDd3/DF1XD4/H4W5YH8tKULbphY4XpTrEW3aOdEC2/MP5cttmEweKC1SKk+YrG6iXUf//TObKKElHWjiM9yiTUuosZq8x4JJlNDkZRVVaj2tosSuhbKyg1dJqNHuMe1e1BJqnO5o0aZVo9Bo97H2XtQrY8jzrh+Htpzht8wZd5OoQlUxPUm4T3dy/fXXY+TIkejbt69aEagy+FYmIiIiqgY//vgj+vfvj/r162PMmDHYtGlT0H1yYEdERERBs8BbJa9wtnv3bsyfPx+XXHIJXnzxRbRq1QrdunXDlClTcOKEuW9q/HFgR0RERMEzABhGiF/VfVBVy2q1ol+/fvjoo4+QnZ2NV155BSUlJbjjjjuQkpKC4cOHB95nFewnEREREQUgPj4ed999N3766ScsW7YMCQkJeO+99wLuJ+ySJ7QZ5bXgZI0WxK4nHvgul9I9USyT/d0R0ZZ6aZJoc0Q5RNvOBdmibc9/Dog2rUKDVu3AfKKEZLryhBL06X/u6vVKFstEumWAuVYpwuYwt79aYH9JgQw6Lys1F2CuBdlrDCXxoNRkko2WtACtzQTtPMWmyGoHUbVksL8WnK9dC63ywuaPfjO1f21GtZTbUKosaG1e5ZqVenyXM5uwcuinHNHmHigTSsy+T4rzZLKHVsnC/PtJHoc9Un5WaJ9t2nnS+kt77WNT+0JkFqc7Cd6iRYswbdo0fPrppygqKkK3bt0C7iPsBnZERERE54pt27Zh+vTpmDFjBvbu3YuUlBT8+c9/xsiRI9GkSZOA++PAjoiIiIJWFSXAwr2k2KWXXorvvvsODocD/fv3x8iRI3HllVcGNfUJB3ZERERE1eDEiRN48cUXccsttyAhISEkfXJgR0RERMGrghg7hHmM3erVq0PeZ9gN7Np9tUy0rbniElPrqtUNSpTZ+KN9g5i1QHzNvqWHRVvja9NFm7uZDGy3Ryoz0SuJElowtZbYYDahJBj+AdtaYLsWnK/RltOOS13XZDC5VWmDkoxQkm+uCohGS5TQjs1M5QWtyoSWPKIl6ETGu0SbWslESQCwKm0X3CHvWW3d0iKZ3KQtpzG88ryLfTOZ7KAlHmnXQU9YkPeTluzhyS0Qbdo9q92LZmnHq+2z2fcKEVWPr776CkuWLMHhw4fxxBNPID09HT/99BMyMzNRu3btgPoKu4EdERERVYNTc8+Fus8wVlBQgIEDB+I///kPLJaTf+T96U9/Qnp6OiZOnIi0tDRMnDgxoD75ZxwREREF7dR0J6F+hbPHHnsMK1euxJw5c5CTkwPjdwPZPn364Ouvvw64Tz6xIyIiIqoGs2fPxj/+8Q9ce+21KCvzDQdJT0/Hrl27Au6TAzsiIiIKmsUwYAnxV6eh7q+mOXToEFq1aqX+zmq1orCwMOA+z4uBXftF35paTkuysNplYPOuhfuD3qdTSgplQLi7fqxo02eYN1tRI8QzgZsMADdTBUAL2Nf60rap9V+gVB4xu91Sk4kctghzEQxadYNQik6MEm0RrgjR5jkhEzEia8l7zOqU68LkvWOPkhVEio7kijaziTx6UoDcrtlkCX/5h/JFW1JTWRlFT0aS952WAKJXgFCSsZRjUN9PynLpk+eINs3hsbebWo6Izq569eph/fr16NWrl/jdzz//jAYNGgTcJ2PsiIiIKHiGt2peYey6667D008/jTVr1pS3WSwW7Ny5E5MmTcKQIUMC7jOggd3YsWNhsVh8XnXr1jW17vfffw+73Y527doFvJNERERE4ebJJ59EamoqLrroInTs2BEWiwW33XYbWrdujeTkZDzyyCMB9xnwE7tWrVohOzu7/LV+/foK18nJycGtt96Kyy+/POAdJCIiopqPWbGBi42NxQ8//IB//OMfiImJQaNGjRAdHY0xY8Zg2bJliIqSITcVCTjGzm63m35Kd8pdd92Fm2++GTabDZ9++mmgmyQiIiIKS1FRUXjkkUcq9XROE/DALisrC6mpqXA6nejcuTOeeeYZNGzY8LTLT5s2Ddu2bcN7772HcePGmdqGx+OBx+Mp/zk3VwZhB2vtlT1EmzZrv5lEifqX1xFtWmC/1tfOBdmm+gsmYaGsJLR/8WjnSeO/f2arM9iUag/asWrHZTYZQ1vOqmy3tEhWFDiyOvT3oz9Xpm8ygj1avlVj68SINq2yRYRLVpmwKckOEUmyTqHn4BHRpiYsKDkrZhMAzCb3RMTI7An/BAWtAkSjgWmibdtnu0WbluyiVahw1XaLNq2ihprwoxy/1S6Xi0qU27BGyIoSZiWNfafS6xKZZYEBC0KcFVuJ/pYtW4bnnnsOq1atQnZ2NubOnYtBgwaV/37s2LGYNWsWdu/ejYiICFx44YV4+umn0blz5/Jl3nrrLXzwwQdYvXo1Tpw4gWPHjiE+Pl7dnsfjQefOnbFu3TqsWbOm2kPOAhrYde7cGTNnzkTTpk1x4MABjBs3Dt26dcMvv/yCxMREsXxWVhYeeeQRfPvtt7DbzW9q/PjxeOqppwLZNSIiIqpOVZHsUIn+8vPz0bZtW9x2220YPHiw+H3Tpk3x6quvomHDhigsLMSkSZPQp08fbN26tbx8V0FBAfr27Yu+fftizJgxZ9zeww8/jNTUVKxbt87U/o0cOdL0sVgsFkyZMsX08kCAA7t+/fqV/3+bNm3QtWtXNGrUCDNmzMCDDz7os2xZWRluvvlmPPXUU2jatGlAOzVmzBif/nJzc5GWJv/qJiIiIvq9fv36+YxX/N18880+P7/wwguYMmUKfv755/JcgL/85S8AgCVLlpxxW19++SUWLlyIOXPm4MsvvzS1f4sXLy4vH1YRs8v9XlDz2LlcLrRp0wZZWVnidydOnMDKlSuxZs0a3HvvvQAAr9cLwzBgt9uxcOFCXHbZZWq/TqcTTqf8qoiIiIhqpqqcoNg/JCtU44Ti4mK89dZbiIuLQ9u2bQNa98CBA7jjjjvw6aefIjo62vR6O3bsCHAvAxPUPHYejwcbN25ESkqK+J3b7cb69euxdu3a8tcf//hHNGvWDGvXrvX5LpuIiIjodNLS0hAXF1f+Gj9+fFD9zZ8/HzExMYiMjMSkSZOwaNEiJCUlmV7fMAyMGDECf/zjH9GxY8eAtr1s2TLk5eVVuNzhw4cxderUgPoGAnxiN3r0aPTv3x/p6ek4ePAgxo0bh9zcXAwfPhzAya9Q9+7di5kzZ8JqtaJ169Y+6ycnJyMyMlK0Vwe7UwYxe3I9ypIV2/OfA6KtyeBM0RbXUgax5/wqZ8DX+ku9VN5wFqs8hlAnSpilBcqbEeGSf3Fps/jbI2XguCdXllrRrqvGUJIMvCaTO2KayCD+vCxZ3SEY/skSES55TmLqxsu2NJl4U3TkuGiLTKsn2rz5BXI/lCQLtQpKmVahQUkeUK6t1WRVFb2Sg3+CjlxGu58aX5su2rbOlTUZd3yxT7RlXiWa4IhSqnZA7ouW3KElhZR5ZEUam1YZhKgmMYwqiLE7+bm8e/duuN3/SyoK9mldr169sHbtWhw+fBhvv/02brjhBqxYsQLJybICjeaVV15Bbm5uhfF3p9v2jz/+iIsuugjAyW8zIyMjsWLFCrRv3758uW3btuGOO+4IKCYPCPCJ3Z49e3DTTTehWbNmuO666xAREYHly5cjIyMDAJCdnV2pgrVEREREp+N2u31ewQ7sXC4XGjdujC5dumDKlCmw2+0BJSksXrwYy5cvh9PphN1uR+PGjQEAHTt2LH/YdTqG39fVhmGgtLRUtFdWQE/sZs2adcbfT58+/Yy/Hzt2LMaOHRvIJomIiOhcYBjlT9hC2udZYBiGzzRrFXn55Zd9pnDbt28frrzySnz00UfVHmoWVPIEERERUU2Sl5eHrVu3lv+8fft2rF27FgkJCUhMTMTTTz+NAQMGICUlBUeOHMHrr7+OPXv2+NRl3b9/P/bv31/ez/r16xEbG4v09HQkJCQgPd03nCMm5uS8oo0aNUL9+vXPwlGeHgd2REREFDQLQl8CzKLEqlZk5cqV6NWrV/nPp6ZPGz58ON544w1s2rQJM2bMwOHDh5GYmIhOnTrh22+/RatWrcrXeeONN3zm0+3R42RRg2nTpmHEiBGVPJqz47wd2LWe942p5f7bvYtoc0T5BvLv/eagWCZrzg5T/ZsNxD/w01HRVq+7EuSpVJ7QqhFotKoVGi0YXVvXf7vaMlpShNamzcSvKfXI4PSSQhmIXlYml9OqTGhJFhHRWgWAyidP1GpTcQWJ+PRaYpm4xnJuR1us7Ev7KsPQvnLQPpCVBAhviVzXqyQFmE2oMV+hQh6HfzKClrCh3a9HtsmKGhqt8oTZhB9HtFxOqzKhsTnlPWbRKn4Q1SQ15KvYnj17njFe7ZNPPqmwj0BDxzIzMwOKkdu8eXN54Yay/598tmnTJp9l/H8267wd2BERERFVB+2p37Bhw3x+Ngzj7E9QTERERAQAFqMKvooN9fQpNcC0adOqtH8O7IiIiIjOkoqmQwkWB3ZEREQUPMNbBRMUh98Tu6rGgV0FohOiRJvd6XvatABrbcZ6jZYoEZEoL0vxERmcvmvhflPbqNMtQbQ5Y+Qs9lqShZoUoVQFMLxyOf/Z+LUAc6dbnl9nrVilLU60aYqOy0oeRcfluStTqhhox1qmnJO8PbLiRTC05IGISN9A+agEmRThUGZIL8s7oWxA9m9o11BpK82Xx1pWKO9Zs5UnoCRAaEkR2r2iLWdmvTWvra1wPQBwuGVyQnSiPO9aYoeWKBGZFC/aDOU8adUyzJ4nIiJ/HNgRERFR0CyGAUuIs2JD3d/5IKCSYkRERERUc/GJHREREQXP6z35CnWfFBAO7IiIiCh4NWSC4vMdB3YVcMbKyhBeJfA+lLREidRLk0RbSYGsqHDopxzRduAHWbVCk96nrqnltGB/m0MLKPdNnoiMd4llnAkyKcLmlIkdhQdkpYBj27LlcsdlYL9FS4ooUILYlUSJo+uUZASTzFYV0fbP6fZdVzvnXo/Sl1Z5IUruR0lOrql1tWB/9f43GdivJd6UFMhKFqVF8t72v58AmSyzZfZ2U/vRbGhD0RYRI89ThDtatEUq96zVIT9KLTb5nnA/MMnU/hERVRYHdkRERBQ8TndSIzB5goiIiChM8IkdERERBY3TndQMfGJHREREFCb4xK4S/GeK12aEz+ibItp2LpDB/k2HNBBtWgB4dIIM4i6yy6Dz9D6ykkOpRyZj7Ft6WLRplSzMJlRoM+/bI32D3R0uuW9aKnvxcRnYn5ctE0C0ZAxNwdECU8tpSQzB0BIlNJFxMmjfn5ZM4M2TVTagJEBolSK06gkai1K1whbpkPtXaC6hQkue0JI2tOXWTv75dLv5v32Lln017Jcu2pxaUkQtWWVCSzzREiXiRr9c4b4RhT3G2NUIfGJHREREFCb4xI6IiIiCZxhV8MSOMXaB4hM7IiIiojDBJ3YVMBuL5K+sRP7V0mhgmmgzO6GqFidnd8p90+L9IlxyYlezMYBa3J22rl2Ju7JF+N5ediXGzu6SsU7HN+8QbQktMkSbNUJu88T2vbLtQJ5oC/VkxMHQJh9Obpnq87MWc5a/54Boc7dqYm6jWmzjMTm5tRazZ3iKRVtJnozj27YoS7SVKbF4RQdk/KBZrW9r4fOzOnl2hPyYq//KbNF25Kk7RJv2/rdGyPcTETErtqbgwI6IiIiCx1qxNQK/iiUiIiIKE3xiR0RERMEzjNAnO/Cr2IDxiR0RERFRmOATuwo0mjG/wmU2D71StBlemexgUSY2NSvCJScALiuW2/AqSQFa4L0WFN7gmvqibfv8PaJNS7JoM6pWhdvV9sNz9Lhoi6odL9oiM2XyRMkBmTxgltlEicg6MkFDC/Z3ZcrrE5kg246slpMv7/mPPI7Exsk+Pzvj5GTMWjJK2QmZKBIUJb5l8/z1oq20QN6LEbHy3OUelJNFa8k4cWmJos1/YnBATm6cPnmOWObYs/eINk3ik2+bWo6IToMTFNcIfGJHREREFCb4xI6IiIiCxxi7GoFP7IiIiIjCBJ/YERERUfCMKpjHjjF2AePALgS0qhBmlzObsKBVqGgyOFPZikxQUPI4VM7YSNHW4hZZyaAop1BuVUnkcET7Jg/YnHLG/pK8fNHmHxAPADmrZcC+VmWgWKmAoFXjMMuZKPdZS57QEiW06hbNb2os2jZ9uFW0Hfxln8/PddrUE8t4SytOJjgdLZHFUL7y0BIWYlNiRNuxbcdFW8PLmom20m6yaoVGqxZhdchkDIdL3rP+aj3ymqltElGQmDxRI/CrWCIiIqIwwSd2REREFDwmT9QIfGJHREREFCb4xI6IiIiC562C5IlQ93ce4MAuBKw2GcRfptyLdqe50202oUJLxrA55ENYrcqERktG0ILYtSQLLZDfP9g9f+9BU/tmj5KJCMUnZMWCgsOyioPmeJa5KhNxLWV1h5xfZXKHxhYhjyPCJRMvPCdkcofmwIqjPj+n92gulik6Io/fHi3PncUir6u3RLl3lPOuLVfngjTRlnphA9FWWuiR21DuJy3hw2KT59MRGy3atOobRETnMw7siIiIKHiMsasRGGNHREREYePEiRP4y1/+goyMDERFRaFbt2746aefyn+fl5eHe++9F/Xr10dUVBRatGiByZMni35+/PFHXHbZZXC5XIiPj0fPnj1RWCin+6pp+MSOiIiIgmcYVTCPXeBP7G6//XZs2LAB7777LlJTU/Hee++hd+/e+PXXX1GvXj088MAD+Oabb/Dee+8hMzMTCxcuxN13343U1FQMHDgQwMlBXd++fTFmzBi88soriIiIwLp162A1OVdodar5e0hEREQ1n9eomlcACgsLMWfOHEyYMAE9evRA48aNMXbsWDRo0KD8qdyPP/6I4cOHo2fPnsjMzMSdd96Jtm3bYuXKleX9PPDAA7j//vvxyCOPoFWrVmjSpAmuv/56OJ0yFrmm4RO7ENCSDrSA8LIS+ZeMllDhiDKX7KAlVDS+Nl20aQkVasC6chz+1SMAwBkvkww8x2WSQV62bwKAPVJWDohNryPaygrNJRhoFSXyDsn9KD5irvSGlgRjlnbuohNksL8mvU9d0bZr4X6fn49u3iuWcUTL5Ax7vrmvCSIT4kwtpyUx2BzyntWqimjUJBu7vBeTn5kh2vLffly0lRXU/K9FiOjsKS0tRVlZGSIjfZP8oqKi8N133wEAunfvjnnz5mHkyJFITU3FkiVLsGXLFrz00ksAgIMHD2LFihW45ZZb0K1bN2zbtg3NmzfH008/je7du5/1YwoUn9gRERFR8E6VFAv1C0Bubq7Py+ORWfcAEBsbi65du+If//gH9u3bh7KyMrz33ntYsWIFsrOzAQAvv/wyWrZsifr16yMiIgJ9+/bF66+/Xj5o++233wAAY8eOxR133IEFCxagQ4cOuPzyy5GVlXUWTmRwOLAjIiKiGi0tLQ1xcXHlr/Hjx5922XfffReGYaBevXpwOp14+eWXcfPNN8P2/7+BePnll7F8+XLMmzcPq1atwvPPP4+7774bX3/9NQDA+//nzrvrrrtw2223oX379pg0aRKaNWuGqVOnVv3BBolfxRIREVHwqnCC4t27d8Ptdpc3nynWrVGjRli6dCny8/ORm5uLlJQUDB06FA0aNEBhYSEeffRRzJ07F1dffTUA4IILLsDatWsxceJE9O7dGykpKQCAli1b+vTbokUL7Nq1K7THVwX4xI6IiIhqNLfb7fMyk8TgcrmQkpKCY8eO4auvvsLAgQNRUlKCkpISkd1qs9nKn9RlZmYiNTUVmzdv9llmy5YtyMjICN1BVRE+sQsBLRHBJvME1GB/Q/nrxmqXl6VWmxjRdmx9nrKuDHZXqzsoiQx6EohsM0rLTG0jIsa3zVU3QSzjcMvj0gLxtXNcpCRseEvkvpmlHWswvMp5ikqQxxtbP1G0Rcb5VlSITopV+pf3jis1WbSVagkGSjUKbVoBs4lBhrKuLUpWKNHSgrR7J+/1v4m2mLv/qaxNRDVGDZmg+KuvvoJhGGjWrBm2bt2Khx56CM2aNcNtt90Gh8OBSy+9FA899BCioqKQkZGBpUuXYubMmXjhhRcAnKzW89BDD+HJJ59E27Zt0a5dO8yYMQObNm3Cxx9/HNrjqwIc2BEREVHYyMnJwZgxY7Bnzx4kJCRg8ODBePrpp+H4/2UuZ82ahTFjxuCWW27B0aNHkZGRgaeffhp//OMfy/v4y1/+gqKiIjzwwAM4evQo2rZti0WLFqFRo0bVdVimcWBHREREwftdFmtI+wzQDTfcgBtuuOG0v69bty6mTZtWYT+PPPIIHnnkkYC3X904sCMiIqLgVWJCYVN9UkCYPEFEREQUJvjELgTUBAPl6bEWJN7so69MbeNY9y6yP4fcbkSMDFjXaPuiVp5wRYm2Uk+xXC5a/o1gd/nuS2RaqljGUPrSaEkm+Ydl8sShn3JM9RfXUlbPOLruhKl1Nc4YmfBhi5Bvrwi3rEahVXLwT5aIbVBPLOM5fEy0aZUi7NHyGkJJgPBq10JLslDuE6vJahTWCNkWe/9EuQ0iOucYhhdGiL+KDXV/5wM+sSMiIiIKE3xiR0RERMEzqiDGLtTTp5wH+MSOiIiIKEzwiR0REREFr4ZMd3K+48AuBJp+uEC0bRpyRUi3UbtZHdF2cLkMnt8wbaNoazW8uWhzRMtyLBFumVDgLSkVbdF1ZKUEa6RM2vAP5Le642T/uTLZ4djaTaLNkyurJ5QUlog2syJc5m79lO7yWEs98pyUlZj78Ck8nCva7JEyoSAq0e3zsyNJ7ofNJRMxNP6lc4DTJEqYZFUSNLSqKlqCBhMliIiqFgd2REREFDTD61VnMAi2TwoMB3ZEREQUvBpSK/Z8x+QJIiIiojDBJ3ZEREQUPK8BhPqrU5YUCxgHdlWk+exFIe2vwZTPlNaBoiX/kAzO1yogRNauZWq7EYlyOa26gS02Rq7srLgKRtmJPNHmSpGJAieyt1XYVyC0ChW12shjiE6UCQp5h2TFCy2RI3ev3EZcmjyf9kiHaItI8E00sSjJKTabvK7ewgLR5rr9H6LtxKsPizat8oj2UN+iVC0hIqKagQM7IiIiCh5j7GoExtgRERERhQk+sSMiIqKgcbqTmoFP7IiIiIjCBJ/YncOc7ijRFhEjg+ytSrC7VnnA6pQVELRECWukrFphiZZVK2D3TQoo2iQrShQeOiraSgs8oi3CJbe5b8VBuU1FQttY0XZ03QnR5nDJJAZPnjxPWpUFLfHAYpNtWqJE/AWyMoi3yPccRN3wkFgmGLH3ThBtuS/9VS5YIpNCEh57w9Q2cic9EPB+EdE5zGuEPouVWbEB48COiIiIgmYYXhghru0a6v7OB/wqloiIiChM8IkdERERBY9fxdYIfGJHREREFCb4xO4cljpplqnl9j1wo2grzpXVEyLi5TjfGi0TNIyyMlNtKCz07UtJzohtUF+05e3YJ7s6KitUFB8pldtUOGPldjUHlx8TbSndZRUMLVHCqrS5U+NFW2QtmchRcuy4aLPH+1aeKHx/vFgm6pYxoi0Y7j8/H9r+HpgU0v5qsiNP3SHaEp98uxr2hKgaGd6Tr1D3SQHhEzsiIiKiMMEndkRERBQ0w2uo00EF2ycFhk/siIiIiMIEn9gRERFR8AwvEOoSYIyxCxgHducBe5Ss2mB3KUkRpTIBonDXXtEWlV5PbqRYVmiwRPluI6JBQ7FMyY7tos2ToyRK5MtqFGZ5lUf5dboliLYDP8gqGFr1CJvSFhVvrgpIXrbchibW7Zdk4ZTXkKqHlihhGPIeO/T3kaKt9v9NrZJ9IqoJDMNQ3wvB9kmB4VexRERERGGCT+yIiIgoeN4q+Co21P2dB/jEjoiIiChM8IkdERERBY3TndQMHNidB5KfmSHatMBuu1Jlwh7jEm1GSYloKz2eI9osFt8kA3tCLbFM0WGZTODJLRRtJYXmqkxE1nGINptDPpjet/SwaNMSKspK5NcAUfEyKSIuPUm0uZs2kP3ly4ofjuTaos0a77svRrFMHin813Ny3254SLTVdDkv/EW0xT344lnfD7O0YO6yIpk8pDnwyK2irc6zM4PeJyKiUziwIyIiouAZRhWUFOMTu0Axxo6IiIgoTHBgR0REREE7FWMX6leg9u7diz/84Q9ITExEdHQ02rVrh1WrVpX/fsSIEbBYLD6vLl26lP9+x44d4venXrNnzw7JuapK/CqWiIiIgmZ4vTBCPD1JoP0dO3YMF198MXr16oUvv/wSycnJ2LZtG+Lj432W69u3L6ZNm1b+c0RERPn/p6WlITs722f5t956CxMmTEC/fv0CP4izjAO785Q2A37OxPtFm5YoYXFFizZrpKyMULDTt2pFpBIrEZ2WKtoOrJXVKEo95pInYtPlvpV6ZEUNTWmR3EZULZlQ4oyVyRNRyTLxwp6RKdpsFvmQ3IiSCSo4cdxv55TjL5PHlT/1Sdm/cg29RTIZQ1subvTLcruKvMljRFtJTq7cbok8DkM5Di25B8pf7ha7zfdni6wKoiU7aIlC8Q+/Irep0P6hsVjldss88nxaHfIj9/DY20Vb0th3TO0LEfn65z//ibS0NJ9BW2ZmpljO6XSibt26ah82m038bu7cuRg6dChiYmJCur9VIaCvYseOHSseS57uxADAd999h4svvhiJiYmIiopC8+bNMWnSpKB3moiIiGoYr1E1rwDMmzcPHTt2xJAhQ5CcnIz27dvj7bffFsstWbIEycnJaNq0Ke644w4cPHjwtH2uWrUKa9euxahRowI+JdUh4Cd2rVq1wtdff13+s81mO+2yLpcL9957Ly644AK4XC589913uOuuu+ByuXDnnXdWbo+JiIjovJKb6/sNgNPphFOpof3bb79h8uTJePDBB/Hoo4/iv//9L+6//344nU7ceuvJ6Yb69euHIUOGICMjA9u3b8cTTzyByy67DKtWrVL7nDJlClq0aIFu3bpVzcGFWMADO7vdfsandL/Xvn17tG/fvvznzMxMfPLJJ/j22285sCMiIgojhuGFEeLpTk71l5aW5tP+5JNPYuzYsWJ5r9eLjh074plnngFwchzyyy+/YPLkyeUDu6FDh5Yv37p1a3Ts2BEZGRn4/PPPcd111/n0V1hYiA8++ABPPPFEKA+rSgU8sMvKykJqaiqcTic6d+6MZ555Bg0bNjS17po1a/DDDz9g3LhxAe8oVT0tnqrwvadFmxaLVXYiT7RF1fWdeDd/zwGxTEm+nIzYWyo/GOxOc7eqt0w+tjeKzcXnWW0yTsqVJOPfajWpJ9oi6shJhuGRcWzIPyGaLCnpos0/7s6iPRnX+vcUyb6UuDat/qK31FwsohaLqa1bmlcg2opPyDYtZk3LhLPa5TmwRznP+DMAGMq+aXF92nGVFspzbHXISbBLipT3RLESn6pcRy0u8Niz98jlrDJyxmxcING5bvfu3XC73eU/a0/WACAlJQUtW7b0aWvRogXmzJlz2r5TUlKQkZGBrKws8buPP/4YBQUF5YPCc0FAA7vOnTtj5syZaNq0KQ4cOIBx48ahW7du+OWXX5CYmHja9erXr49Dhw6htLQUY8eOxe23y2Dh3/N4PPD87h8t/0ewREREVMNUQUmxUzF2brfbZ2B3OhdffDE2b97s07ZlyxZkZGScdp0jR45g9+7dSElJEb+bMmUKBgwYgNq1lT/ea6iAkif69euHwYMHo02bNujduzc+//xzAMCMGbJk1e99++23WLlyJd544w28+OKL+PDDD8+4/Pjx4xEXF1f+8n8ES0REROTvgQcewPLly/HMM89g69at+OCDD/DWW2/hnntOPgXPy8vD6NGj8eOPP2LHjh1YsmQJ+vfvj6SkJFx77bU+fW3duhXLli2r8GFUTRPUdCculwtt2rRRH1/+XoMGJ2tmtmnTBgcOHMDYsWNx0003nXb5MWPG4MEHHyz/OTc3l4M7IiKimszwqmEeQfcZgE6dOmHu3LkYM2YM/u///g8NGjTAiy++iFtuuQXAyYTP9evXY+bMmTh+/DhSUlLQq1cvfPTRR4iNjfXpa+rUqahXrx769OkTssM5G4Ia2Hk8HmzcuBGXXHKJ6XUMw/D5mlVzumwXIiIiojO55pprcM0116i/i4qKwldffWWqn2eeeaY8CeNcEtDAbvTo0ejfvz/S09Nx8OBBjBs3Drm5uRg+fDiAk0/a9u7di5kzZwIAXnvtNaSnp6N58+YATs5rN3HiRNx3330hPgyqKlF/eMzUctokq8U5vvMCFR6VCRaFx/JN9W92gmJnbIRoy9svA/Y17lQZv5HQtL5oi24sk4WMMrl/nu2/ibaIFJlRbsk9VvHOKRPgan/JWiPk8RtFMqHCq0za6/UUizaziRLFx2VSiBZroyVKlCnJLbYIcx9N/skYXiUpwqv0ryVxRMQpE0VrlOPyKglFGnu0/IPV6lSumXIcLIZONV1lS4BV1CcFJqCB3Z49e3DTTTfh8OHDqF27Nrp06YLly5eXByVmZ2dj165d5ct7vV6MGTMG27dvh91uR6NGjfDss8/irrvuCu1REBERUbWqCSXFKMCB3axZs874++nTp/v8fN999/HpHBEREdFZwlqxREREFDTDMNTazMH2SYEJaLoTIiIiIqq5+MSOQiJp7DuiLeuWfj4/axUlzNICaBM7yGQHbXZ+s7SAfe2vxdJjMtnBWywTD7REBktktKl9MUp8M8e1BAh1PSXjvKxItpWekEkrJflyGw53jLINeaxlSpuWZKHdA3qb7M8eKSs++CtSEnQsSuKJ2TabktigHWupUnlC21+rQ7nHlEQJPWBcnietQkWtR15T1iU6C7xVMN0JY+wCxid2RERERGGCT+yIiIgoaJzupGbgEzsiIiKiMMEndkRERBQ0wxv6J2wBVhQjcGBHVcg/KF4LpjcrOiFKtNkcNtFWlCsTBXI3yyoDtTvFiTZt/zzHZEUFb7EMlNeSNpyJ8XLdEzly3QilfF6p7zYMJTmjNFfZNyWwv0RJlCjzyGMoU46rIPuwaNvw/hrRZla9LrLyRkKTVNF26Nfdoi3/kDyOqFq+90VknLxPHEq1B01xnkwesSlVK7T7RP/HTCZPlOYXijazCT9a4oXFJt8DOS/8RbTZIuU5sLl9k4/MVpkhOh1OUFwz8KtYIiIiojDBJ3ZEREQUNCZP1Ax8YkdEREQUJvjEjoiIiILGGLuagQM7Omu8ZfKRuvaYXasAYbXJqgAau1MGk2sO/SSTGGLqxIq2gsO5cl+OyyB+rcpAkZJ4kRAnq2VAqTxQcuy4b4Py4VZaKBNFPEflcWnB/lqlBC3J4MRemTyh0ZIiDmcdFW371x001aap3TJRtOXs9r0+J7Jl5QlNercGok27F7VzpyU7GF5zCRVlJTIZQ2OxyG1Y7Mq9rVRGsViUqhqRkXJV5b4jonMfB3ZEREQUNMOoghg75Y8XOjPG2BERERGFCT6xIyIiouAZhhoeEHSfFBAO7IiIiChoTJ6oGTiwoyrT7KOvfH7ePPRKuZBT3oJm38hqkoUSYF6nW4JoO/CDDOz3nJCVByJcEaLNYpXB6XtXykoJBftlf51bNBRtpSdkwH/eHt+Egs2fbhLLBKPJNU1Em3bey5TKC5q9y/eLtoyeaaItMt4l2pxxsm3fqu2izaNUFcno7ns+IxNlRZHNn8lKGbt+kP2HWlqXTFPLafesLUre246YaHP9RcvqGxa78l6JkclCRHTu48COiIiIgsYJimsGJk8QERERhQk+sSMiIqKgMcauZuATOyIiIqIwwSd2dNZoyQ4aLTlBi7Ow2uXfJTaZ6wB3iqz2cAAyeWLfUq3KgrnKC2atGP9FSPurrKz5WZVeN7qurGLgcMnKGzuXyISSUDuW5Vt5IipZVs9odEVL0VZ4RFYU2bd6j2iLS5P3TkwdmaCh3Z+lRcWiTUtGiYiR5zMqLUW0eQsKRZtVqSihVcaIvvUJ0UYUaoyxqxn4xI6IiIgoTPCJHREREQWNT+xqBg7siIiIKGhMnqgZ+FUsERERUZjgEzs6axq/+7lo23HHINGmJU9ovKXyLzktoUILWK/VJka0HVsvK0Bo6vVKFm0JDZNEW3GerDxRWlQi96+kTLS5avsG7UfXlgH7699dLdqaDmgm2hzRMqFAU3j0hGgrKZAJAK5kmVCgfV2S0tbcddRo1RgsSluZX4LCpk82imU2vC8rT7S8obVoq39Rumjb899dZ9zPU5yxMolBSxbSnj7YnDLjpyy/QK5bKu8TW6zchi2xtmgrXPy+aIu67BbRRhQMfhVbM/CJHREREVGY4BM7IiIiCprhNeAt4xO76sYndkRERERhgk/siIiIKGgnY+xCnRXLJ3aB4sCOqlXm25+KtuyHZFC3XQkwLz4hA8y9SoB5bD2Z2LD13ztM7d+Ff75QtBUdzxdtWoJChDtatNkc8i2nHYct0vd4tUQJzZZ5m0Vbg96Zos1Vp5Zo0xIWIuPlMdijZKKAt0QmhWgVEOwuc5USSgs8os0w5D8YkYm+SSWtb2kvltm+ZJNoc8RqxyWvYWaPxqJtx7Ktog2QlSzM2yf3JVJeiybXdBBtWuUJb4JM7vFGRIm2E//1rYISe9FVZ9xLIjo38KtYIiIiCtqprNhQvwIxefJkXHDBBXC73XC73ejatSu+/PJLAEBJSQn+9re/oU2bNnC5XEhNTcWtt96Kfft8/7jatm0brr32WtSuXRtutxs33HADDhw4ELLzVNU4sCMiIqKg1YSBXf369fHss89i5cqVWLlyJS677DIMHDgQv/zyCwoKCrB69Wo88cQTWL16NT755BNs2bIFAwYMKF8/Pz8fffr0gcViweLFi/H999+juLgY/fv3h/ccmSyZX8USERFRWOjfv7/Pz08//TQmT56M5cuXY9SoUVi0aJHP71955RVcdNFF2LVrF9LT0/H9999jx44dWLNmDdzuk3N2Tps2DQkJCVi8eDF69+591o6lsvjEjoiIiIJWlU/scnNzfV4ej4zD9VdWVoZZs2YhPz8fXbt2VZfJycmBxWJBfHw8AMDj8cBiscDp/F/MbWRkJKxWK7777rvgT9JZwCd2VONEJsaLNi3A3qYEu5cVyjf7xrlr5XIF8pF669tayJ1RqmA43TIQXauKoCV8RCTIChI2JRnhyK875b74cTeQ1TNyt8vqGdu/3iHamlzjEG1mv/IoyS8UbfZI5VjdLlP92V3K+bQoVSuUe6Cs0Le6h1a1pHHfNqLNWUtehzKPrLIRES+rbHQY3U6umyuTJ9a9tVC0aeLS5DYa/UEmMpTslUkW3iJZ3cR6SC6H1IaiickSdC5JS0vz+fnJJ5/E2LFj1WXXr1+Prl27oqioCDH/r717D466vvc//t7NZneTbLIhISEBwh1BEH4oWKCKtyP+hlrGVqvWeqyd2s70Mqdqp7+j1N8cnZ4OOj3TDp7zG3tsx6n19Hiprb1oUY5VrNbLsSLWC4ghcgmQEEJIdnPZZC/f3x8cqZvXB9mQQMLX52Mmf+TFd7/7/X53Ez77zef9ecdi9pvf/MbmzZsn26VSKbv11lvtC1/4wpG7c8uWLbOysjK75ZZbbO3ateZ5nt1yyy2Wy+WspaVlxM/rROCOHQAAGDYvlzshX2Zmzc3N1tXVdeRrzZo1Rz2OOXPm2BtvvGGvvPKKff3rX7frr7/etmzZkrdNOp22z3/+85bL5eyee+45ktfU1Nijjz5qjz/+uMViMYvH49bV1WVnnXWWFRXpB/ixiDt2AABgTPugyrUQ4XDYZs06vFTRkiVL7C9/+Yvdfffddu+995rZ4UHdVVddZTt27LBnn31W9nvJJZdYU1OTtbe3WygUssrKSqurq7Pp06eP7EmdIAzsAADAsB1PFWsh+xz2PjzvyJy8DwZ1jY2NtnHjRquurj7q48aPP7wG6rPPPmttbW151bNjGQM7AADgC9/97ndt1apV1tDQYMlk0h5++GF77rnn7KmnnrJMJmOf+9zn7PXXX7cnnnjCstmstba2mplZVVWVhcOH5wr/7Gc/s9NPP91qamrs5ZdfthtvvNFuvvlmmzNnzmieWsEY2GHMcXVAyKUzkqUdHRtc5qzWyfPFX9DOA2HHhHrP0cki06vFA0WOQoldz2yWbKBbJ+gfajx21wJXoUTdgkmS9R7UrgjTztU/HzQ+0XjM5zQzi1TreU0/f6Zk2QHtPJFxFLKEK8slCxRrIUekVgsvPEd3i/SgYolQqRZieF5hn/hDMX3OUHWVY0M93kxSi1YKNeXvtKOEVzdFsmB7u2SBWVrwk43oeRT1Hf/xAYXKZT3LBUf2jl0uO7T97d+/36677jpraWmxeDxuCxcutKeeespWrlxpO3futN///vdmZrZo0aK8x23cuNEuuOACMzPbtm2brVmzxjo6OmzatGl222232c033zwSp3NSMLADAADDNhb+FHvfffcd9d+mTZtW0Ae9u+66y+66664hPe9YQlUsAACAT3DHDgAADJvn/W15kpHcJ4aGO3YAAAA+wR07nDR9D+mcheyhQ5I551Q4OhEUlxdWAGEBR9eKci1GyHToseQGtNjBNcm+e9deydrePqjH4jD1ggbJYnXj8o/DUcTh6rLgsn29FlScce2Zkrk6L2z91Tu63YAWsrg6g7j252X1PIrK9HUMluk1zvX06GMz+ccSdBRPBKPa2SPgWGjUVZxhjuM1x/uzaf0m3c5h+gWzJSs6a5kei+P9HvhfSzXr6dQnCev1LLno2oKODxiOsTDHDtyxAwAA8A3u2AEAgGHLZT3LBUZ3uRNwxw4AAMA3uGMHAACGjTl2YwMDO5wwfb/8l/zAMWG96H968eVlFTrp3sLaASGX0I4Nri4GgTItlPCS+ljXxH5Xx4uupibJGp98TzKXOavnSlYU1XMLDCr4CJdpAYCr88b8KxdL9tf7XpWs7e3dkk0+R7sYhCv1era+qYUiU1doq510j3boyDq6UZhrwdBivSbBSdrTMWSDzsNRxBGsHCeZBfW9aGVaeBPoTUqWHq8dP1Jdv9L9OVTMnaH7i2l3i0RsomQ9AW2APi7dKllxWq+7/gQAI8/LnYDlTkZ4fx8H/CkWAADAJ7hjBwAAhs3LeuaNcPGER/HEkHHHDgAAwCe4YwcAAIbNy9qIL3fiOdYIx0djYIcTJhDRCf+DeY7ODq5CCVcHANek+EA4og9t0wnm+za+Jllib5dknTt18nyh5l42TzLXROBQRM+3qCT/PFxFHC7hCp0mH6nW/ad7tcuC6znmX7VEsnd+qdeuZ7927YhUaBeIvoNatJJxdKgIx/br/modhTaVgwoeHBV0XqxSnzOm75191Qsli6cPSJb60T9LVihXh45gxtHdJKdZ7cBOyQaKtUPH/lIt0Ohsel+ymTN1OwCnPgZ2AABg2DzvBCx34qqax0dijh0AAIBPcMcOAAAMWy7rWc5oKTbaGNhhRPQ9+VPJAoMWgfX6evSBrjl2joWMLaA3lzP79kn29i/+JFlvW0r3V6BJZ9dJFo7p3MGS8bp4bDhWKtlAty4qnB049vy5YsfcOdd8vbRj/6VVery9HXpN+g50ShYdVy7Zgr9fLtlbv3hZspEWqdDFkhf+01fzg7BjXueAnms6ouc1vlcXbS7brvMJN73WLNm082ZJltzXIdkb9zwpWcOyrZLVXnK+ZAOTZ0vWWVovWXtKF1o+b74ueAyMNC+bM88CI75PDA1/igUAAPAJ7tgBAIBh83InYIFiesUOGXfsAAAAfII7dgAAYNgonhgbGNhhyFJP/LuGjoIHLzqoeCCkk98DGV0ot239M5I1Pvle4Qd4nE67dI5kxWW6yG5RWH9sAiE9/2BYzzdU4lhAOaXXQAoqurXwpDimi9Om2jsly/QXtrix608erqKN4vFVki35zmW6v4w+byCk1y59UIsMchldkPqt/3hJsuyO7fnPuXiFbhPW19ArchxHyLFdqRZZuFSdrYsbFy1eJdm0916U7MB/acFPmyOrvlYLIErTuuBzXVTfi1u3d0qWyOS/f5bOrZRtAJx6GNgBAIBh87KeeSN8x87jjt2QMccOAADAJ7hjBwAAhi2X9Sw3wi3AclTFDhl37AAAAHyCO3YYMi+qk8wDqT7dMJ3fVcJLdMomf/nBryUbSGgxQVGJfgaZft4M3c5R2PD+s9slS/foxP5QqRY2FJdr94hiR0eJXNpRKBDUFdiDGS2o8ByFAoMLL1xdJvo7uiRrfOodyVyilXquoageW7iuVh+cdRxvjXbo8JKd+thq3V+4bpJkmWrNltRPkKzp0Wfzvp/uKOIJOT7xu37xlU7T99Pu2f9bsmCxFg81/fKPkoWX/71knfM/I1ntVC286CsZp8/71w2SxcL6XsxW6tl1Bqslo1gCI81Le+YFWcdutDGwAwAAw5bLeJYb4YEdf4odOv4UCwAA4BPcsQMAAMPGn2LHBu7YAQAA+AR37HBE73MPShZwfVpq3SNRLq0FDy3PvZb3/c4/7SroOFyFEjMvmi1ZKBqWLOCYPH/apWdI5jkKAEIR3V84XljngVCpFpS4BIq1QMFVjJHpzS9GKSqJyjY9za0FPeeU5VMli8QdHSUchSLB8rju0NE9wovo8Q3UnyVZ+FCLZLmySsl6yrUYIzZbiwxmXZN/Pfcsu0a2Kcl2a9avhSeRPz8h2dTUbyXTPhlmUy5cJNmb/dqhw2V/6GzJ4gHtNFJdop1GLKfv44CnhTZ7urV4Qn8qgOHJZb0RnxM30sunfBxwxw4AAMAnuGMHAACGzUvnzAvoMk/D2qfjDjQ+GnfsAACAr9xzzz02ffp0i0ajtnjxYnvhhRdG+5BOGgZ2AABg2LyMd3gtuxH88jJDn2P3yCOP2E033WS33Xabbd682VasWGGrVq2y3bt3n4CzHnv4UyyOCGS0AMLbpz8I/ft00n53837JCi2WGCzbp7feXV0hIpVa2JDcrcdRVq8Tx11FFubo7pBN9euxOAoqQrU62d8cz+H1p/RpuzolCw4q5Mj2amePsgZ9znDZ+5J1Net0/7KUvtaTLjhXsvT2Rsn6Ozp1f+foYzNhneyfmTBLsp6oFhlkA45fTeOmSBTfl3++yay+Nu91axeL+lhCsokXaAFMyZMP6HE4hGfPkaw0NCCZ5+mfqXod2a6Edp7IzblaslrTYpRUkV73YIAJ6DjxvLRn3gi/17zjKJ740Y9+ZDfccIN95StfMTOzdevW2YYNG+zHP/6x3XnnnSN6fGMRAzsAADBsvZYzG+HPEL12+AN3IpH/YSwSiVgkoh/4BwYGbNOmTXbrrbfm5Zdccom99NJLI3twYxQDOwAAcNzC4bDV1dXZl1p3nJD9x2Ixa2hoyMtuv/12u+OOO2Tb9vZ2y2azNmFCfm/pCRMmWGtrYUtEneoY2AEAgOMWjUZtx44dNjCg0w9Ggud5FhhUbeu6W/dhg7d37cOvGNgBAIBhiUajFo3qQuUn2/jx462oqEjuzrW1tcldPL9iYPcx0PfUfZIFBnQSv3fwgGRdW3TyfHLPQcmaX94rWcPyScfcplBbHn3zuB8770rtqFA+S7sxeP2Oye6ODhXmWlk96Pgk6Ph0GCjTjg+W1In8obr6/N2Pr5dt+sZNluyMct3/u//5rGSdu7SgovMHP9djc6g5XY8l1qedEkpb9b3T6yie2JeZKFl3Wj+Nn1Zy7D/z1OeaJUuXTjvm48zMesMVku3+1O2SLaxcJ9nm7+nP2KJ/7NUnKdPijlS9XpP3YmdK1jWgxR3ZYi0Mqcvuk2xCqXbaMKt1ZMCpLRwO2+LFi+3pp5+2z372s0fyp59+2i677LJRPLKTh4EdAADwjW9/+9t23XXX2ZIlS2z58uX2k5/8xHbv3m1f+9rXRvvQToohrWN3xx13WCAQyPuqq3Ms8/A/HnvsMVu5cqXV1NRYRUWFLV++3DZs2DDsgwYAAHC5+uqrbd26dfa9733PFi1aZM8//7ytX7/epk7Vv9T40ZAXKJ4/f761tLQc+XrrrbeOuu3zzz9vK1eutPXr19umTZvswgsvtNWrV9vmzZuHddAAAABH841vfMN27txp/f39tmnTJjvvvPNG+5BOmiH/KTYUCn3kXboPW7duXd73a9eutd/97nf2+OOP25ln6hwSAAAAHL8hD+waGxtt4sSJFolEbOnSpbZ27VqbMWNGQY/N5XKWTCatqkpXmv+w/v5+6+//24r/gxcmxGGuoghLdmoW00nhXlQnYve3tknWuH6LZOmejGSzV52mzzGok8Npl+rq/KFoWLItv9a7wPOuXChZ0NHZ4e2H9W5wYne7ZNHqSsnCteMlc8l1a6FArvOQHl+V7i/Xrte4qFaLEdK1+V0WUqX6M1P+/ibJelq1AGbWp5dIFlq6QjIL6vUs2q+dR5Kv/1WyXfNW62MDWngSzeq16xsolixWrB0/arb/WbKtC6/P+36CpwU6AcfK9c2JuGQdjk4ZLgfOu1bDf1+vWaV2PMmVaPFEuFuLkWrK9T37QutMyYqC+nO831GgUx7RTiMA/GlIf4pdunSpPfDAA7Zhwwb76U9/aq2trfbJT37SDh7UX0wuP/zhD62np8euuuqqj9zuzjvvtHg8fuRr8MKEAAAAUEMa2K1atcquuOIKW7BggV188cX2hz/8wczMfv7zYy+T8NBDD9kdd9xhjzzyiNXWfnSZ/Zo1a6yrq+vIV3OzLmEAAACAfMNa7qSsrMwWLFhgjY26XtWHPfLII3bDDTfYo48+ahdffPEx93u0HnAAAAA4uiFXxX5Yf3+/bd261errdY7QBx566CH70pe+ZA8++KBdeumlw3k6AAAAfIQh3bH7zne+Y6tXr7YpU6ZYW1ubff/737dEImHXX394AvOaNWts79699sADD5jZ4UHdF7/4Rbv77rtt2bJlR1p8lJSUWDyuk5dxdH1P3y+ZV6qTpHNxnbAfHOjT7d7VTg5v/eJlyWJ12rVh/GlaFZ3L6ET5onD+2ytcrvtyFTuUT9ZJ7OGYPjYY0cKLZf90uWSvrv2NZD3t3ZLN+vQnJAtVjSsoC5TqMXvdWvSTOV0LGTLFem69pfkT7ysPNsk2PX/V17B0tk6wd03iT5c4uixUaoHKzN7CCpfiaS3a2JKZJ1l/Rgs0akv1tZiU2ynZntNWSpbqz38PJMJ6rq83VUrmahnZm9LPuRfO1fnDLenCVgVomX6OZGlP37OluaRk45I6/eTvJmq3mI0t8yVr2qe/1vsH9NzOP0MiAD4wpDt2e/bssWuuucbmzJljl19+uYXDYXvllVeOLPrX0tJiu3f/rYru3nvvtUwmY9/85jetvr7+yNeNN944smcBAACAod2xe/jhhz/y3++///6875977rmhHg8AAACO07Dm2AEAAGDsYGAHAADgE8Na7gQnkaMrQGBAJ1N7b2o3gkONuyRr+uN7klXNrJSscqoWY2QHtPNEcakuTxOtyp+g3/T00fsKf9jcK5YXtJ2reCLg6EYx/yptX7dj41bJXEURwXE6Gd9L9erBhLR7gqvjRzqinQeK+3XyfHQg/9xyrz4v25TOmCZZ3+nLJAvmtOtAa7l2Ctl+qEayjolXSnbWRL12dkgn+8+t1l8vWzztPvLaLr3uuala3fDqtkrJkj353U0iES1imTIhJ9mcau0AUu51SVa7/QXJDv3XM5L1L5goWdr0PXFgQM/1YK8+trtPC0+WxPQaTx3veC+aFuO826Q/s9+6O78LyL/eqO9XAKce7tgBAAD4BAM7AAAAn2BgBwAA4BMM7AAAAHyC4olR1vfMf2jo6WRvV6FEz6bXNdvXXtDzzrpEJ7EXl5VI5uooEQwNSBap0k4igWD+BPjUoX7ZpqRaiy5cRRFFFTqxO5fSa+ISDDsKGxwynTp5vjjsKNCI6wT4dJVOgM+G9Xr2RSslO1A6VbLy7KG878tOmyvbbJ+1WrJQQF+vrOPzW182Klk6o9tt368T8c/45Kd0u6h2rUhl9Npt26Ovd1u7Fne0tWuRSdwxt//SRfkdL+r6d8o2kWcelax7517dmcMhV/i1NRJVde+XrNnRZaImrHts79H3yfhy/Rnb2T1BstZOfY7rL3C01Tjf1XubftyAH3HHDgAAwCcY2AEAAPgEAzsAAACfYGAHAADgExRPjLacTnb3WnSF+fShTsl6Ww9KFgzpWD0Sj+l2xfrSu4oW0oluyUpqqwp6bHJH/gT1yqk6+336p5bqvkp0MrlFNfNmzJcsF9LjCHc4p8CLrQ9rl4GF//xNyXprpkvWU6IdKoo8Xe0/fminZNU7tkgWiOQXN2TqtMCio1+vZ7hInzM5oJPkG/fqdYppnYSNi2khTzqsG85KvSnZu+GzJMt5+hzzZul7cWJcOyrMy74hWcne3XnfZ9/UgqKko1Ci+IabJAuYHpz38E8k2xOYJFkmNkWybfsqJYsUOy6AQ0NFQrL3O3R/zkIJAB9r3LEDAADwCQZ2AAAAPsHADgAAwCcY2AEAAPgExRMnUe9zD0rmmvocKC2TzGs7IFkwVCRZqKSwTg6u4gnzdGJ3yNGNoqi0sCwyLr97QGm1TogPLvqEHkdGV913FUX0VdRJliiplaxmhV6nqtfelazjfS1G6Xh8vWRl139VsupXHpPMJRDW1+fAYu0gkQnmd8uob/yTbHN2/291X5O0YGFLaoYeh+MjXUdCX/9Fk/SaHArodd/arZ03mvfok8xt0Nd2YfgdyYrT+l5pLF4gmTchv+PF9JXaoSPm6ArxYlqv08yKFslqHBUlc178f5I1r/iyZMUh7cZSEtZiqcnlnZK9smO8ZAHqJAAUgDt2AAAAPsHADgAAwCcY2AEAAPgEAzsAAACfCHieY8b8GJNIJCwej1tXV5dVVOhq+2NR90u/lawo1SNZyUXXnvBj6fzBP0gWcBRe5AbSkhXHC7veRePGSdbb2JT3fXicTia3JSskSpfodt2lNZKFcjoRv7J1q2SBdL9mPbqyf+K/X5Osa1ebZIWa9NXrJHuh8grJuvu1kCUSyu/4UF3aJ9tMt+2S7bBZkv1xsxYApFI6iX/KZC1QOXtah2QdKS3uOditj11Uu0eyWLZTsndScySLhrSDxnsteh5zJ+Z3Rjmj/1XZ5r8D50pWXKQdNWLFKcmmZ7bpdq2aec07JMuevliydFR/nl4LLJNs6269nq7iiW99mooKHHYq/j+JE4M7dgAAAD7BwA4AAMAnGNgBAAD4BAsUj4CeP/9KsoBj6uLJmE/nUvmP/yZZ94/X6IY5nXfkmosXCOv8H5dIbXXe96H6SbKN16tz3fpjujhr0NM5YeWHdkuWqJ0tWVlSF6jtmqLzn2JT5kk2ub1ZsgPTlkqWCur8r8RAu2TTw62SWblG//lifd73fX3Fsk19/SLJZk/S65RzvBcHBnS78XF9/Xsz+lonU3osoSJ9jhd3N0hWUarvgb0H9PPljat1IefN7+tztPfkL4zdVHGmbNNxQI83XKz7auyKSlYxQ493Q1hf/wXn6gLiNTld8PjlzjN0u5jO7Ssv0+v+5YuYTwfg2LhjBwAA4BMM7AAAAHyCgR0AAIBPMLADAADwCYonjoOrWGKwshVXnoQjOX6xr98pmWshYy+tixYXTdJJ8am6mZJF9ucv2pot10WMd9Sdo48L6ILCZZkuybIRR8FCWAsvktXVkoVzOmE94iiU6Jq8QLJ9mYmS7TioFRDL6nQB5U0teu2amrVoYVdTfuFFTb0uOFoS0cn0Xb36I337tbrdD35d2Ge6c+c5Kjsc/uUxPQczLVD48kVajFOotgN6PSfV5J/vgb6YbNOqayxbJKznP3+yLgLt0tWt2Y7OKsnC4/Rnp7tPn/eKpbrg83nzCzoUABDcsQMAAPAJBnYAAAA+wcAOAADAJxjYAQAA+ATFE8fg7CqRy1+1v/S8q0/W4ZxQwWJ9O3g5nQBvjiyY004Gg7kKJaoz2hUiXaRdB8Lp3mPu38ysY6BS95fTCfsNkX2S7Z1xvmZ9EyTrHtBOBhWlev5bEtMku+Zc12cpzc5ZvS3v+8yCWbJNUZEWRUyYoNfOTLdLduvxNu1xFDZokwWn/3P5if+MGHSc77s78t+L4+L62syYqOdaH0tKdrBPixi2peoli2nNjnUk9dq9ndHH7j/oKjI5/oISABiMO3YAAAA+wcAOAADAJxjYAQAA+AQDOwAAAJ8IeJ7nmB0/tiQSCYvH49bV1WUVFboCP0Zfxxt/kqw4lcj7Pl0SP+79d5XpRPRwVjsFpIuiku1KTZastFi7WwQdnRJ6M2HJVszX7gb/9gd97D9cqpP9MbJu+tf8Ioh13yqsU0ah7t+or2uR4+Pw3jYtiqiv0Q2zjtqJL1/E+wTDx/+T+AB37AAAAHyCgR0AAIBPMLADAADwCQZ2AAAAPkHnCYyI/uixCyMyIS1s6IrWSlaW6ZLMC+gE8/ZgnWQT0nv02LK6sn9Llx5vNKwz2z9zdmE/IhRKjI6RLpYYzFXskHE0WSkr1c/IPSndLqKNMQBgRHHHDgAAwCcY2AEAAPgEAzsAAACfYGAHAADgExRPYETUz110XI/T0gmzbdt3S9aV1knyn5g7rqA9aonF0fA5B/m6ktp5IlamhTJdCa2o+L/X8OsVwMnH/2QAAAA+wcAOAADAJxjYAQAA+AQDOwAAAJ9gdi/GnPc6J0q2eglvVZx83/5MoZ99eX8CGBu4YwcAAOATDOwAAAB8goEdAACAT5wSE0M87/AioYlEYpSPBCdDb3dGskTilHirAsCo+OD/xw/+v8TH1ynxv2UymTQzs4aGhlE+EgAAxq5kMmnxeHy0DwOjKOCdAsP7XC5n+/bts/LycgsEtJ2P3yQSCWtoaLDm5marqKgY7cP52OJ1GDt4LcYGXoexY/Br4XmeJZNJmzhxogWDzLL6ODsl7tgFg0GbPHnyaB/GSVdRUcEvzzGA12Hs4LUYG3gdxo4PvxbcqYMZxRMAAAC+wcAOAADAJxjYjUGRSMRuv/12i0Qio30oH2u8DmMHr8XYwOswdvBa4GhOieIJAAAAHBt37AAAAHyCgR0AAIBPMLADAADwCQZ2AAAAPsHADgAAwCcY2AEAAPgEAzsAAACfYGAHAADgE/8fChHw7utnqXsAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, - "nbformat": 4, - "nbformat_minor": 0 + { + "data": { + "text/plain": [ + "(
,\n", + " )" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 5 + }, + { + "cell_type": "markdown", + "source": [ + "### Resampling" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "print(f\"Cell size: {dataset.cell_size}\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:12.371705Z", + "start_time": "2024-12-06T22:27:12.367025Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cell size: 5000.0\n" + ] + } + ], + "execution_count": 7 + }, + { + "cell_type": "code", + "source": [ + "dataset_8km = dataset.resample(cell_size=8000, method=\"bilinear\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:14.119754Z", + "start_time": "2024-12-06T22:27:14.092187Z" + } + }, + "outputs": [], + "execution_count": 8 + }, + { + "cell_type": "code", + "source": [ + "dataset_8km.plot(vmin=0, title=\"Rhine River Basin (resampled to 8 km)\", cbar_label=\"Elevation(m)\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:16.099466Z", + "start_time": "2024-12-06T22:27:15.909121Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAALDCAYAAABzZPY8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdMklEQVR4nOzdd3hUVf4G8PdOySSZZBLSSAJJaKEIiDQDiBRBqhRRBHQpgsquFJUVFUUNuwiKCOxPEBt1lbKIFAURlL6IKyVSRAy9JaEEElInyZzfH2xmGZI5N8OdScLwfp5nHmW+955bpuTMufe+VxFCCBARERHRHU1X0StARERERNqxU0dERETkBdipIyIiIvIC7NQREREReQF26oiIiIi8ADt1RERERF6AnToiIiIiL8BOHREREZEXYKeOiIiIyAuwU6dCURSHh06nQ1BQEFq1aoWZM2eioKCg1Pk6dOgARVFw6tSpMi8rMTERiqJg4cKF7ll5Nzl16lSJ/aDX6xESEoL27dtj4cKFcHZjktvZD5VB8Wtx68NiseD+++/HrFmzUFhYWO7rNWzYMCiKgq1bt5bL8iZNmgS9Xo/ffvutXJbn7WrUqAFFUbxmOVrs3r0bjz32GCIjI2E0GhESEoJOnTrhq6++cqmdrVu3QlEUDBs2zDMrqiI3NxdRUVHo2bNnhSyf6GaGil6BO8XQoUMBAEVFRTh16hR27dqFn3/+GevWrcOGDRtgMHj/rjSbzXj88ccBAAUFBUhOTsb27duxfft2bN26tdJ1Rt2hSZMmuO+++wDceO3PnDmDf//73/jll1+wYcMGrF+/Hjqdd/42SktLw/Tp09G/f3/cc889Fb065EHDhg3DokWLsGXLFnTo0MHjy1uxYgUGDhwIm82GFi1aoEOHDrhw4QK2bt2KzZs349VXX8W7777r8fVwBz8/P7zyyisYN24cNm/ejIceeqiiV4nuZoKkAIjSdtPu3buFr6+vACD++c9/lqi3b99eABAnT54s87IuXbokjhw5Iq5du6Zlld3u5MmTAoCIi4srUVu1apV9H+3YsaNE/fTp0+LIkSPCarWWw5q6z9tvvy0AiLfffrtEbd++fcLPz08AECtXrizX9bpw4YI4cuSIyM7O9viyxo4dKwCIpKQkjy/rbhEXF1fq90lFL2fo0KECgNiyZYvnVuq/CgoKRHh4uAAgli1b5lDbtWuX8PX1FYqiiGPHjpWpvS1btggAYujQoR5Y27LJyckRwcHB4v7776+wdSASQgjvHGIoBwkJCfbh/u+//94tbYaFhaF+/foICgpyS3vloW/fvujWrRuA0vdDbGws6tevD6PRWN6r5jFNmza1j1hu3769XJcdFRWF+vXrw9/f36PLycnJwaJFi3DvvfeiSZMmHl0W3V1+//13XLp0CfXr18eAAQMcaq1bt0bXrl0hhMDevXsraA1d5+fnh8ceewz/+c9/sG/fvopeHbqLsVOnQcOGDQEAFy9elE63evVqtGrVCmazGSEhIRg0aBDOnTtXYjpn59TdfF5aWdsCACEEFi1ahHbt2iE4OBh+fn649957MX36dKfnAt4O2X649Zy6ixcvwmAwoFq1arDZbKW2969//QuKouCpp57StD3F5xUJIfDhhx+iSZMm8Pf3tx9O1aJq1aoAUOK8ury8PMybNw99+vRBrVq14Ofnh+DgYLRr1w7Lli0rta2CggJ88sknuP/++xEWFgZ/f3/UqFEDjzzySIl5nJ1Td/M5VJ9//jnuvfde+Pn5ITIyEiNHjsS1a9dc2r4VK1YgIyOjxGtQTFEU1KhRA1arFX/7299Qv359mEwm9O3b1z5NVlYW/va3v6Fx48bw9/eHxWJB+/btsXr16lLbPHLkCAYPHozatWvD19cX4eHhuO+++/Diiy8iJSXFPp0QAkuXLsXAgQNRt25dmM1mBAYG4v7778dHH31U6vvq5s/W3r170b17dwQHByMkJARPPPGE/TOUnZ2N8ePHo0aNGvD19UWjRo1KPcfr5vO4UlJSMGzYMFStWhV+fn5o1qwZFi9e7MLevuHUqVMYOXIkatSoAZPJhPDwcDz++OM4cOBAqdMXFhZi6tSpiI+Ph6+vL2rVqoU333wTVqvVpeUqioJFixYBADp27OhwDunN58IWFhbiww8/RPPmzREQEICAgADcf//9mDt3LoqKisq8PJPJVKbpQkJCXNqO0ixbtgw+Pj6oVq0aDh8+DMDxtbt48SJGjBiByMhIBAQEoG3btti1a5d9/o8//tj+WYqJicGkSZOcfm89+eSTAIDPPvtM83oT3bYKHSe8A8DJ4VchhJgyZYoAIP70pz+VqBUffh0/frzQ6XTi/vvvF/369RMxMTECgIiPjxc5OTkO8xQf8luwYIHmtoqKikT//v0FAGGxWESnTp1Enz59RGRkpAAgevToIYqKisq0D2SHX4UQ4rnnnhMAxMSJE53uh5sPQ3ft2lUAED/88EOp7fXp00cAEOvWrdO0PcWHoJ577jlhNBpF586dxYABA8Sjjz6qus2yw69CCNGxY0cBQMyePdvh+SNHjggAomrVqqJ9+/ZiwIABon379sJoNDptb8CAAQKACAsLE7169RIDBgwQbdu2FRaLRbRv395hWmeHyYq3dfz48cLHx0c88MADom/fviIiIkIAEA8++KCw2Wyq213s8ccfFwDEzz//XGodgIiJiRHdu3cXZrNZ9OjRQ/Tv31/8+c9/FkIIkZqaKu655x4BQFSrVk307t1bdO7cWZjNZgFATJ061aG9vXv3Cj8/P6EoikhISBADBw4UPXv2FA0aNCixvbm5uQKAqFKlinjggQfEgAEDRKdOnYS/v7/Tw3DFr+ef//xnYTKZRMOGDcVjjz0m6tSpIwCIunXrimvXromWLVuK0NBQ8cgjj4gOHToIRVGEoihiw4YNDu0VH/Lr1auXiI2NFVWrVhVPPPGEePjhh4XBYBAARGJiYon1cHZYdMeOHcJisQgAomHDhuLxxx8XrVu3FoqiCD8/P7F582anr1FAQIDo06eP6N27t/D39xc9e/YUsbGxZT78OnToUFG7dm0BQHTt2lUMHTrU/rh06ZIQQojCwkLRo0cP++evT58+ok+fPiIwMFAAEI8++miZv08KCwtFrVq1BACxfPlyh1rx4deaNWuK/Pz8MrXn7PDrRx99JHQ6nahdu7Y4ceJEiel79+4tatWqJaKjo0Xfvn1FQkKCACD8/f3FoUOHxNixY4Wvr69o3769eOSRR+zb+vrrr5e6Hrm5ucJoNIrY2NgyrTeRJ7BTp0LWqWvXrp0AIL744osSteLOjNlsFj/++KP9+ezsbNGmTRsBQMybN89hHrVOnSttvffeewKAePjhh8XFixftz2dlZYlevXqV2iFxRtaps1qt9j+MO3fudLofbu7ULV68WAAQw4cPLzH91atXhY+PjwgLCxMFBQWatqf4D2hYWJg4dOhQmba1WGmdusLCQnHy5Ekxfvx4e6cmIyPDYb7Lly+L77//vsQfuBMnTogaNWoInU7nsC+K923Lli1Fbm6uwzw5OTli165dDs+pdeqioqLE/v377c9funTJ/vrc/N5RExkZKYxGo8jLyyu1Xvy5qFOnjjh37lyJevfu3QUA8corrzicT3n8+HFRu3Ztodfrxa+//lpiu0o7R/G3334TFy5csP+7oKBArFy5ssQf/YsXL4oWLVoIAGLbtm0OteLXE4CYOXOm/Xmr1So6d+4sAIh77rlHdOjQQaSnp9vrn3/+uQAg2rVr59Becceg+D2ZlZVlr/3nP/8RAQEBQqfTObwWQpTeqcvIyLDv7xUrVjjUNm3aJHx8fES1atUctnfJkiUCgKhVq5bD/j9x4oSoXr269HurNGrn1E2fPl0AEI0bNxZpaWn25y9cuCDq1asnAIg5c+aUeXnbt28XQUFBAoBo0aKFGDBggGjXrp3Q6XSiVatWIjk5ucxtldap+/vf/y4AiHvvvVekpKSUOj0AMWDAAIfPXfH75J577hHVqlVz+N44fPiw8PHxEf7+/uL69eulrkvz5s0FAHHq1Kkyrz+RO7FTp+LWL8eioiJx7Ngx8ec//9n+a+/mzkex4s5MaaNXK1euLPWXpVqnrqxtFRQUiLCwMBEYGGj/pX2z1NRUYTKZROPGjVW2/obSOnVWq1UcPnxY9OvXTwAQzz//fKnzltapu379uvD39xdBQUElOg2fffaZACBGjRqleXuK/4C+//77ZdrOm93cCSjtMXDgwFI7MzLF2/Z///d/9ud+/vlnAUC88MILZWpDrVP3+eefl5jngw8+kI463iotLc0+AuxM8X64tRMihBD79+8XAESbNm1KHR1cvXq1ACDGjBljf664E3j16tUyraMzmzZtEgDEuHHjHJ4vfj1v7ZwJIcTatWsFAKHX60t0JgoLC0VYWJgwGo0OndPijoGiKOL3338v0earr75qHyW+WWmdupkzZwoAYsKECaVu04svvliiw/vggw8KAOLLL78sMf0nn3zi9k5d8chfaT8MivdfvXr1yrw8IYRISkoSNWvWdPhcBQYGiokTJ7p0IdDNnTqbzWbfX23atCn1/VQ8fVBQUIl6RkaGUBRFABDz588vMe+jjz4q3U9PPfWUACDWrFlT5vUncifvz+Fwk9Iyn0aMGIFPP/1UGmnRpUuXEs/VrVsXABzOEyqLsra1f/9+XL58Gd27d0dYWFiJeapWrYr4+HgcOnQIubm58PPzK9PyT58+Xep+mDRpEt56662ybgYCAgLQu3dvLFu2DOvWrUO/fv3stSVLlgCAw7lcWrend+/eZV63W90caQIAly5dwv79+7FixQr4+flh7ty5pZ4jtHPnTmzduhXnz59HXl4ehBD21yg5Odk+Xf369WE2m7FgwQI0bNgQ/fr1Q2ho6G2vrzveb8XnRlapUkU6naIo6NWrV4nnN23aBADo06dPqe+Xtm3bAgB++eUX+3PNmzfHd999hyFDhmDixIlo0aKFalRMUlISNm7ciNOnTyMnJwdCCFy/fh2A4z6+2cMPP1ziuVq1agG4cV5inTp1HGp6vR41atTAnj17cPnyZURFRTnUmzZtinr16pVoc9CgQXjvvfewc+dO6TYA/9tfN5+PeLO2bdti1qxZ+OWXX9CvXz8UFBTg559/hk6ns1+wc+uyR44cqbrcsjpz5gzOnDmDyMjIUuM6HnnkEQQHB+Po0aO4dOkSwsPDVdtcunQpnn76abRq1QrLli1Dw4YNceHCBUyfPh2TJ0/Gjz/+iG3btrl0gVVhYSGGDRuGxYsXo1u3bli5cqX0gqIWLVogODjY4TmLxYLQ0FBcvny51PdK7dq1ATj/LBWfB3jp0qUyrzeRO7FTV0bFOXV5eXlISkrC0aNHMW/ePLRu3RojRoxwOl/16tVLPBcQEAAAyM/Pd2kdytpW8cnN3333nWoAaXp6OqpVq1am5d+cU5eVlYVffvkFZ86cweTJk5GQkICuXbuWqR3gRqdt2bJl+PLLL+2dugsXLmDbtm2oWbMmWrdu7bbtiY2NLfN63apv375ITEx0eM5qteL555/HvHnzYDAY8Omnn9prGRkZ6NevHzZv3uy0zeKOB3Djj8hnn32G5557Ds899xxGjhyJevXqoWPHjhgyZAhatWrl0vq64/2WkZEBAAgMDJROFxERUWqHtvj1evXVV/Hqq686nf/y5cv2/x8/fjx27tyJb775Bt988w2CgoKQkJCARx55BMOGDXNYF6vVimHDhmHp0qVO2755H9+stPe62Wx2Wru5Xtr+i4uLK3WeGjVqALjxnlZTvL8SEhKk0xXvrytXrsBqtSIqKgo+Pj4lpgsMDERwcLDLF8c4U7wNxdt0K0VREBcXh2vXruHChQuqnbrk5GQMHToUVatWxbp16+z7Nz4+Hp988glSUlLwzTffYMGCBXjuuefKvJ7Lly9HYWEhmjRpgrVr16p2CGWv9+XLl6XvFWefJYvFAuB/nyGi8sZOXRndekXqtGnT8Oqrr2LMmDHo3Lmz0y93d6a6l7Wt4ivR4uPj0aZNG+m0Zb0SDbgRuXLzfigqKsILL7yAOXPmYOjQoUhOTlbtCBTr2rUrwsLCsG7dOmRkZCAoKAjLli2DzWYrccWl1u3x9fUt0zqVlY+PD2bOnIn58+dj/vz5mDZtmv0X/6uvvorNmzejXbt2+Nvf/oZGjRohODgYer0eGzdutMc13GzQoEHo3Lkz1qxZg40bN2Lbtm2YO3cu5s6di/Hjx2PatGllXjd3vN+KI3UyMzOl0znbr8Wv14MPPmgfBSvNzaOuFosFmzdvxr///W9888032Lp1K3788Uds3LgRU6dOxY4dO+yjJDNmzMDSpUvRqFEjvP/++2jWrBmqVKkCo9GIP/74A/Xq1XN6hxPZ/qmoOzAU76/+/ftLR5aKO33F21be61uW5ZVlmmXLlqGgoADdunWzd5Ju9sQTT9jfA6506tq2bYtjx47h119/xZw5c/Diiy9qWtfb2b/Fnbk7KZaKvAs7dbfplVdesf/RmTRpEubPn1/Rq2RXPFrTqFEjj97lQa/XY9asWdi6dSsOHz6MmTNnlvkwrNFoRP/+/TF37lysXLkSw4cPtx96LY4GKFZe2+OKwMBAhIWF4dKlSzh27BhatGgBAFi1ahX0ej3Wrl1b4ov9xIkTTtsLDw/HM888g2eeeQZCCHz//fcYMGAA3n//fQwbNqxc7+gQEREB4Mao5+0ofr0ef/xxjB07tszzKYqCtm3b2g/PXrp0CS+88AKWLl2K119/HcuXLwdwYx8DsHfsbibbx55w+vRp6fPR0dGqbVSvXh1Hjx7FxIkTce+996pOHxYWBh8fH6SmpsJqtZYYrbt+/brbRumA/23DyZMnnU5z5swZAChxeLo0xfExxaNatyp+3tX3X1xcHD7//HO0b98eL730EvR6PcaMGeNSG1pdvXoVAMp0CJrIE5hTp8F7770HRVHwz3/+0+mXe0Vo2bIlgoKCsGXLFtXRFq0MBgMmT54MAPjHP/6BrKysMs9bPCK3ZMkS/PHHH9i7dy+aNWuGBg0aOExXnttTVtevX7cfDrt5tOHq1asIDAws9Zf6v/71rzK1rSgKunXrZr+X5KFDh9ywxmUXERGByMhInD59Grm5uS7P37lzZwBwmkdXVuHh4fZD3wcPHrQ/X/yHMyYmpsQ8Zd3H7pKUlIQ//vijxPPFh4YfeOAB1TZc3V9GoxH3338/bDYbVq5cWaLuLA9RprhjWNr9jGNjYxEbG4vU1NRSTytYt24drl69inr16pWpMxMZGQkA2LNnT6n14nMtnR3ulalduza2bNmC6OhojB07FnPnznW5DS2OHDkCAG7JwiS6HezUaXDfffehT58+KCwsdOkQmaeZTCa8/PLLuHbtGh577LFSO5wHDhywj3xo1bdvXzRt2hTp6ekufYm2adMGNWrUwJYtW/DBBx8AQKlht+W9PWqsViteeuklCCFQs2ZN1K9f316rW7curl27VmJdZs6ciS1btpRoa//+/fj6669LhCdfvXoVP//8MwBt5wTergcffBCFhYXYv3+/y/O2atUKnTp1wpYtW/DSSy+V6OjbbDZs3LjR4SKCjz/+uNSRoO+++w6A4z4ovvDj448/dpj2q6++uq3QXy1sNhvGjh2LnJwc+3N79+7FnDlzoNPpynTBwsiRIxEeHo4pU6ZgwYIFJQ4dZ2dnY/HixQ4h48XtvvXWWw4n7Z8+fRp///vfXd6O4tG4o0ePllovHvF66aWXHC4CSE1Nxfjx4x2mUdOnTx8AN+7Gcuv3xe7duzFz5kwAKPUikLKIj4/Hli1bEBUVhVGjRpVbGHBeXh4OHjxo7wQTVYiKu/D2zgCVaICkpCShKIrw9fV1yEOS3fu1OCLk1mBZtUgTV9oqKioSgwYNEgCEyWQSrVu3toe0FscI9OnTR2XrHZfhLHxYCCHWrFkjAIjIyEiH3Ce1e+C+/vrr9n2s0+nE+fPnS53udrZHy302i1+LJk2aOISx9uzZU0RHRwv8N6T01miDL774wr49Dz74oBg0aJC45557hE6nEy+99FKJ+Jnie+cGBQWJTp06iaeeekr07NnTHkR7a1CyWqRJaW7n3pgLFy4UAMTkyZNLrau9H1JTU8W9994rAIiQkBDx0EMP2UOVi+/7eXNeXJMmTez5YI899pgYMGCAuO+++wQA4efn55DXt23bNqHX6wUA0bx5czFo0CB7Pt3LL7/s0mdLCOefoWKlvYeL9+kjjzwiYmNjRWRkpHjiiSdE165d7UHTpUUQOXuddu7cKUJCQuz7tWfPnqJfv36iRYsW9sDmmzPvbDabPV4jMDBQ9O3bV/Tp08ceBO1K+LAQQuzZs0coiiJMJpPo06ePGDFihBgxYoS4fPmyEOJGtEtx7ExQUJB49NFHRd++fe2BvH379i1z+LAQwv46ATfClvv37y8eeOABodPpSo2CkXH2/j5y5IioWrWqUBTFIcdT7fMg+yzJ3kc//PCDAGAP4CaqCOzUqVDr1Akh7Flt48ePtz9X0Z26Yl999ZXo1q2bPWsrKipKtGrVSiQmJpaar1WasnTqhBD2P6w3h5CqdeoOHz5s38cPPfSQ6rq4sj3u6NTd+jCZTKJOnTpi5MiRTgNS161bJ1q1aiUCAwNFcHCw6Ny5s9i6dWupf0xSUlLE5MmTxUMPPSSqV68ufHx8RNWqVUXbtm3FokWLSmQgllenLicnRwQFBYl77rmn1HpZ3g85OTlixowZIiEhQQQGBgqTySRq1KghunTpIubMmeOQObh27VoxfPhw0bBhQxEcHCz8/f1F3bp1xXPPPVfqfv7pp5/EQw89JKpUqSICAwNFmzZtxMqVK13+bAmhrVM3dOhQcf78efGnP/1JhIeHC5PJJJo0aVLqcoSQv07nz58Xf/3rX0X9+vWFn5+fCAgIEHXr1hUDBgwQy5cvLxG2bLVaxTvvvCNq1aolfHx8RFxcnHjttddEXl7ebb33v/zyS9GsWTPh5+dnf7/fvM0FBQXiH//4h2jatKnw9/cX/v7+okWLFmLOnDmisLDQpWUJIcTXX38tunTpIkJDQ4XBYBBVqlQRHTt2LDV7T0b2/v7tt99ERESE0Ol0YuHCharTC3H7nbrhw4cLAGLv3r0urT+ROylCOLlMjIjuai+99BJmzZplP9eR/mfr1q3o2LEjhg4dWmku3qGKk5ubi+joaNStW9d+2gRRReA5dURUqgkTJiAgIADvvvtuRa8KUaX28ccf49q1a5gyZUpFrwrd5dipI6JSRUREYPz48Vi5ciV+++23il4dokopNzcX06ZNQ/fu3dGpU6eKXh26y7FTR0ROvfXWWygqKirXnDyiO4mfnx9SUlKwfv36il4VIvCcOiIiIiIvwJE6IiIiIi/ATh0RERGRF2CnjoiIiMgLsFNHRERE5AXYqSMiIvKw7du3o1evXoiOjoaiKFi9erVL8ycmJkJRlBIPs9nsmRWmOxI7dURERB6WnZ2NJk2aYPbs2bc1/8svv4yUlBSHxz333IP+/fu7eU3pTsZOHRERkYd1794dkydPRr9+/UqtW61WvPLKK6hWrRrMZjMSEhKwdetWez0gIACRkZH2R1paGn777TeMGDGinLaA7gSGil4BIiKiu93TTz+NU6dOYdmyZYiOjsaqVavQrVs3HDx4EPHx8SWm//zzz1G3bl08+OCDFbC2VFlxpI6IiKgCHT9+HEuXLsWKFSvw4IMPonbt2nj55ZfRtm1bLFiwoMT0+fn5+PLLLzlKRyVwpI6IiKgC7du3D0II1K1b1+H5/Px8hIaGlpj+66+/xvXr1zFkyJDyWkW6Q7BTR0REVIFsNhv0ej327t0LvV7vUAsICCgx/eeff45HHnkEkZGR5bWKdIdgp46IiKgCNW3aFEVFRbh48aLqOXInT57Eli1bsHbt2nJaO7qTsFNHRETkYVlZWTh27Jj93ydPnkRSUhJCQkJQt25dPPXUUxgyZAg++OADNG3aFJcvX8bmzZvRuHFj9OjRwz7f/PnzERUVhe7du1fEZlAlpwghREWvBBERkTfbunUrOnbsWOL5oUOHYuHChSgoKMDkyZOxePFinD9/HqGhoWjdujUmTZqExo0bA7hxmDYuLg5DhgzBO++8U96bQHcAduqIiIiIvAAjTYiIiIi8ADt1RERERF6AnToiIiIiL8BOHREREZEXYKeOiIiIyAuwU0dERETkBdipIyIiIvIC7NR50Ny5c3HvvffCYrHAYrGgdevW+O6775xO//XXX+Phhx9GeHi4ffrvv/++xDQtWrRAcHAwzGYz7rvvPvzzn//09Kbc8TzxWtxs2bJlUBQFffv29cDaexdPvBYLFy6EoiglHnl5eZ7enDuapz4X165dw6hRoxAVFQVfX180aNAA69ev9+Sm3NE88Tp06NCh1M9Ez549Pb05VIHYqfOg6tWr491338WePXuwZ88ePPTQQ+jTpw8OHz5c6vTbt2/Hww8/jPXr12Pv3r3o2LEjevXqhf3799unCQkJwRtvvIGffvoJBw4cwNNPP42nn35a2uEgz7wWxU6fPo2XX35Z9Z6NdIOnXguLxYKUlBSHh6+vb3ls0h3LE6+F1WrFww8/jFOnTuGrr77C0aNH8dlnn6FatWrltVl3HE+8Dl9//bXDZ+HQoUPQ6/Xo379/eW0WVQRB5apKlSri888/L/P099xzj5g0aZJ0mqZNm4qJEydqXbW7jjtei8LCQvHAAw+Izz//XAwdOlT06dPHzWt5d9D6WixYsEAEBQV5YM3uPlpfi7lz54patWoJq9XqidW7a7j7b8XMmTNFYGCgyMrKcsfqUSXFkbpyUlRUhGXLliE7OxutW7cu0zw2mw3Xr19HSEhIqXUhBH788UccPXoU7dq1c+fqejV3vhZ/+9vfEB4ejhEjRnhiVb2eO1+LrKwsxMXFoXr16njkkUdKHVUl59z1WqxduxatW7fGqFGjULVqVTRq1AhTpkxBUVGRp1bdq3jibwUAzJs3DwMHDoTZbHbXqlJlVNG9Sm934MABYTabhV6vF0FBQWLdunVlnnfatGkiJCREpKWlOTx/7do1YTabhcFgECaTScybN8/dq+2V3P1a7Ny5U1SrVk1cunRJCCE4UucCd78WP/30k/jnP/8pkpKSxPbt28Vjjz0m/Pz8xB9//OGJ1fcq7n4t6tWrJ0wmkxg+fLjYs2ePWLp0qQgJCVE94nC388TfimI///yzACB+/vlnd60uVVLs1HlYfn6+SE5OFr/88ot47bXXRFhYmDh8+LDqfEuWLBH+/v5i06ZNJWpFRUUiOTlZ7N+/X0yfPl0EBQWJLVu2eGDtvYs7X4vMzExRo0YNsX79evtz7NSVnSc+FzcrKioSTZo0EWPGjHHXKnstd78W8fHxIiYmRhQWFtqf++CDD0RkZKTb192bePIz8dxzz4lGjRq5c3WpkmKnrpx16tRJPPfcc9Jpli1bJvz8/MS3335bpjZHjBghunTp4o7Vu6toeS32798vAAi9Xm9/KIoiFEURer1eHDt2zJOr7nU88bl45plnRLdu3dyxencVra9Fu3btRKdOnRyeW79+vQAg8vPz3bqu3sxdn4ns7GxhsVjErFmz3L2KVAkZKvjo711HCIH8/Hyn9aVLl2L48OFYunRpmS89V2uTSqfltahfvz4OHjzo8NzEiRNx/fp1/OMf/0BMTIxH1tlbuftzIYRAUlISGjdu7M7VvCtofS0eeOABLFmyBDabDTrdjdO2//jjD0RFRcHHx8dj6+1t3PWZ+Ne//oX8/Hz86U9/8sRqUmVTgR1KrzdhwgSxfft2cfLkSXHgwAHx+uuvC51OJzZu3CiEEOK1114TgwcPtk+/ZMkSYTAYxJw5c0RKSor9ce3aNfs0U6ZMERs3bhTHjx8XR44cER988IEwGAzis88+K/ftu5N44rW4FQ+/lo0nXovExESxYcMGcfz4cbF//37x9NNPC4PBwHOIVHjitThz5owICAgQo0ePFkePHhXffvutiIiIEJMnTy737btTePL7qW3btmLAgAHlti1Use6oTt22bdvEI488IqKiogQAsWrVKpfbsNls4v333xfx8fHCx8dHVK9eXbzzzjvuX1khxPDhw0VcXJzw8fER4eHholOnTvYPqRA3OgHt27e3/7t9+/YCQInH0KFD7dO88cYbok6dOsLX11dUqVJFtG7dWixbtswj6+9NPPFa3IqdurLxxGvx4osvitjYWHubXbp0Ebt27SrHrbozeepzsWvXLpGQkCBMJpOoVauWeOeddxzOsSNHnnodjh49KgA4tEXeTRFCiHIaFNTsu+++w7///W80a9YMjz32GFatWuVygv/YsWOxceNGTJs2DY0bN0ZGRgYuX76Mzp07e2aliYiIiMrBHdWpu5miKCU6dVarFRMnTsSXX36Ja9euoVGjRnjvvffQoUMHAMCRI0dw77334tChQ6hXr17FrDgRERGRB3hV+PDTTz+Nf//731i2bBkOHDiA/v37o1u3bkhOTgYAfPPNN6hVqxa+/fZb1KxZEzVq1MAzzzyD9PT0Cl5zIiIiIm28plN3/PhxLF26FCtWrMCDDz6I2rVr4+WXX0bbtm2xYMECAMCJEydw+vRprFixAosXL8bChQuxd+9ePP744xW89kRERETaeE2kyb59+yCEQN26dR2ez8/PR2hoKIAbt1LJz8/H4sWL7dPNmzcPzZs3x9GjR3lIloiIiO5YXtOps9ls0Ov12Lt3L/R6vUMtICAAABAVFQWDweDQ8WvQoAEA4MyZM+zUERER0R3Lazp1TZs2RVFRES5evIgHH3yw1GkeeOABFBYW4vjx46hduzaAG6GYABAXF1du60pERETkbnfU1a9ZWVk4duwYgBuduBkzZqBjx44ICQlBbGws/vSnP+Hf//43PvjgAzRt2hSXL1/G5s2b0bhxY/To0QM2mw0tW7ZEQEAAZs2aBZvNhlGjRsFisWDjxo0VvHVEREREt++OulBiz549aNq0KZo2bQoAGDduHJo2bYq33noLALBgwQIMGTIEf/3rX1GvXj307t0bP//8s/2WTTqdDt988w3CwsLQrl079OzZEw0aNMCyZcsqbJtKk5+fj8TERN76qxLga1E58HWoPPhaVB58LehWd9RI3d0iMzMTQUFByMjIgMViqejVuavxtagc+DpUHnwtKg++FnSrO2qkjoiIiIhKx04dERERkRe4I65+tdlsuHDhAgIDA6EoSkWvjsdlZmY6/JcqDl+LyoGvQ+XB16LyuPm1EELg+vXriI6Ohk7H8Zq71R1xTt25c+fsFzsQERFR6c6ePYvq1atX9GpQBbkjRuoCAwMB3Hiz8mRQutX2+1rf9rztkn5y45oQEVWMzMxMxMTE2P9e0t3pjujUFR9ytVgs7NRRCWadXn0iJ/h+IiJvcjecokTO8cA7ERERkRdgp46IiIjIC7BTR0REROQF2KkjIiIi8gLs1BERERF5gTvi6leS+9ZQT1p/pPBoOa2JZ/xYo7G0LgpuP2rxh2qNpPXO5w/ddtskd7hvJ2m94eofy2lNiIi8A0fqiIiIiLwAO3VEREREXoCdOiIiIiIvwE4dERERkRdgp46IiIjIC7BTR0REROQF2KkjIiIi8gLMqbsLVHSO3fch90jrilGR1q1XCm972Xp/+e8WY6BeWteaY6d1329v2FRaV1OQLd93Rbk2aV3LvlcT2yXSY20TEd2NOFJHRERE5AXYqSMiIiLyAuzUEREREXkBduqIiIiIvAA7dURERERegJ06IiIiIi/ATh0RERGRF2BOHWmmlsVWkYpy5DlsanU1nt72zKM5Hm2/Iul9+PVDROROHKkjIiIi8gLs1BERERF5AXbqiIiIiLwAO3VEREREXoCdOiIiIiIvwE4dERERkRdgp46IiIjICzAoygs8UnhUWlfLUqvonDmdUZHWTVWNt9127jnrbc/rDnp/+e+mit73ftV9pHUfi/N97xtsks5r9JO/bnojf1MSEbkTv1WJiIiIvAA7dURERERegJ06IiIiIi/ATh0RERGRF2CnjoiIiMgLsFNHRERE5AUYaXIX0Bp5opVaZInBopfWRYGQ1hVJ+2qRHYWZRbfdNgAYA+Xrbk0vlNZ1KtvuX91XWleLBTGa5bEiWmJHDCb514fOIN82IiJyL47UEREREXkBduqIiIiIvAA7dURERERegJ06IiIiIi/ATh0RERGRF2CnjoiIiMgLsFNHRERE5AWYU0ceZ1PJmbNekWe5aWFUyYFTo7Zunlx3APAPkefU+Qb7SetqOXZ6H89lzSk6ecZfrQXf3HbbRERUEkfqiIiIiLwAO3VEREREXoCdOiIiIiIv4FKnLjExEYqiODwiIyOdTj9s2LAS0yuKgoYNG2pecSIiIiL6H5dH6ho2bIiUlBT74+DBg06n/cc//uEw7dmzZxESEoL+/ftrWmkiIiIicuTy1a8Gg0E6OnezoKAgBAUF2f+9evVqXL16FU8//bSriyUiIiIiCZdH6pKTkxEdHY2aNWti4MCBOHHiRJnnnTdvHjp37oy4uDhXF0tEREREEi6N1CUkJGDx4sWoW7cu0tLSMHnyZLRp0waHDx9GaGiodN6UlBR89913WLJkiepy8vPzkZ+fb/93ZmamK6tJt/g+5J6KXoUKU5BZ5NH2Q5tZpHUff6O0fuVIhrSesvOKtB7VVv65C28QJa2rZcnJ6tU/XCGdl4iIypdLI3Xdu3fHY489hsaNG6Nz585Yt24dAGDRokWq8y5cuBDBwcHo27ev6rRTp061H7oNCgpCTEyMK6tJREREdNfRFGliNpvRuHFjJCcnS6cTQmD+/PkYPHgwfHx8VNudMGECMjIy7I+zZ89qWU0iIiIir6fpNmH5+fk4cuQIHnzwQel027Ztw7FjxzBixIgytWsymWAymbSsGhEREdFdxaWRupdffhnbtm3DyZMn8fPPP+Pxxx9HZmYmhg4dCuDGCNuQIUNKzDdv3jwkJCSgUaNG7llrIiIiInLg0kjduXPnMGjQIFy+fBnh4eFo1aoVdu/ebb+aNSUlBWfOnHGYJyMjAytXrsQ//vEP9601ERERETlwqVO3bNkyaX3hwoUlngsKCkJOTo5LK0VEREREruG9X4mIiIi8gKYLJejO0DX9N2n9W0O9clqT0plryC+KMQXJr5j2C/FzWsvLyJPOm30+V1rPSyuQ1vU+emndUi1IWg+oGiitF+RapXWDSf4RFjabfH5f+b5XDPLtIyKiyoMjdURERERegJ06IiIiIi/ATh0RERGRF2CnjoiIiMgLsFNHRERE5AXYqSMiIiLyAuzUEREREXkB5tQR9P7yvn1RjjzrTE3QPWZp3WSR59D5WuRZajqD8/U3h4VK5w2LV6T13Kvyu6Gc25ImrWenyuePalpVWg+pLa8X5slz9Iz+8n3nY5G/NsypIyK6c3CkjoiIiMgLsFNHREREXmHq1Klo2bIlAgMDERERgb59++Lo0aMO06SlpWHYsGGIjo6Gv78/unXrhuTkZHv91KlTUBSl1MeKFSvs073zzjto06YN/P39ERwcXF6bKMVOHREREXmFbdu2YdSoUdi9ezc2bdqEwsJCdOnSBdnZ2QAAIQT69u2LEydOYM2aNdi/fz/i4uLQuXNn+zQxMTFISUlxeEyaNAlmsxndu3e3L8tqtaJ///74y1/+UiHbWhqeU0dEREReYcOGDQ7/XrBgASIiIrB37160a9cOycnJ2L17Nw4dOoSGDRsCAD766CNERERg6dKleOaZZ6DX6xEZGenQzqpVqzBgwAAEBATYn5s0aRIAYOHChZ7dKBewU0dERESa5OXlwWq1eqRtIQQUxfGiNpPJBJNJfiEYAGRkZAAAQkJCAAD5+fkAAF9fX/s0er0ePj4+2LlzJ5555pkSbezduxdJSUmYM2fObW9DeWGnjoiIiG5bXl4eLMHVUJCf7pH2AwICkJWV5fDc22+/jcTEROl8QgiMGzcObdu2RaNGjQAA9evXR1xcHCZMmIBPPvkEZrMZM2bMQGpqKlJSUkptZ968eWjQoAHatGnjlu3xJHbqiIiI6LZZrVYU5KejRad/QW+QxyS5qqgwG3t+fAJnz56FxWKxP1+WUbrRo0fjwIED2Llzp/05o9GIlStXYsSIEQgJCYFer0fnzp0dzpW7WW5uLpYsWYI333xT+8aUA3bqSHMOnZqsU7nSuk9DbW9Dg8n5/DqVnDVZxh0ABFS1SOv1B8rrV09ekdZTD12U1v3D5O2rrb/eZJTWDWY/aV3RM6eOiMrG4BMIg9G9nTpFd+M7zmKxOHTq1IwZMwZr167F9u3bUb16dYda8+bNkZSUhIyMDFitVoSHhyMhIQEtWrQo0c5XX32FnJwcDBkyRNuGlBNe/UpEREReQQiB0aNH4+uvv8bmzZtRs2ZNp9MGBQUhPDwcycnJ2LNnD/r06VNimnnz5qF3794IDw/35Gq7DUfqiIiISDNFp0DRye/SczttumLUqFFYsmQJ1qxZg8DAQKSmpgK40YHz87txZGLFihUIDw9HbGwsDh48iBdeeAF9+/ZFly5dHNo6duwYtm/fjvXr15e6rDNnziA9PR1nzpxBUVERkpKSAAB16tRxuEq2PLFTR0RERF5h7ty5AIAOHTo4PL9gwQIMGzYMAJCSkoJx48YhLS0NUVFRGDJkSKnnzM2fPx/VqlUr0dkr9tZbb2HRokX2fzdt2hQAsGXLlhLLLy+KEEJUyJJdkJmZiaCgIGRkZLh0TJ3K5ltDPY+2r3Zv2ZCGgdK6XxX5eV8+Zuf3jjX4yu8rq3ZOmlZq59RdT8uW1mt1qCOtq62/T6C/tG4KCZLWZefUWV6aKZ2XiMpPRf6dLF52m0c2uv2cusKCbOz6tgv//pcRR+qIiIhIs8pw+PVuxwsliIiIiLwAR+qIiIhIM0Wns0eQuLNNKjt26sjj1HLw8jMLpHWjvzxrTXZemdoXgqKTt230lwdcGnzl84fGy3PeAqPypHVhk+87vY98/SKmLJLWiYjIe7BTR0RERJrpdIDOzefAcaDONdxdRERERF6AI3VERESkmaLooChuPqfOze15O+4tIiIiIi/AkToiIiLSjDl1FY+dOiIiItJMUTwQacLDry7h3iIiIiLyAhypuwtovber0SLPWivILNLUfvZZeVabbxV5FpuiK9S0fBlhk98a2VYo33a1+c0R8nuv6gzyfS+7N2tld2xwT2m9zj/XldOaEJE78PBrxeNIHREREZEX4EgdERERaaZTdNC5+Rw4d7fn7bi3iIiIiLwAR+qIiIhIOw+cUweeU+cSjtQREREReQGO1BEREZFmvPq14rFTR0RERJrx3q8Vj506L7C1QRNp3a+6j7See84qravl0GltvyjHJq9b5cuX/ZJT+5UnbPnSukElh05nkH/h6H3kH7HCPPm+Ucupi5nzlbTuSX8M6iatq2X08Rc4EZF7sVNHREREmvHwa8XjuCYRERGRF+BIHREREWmm0+mg07k5fNjN7Xk77i0iIiIiL8CROiIiItJMURQoipvPqXNze96OI3VEREREXoAjdURERKQZr36teOzUeYEOR37VNP+3hnqa5i/KlefMaZV9Plda94/0dVozmLS9xdW+UIqshdK6rVC+b4RNXlfLqUv565Py+Y0qOXm58py+ghzndbUcuvzredK6Wsbf7/0fltbrr9gkrRNR+VJ07u+EMXvYNdxdRERERF6AI3VERESkmQ466Nw8tKbj2JNLuLeIiIiIvABH6oiIiEgzXihR8ThSR0REROQFOFJHREREmnGkruKxU0cIiHceCQIAWcnyaApPR5rkpRXcdt0nVB6HYgyUR4YoRvkXit4on19vlA+Gh9SqIp/fR/4RLbLK941aZIpa3VZY5LRmzZbHoZzZmCqt+1Y1SutVm4ZJ60RE5IiHX4mIiEiz4tuEufvhiqlTp6Jly5YIDAxEREQE+vbti6NHj5aY7siRI+jduzeCgoIQGBiIVq1a4cyZMwCAU6dOOV2XFStWlGgrPz8f9913HxRFQVJS0m3tO3dhp46IiIg00+kUjzxcsW3bNowaNQq7d+/Gpk2bUFhYiC5duiA7O9s+zfHjx9G2bVvUr18fW7duxa+//oo333wTvr43jlrFxMQgJSXF4TFp0iSYzWZ07969xDJfeeUVREdHa9t5bsLDr0REROQVNmzY4PDvBQsWICIiAnv37kW7du0AAG+88QZ69OiBadOm2aerVauW/f/1ej0iIyMd2lm1ahUGDBiAgIAAh+e/++47bNy4EStXrsR3333n7s1xGUfqiIiISDNFp/PIAwAyMzMdHvn58nN6i2VkZAAAQkJCAAA2mw3r1q1D3bp10bVrV0RERCAhIQGrV6922sbevXuRlJSEESNGODyflpaGZ599Fv/85z/h7+9/G3vM/dipIyIiokotJiYGQUFB9sfUqVNV5xFCYNy4cWjbti0aNWoEALh48SKysrLw7rvvolu3bti4cSMeffRR9OvXD9u2bSu1nXnz5qFBgwZo06aNQ9vDhg3Dn//8Z7Ro0cI9G+kGPPxKREREmt3OhQ1laRMAzp49C4vFYn/eZDKpzjt69GgcOHAAO3futD9n++8V/3369MFLL70EALjvvvuwa9cufPzxx2jfvr1DG7m5uViyZAnefPNNh+c//PBDZGZmYsKECbe3YR7CkToiIiKq1CwWi8NDrVM3ZswYrF27Flu2bEH16tXtz4eFhcFgMOCee+5xmL5Bgwb2q19v9tVXXyEnJwdDhgxxeH7z5s3YvXs3TCYTDAYD6tSpAwBo0aIFhg4derubqRlH6gimQB9p3dhY29ukIK9QWlfLwdPCekW+bLW6VqHNLNK60V/+xeQTIM8QLMyT59TZCuX7Vm35wiac1vIyy3ZOizNV4uX7Rs2RxzpL6w1W/qCpfSJyTWUIHxZCYMyYMVi1ahW2bt2KmjVrOtR9fHzQsmXLEjEnf/zxB+Li4kq0N2/ePPTu3Rvh4eEOz//f//0fJk+ebP/3hQsX0LVrVyxfvhwJCQkurbM7sVNHREREXmHUqFFYsmQJ1qxZg8DAQKSm3ghBDwoKgp+fHwBg/PjxGDBgANq1a4eOHTtiw4YN+Oabb7B161aHto4dO4bt27dj/fr1JZYTGxvr8O/iq2Jr167tMDJY3tipIyIiIs2U28iVK0ubrpg7dy4AoEOHDg7PL1iwAMOGDQMAPProo/j4448xdepUjB07FvXq1cPKlSvRtm1bh3nmz5+PatWqoUuXLre9/uWNnToiIiLSzJMXSpSVEM5PGbnZ8OHDMXz4cOk0U6ZMwZQpU8rUXo0aNcq8bE/ihRJEREREXoAjdURERKRZZbhQ4m7HkToiIiIiL8CROiIiItJMBwU6N59TpwNH6lzBTh3Bx98orRcV2uR1a5G0bjLKc/CKqsvbzz1nldbDWwY5X7ZFnvOmRm+UD2YbTPKPkG+wWV4PCZDWDSb5vgOypNWcy/KcuiKrPKdPllOXtitdOq8ac7h83xARkWvYqSMiIiLNeE5dxeM5dURERERegCN1REREpBlH6ioeO3VERESkWWUIH77b8fArERERkRfgSB0RERFpptPB7fd+1XHoySXcXURERERegCN1hICqgdJ6Yb48y8xWKM+pKyqQ59DpffTSulpOXZHVefsGk7xtNYrKz0Sjv0la1/vIP2JCZd/Z9PK6ziDfPlnOHABkXbwurau9djIB8fKMQLW2dXr5L361fU9E5Yvn1FU8jtQREREReQGO1BEREZFmjDSpeBypIyIiIvICHKkjIiIizXTKjYe726Sy40gdERERkRfgSB0RERFpxnPqKh47dURERKQZO3UVz6VOXWJiIiZNmuTwXNWqVZGamup0nvz8fPztb3/DF198gdTUVFSvXh1vvPEGhg8ffntrTG5njrBI67ZCeZ6YsMnrqQfOS+uXfsmQ1tWk/+o8a80vxE86r1+wPEtNLeetyKotwy/vmjyDT9iypPWCnHxp/dyuFPny0wqkdaPFeQ6eb1WjdN7AqmZpPf96nrRuMMm/nnyD5e3fza5OfV5az72YLq1Hz1zmztUhonLi8khdw4YN8cMPP9j/rdfLw0+feOIJpKWlYd68eahTpw4uXryIwkL5H0IiIiK6syiKAh3DhyuUy506g8GAyMjIMk27YcMGbNu2DSdOnEBISAgAoEaNGq4ukoiIiIhUuHz1a3JyMqKjo1GzZk0MHDgQJ06ccDrt2rVr0aJFC0ybNg3VqlVD3bp18fLLLyM3N1e6jPz8fGRmZjo8iIiIqPJSFMV+Xp3bHhypc4lLI3UJCQlYvHgx6tati7S0NEyePBlt2rTB4cOHERoaWmL6EydOYOfOnfD19cWqVatw+fJlPP/880hPT8f8+fOdLmfq1Kklzt0jIiIiIudcGqnr3r07HnvsMTRu3BidO3fGunXrAACLFi0qdXqbzQZFUfDll1/i/vvvR48ePTBjxgwsXLhQOlo3YcIEZGRk2B9nz551ZTWJiIionCmKZx5UdpoiTcxmMxo3bozk5ORS61FRUahWrRqCgoLszzVo0ABCCJw7dw7x8fGlzmcymWAymbSsGhEREdFdRdMdJfLz83HkyBFERUWVWn/ggQdw4cIFZGX9L5bhjz/+gE6nQ/Xq1bUsmoiIiCoRnU7xyIPKThFCyIO4bvLyyy+jV69eiI2NxcWLFzF58mRs27YNBw8eRFxcHCZMmIDz589j8eLFAICsrCw0aNAArVq1wqRJk3D58mU888wzaN++PT777LMyr2RmZiaCgoKQkZEBi0WeqUbul/LXJ6V1taw0a5Y8j0xnkP+2yM+UX1hzdqc8i03GJ0Q+WB1au4p8frO2EeWCXHlOnTVbXr96XH4RUVGuPEMw/N4Qad3o53z/FObLM/iK8uXRRUUq+Yd6lfdFQNVAad0SGyatR73/pbRemWV/NlFazzktz4bMTrsqravlM9act0Zar+yyPnpVWrflO//cWV6a6e7VcYuK/DtZvOzRH6TA5OfeZefnZmL2X6P497+MXBqpO3fuHAYNGoR69eqhX79+8PHxwe7duxEXFwcASElJwZkzZ+zTBwQEYNOmTbh27RpatGiBp556Cr169cL//d//uXcriIiIiO5yLp1Tt2yZPGV84cKFJZ6rX78+Nm3a5NJKERER0Z1F54HwYXe35+00nVNHRERERJWDpqtfiYiIiABA0d14uLtNKjvuLiIiIiIvwJE6IiIi0kxR3H9bL94mzDUcqSMiIiKvMHXqVLRs2RKBgYGIiIhA3759cfToUYdpEhMTUb9+fZjNZlSpUgWdO3fGzz//bK+fOnXK3kG99bFixQoAwNatW51O88svv5TrNt/MpZy6inK359RdmfSsfAKdvG9uKyiQ1gtz5TlzNqtK3phK3egvz3LTGeUDxnlXr0vrV09dcVpL+emSdN6iHHlWmpr4x2pI69Zs+b49+2OqtG4r0PbxDG8ZJK0Hx8pz+Ay+Rqe17Evy1yUvU77tRVZ5zp3eRy+t+4f4yeuhASrty993NpUcPWGT19Xe937hwfL5Lc7XvyhXnv2YfeGytJ6Vek1a1xnk+14tW1JR+U5So9a+yeIvn1/ltTWYfKR1RWX7ZfRqbevlbQe/8uFtLbcy5NSN+/CiR3LqZoyJKPN2devWDQMHDkTLli1RWFiIN954AwcPHsRvv/0Gs9kMAFiyZAkiIiJQq1Yt5ObmYubMmVixYgWOHTuG8PBwFBUV4dIlx78dn376KaZNm4bU1FQEBATAarUiPT3dYZo333wTP/zwA06cOFFhI4w8/EpERESaeeJera62t2HDBod/L1iwABEREdi7dy/atWsHAHjyScdA/RkzZmDevHk4cOAAOnXqBL1ej8jISIdpVq1ahQEDBiAg4MaPLR8fH4dpCgoKsHbtWowePbpCDxnz8CsRERF5pYyMDABASEjpd8+xWq349NNPERQUhCZNmpQ6zd69e5GUlIQRI0Y4Xc7atWtx+fJlDBs2TPM6a8GROiIiItJM0SlQ3Hyv1uL2MjMdb4loMplgMslPcRBCYNy4cWjbti0aNWrkUPv2228xcOBA5OTkICoqCps2bUJYWOm3Fpw3bx4aNGiANm3aOF3WvHnz0LVrV8TExJRlszyGI3VERERUqcXExCAoKMj+mDp1quo8o0ePxoEDB7B06dIStY4dOyIpKQm7du1Ct27d8MQTT+DixYslpsvNzcWSJUuko3Tnzp3D999/L52mvHCkjoiIiDTTKTce7m4TAM6ePetwoYTaKN2YMWOwdu1abN++HdWrVy9RN5vNqFOnDurUqYNWrVohPj4e8+bNw4QJExym++qrr5CTk4MhQ4Y4XdaCBQsQGhqK3r17u7BlnsFOHREREVVqFoulTFe/CiEwZswYrFq1Clu3bkXNmjXL1L4QAvn5Ja/YnzdvHnr37o3w8HCn8y1YsABDhgyB0eg8LaC8sFNHREREmlWG8OFRo0ZhyZIlWLNmDQIDA5GaeiM2KigoCH5+fsjOzsY777yD3r17IyoqCleuXMFHH32Ec+fOoX///g5tHTt2DNu3b8f69eudLm/z5s04efJkpTj0CrBTVy5SXxksraudWKpW1/v5qsyvcuqkTZ6Fpp5ZJa+r5TIV5VvldZUcPJmgeLO0nv6rPGtNTfLKU5rmV6OWM2cwyT/Clmoq8/vKM7Vk+14t5y3vaqa0rkanl7/vC/PlOXeFefJ8RmuWPOtN7XOjlqWmtm8LsnPly5f8Mcu/Jn/fpvx6Tlq/ciBDWo9MKP2E8WL+IfKcOEUn/05R+04rssozAPOuZUvrau/N3EL5e1P2neYTIP++NfjJDwsazPJ8RdJm7ty5AIAOHTo4PL9gwQIMGzYMer0ev//+OxYtWoTLly8jNDQULVu2xI4dO9CwYUOHeebPn49q1aqhS5cuTpc3b948tGnTBg0aNHD7ttwOduqIiIhIM0WnmoV/W226Qu1+Cr6+vvj666/L1NaUKVMwZcoU6TRLliwp87qVB3bqiIiISDMFHjj8Ct771RWMNCEiIiLyAhypIyIiIs0UneuHS8vSJpUddxcRERGRF+BIHREREWmmUxTo3HxOnbvb83YcqSMiIiLyAhypKweiSJ6nJeRl6Izyl8mmkvOm9b4tastXY1PbfpWcPLW6Ndv59mvNoVMT1TZUWldUstb8grVlVqlnHMp/t/mFyhPa864633+ZF65J5808miOtm2vI87wAeTp7Ub48v1At37BQZX7fIPlro5aFppqvqJKTJwqdf26yL8pz5tRy6Kq1jZDWTYHyLDa1jD6t1D7zNsm+KUtdvX35ayOjqOR26lXW7U6mKDce7m6Tyo4jdURERERegCN1REREpBlH6ioeO3VERESkmU6nQKfxdJ/S2qSy4+FXIiIiIi/AkToiIiLSjIdfKx5H6oiIiIi8AEfqiIiISDOdojlBq9Q2qezYqXOTlPFP3f7MKu9aW4E870qtrujluUlqdbVMpyKVnDy1zKj8zFxp/fSOM9J67jnnyw+6xyydt0qNIGn9zKYUaV0t6yy0Tri07hMgzwNTyzpTy6lTm996XZ4ldz3lmtPahW2XpfOqUYzydc84ka2pff198q83tYxAk8VfWlfNwcuTfy4KcvKlddnn5vwvqdJ5LbXl6+5XRV6vaKrfOSr7PuuS/L1z9WimfPkFzpcf16madF6dSk6dmktvDZfWw/82X1P75N3YqSMiIiLNFJ2i+kPzdtqksuM5dURERERegCN1REREpBmvfq147NQRERGRZrxQouLx8CsRERGRF+BIHREREWnGw68Vj526Mkr565PSurDZJDX55flqV/coOvmAqlpkCFTqapfgF1kLVJbvfNtvzC+PH7ieKo8XkEWWAEC1jhFOa4GRFum8apEicV3l+/709+eldbVIE9n7BgB0BvnyrVl58nq2fN+p7fuUny5J61pkJcvXXU1Ik0Bp3RTgI62rvfZq+17Y5HW1faslEsZokX9mg+6Vv+/VvpPUvhPU3rda289Jz5LWL+69Iq3bCuXLr/GwPJYk95rzmKWLv8lft/D68mX7q+w7ReEBNLp97NQRERGRZooOUBmDuK02qey4u4iIiIi8AEfqiIiISDOeU1fxOFJHRERE5AU4UkdERESaKYoCxc1Da+5uz9uxU0dERESa6eCB8GH3Nuf1uL+IiIiIvMBdM1KX9toQad1WJM9yU8uCk2WxqeXQqVGbvyBHnkWmlimlNQdPLYcuL8N55hMAXPntqrTuEyp/m1apEeq0pvfR9ha3VKsirQfUSpfWL/6WJq0HxQRJ66lJF6V1tQw/v+ryrDZruvy1K8px/t5Ry0ozVTXK286Vvy/Vtk3Ryz8XhfnybVN7X6t9rtQyAtVy6HRG+fqH3uc8a84cbpbOq5YTd3zdafn8BfL51ej95N8p1dpWlS9f5TurIFP+2oU2k+f0BcWGqdSd14rqy99XhXnacj3vZLxQouJxpI6IiIjIC9w1I3VERETkORypq3gcqSMiIiLyAhypIyIiIs10HrhNmLvb83bcXURERERegJ06IiIi0qz4nDp3P1wxdepUtGzZEoGBgYiIiEDfvn1x9OhRh2mEEEhMTER0dDT8/PzQoUMHHD582GGa1NRUDB48GJGRkTCbzWjWrBm++uorh2muXr2KwYMHIygoCEFBQRg8eDCuXbt2O7vObdipIyIiIs10imcerti2bRtGjRqF3bt3Y9OmTSgsLESXLl2QnZ1tn2batGmYMWMGZs+ejV9++QWRkZF4+OGHcf36dfs0gwcPxtGjR7F27VocPHgQ/fr1w4ABA7B//377NE8++SSSkpKwYcMGbNiwAUlJSRg8eLDm/aiF15xTl/LXJ6V1tdwjNWqZVvmZOU5rWRezpPMGRARI62qZU2p1rdT2Xe41eV7X+S3yrDU1cd2ipHWdwXlemtrrppbRZ/Q3SevVWlST1o98mSytp/96XVpXy+gz15CvX/apfGldjSznzreKPAPP4CvPsSvyl7+v1LLSruzLlNZ1LeV/DXyD/KR1tdf+2hl5vqJaRqBaDp9PgPPlq71vrdnyz6Tavq3SOFBa16lkBNqK5O2f3ZoqrWvNyasSF6xpfhm17EutuaJF+fI6yW3YsMHh3wsWLEBERAT27t2Ldu3aQQiBWbNm4Y033kC/fv0AAIsWLULVqlWxZMkSjBw5EgDw008/Ye7cubj//vsBABMnTsTMmTOxb98+NG3aFEeOHMGGDRuwe/duJCQkAAA+++wztG7dGkePHkW9evXKcav/hyN1REREpFllOPx6q4yMDABASEgIAODkyZNITU1Fly5d7NOYTCa0b98eu3btsj/Xtm1bLF++HOnp6bDZbFi2bBny8/PRoUMHADc6fUFBQfYOHQC0atUKQUFBDu2UN68ZqSMiIiLvlJnpODJvMplgMslH04UQGDduHNq2bYtGjRoBuHGuHABUrep4V5OqVavi9On/3Wll+fLlGDBgAEJDQ2EwGODv749Vq1ahdu3a9nYiIiJKLDMiIsK+jIrAkToiIiLSzJMjdTExMfYLEoKCgjB16lTV9Rk9ejQOHDiApUuXlrKujkOAQgiH5yZOnIirV6/ihx9+wJ49ezBu3Dj0798fBw8edNpGae2UN47UERERUaV29uxZWCz/u6ev2ijdmDFjsHbtWmzfvh3Vq1e3Px8ZGQngxkhbVNT/zte+ePGiffTu+PHjmD17Ng4dOoSGDRsCAJo0aYIdO3Zgzpw5+PjjjxEZGYm0tJL39r506VKJUcDyxJE6IiIi0syTV79aLBaHh7NOnRACo0ePxtdff43NmzejZs2aDvWaNWsiMjISmzZtsj9ntVqxbds2tGnTBgCQk3PjwkfdLRck6fV62P574WDr1q2RkZGB//znP/b6zz//jIyMDHs7FYEjdUREROQVRo0ahSVLlmDNmjUIDAy0n98WFBQEPz8/KIqCF198EVOmTEF8fDzi4+MxZcoU+Pv748knb6Ro1K9fH3Xq1MHIkSMxffp0hIaGYvXq1di0aRO+/fZbAECDBg3QrVs3PPvss/jkk08AAM899xweeeSRCrvyFWCnjoiIiNzAHVerltamK+bOnQsA9qtUiy1YsADDhg0DALzyyivIzc3F888/j6tXryIhIQEbN25EYOCNKB+j0Yj169fjtddeQ69evZCVlYU6depg0aJF6NGjh73NL7/8EmPHjrVfSdu7d2/Mnj379jbUTbymU6eWpaae9SafXy17SJaVlvrzZfmyCy5J62rCmgdL6waTPC8s84I8R88SLc/Ru7BNvn1qIlpVkdZDasvPT5Bl0dkK5a+70d94220DgDVLngemM8rfN/4qOXPmcH9pXe19rTWnTu/n/AwNtc+Eopef3aHo5etuqSl/3+WlyXPiiqzyz7TWvDG19v0jfKV1NVlp2U5r4fXkbeemy9+XNpUcOHOY/H2nNeOvSpzzXE8AuHIsXVq/elD+nWXNlme9qeX8qX3uZWR/CwDAZJHvOy3LphuHX9UoioLExEQkJiY6nSY+Ph4rV66UthMSEoIvvvjC1VX0KK/p1BEREVHFURQBRXFvGL672/N27NQRERGRZspt3NarLG1S2fHqVyIiIiIvwJE6IiIi0qwyXChxt+NIHREREZEX4EgdERERacaRuorHkToiIiIiL+A1I3XRM5dpmv/E072kdbU8sIIc53lgEc3kOWw+AT7Ses4VeabT5b3X5O2HyF/mvLQCaT0rWZ55pabOo7HSenDNSGndoJJ5lXclw2nteso16bxXTzqfFwBMFnmO3aVf5POr8VHJyVPNVyySZ6VZ6snzxjKPyt9bMgY/+fvK6CffNr1B/ptSLUPQrJLxV5inLWOwyFoorednyLPQ1DICY7vI3/dnNqY6rZks8u+Mgjz5uqspKpC/r9Sy2NSoZQSG1Q2TL98of+/I9h2gnkFoMDlfP0v1UJW21fIZ5ftO69+yiqRTBHRujiBxd3vejiN1RERERF7Aa0bqiIiIqOLwnLqKx04dERERacZOXcXj4VciIiIiL8CROiIiItJMB/ffJowjT67h/iIiIiLyAhypIyIiIs0UCChwbwSJu9vzdndNp+7Us32ldVuhPJdJLbNKlk0UUDVQOq9aZpOPWZ7HZc2Wr1vGb9ny5fvLB2xjH4qW1s3h8u0zWeRZaUazr7RelC/PA5O9NnmZ8qwwm03+uqvl0OmM8mMNUW3DpXU1tgJ51ppN5VhHUb62jMHCTOfL94mVZ6WZVPIXi1S2TW+U53kFRJul9bRd6dJ65tEz0rpPqPxzab0i/9z5VZdvv49ZXo9o5TzfUi2b0lRVnvGnxtci/87RqWQM2grlr61a/mJmSqa0nn9d/p2g5vSGFGm9Rg/n33k6le9rqGZLyvcNkRZ3TaeOiIiIPIdXv1Y8nlNHRERE5AU4UkdERESa6RQPXP3KkTqXsFNHREREmimKgOLme7W6uz1vx8OvRERERF6AI3VERESkGS+UqHgcqSMiIiLyAnfNSF2Nz1Zrmv+PQd3csyKlECpZafnX5Vljajl0aqq1jZDWg+PCpHW1nDmdjzwzSwj5ORP5GfLt0xmc55lFNIiUzptacF6+bEuBtF6tbVVp3RQo3zdq+Yhqr31Bjnz9sk/Jc/rU6P1u/3ef0V+edaaWpKb2uQitLX9fZl2Qv28s1QOkdbV8yXM/X5DWZRl/gDzbEgCCqgU5rV39TZ7jlntOnuMW0kRbdqba+1ZRObtd7X2dfkieDxlYU559qfeXb39QvDzj0FItxGlNUVQ+E/J4RdgK5J/ZO5kOAjo3hwW7uz1vx5E6IiIiIi9w14zUERERkefwnLqKx5E6IiIiIi/gUqcuMTERiqI4PCIjnZ+ztHXr1hLTK4qC33//XfOKExERUSXy35w6dz7AnDqXuHz4tWHDhvjhhx/s/9brVc4KBXD06FFYLBb7v8PDtd3knIiIiCoX3lGi4rncqTMYDNLRudJEREQgODjY1UURERERURm5fE5dcnIyoqOjUbNmTQwcOBAnTpxQnadp06aIiopCp06dsGXLFtXp8/PzkZmZ6fAgIiKiykuB8MiDys6lkbqEhAQsXrwYdevWRVpaGiZPnow2bdrg8OHDCA0NLTF9VFQUPv30UzRv3hz5+fn45z//iU6dOmHr1q1o166d0+VMnToVkyZNcn1rPKju0g3S+tEBXZ3W1PK2hE3+pk3ZfUlaD4iXZ6FlJcszodQyqfQmH2m9IFvevi5fnstUZJXX1TKvZArz5G37BMiz1Kq3k+d5+Zjl+0aWoQeor5+awvxCTfOrUYzO932RyrILcuQZef5h8n2r9rlQ27exD8Rqml9NTOtq0vofK05K69mXs6R1/xDnWWxq+Yhq+85gkn/m1T5zat9ptkL58tXyG2s8HCOtq73v03+9Lq0HRskzCgvz5Dl3MsYA+bap5RMSaeFSp6579+72/2/cuDFat26N2rVrY9GiRRg3blyJ6evVq4d69erZ/926dWucPXsW06dPl3bqJkyY4NBeZmYmYmLkH3IiIiKqOIw0qXiafjKYzWY0btwYycnJZZ6nVatWqtObTCZYLBaHBxERERE5p6lTl5+fjyNHjiAqKqrM8+zfv9+l6YmIiKjyc3eciT3WhMrMpcOvL7/8Mnr16oXY2FhcvHgRkydPRmZmJoYOHQrgxmHT8+fPY/HixQCAWbNmoUaNGmjYsCGsViu++OILrFy5EitXrnT/lhARERHdxVwaqTt37hwGDRqEevXqoV+/fvDx8cHu3bsRFxcHAEhJScGZM2fs01utVrz88su499578eCDD2Lnzp1Yt24d+vXr596tICIiogqlg/DIwxXbt29Hr169EB0dDUVRsHr1aod6aTdEUBQF77//vn2a1NRUDB48GJGRkTCbzWjWrBm++uorh3Z69+6N2NhY+Pr6IioqCoMHD8aFCxdue9+5i0sjdcuWLZPWFy5c6PDvV155Ba+88orLK0VERER3lspwoUR2djaaNGmCp59+Go899liJekpKisO/v/vuO4wYMcJh2sGDByMjIwNr165FWFgYlixZggEDBmDPnj1o2rQpAKBjx454/fXXERUVhfPnz+Pll1/G448/jl27drm+kQD++OMPnD9/Hrm5uQgLC0O9evUQFBTkcjsuhw8TERERVUbdu3d3SOq41a03T1izZg06duyIWrVq2Z/76aefMHfuXNx///0AgIkTJ2LmzJnYt2+fvVP30ksv2aePi4vDa6+9hr59+6KgoABGo7FM67p79258/PHH+O6773D58mUAgBACiqJAp9Phvvvuw5/+9CcMGzaszB08durcRJbrVJgvz3QqyJVnlRVkFknrAXF+0rqaIqs88ynn0jVN8xv95VlwqplavvIPiGz5ausWECHPq7IVassYVMuhU8sDU6sX5snfG1pZ053vv8Jg+b5Vyz9Uo5Yjp7ZvTBb550LttVF7bdW2L7yl/Ev46nF5qLosS05rPqLWjD61nDq1faOegyff97ZCbe/7wnz5/NfOpDutZaXmSOeNbhYtrZsjXB99uVN44sKG4vZuvQmByWSCyST/26ImLS0N69atw6JFixyeb9u2LZYvX46ePXsiODgY//rXv5Cfn48OHTqU2k56ejq+/PJLtGnTpkwduqSkJLz44ovYvn07GjRogMcffxzNmjVDREQEfH19kZ6ejhMnTmD37t1444038Oabb+L111/HuHHj4OMj/+yzU0dERESV2q1ZtW+//TYSExM1tblo0SIEBgaWOM9/+fLlGDBgAEJDQ2EwGODv749Vq1ahdu3aDtO9+uqrmD17NnJyctCqVSt8++23ZVpuQkICnnrqKcyYMQPNmjWTTpudnY1ly5Zh2rRpKCwsxMSJE6XTs1NHREREmnnitl7F7Z09e9Yhs1brKB0AzJ8/H0899RR8fR3vAjJx4kRcvXoVP/zwA8LCwrB69Wr0798fO3bsQOPGje3TjR8/HiNGjMDp06cxadIkDBkyBN9++y0UlRMBDx06hPj4+DKto9lsxogRIzBs2DCcPXtWdXp26oiIiKhSc/eNCHbs2IGjR49i+fLlDs8fP34cs2fPxqFDh9CwYUMAQJMmTbBjxw7MmTMHH3/8sX3asLAwhIWFoW7dumjQoAFiYmKwe/dutG7dWrrssnbobqbX61GjRg3V6dipIyIiIs10yo2Hu9v0hHnz5qF58+Zo0qSJw/M5OTfOmdTdco9evV4Pm+RcUiFujCjm58vvee1p7NQRERGRV8jKysKxY8fs/z558iSSkpIQEhKC2NhYADcuulixYgU++OCDEvPXr18fderUwciRIzF9+nSEhoZi9erV2LRpk/2cuf/85z/4z3/+g7Zt26JKlSo4ceIE3nrrLdSuXVt1lK40q1evxpdffonTp08jLy/PoaYoCn799dcyt8VOHREREWnmyXPqymrPnj3o2LGj/d/jxo0DAAwdOtSepbts2TIIITBo0KAS8xuNRqxfvx6vvfYaevXqhaysLNSpUweLFi1Cjx49AAB+fn74+uuv8fbbbyM7OxtRUVHo1q0bli1b5vK5fu+//z5effVVhIeHo06dOjCbzS7NfytFFI8ZVmKZmZkICgpCRkaGW4+pu9PxoY84reVcyZLOm7b/srSelyaPXqjeqaq0fvX4NWndJ1B+CXZwXLC0rjfKb0yiNZpCbX5ZvIFabIUaW5H846HTy9ddLdpBrV6QIx/KTz9xVVrPvSKfP/ecVVqXCYj3ldaj7o2U1tNPOo+NAAChsu+j7qsmravtW2tWnrSuFtuh6OTve7XX7trZDGk956Lz9YtuLv/M+wbL/zCofebUooC0fmbVIkvU9n1Bjvx9m7zylLSuxlLP32ktND5EOm+VmuHSusFP/kc/Ysoiad2Zivw7Wbzsjf85B3OAe5ednZWJLvdXr9R//7WoWbMmOnXqhE8++QR6vbaoIcDF24QRERERkXtcuXIFTz75pFs6dAA7dUREROQGxYdf3f3wZg888ACOHDnitvZ4Th0RERFRBZg1axYeffRRxMTEoFu3bqp3jFDDTh0RERFp5snbhHmrOnXqoHPnznj00UehKAr8/R3P51QUBRkZ8vNvb8ZOHREREVEFeOWVVzB79mzcd999aNCgAUfqiIiIqOIpcP+J+h7KHq40Fi5ciFdffRVTp051S3u8UIKIiIioAhQVFeHhhx92W3scqSujowO63va8V47Ls8TUcugiWlWR1tVy4myF8nMSrh6U5+gZzfIcO/8QP/n8KnleatQys2Q5dVrztAwa51dbvhq1LDQ1ej/P/W7LSpbnvJ1OPyetF+XKs8iMgfJ9e+LHE9J69YRoaV2NWlZa7jX59l87KT8PJiBaniUX92Cs05pPgDwjUGdQ+06Qb1uNz1ZL62rOjekvrat/puXtG/3lh6jUvjOvn8uW1qPuc56xaLI4z7ADAEX1O8F7x1J4Tp3runTpgt27d+Ohhx5yS3vs1BEREZFmleGOEneaN998EwMGDIDZbEbPnj0RElIy3Lq055xhp46IiIioAjRp0gTAjduZFd/S7FZFRc6PRt2KnToiIiLSjIdfXffWW29BUdx3OQg7dUREREQVIDEx0a3tsVNHREREmilw/zlw3h5p4m7eexkOERERUSUzbdo05ObmujTP3r17sW7dOtXp2KkjIiIizYrPqXP3w9ssWLAAtWrVwsSJE/H77787nS4vLw8rV65Ez5490aZNmzLdLuyOOvz624CeCDCWvsoFufJgo6abdmhatjU7X17PsjqtqeV5GS3yXCNfi0lav/x7urRemCm/ciakSaC0nnlSnmNnMGnLZVLL2SvIlef4FeY73z7/EHmmlN5H/hFQy5kz+stfG7X51fK68jPlv+aETf6Fp9Oac+fvfP6geHnOmilQ2+1ubCrblrZL/r5PM1+U1nNT5J/pApXPjVbZp+TLN5icvzerNpJ/ZtXeF4A8p87T1PMd5e9btQzB4JhgaV3tO022/Ni5K6Xznn9hgLQe/v6X0jp5v4MHD2LOnDmYPn06pk6dioiICDRr1gwRERHw9fVFeno6jh8/joMHD6KwsBA9e/bEvn370LBhQ9W276hOHREREVVOzKkrG4PBgBdeeAGjR4/GmjVrsH79evz000/YtWsXcnNzERYWhvr16+PNN9/Ek08+iVq1apW9bQ+uNxEREd0ldBDQubkT5u72KhO9Xo9+/fqhX79+bmuT59QREREReQGO1BEREZFmCjwQPuzFI3U3u3jxIk6fPl3qVbHt2rUrczvs1BERERFVgJSUFAwePBhbtmwpURNCQFEU3iaMiIiIyhcvlHDd6NGjsX//frz33nu49957YTLJExXUsFNHREREVAG2bduG6dOn4+mnn3ZLe3dUp07R6VTzi5zZ1+kBaV2WdQYAV3/LlNa1ZFopRm03Qim4Ll92RPNQaV0tJ07Ry9cv/Xd5IKJilO+7qveGSeuZ569L67Yi57/kfMzyrDSdQb7tanlaajlzatTmz8uUZ5mpKcjWtn6+EUanNfUsNDmdUb5vjSrvy6B75Dl5Gb9lu7xOrvCt6nzfAIApVP7eU1u/Swec5/AFRARI5/ULkdfVsta0qv7hCmn93Jj+Gpeg8p2lkg+p9TtXpto/lnus7cqOI3WuUxQFMTExbmuPV78SERERVYD+/fvj22+/dVt7d9RIHREREVVOHKlz3RNPPIFnn30WNpsNvXr1QmhoySNrzZo1K3N77NQRERERVYCHHnoIADB79mzMmTPHocarX4mIiKhCKIoHcurc3F5ls2DBAre2x04dERERacbDr64bOnSoW9tjp46IiIiogv3xxx+4cuUKwsLCEB8ff1tt8OpXIiIi0qx4pM7dD2+3YsUKxMXFoUGDBmjbti3q16+PuLg4fPXVVy63dUeN1DVY+g0sFkuptaSu8nuj2Qrkb4yC7AJp3aSSSSXLgju/5aJ0XjUFOfJ10xnkmUtqWW3CZpPWAyLkeWBq9Qu75Nt/av0FaV2nkikV+3CU05rBJH+Lq+XQqWWx5WeWvE+fKwpyrdK6NUtbTl3uOXn7avQm5/tHpzHfUI0sfxAAfMzavr7CWwZJ60Z/+WfeP8RfWtf7yNcv/8pZaT30nipOa3kZ8vedb7D8M1nR1HLs1Kjl3Bl85d951VpGSutqrx2Ru6xfvx4DBw5Ew4YNMXr0aERHR+P8+fP44osvMHDgQHzzzTfo3r17mdvjO5eIiIg04zl1rnvnnXfQpUsXrFu3Drqbbq4wfvx4dO/eHZMnT3apU8fDr0REREQVICkpCc8//7xDhw64caeJ559/Hr/++qtL7XGkjoiIiDTjSJ3r9Ho9rNbST5MpKCgo0dlTw5E6IiIi8grbt29Hr169EB0dDUVRsHr1aqfTjhw5EoqiYNasWQ7Pp6amYvDgwYiMjITZbEazZs1KvWhh3bp1SEhIgJ+fH8LCwtCvXz+X17dly5aYNm0acnMdz5PNz8/H9OnTkZCQ4FJ7HKkjIiIiN7BBgfzCu9tp0xXZ2dlo0qQJnn76aTz22GNOp1u9ejV+/vlnREdHl6gNHjwYGRkZWLt2LcLCwrBkyRIMGDAAe/bsQdOmTQEAK1euxLPPPospU6bgoYceghACBw8edG3TAEyaNAmdOnVCrVq10L9/f0RGRiIlJQVff/01rly5gs2bN7vUHjt1REREpFlluKNE9+7dVS8sOH/+PEaPHo3vv/8ePXv2LFH/6aefMHfuXNx///0AgIkTJ2LmzJnYt28fmjZtisLCQrzwwgt4//33MWLECPt89erVc2ldAaBt27bYuHEjXnvtNcyZMwdCCOh0OiQkJGDp0qVo06aNS+3x8CsRERFVapmZmQ6P/Pzbi3uy2WwYPHgwxo8fj4YNG5Y6Tdu2bbF8+XKkp6fDZrNh2bJlyM/PR4cOHQAA+/btw/nz56HT6dC0aVNERUWhe/fuOHz48G2tU/v27fHTTz/h+vXrOHv2LDIzM/Hvf/8b7drJo9pK4zUjdUY/eaaUWt6Yf5g8c8ogyesCgKsnM6R1GXO0r7SulpcV2TxcWter5IkJmzxPrKig7DcTLk1gTfm+Tf/1urQe1jxYWjf6Oc+k0hnUtl3+vrAVatt2RSfft4X58vaLrPJDDwV5hS6v0818QuVfAXof5/tP76OS8aeSM6eWr6hTybnLz1TJb1TJN/QPlb8v/UMDpHWjv0laz03Pktat6fLXzhLtPEfPZPGTzqsm5a9PSutRHyzR1L6nqeXcnR31uLRec94md64O/ZciBBTh5pG6/7YXExPj8Pzbb7+NxMREl9t77733YDAYMHbsWKfTLF++HAMGDEBoaCgMBgP8/f2xatUq1K5dGwBw4sQJAEBiYiJmzJiBGjVq4IMPPkD79u3xxx9/ICQkxOX1AgB/f3/4+8u/l9R4TaeOiIiIvNPZs2cdbj5gMsl/VJVm7969+Mc//oF9+/ZBUZz/6Js4cSKuXr2KH374AWFhYVi9ejX69++PHTt2oHHjxrD9N7D/jTfesJ+3t2DBAlSvXh0rVqzAyJEjpeuxePFi9OzZE6GhoVi8eLHqeg8ZMqTM28hOHREREWnmyUgTi8Xi9I5SZbVjxw5cvHgRsbGx9ueKiorw17/+FbNmzcKpU6dw/PhxzJ49G4cOHbIfnm3SpAl27NiBOXPm4OOPP0ZU1I27GN1zzz32dkwmE2rVqoUzZ86orsewYcOwe/duhIaGYtiwYdJpFUVhp46IiIjoZoMHD0bnzp0dnuvatSsGDx6Mp59+GgCQk5MDACXy4fR6vX2Ernnz5jCZTDh69Cjatm0L4Eam3KlTpxAXF6e6HidPnrR3DE+ePKlto27BTh0RERFpduOcOvdGmrh6jl5WVhaOHTtm//fJkyeRlJSEkJAQxMbGIjTU8T7tRqMRkZGR9itX69evjzp16mDkyJGYPn06QkNDsXr1amzatAnffvstgBujhn/+85/x9ttvIyYmBnFxcXj//fcBAP37y+9LDMCh41eWTqArePUrEREReYXiLLniPLlx48ahadOmeOutt8o0v9FoxPr16xEeHo5evXrh3nvvxeLFi7Fo0SL06NHDPt3777+PgQMHYvDgwWjZsiVOnz6NzZs3o0qVKi6tb61atZzeCuzQoUOoVauWS+1xpI6IiIg0qwy3CevQoQOEC6N7p06dKvFcfHw8Vq5cKZ3PaDRi+vTpmD59ukvrV9ryncWz5OXl4fTp0y61x04dERERaabA5v7Dr26/Q0Xl4+xK3BMnTiAwMNCltrymU9dw9Y/S+sFHOkjrRQXyN45aPfNojrQu4xvk+qXZN1PLWivM15Zlpta+2r5RVPLG/Ko7z5kDAL9geY6fLItOPYdO275Ry8ErzJNnqVmzS7+Rc1nlntc2v2+YfN8bzc4zEtWyG3UGed0UIF+2TSXnTo3Bom39DL7yfEit9cB4eR6VbP3U1l2VSn7inU7z/iHyoEWLFmHRokX2f//lL38pcWVvbm4ufv31V7Rv396ltr2mU0dEREQVpzIcfr0T5OTk4NKlSwBujNJdu3atxCFYk8mEAQMGYNKkSS61zU4dERERUTn5y1/+gr/85S8AgJo1a2LlypVo0qSJW9pmp46IiIg0U4QHzqlzc3uVDXPqiIiIiLzMpUuXkJubW+L5m++AoYadOiIiItKM59TdnsmTJ+P//u//cOXKlVLrRUVFZW6L4cNEREREFWD+/Pl49913MXbsWAgh8Prrr2PChAmoXr064uPj8fnnn7vUHjt1REREpNmN24S5/+HN5syZY+/IAcCjjz6KyZMn4/fff0dgYCAuX77sUns8/PpfOpUsNcWDuU5XjmRI6xH3hUrrepV1U8tqU6OWQ6fW/tWD16X1gFp+0rrRT573JVu+rVA+bK2ewSef31Yo3zcFOfKcuiKrvH2r2vw58uUbVbLafKvIMxJl+14tp+56Spa0fmH7RWld7X2hJRsSUM8IzM8seW6LK3yDzdJ6TIL8PBm9z+1/PSu6u/v3erV/LK/oVbgr8UIJ1x07dgytWrWC7r+fWav1xveSn58f/vrXv+LNN9/E+PHjy9ze3f3JJyIiIqogBsONH2+KosBiseDcuXP2WlhYGM6fP+9Se+zUERERkWbFF0q4++HN4uPjcfbsWQBAy5Yt8dlnn6GgoABFRUX49NNPUaNGDZfa4+FXIiIiogrQo0cPbN++HUOHDsWECRPQtWtXBAcHw2AwICsrC/Pnz3epPXbqiIiISDOeU+e6t956y/7/Dz30EHbt2oVly5ZBURT07NkTHTt2dKk9duqIiIiIKoGWLVuiZcuWtz0/z6kjIiIizRhp4rrHH38c69evh83mnhFJduqIiIiIKsBPP/2EXr16oXr16pgwYQJ+//13Te15zeHXw307SetqeWRqOXRqdVkeWEGmShbZlUJp/erxa9J6+D3yHDu1LDWtGXx6o/y3QfA9AdK6wU/+NlTL3CqyOt9/BbkqOW8qGXw2lZy6IpV9q5ZDJ4rk78us5DxpXU1IoyBpPbCq/LWRfW6up8lz6LLOyXPe1N4Xap/ZkCaB0vr1k/Icu6y0bGndHCbPmVP7XOlUcuZMKnUhyVhU/z6TlhH1/pfyCYhugwIbFLj5nDo3t1fZnD17Ft9//z0WLlyIWbNmYdq0aUhISMCIESPwxBNPIDBQ/j13K47UERERkXYCgBBuflT0RnmWTqdD9+7dsXz5cqSkpODDDz9EQUEBnn32WURFRWHo0KGuteeh9SQiIiKiMgoODsbzzz+PX375Bdu3b0dISAi++OILl9rwmsOvREREVHEYaaLdpk2bsGDBAqxevRp5eXlo06aNS/OzU0dERERUQY4fP46FCxdi0aJFOH/+PKKiovDCCy9g+PDhiI+Pd6ktduqIiIhIM0/c1svbbxPWvn177Ny5E0ajEb169cLw4cPRtWtX6FQuEHSGnToiIiKiCnD9+nXMmjULTz31FEJCQjS3x04dERERaeeBc+rg5efU7du3z63teU2nruHqH6X1Az3aS+tquU95mfnSelHu7b/xqraR984L8+Q5dmp5WWrUstq0slST5+zojc4z/gBAqCRt2yRZb4X58n2nlhNnU3lfqOXQ5aXL3zd5F+U5emrMNUzSekC4PGstKDZcWlf0zl+bwGh5hl5kY5UcN4P88EJhnnzfqNXzM85K6/4hvtK6ziB/X9okOXIAYM2U5+TpVXLqZPmMatmSepNRWieiyuX777/H1q1bcfnyZbz55puIjY3FL7/8gho1aiA8XP49fTOv6dQRERFRBSrOlnN3m14sJycHffr0wY8//ghFufFj7S9/+QtiY2Mxffp0xMTEYPr06WVujzl1REREpFlxpIm7H97sjTfewJ49e7By5UpkZGRA3NSJ7dKlC3744QeX2uNIHREREVEFWLFiBf7+97/j0UcfRVGR4ykdsbGxOHPmjEvtsVNHREREmilCQHHz4VJ3t1fZXLp0CQ0bNiy1ptPpkJsrv4d2iXncsVJERERE5Jpq1arh4MGDpdYOHDiAmjVrutQeO3VERESknbB55uHF+vXrh3feeQf79++3P6coCk6fPo2ZM2eif//+LrXn0uHXxMRETJo0yeG5qlWrIjU1VXXef//732jfvj0aNWqEpKQkl1bSHdQiAHKvyeMZLu6+Kq0bLc7jD2wFKtEH163SemBUgLSulU4v3zdq+069Lv/toDa/WrSELLZEa2RJ7hX5+yLzqDy2QivfqvJoiohG8kvd/ULk752AuGhpXUgOfRTlyvdNfnqmtG4rkEeSGP3l7xu1SJAqtYOl9cuH0uXtm+TtB1WvIq2rRQ3pfaRlGM3OI1cipiySz0xEd4S3334bP/74I+6//340atQIiqLg6aefxvHjx1GvXj289tprLrXn8khdw4YNkZKSYn84Gza8WUZGBoYMGYJOnTq5ujgiIiK6A/DqV9cFBgZi165d+Pvf/46AgADUrl0b/v7+mDBhArZv3w4/Pz+X2nP5QgmDwYDIyEiX5hk5ciSefPJJ6PV6rF692tVFEhEREXklPz8/vPbaay6PypXG5ZG65ORkREdHo2bNmhg4cCBOnDghnX7BggU4fvw43n777dteSSIiIqrcFAiPPFyxfft29OrVC9HR0VAUpcRA0tdff42uXbsiLCwMiqKUejpYamoqBg8ejMjISJjNZjRr1gxfffWVwzT79u3Dww8/jODgYISGhuK5555DVlaWq7vM7VwaqUtISMDixYtRt25dpKWlYfLkyWjTpg0OHz6M0NDQEtMnJyfjtddew44dO2AwlH1R+fn5yM//3+2VMjPl5+YQERFRBfPEhQ0utpednY0mTZrg6aefxmOPPVZq/YEHHkD//v3x7LPPltrG4MGDkZGRgbVr1yIsLAxLlizBgAEDsGfPHjRt2hQXLlxA586dMWDAAMyePRuZmZl48cUXMWzYsBKdv9IMHz68zNujKArmzZtX5uld6tR1797d/v+NGzdG69atUbt2bSxatAjjxo1zmLaoqAhPPvkkJk2ahLp167qyGEydOrXEBRlEREREMt27d3foq9xq8ODBAIBTp045neann37C3Llzcf/99wMAJk6ciJkzZ2Lfvn1o2rQpvv32WxiNRsyZMwe6/14IOGfOHDRt2hTHjh1DnTp1pOu4efNm+y3B1JR1umKawofNZjMaN26M5OTkErXr169jz5492L9/P0aPHg0AsNlsEELAYDBg48aNeOihh0ptd8KECQ6dxMzMTMTExGhZVSIiIvIgT4YP33rEzmQywWQyuXVZxdq2bYvly5ejZ8+eCA4Oxr/+9S/k5+ejQ4cOAG4cTfTx8bF36ADYL2jYuXOnaqdO1qHUSlNOXX5+Po4cOYKoqKgSNYvFgoMHDyIpKcn++POf/4x69eohKSkJCQkJTts1mUywWCwODyIiIro7xcTEICgoyP6YOnWqx5a1fPlyFBYWIjQ0FCaTCSNHjsSqVatQu3ZtAMBDDz2E1NRUvP/++7Barbh69Spef/11AEBKSopq+9u3by/T+XeXL1/G/PnzXVp3l0bqXn75ZfTq1QuxsbG4ePEiJk+ejMzMTAwdOhTAjRG28+fPY/HixdDpdGjUqJHD/BEREfD19S3xfHlQyzoryJZnZqkpyHSeRecTKt/NVw/KX1ydUd73DogwS+tCJYtNaw6d3ijft2rz+wQ4z+MqS12mMF+eEQhJxh0AGHzl2+ZpYY1CpPWq98nTxo0WeU6dPjhIWrdJvniKcuTvK51B/r4VQmXfFspfO7XPtCVavm2Z565L61eOyrMpzWHyz53RXz6KoJbfqDepBNkRVTZCeOCcuhvfM2fPnnUY4PHUKB1w43Dr1atX8cMPPyAsLAyrV69G//79sWPHDjRu3BgNGza0n3Y2YcIE6PV6jB07FlWrVoVer/43o2PHjvjpp5/sh3dtNht8fX3x888/o2nTpvbpjh8/jmeffdalc/Bc6tSdO3cOgwYNwuXLlxEeHo5WrVph9+7diIuLA3Cjh+rqzWeJiIiIZMrrqN3x48cxe/ZsHDp0yH5P1iZNmmDHjh2YM2cOPv74YwDAk08+iSeffBJpaWkwm81QFAUzZswo0229bg11F0KgsLBQGvZeVi516pYtWyatL1y4UFpPTExEYmKiK4skIiKiO4EQ9pE1t7ZZjnJybtwlSHfLSLper4fNVnIUsmrVqgCA+fPnw9fXFw8//LDnV1JC04USRERERJVFVlYWjh07Zv/3yZMnkZSUhJCQEMTGxiI9PR1nzpzBhQsXAABHjx4FAERGRiIyMhL169dHnTp1MHLkSEyfPh2hoaFYvXo1Nm3ahG+//dbe7uzZs9GmTRsEBARg06ZNGD9+PN59910EBweX6/beip06IiIi0kyB+2/rpcC19vbs2YOOHTva/12cpDF06FAsXLgQa9euxdNPP22vDxw4EMCNe7AmJibCaDRi/fr1eO2119CrVy9kZWWhTp06WLRoEXr06GGf7z//+Q/efvttZGVloX79+vjkk0/scSkViZ06IiIi0q4SHH7t0KGD9Ny0YcOGYdiwYdI24uPjsXLlSuk0ixcvdmm9bnX06FH7TRmKim5cFPb77787THPrv8uCnToiIiKiclRax/LWkT4hRPmGDxMREREBgCI8cPjV3REplcCCBQs81vZd06lruPpHTfMfeayztJ7660WntexT+U5rZXFln/zet1cgr1dpLM8qC4yS19XywNTqajlz/uHyPDGf4EBpvcjqPGsuJz1HPm+h/AvDmqMtv1CNpZ6/tB4cK8+p868ZK60Lq1VT3ZbvvF4kqQHqOWxqFJX3VVGO/HOVekAeApp3Wb7+NR6S38UmIFr+2vioZASilCvpbqbzMcrnJ6I7UnG2ryfcNZ06IiIi8iBh80D4sPeN1HmStp/SRERERFQpcKSOiIiINFOEgOLmq1/d3Z6340gdERERkRfgSB0RERFpZ7OpXgB0W21SmbFTR0RERNpVgvDhux0PvxIRERF5AY7UlZHR3yStB9d0nrWWfcp5hl1ZRLSqIq3nXMmV1q8ezJLWsy/kSevRCRHSutHfR1o3Vw2W1n2CLdJ6fnqGtF6Yd/tZcgXZ8nmzkuX7RiujWf4R1PvI6+K/t5dxWlc5dCEKnGf8AYBNUldrW5YfCAAFWfJ9m3NZnr+YfuKqfPkF8vWr2zteWg+MrSqth775ibROdNdhpEmF40gdERERkRfgSB0RERFpxkiTiseROiIiIiIvwJE6IiIi0o7n1FU4jtQREREReQGO1BEREZF2QnhgpI7n1LmCI3VEREREXoAjdWWkM8j7v+Yws9NadPsw6bwXtl2W1n3M8hy4wKoB0npobXle2OkNKdL65eR0ab1mVLC0bjD7SetqfCNCpHW9r/P9k3lBnnGnluHnaXofvbRuVNl3tqxsefuB8vdGkWpOnfMcv6zzV6TzXk6W5zOqZQSq5cyFxcvfF5bqodJ6tX8sl9YzZ74krRORI179WvHYqSMiIiLteO/XCsfDr0RERERegCN1REREpJ0Q7r+wgYdfXcKROiIiIiIvwJE6IiIi0o7hwxWOI3VEREREXoAjdURERKQdz6mrcOzUlVGtBd9I60cHdHVaMwX6Suf1CZW/DNkX5Vlk/iH+0rqiU6T1uv1rSus56TnSulZC5ZJ1BfIst6I8q9Nabnruba1TWflVl2cIBkTJc+auHJDn6FVr7nzbAKAwR2X7dPLBeJtVpf1s5+1fOyPPLwyOCZbWfQLknwvfKoHSusHPJK2Hvv2ZtK7G8tJMTfMTEZU3duqIiIhIO+GBnDqeU+cSduqIiIhIO14oUeF4oQQRERGRF+BIHREREWnHCyUqHEfqiIiIiLwAR+qIiIhIO5sHLpRwd3tejiN1RERERF6AI3VuIsuCM5jkuzmmbZS0fmrTeWk9OK5AWldbvlpemH+YPC9M2OTnPBRcl+fcqeWN5V26Kq1fv+A8L+3ab1nSebXysRildUu0RVq/fka+b2TbBqjvO7XzUXRG+XvDGGh2WqueUEe+bI18guXvO73Z+boRUQXgOXUVjiN1RERE5BUKCwsxceJE1KxZE35+fqhVqxb+9re/wXbTYdy0tDQMGzYM0dHR8Pf3R7du3ZCcnOzQzqeffooOHTrAYrFAURRcu3atnLfk9rBTR0RERNoJ8b+sOrc9XBupe++99/Dxxx9j9uzZOHLkCKZNm4b3338fH3744X9XUaBv3744ceIE1qxZg/379yMuLg6dO3dGdvb/7t6Uk5ODbt264fXXX3frLvI0Hn4lIiIi7WzixsPdbbrgp59+Qp8+fdCzZ08AQI0aNbB06VLs2bMHAJCcnIzdu3fj0KFDaNiwIQDgo48+QkREBJYuXYpnnnkGAPDiiy8CALZu3eqe7SgnHKkjIiIir9C2bVv8+OOP+OOPPwAAv/76K3bu3IkePXoAAPLz8wEAvr7/O5dcr9fDx8cHO3fuLP8VdjOO1BEREZF2HrxNWGZmpsPTJpMJJlPJC8VeffVVZGRkoH79+tDr9SgqKsI777yDQYMGAQDq16+PuLg4TJgwAZ988gnMZjNmzJiB1NRUpKSkuHfdKwBH6oiIiKhSi4mJQVBQkP0xderUUqdbvnw5vvjiCyxZsgT79u3DokWLMH36dCxatAgAYDQasXLlSvzxxx8ICQmBv78/tm7diu7du0Ov15fnJnkER+qIiIhIOw+GD589exYWy/8iokobpQOA8ePH47XXXsPAgQMBAI0bN8bp06cxdepUDB06FADQvHlzJCUlISMjA1arFeHh4UhISECLFi3cu+4VgJ06N5Hl1Kkx+Mqzzvyq+Ujr1myrtG4Ol+d9Gf3lWWdGszzHrqigUFo3mP2kdZ8qQdK6rahIWs9Jd571ZivwbMaRwVf+y84vJEBaj38kXtPy9b7y94beV/7aKhp+mRoC/KV1nUHettqyLS/NdHmdiMg7WSwWh06dMzk5OdDpHA9C6vV6h0iTYkFBN/72JCcnY8+ePfj73//unpWtQOzUERERkXaVIHy4V69eeOeddxAbG4uGDRti//79mDFjBoYPH26fZsWKFQgPD0dsbCwOHjyIF154AX379kWXLl3s06SmpiI1NRXHjh0DABw8eBCBgYGIjY1FSEiIe7bNA9ipIyIiIq/w4Ycf4s0338Tzzz+PixcvIjo6GiNHjsRbb71lnyYlJQXjxo1DWloaoqKiMGTIELz55psO7Xz88ceYNGmS/d/t2rUDACxYsADDhg0rl225HezUERERkXYevPq1rAIDAzFr1izMmjXL6TRjx47F2LFjpe0kJiYiMTHRpWVXBuzUERERkXaVIHz4bsdIEyIiIiIvwJE6IiIi0kwIG4SbD7+6uz1vx5E6IiIiIi/AkTo3if/yO6e15Ke63/a8AJDZoY20npueK62H1ZW/zD5BZmnd4CfPqfNVyUIzRkRI67Zc5zlzAGDNyJbWM89dl9Y9yRQoz4lTy2rzrSLPsfOLripv3yRfPlSy4ES+PONQkWQE3poFVWLRKu+LgOffk9aJ6A4jPHBOnbsjUrwcR+qIiIiIvABH6oiIiEi7ShBpcrfjSB0RERGRF+BIHREREWkmbDaIUu6xqrVNKjt26oiIiEi7SnDv17sdD78SEREReQGO1BEREZF2NgG4+3ApbxPmEnbqyoFaDp2a5lt3Set/DOomrfsE+kvrptAq0rrBEiit64KCpXU1RZcvS+u56VnSevbZvNtetk+o/CMQcV+otG4rdJ7jBgD5mfIMvoDq4dK6ITREWofBKC379f+rtJ71yevSuiLLuZNk2BERUfljp46IiIi04zl1FY7n1BERERF5AY7UERERkWaMNKl4HKkjIiIi8gIcqSMiIiLtbML9V6vy6leXsFNHREREmglhg3DzvVrd3Z63Y6fOC9RdukFav/TWcHkDKucsKL6+8vmNPtKyyMyQ1wsKpPUia6G8nuN8/dUiS6xXVNrOl9eN/vJIEZNFHifjEyKPk9EaWaImYOQUTfPfza5NGyOtB7/yYTmtCRHRDezUERERkXY8/FrheKEEERERkRfgSB0RERFpJ2w3Hu5uk8qMI3VEREREXoAjdURERKSZsAkIN58D5+72vB1H6oiIiIi8AEfqiIiISDthU43Iuq02qczYqbsL6E3yHDk1wmqVT5CXKy0r/mZNy8+9Jm9fxq+qSVovytX2hREYFSxffniQvAGVLyzF18/FNaLyonZPyvR3/iyth7zxsTtXh6jCCSEghJsPv7q5PW/Hw69EREREXoAjdURERKSdzQOHX93dnpfjSB0RERGRF+BIHREREWnGSJOKx5E6IiIiIi/AkToiIiLSTggP3CaMI3Wu4EgdERERkRfgSN1dQC0PK+ujV6V1Ra+X1m0Z16R1tZy7wmx5Dp01Wz6/zqg4rRUVFEnn9QmRfwTM4fKMvZCGNaV1U/0G0rrNP1BaF9Y8aT1vzYfy9lVeG1uufN8HjJzitJb92UTpvIXXs+TLthbI6/kqr7uPUVpXe9/qfeUZhoFjp0vrokj+3ipSWX/m2JG3qQzn1CUmJmLSpEkOz1WtWhWpqakAgLS0NLz66qvYuHEjrl27hnbt2uHDDz9EfHx8yWULgR49emDDhg1YtWoV+vbte9vbUV7YqSMiIiLNhM2mGsp9O226qmHDhvjhhx/s/9b/9weeEAJ9+/aF0WjEmjVrYLFYMGPGDHTu3Bm//fYbzGbHH/GzZs2CojgfNKiM2KkjIiIir2EwGBAZGVni+eTkZOzevRuHDh1Cw4YNAQAfffQRIiIisHTpUjzzzDP2aX/99VfMmDEDv/zyC6Kiospt3bXiOXVERESknU145uGi5ORkREdHo2bNmhg4cCBOnDgBAMjPzwcA+Pr62qfV6/Xw8fHBzp077c/l5ORg0KBBmD17dqmdw8rMpU5dYmIiFEVxeMg2eOfOnXjggQcQGhoKPz8/1K9fHzNnztS80kRERHT3yMzMdHgUd9BulZCQgMWLF+P777/HZ599htTUVLRp0wZXrlxB/fr1ERcXhwkTJuDq1auwWq149913kZqaipSUFHsbL730Etq0aYM+ffqU1+a5jcuHX50dqy6N2WzG6NGjce+998JsNmPnzp0YOXIkzGYznnvuudtbYyIiIqp0hLBBuDnSpLi9mJgYh+fffvttJCYmlpi+e/fu9v9v3LgxWrdujdq1a2PRokUYN24cVq5ciREjRiAkJAR6vR6dO3d2mGft2rXYvHkz9u/f79btKC8ud+qcHasuTdOmTdG0aVP7v2vUqIGvv/4aO3bsYKeOiIiIyuTs2bOwWCz2f5tM8qvXi5nNZjRu3BjJyckAgObNmyMpKQkZGRmwWq0IDw9HQkICWrRoAQDYvHkzjh8/juDgYId2HnvsMTz44IPYunWrW7bHU1w+p87Zseqy2L9/P3bt2oX27dtLp8vPzy8x1EpERESV2H8jTdz5KD6nzmKxODzK2qnLz8/HkSNHSlzsEBQUhPDwcCQnJ2PPnj32Q62vvfYaDhw4gKSkJPsDAGbOnIkFCxa4b195iEsjdcXHquvWrYu0tDRMnjwZbdq0weHDhxEaGup0vurVq+PSpUsoLCxEYmKiwxUmpZk6dWqJnBnynIDn39M0f+Y//iqt56Vdltavn7+iafkGi/NTAIpy5YcC/ELlXwxhDeOkdZ+qVaV15Mlz4BTfAPn8enkWm2pdJY1dqGSpXf+/l53WbCr5gwVZOfK6Sj6hGoPJR1pXDPKcOrWcuWvTxsjnL5TPr1bXBchfO9nnyvLCB9J5ie5WL7/8Mnr16oXY2FhcvHgRkydPRmZmJoYOHQoAWLFiBcLDwxEbG4uDBw/ihRdeQN++fdGlSxcAQGRkZKlHI2NjY1GzpjyXtDJwqVOndqzamR07diArKwu7d+/Ga6+9hjp16mDQoEFOp58wYYJDe5mZmSWOpxMREVElImyAm3PqXL3t2Llz5zBo0CBcvnwZ4eHhaNWqFXbv3o24uBs/0FNSUjBu3DikpaUhKioKQ4YMwZtvvuneda5AmnLqbj1W7Uxx77Zx48ZIS0tDYmKitFNnMpnKPLRKREREBADLli2T1seOHYuxY8e61Ka4g+4/qymnztmxahkhhNNLkYmIiOjO5O7z6Txx2zFv59JIndqx6gkTJuD8+fNYvHgxAGDOnDmIjY1F/fr1AdzIrZs+fTrGjJGfq0JERER3lspym7C7mUudurIcqz5z5ox9epvNhgkTJuDkyZMwGAyoXbs23n33XYwcOdK9W0FERER0l3OpU6d2rHrhwoUO/x4zZgxH5YiIiO4CQgi3n392J53PVhnw3q9EREREXkDT1a9EgHpm1qWhj0jr1qw8ad3oJ8/zqlLP4rSWeSZLOq9/mL+0rveVX4VdlHVdPr/kNnoAgHx5lptile8bkSvPerNlZ0vrBdfl+0eRrH/2+YvSeYushdK63kf+9aM2f4FOvm90BvlvVr2P/H1l8JO/9oUqGX+qOXo6RVoXBQVOa2rZkMyxowph80CkCc+pcwlH6oiIiIi8AEfqiIiISDNPRJAw0sQ1HKkjIiIi8gIcqSMiIiLNhM39I2su3iXsrsdOHREREWnG8OGKx8OvRERERF6AI3VERESkGS+UqHjs1JHHqeWNqeV1+YfIs+RshUVOa5d+uSqft7bzeQHg+ulUad14Sd5+QFy0tG5QOWGk4Eq6tG69miGvZ8pz6KDyhZl90Xn7F39Lk85r8JN/vfiH+EnrBbkqOXdGtRw6+fLN4YHy5efkS+tqFEW+fgVZ8oxCndH5+huM8oy9nAWJ0roS6DzbEQD8Hh8nrRNR5cROHREREWnGc+oqHs+pIyIiIvICHKkjIiIizYTwwDl1gufUuYIjdURERERegCN1REREpJ0QNx7ubpPKjJ06IiIi0owXSlQ8Hn4lIiIi8gIcqSOP0xn00rpanpgaRefjtBZ6nzyPK/13ec6b2rrnXs2V1qucuSStB0aHSOsXf7sgredcVss6k/9uC6kpX35Ourx9GV+LSVrXG+X7Niddvm99LQHy9lXeV5nn5RmDRQXyEQK17VPLX9QZ5K+NT5DzHD29vzzjT/H1lddN8jrR7WD4cMXjSB0RERGRF+BIHREREWnGc+oqHkfqiIiIiLwAR+qIiIhIM55TV/E4UkdERETkBThSR0RERJpxpK7isVNHREREmvFCiYrHTh15XJ1/rpPWz456XFpXy4qTfeir1JDnsF36RZ5Tlxl8XVoPrx8qrau5fiFdWvcP8ZfWC3ILpPXQ2mEur9PNzGFmp7WQWvK21X5hq+W4+Yc5z2kDgIIcq7SedVH+2oXWiZDPn3pNWlfLwbNm5Unrau9rU0iR83kD5Bl9IipWWvfr8KS0TkR3JnbqiIiISDMefq14vFCCiIiIyAtwpI6IiIg0EzYBWxFH6ioSR+qIiIiIvABH6oiIiEizG+fUufvqV47UuYIjdURERERegJ06IiIi0qz46ld3P1wxdepUtGzZEoGBgYiIiEDfvn1x9OhRh2nS0tIwbNgwREdHw9/fH926dUNycrK9furUKSiKUupjxYoVbtlXnsLDr1ThYuZ8Ja1ffXeUtF6Yk+u0ppY1FtVWnjMX1VSe92XwM0nrej9fab0oV55ldv6XE9J63tV8aT3nSpa0XqVmuLSu6Jz/7jOa5dumtu1q+85WUCivFzrPcQMAc4Q8p843vIp8/mh5Dp81I1tav7BX/tqpvTZ+EZL1Mxil8xb5WaR1Ik+oDJEm27Ztw6hRo9CyZUsUFhbijTfeQJcuXfDbb7/BbDZDCIG+ffvCaDRizZo1sFgsmDFjBjp37myfJiYmBikpKQ7tfvrpp5g2bRq6d+/uzs1zO3bqiIiIyCts2LDB4d8LFixAREQE9u7di3bt2iE5ORm7d+/GoUOH0LBhQwDARx99hIiICCxduhTPPPMM9Ho9IiMjHdpZtWoVBgwYgACV4O+KxsOvREREpJknD79mZmY6PPLz5UcpimVk3LhrUEjIjbsLFc/n6/u/Iwl6vR4+Pj7YuXNnqW3s3bsXSUlJGDFixG3vm/LCTh0RERFVajExMQgKCrI/pk6dqjqPEALjxo1D27Zt0ahRIwBA/fr1ERcXhwkTJuDq1auwWq149913kZqaWuKQa7F58+ahQYMGaNOmjVu3yRN4+JWIiIg0EzabByJNbrR39uxZWCz/O1fUZJKfkwsAo0ePxoEDBxxG4IxGI1auXIkRI0YgJCQEer0enTt3dnquXG5uLpYsWYI333xT45aUD3bqiIiIqFKzWCwOnTo1Y8aMwdq1a7F9+3ZUr17doda8eXMkJSUhIyMDVqsV4eHhSEhIQIsWLUq089VXXyEnJwdDhgzRvA3lgZ06IiIi0qwyXP0qhMCYMWOwatUqbN26FTVr1nQ6bVBQEAAgOTkZe/bswd///vcS08ybNw+9e/dGeLg8KaCyYKeOiIiIvMKoUaOwZMkSrFmzBoGBgUhNTQVwowPn5+cHAFixYgXCw8MRGxuLgwcP4oUXXkDfvn3RpUsXh7aOHTuG7du3Y/369eW+HbeLnTqq9NTyzmTCG9WQ1qOD5cP5il4vrVuvZkjrF5OOS+sFuQXSutFP/hENjQ+R1q3ZVmk9/fhFaV1ncH4tVVj96k5rAGDQKfJ6kMqhFJV9b5PkEwKAb6TKL2uV9nUq0QWmDPlrbzh0RlqPaddY3n6zkoeCigmVnDqhl9eJPMFWJGDTuXekzlbkWntz584FAHTo0MHh+QULFmDYsGEAgJSUFIwbNw5paWmIiorCkCFDSj1nbv78+ahWrVqJzl5lxk4dERERaVZZDr+qGTt2LMaOHas63ZQpUzBlyhSXll/RGGlCRERE5AU4UkdERESaCeGBSBPh3va8HUfqiIiIiLwAR+qIiIhIs8pwTt3djiN1RERERF6AI3XkcXnffCStizx5NIUxQh5NYZT9kjPK3+JFV9KldWv6VWn90oET0rpaZEl4g2rSujHQX95+tnzfpSbJYzVC4yOl9asnnUeeWK/nSOfV+6h8vahEiujDIqR1XU62tK6Y5ZEktsBgaV0o8t+81uMnpXWjnzxWxNimvbSeFnmv05rBJo+qqV63kbRO5Am2IgGbUrGRJnc7jtQREREReQGO1BEREZFmPKeu4rFTR0RERJoJmwciTdzcnrfj4VciIiIiL8CROiIiItJMFAkIN18oIXihhEs4UkdERETkBThSR0RERJqJIrg90kQUubU5r8dOHXmcMPlK64paAzYfefma8yy57CN/SOdNO3BK3nah/CRdtSyyiEax8vnN8n2j95PXdSo5fL4Wk7RuzcqT1sPqV3dayzx7SVPbuVcypXX/qlWk9YAmznPcAMAWFCqtZ4bHS+vm66nS+rVj56V1nUElh+/iOWndLyTOae2Kjzzf8Kcj8n3buoFFWieiOxM7dURERKSZEB6INBE8p84VPKeOiIiIyAtwpI6IiIg0sxUJ2MDbhFUkduqIiIhIM1Fkg1A/S9rlNqnsePiViIiIyAtwpI6IiIg0EzYPhA/z3q8u4UgdERERkRfgSB2pytm2TD6BIj+HQtHJ87qKUi9I66k7k6T17EvXndbST16Tzlv1nnBpXTVnzhIgrSs6+e+molx5lpvazazVfsUW5hdK6wU5+dJ6WJOqTmsBtWOk84p8q7RuK5SvW875i/L5r6VL64XV5Tl0Opt8+YYs5/mHAOAbbJbWI596QlovOvG7tB507D9Oazn3dJHOmwH5+3Ljr/LXvUsTeb4hUWl4oUTF40gdERERkRfgSB0RERFpJooEhJtH6gRH6lzCkToiIiIiL8CROiIiItLMViRgc/NtvWy8+tUlHKkjIiIi8gIcqSMiIiLNRIGA0DGnriKxU0dERESa2QoFbG7u1PHwq2vYqSNc//lbad1QVCStK9cuSeuZe/ZL66e2H5XWzWHyPLDwBtWczxseKJ3XPyJIWveLdp7TBgA6X3mel1DZdzqj/COoNv/106nSuqKTZwhaYuQ5fYaoKOfFkAjpvDZf+esmfPykdfncgHLqN/nyDT7y9q+ekS9AJcfOVih/bU7FdpDWM6N7SutR+hSnNUuuPMMvzSB/bZhDR+Sd2KkjIiIizXj4teLxQgkiIiIiL8CROiIiItLMViTcfg6cuyNSvB1H6oiIiIi8AEfqiIiISDNRYINQ5BdnudymsLm1PW/HkToiIiLyKh999BFq1qwJX19fNG/eHDt27KjoVSoX7NQRERGRZqJQ3Miqc+NDFLp+Tt3y5cvx4osv4o033sD+/fvx4IMPonv37jhzRiXGyAvw8CvBkHlZWredOiatX9l3RFo/u/uUtG69XiCtV4mrIq0X5lmd1oJrSXLWABgtAdK6opIjp4+IlNZhUMmhy7gqn1/lpONgo1Faz7uWLa0bzb7SemGK86w0o1m+73Kqxkvrl31jpHU1VY3+0voepZW0HhaRJa03OCPPbzRXk2fB5Su50npeofx9fTi3ttNalDlMvmyr/H1B5AmiQEAobo40uY0LJWbMmIER/9/e/cdGXd9xHH/fXXs/aO+upS0thQJ1IoulLAobWLdkLhU0pMmiiz+WKGTwh9E/TIxZdMtC/TH7z0wwWULQZFGWgEhiQohNCP5B3MJYliIbKNmqoC3QWlrgvteWXn/c7Q8ns+C9jrbAXT88H0n/oK/79j70+23v3W+/fX03bbLNmzebmdnWrVtt//79tm3bNmtra7uu6ys0DHUAAGDGhi1tdp3/WHXYvr6mzvO8Se8PhUIWCl1doj06OmodHR32wgsvTHr/2rVr7dChQ9d3cQWIoQ4AAExbMBi0mpoa29h76oZ8/NLSUqurm3xmf8uWLdba2nrVY/v7+21iYsKqqyffDai6utp6e/UdeFzAUAcAAKYtHA7bqVOnbHQ0+6UwM5HJZMx3xV/VftdZum+78vHf9TFcxFAHAABmJBwOWzisr9G9GSorKy0QCFx1Vq6vr++qs3cu4q9fAQCAE4LBoK1cudIOHDgw6f0HDhywpqamPK3q5uFMHQAAcMZzzz1nTzzxhK1atcruuecee/PNN62rq8ueeuqpfC/thmOoAwAAznj00UdtYGDAXn75Zevp6bHly5dbe3u7LV68ON9Lu+F8mSmUwLS2ttpLL7006X3qL0ref/9927Ztmx09etRSqZQ1NDRYa2urrVu3bkqL9DzP4vG4JRIJi8ViU9r2VjB8cKd+gE//ln3i2BGZd33YIfPiiO7EKgrr3DubkHmkLCLz9PhE1qxkXlxuW7HyTpn7gkGZ++NlMs/Mieo8qK9BGSmrlXmk76TMxz49JvPiBQtkPnHuXPbwB6vltmer75J515C+vqUynJR5aUD3zH05pDsE+wf1hdYVpfqi73s/2SpzK6+Ssbdohcw/TTdkzb48p78mSiP61kq/WBOQOWYfXidhNo1r6hoaGqynp+fy27Fj2V80PvroI7v//vutvb3dOjo67L777rOWlhb7+OOPZ7RoAAAATDblX78WFRVZTU2OFv3/2bp166R/v/baa7Z3717bt2+f3XWX/ikeAAAA127KZ+o6OzuttrbW6uvr7bHHHrOTJ/Wvf74tnU5bMpm0uXPnyselUinzPG/SGwAAALKb0lC3evVq27Fjh+3fv9/eeust6+3ttaamJhsYGLim7V9//XUbGhqyRx55RD6ura3N4vH45bcrm6QBAAAw2ZSGugcffNAefvhha2xstObmZvvggw/MzOydd97Jue2uXbustbXVdu/ebfPm6Rthv/jii5ZIJC6/dXd3T2WZAAAAt5wZVZqUlJRYY2OjdXZ2ysft3r3bNm3aZHv27LHm5uacHzfbjXoBAADw3WZ0R4lUKmUnTpyw+fPnZ33Mrl27bOPGjbZz505bv379TJ4OAAAAWUzpTN3zzz9vLS0ttmjRIuvr67NXX33VPM+zDRs2mNnXvzY9c+aM7dixw8y+HuiefPJJe+ONN2zNmjWX++wikYjF47o/DP83+Le9Mvfn6KHznT4l86/+/onMw3HdiTWnUncijQ2nZB4o1uuvWlEv82B59mOp7x+fym3Hzl+UeXjpUpnn6pkbj1bIfCiue+LmDImeODPzDesuN2vSZ8Y7y+6W+YKRz7JmxSndE9c9pC+zuDis+wv9vlKZH79QKfMch11Ot1cM6wcU6w7DC/WrZP5lWh/XkcBY1szn01+THcezb2tGTx3gqimdqTt9+rQ9/vjjtmzZMnvooYcsGAza4cOHL7c09/T0WFdX1+XHb9++3cbHx+2ZZ56x+fPnX3579tlnr+//AgAA4BY3pTN17777rszffvvtSf8+ePDgVNcDAACAaZjRNXUAAAAoDAx1AAAADmCoAwAAcABDHQAAgAMY6gAAABwwoztK4PoY+ssemRcl9L11Lx0/JvORcxdkHl2gu9T8QX2YFEV0V9vgcd2TV7ZY941Fln5P5r7i7HcfiS85L7cd83TXWihSIvNU9RKZD82p0s8f0J+7cEDvuy8afi7z86NlMv/8rO6C+zySfd8sr9C37zvfp+8Kc/SE7lIrL9fbN9aPyvxHdkjm4T59XNq/9Of+0lLdQ9eVXiLzk/1RmWcy2bOU/tRZ22Z9XAFwE2fqAAAAHMBQBwAA4ACGOgAAAAcw1AEAADiAoQ4AAMABDHUAAAAOYKgDAABwAD11N0Hy8D6ZF6WGZT7epfu0cnWthavKZR4IBWVufj37+4v1YVRaO1fm5T9eI/PxqjqZD5YvypqVyS3Nut5rl3n0h3rf5BJN9sh8NByT+XjxHJmPZYplfrI/Rw9d17jMG+/Ivu97RnQH34VBn8xXLdfHTU1UH9fzgv0yD/bm6Pi7bZ3Ml5w6IPP+6BKZ/7tb71u//vRY8lL27OkHcmwM4JbEmToAAAAHMNQBAAA4gKEOAADAAQx1AAAADmCoAwAAcABDHQAAgAOoNLkJMgH9aY40b9AfoFnHurTCLPnHX8vcFwjI3D8norcP6kqUeEmJzEcW3SnzC9HslSVmZsGJ7N0PowuXym3r1v9E5uNnTss8PDEh854V62V+ZOA2/fwTurpiXmxE5p1fjMl8eFhXmqTT4ewfu1fXrVTF0zLP5URPVOZ9Mf38X0Tn6+17QzL31/9M5uUjvTJvqsvI/JPzC2X+eZfaXlfZALg1caYOAADAAQx1AAAADmCoAwAAcABDHQAAgAMY6gAAABzAUAcAAOAAhjoAAAAH+DKZjC5TKgCe51k8HrdEImGxWCwva7h45MNpb1t2d46iuTwb3P4bmRfNq5H5RFWtzNPF2bvOzMy+qmyQecZ0V5vfsvehXcrojr3yiXMyHwyUyfwzT3ehhYp0j91f/6k7Ao8f6Zb5ssYFMv/9r3QX22//lJr29q/s1B13o2O6p+6VDbrf8Ok/XJT57bfr7wWBgD5u0jm+9S2q1vm5i/pn4gUVet+3rKImFNdPIbxOIv84UwcAAOAAhjoAAAAHMNQBAAA4gKEOAADAAQx1AAAADmCoAwAAcABDHQAAgAMoSrpGvozu3IqvXHuTVpIHRfowSZVWyXx4ToXM0zl+tlA9dGZmQ+mSrFnfpbjeNqh77Poulsq8u1/3zD39QLHMm1fI2O59T/fUlVfl6qPSPXWJiyPT3v53v7yx3z6Gk3ptnf/RPXJ3fF/v+5q5+vm/uqCPy4HzuofOG9Q9eS2r9PMDwFRxpg4AAMABDHUAAAAOYKgDAABwAEMdAACAAxjqAAAAHMBQBwAA4ACGOgAAAAf4MpmMLnsqAJ7nWTwet0QiYbFYrl4u3GxdnSdmtP2wT3fBXUrrLjnl5IVymQ9e0j/XbPip7hqDu1r/PCbzsTHdn+gP6GPnlQ3BKa8JyIbXSZhxpg4AAMAJDHUAAAAOYKgDAABwAEMdAACAAxjqAAAAHMBQBwAA4ACGOgAAAAfQUwcAwCzH6yTMOFMHAADgBIY6AAAABzDUAQAAOIChDgAAwAEMdQAAAA5gqAMAAHBAUb4XcC2+aV3xPC/PKwEAoPB88/o4C1rKcAPNiqEumUyamVldXV2eVwIAQOFKJpMWj8fzvQzkyawoH06n03b27FmLRqPm8/nyvZwbzvM8q6urs+7ubkok84x9URjYD4WDfVE4vr0votGoJZNJq62tNb+fK6tuVbPiTJ3f77eFCxfmexk3XSwW45tmgWBfFAb2Q+FgXxSOb/YFZ+jAOA8AAOAAhjoAAAAHMNQVoFAoZFu2bLFQKJTvpdzy2BeFgf1QONgXhYN9gSvNij+UAAAAgMaZOgAAAAcw1AEAADiAoQ4AAMABDHUAAAAOYKgDAABwAEMdAACAAxjqAAAAHMBQBwAA4ID/AnsXgWuIRLn3AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(
,\n", + " )" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 9 + }, + { + "cell_type": "markdown", + "source": [ + "### Reproject" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "print(f\"EPSG: {dataset.epsg}\")\n", + "print(f\"Coordinate reference system: {dataset.crs}\")\n", + "print(f\"Dataset dimensions: {dataset.shape}\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:19.637965Z", + "start_time": "2024-12-06T22:27:19.633681Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "EPSG: 4647\n", + "Coordinate reference system: PROJCS[\"ETRS89 / UTM zone 32N (zE-N)\",GEOGCS[\"ETRS89\",DATUM[\"European_Terrestrial_Reference_System_1989\",SPHEROID[\"GRS 1980\",6378137,298.257222101004,AUTHORITY[\"EPSG\",\"7019\"]],AUTHORITY[\"EPSG\",\"6258\"]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4258\"]],PROJECTION[\"Transverse_Mercator\"],PARAMETER[\"latitude_of_origin\",0],PARAMETER[\"central_meridian\",9],PARAMETER[\"scale_factor\",0.9996],PARAMETER[\"false_easting\",32500000],PARAMETER[\"false_northing\",0],UNIT[\"metre\",1,AUTHORITY[\"EPSG\",\"9001\"]],AXIS[\"Easting\",EAST],AXIS[\"Northing\",NORTH],AUTHORITY[\"EPSG\",\"4647\"]]\n", + "Dataset dimensions: (1, 125, 93)\n" + ] + } + ], + "execution_count": 10 + }, + { + "cell_type": "code", + "source": [ + "resampled_dataset = dataset.to_crs(4326)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:23.481471Z", + "start_time": "2024-12-06T22:27:23.462005Z" + } + }, + "outputs": [], + "execution_count": 11 + }, + { + "cell_type": "code", + "source": [ + "print(resampled_dataset)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:25.454365Z", + "start_time": "2024-12-06T22:27:25.450027Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.05475332958287695\n", + " Dimension: 104 * 123\n", + " EPSG: 4326\n", + " Number of Bands: 1\n", + " Band names: ['Band_1']\n", + " Mask: -3.4028234663852886e+38\n", + " Data type: float32\n", + " File: \n", + " \n" + ] + } + ], + "execution_count": 12 + }, + { + "cell_type": "code", + "source": [ + "resampled_dataset.plot(vmin=0, title=\"Rhine River Basin (reprojected to WGS 84)\", cbar_label=\"Elevation(m)\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:29.152124Z", + "start_time": "2024-12-06T22:27:28.978012Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAIFCAYAAACHwtbZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC10UlEQVR4nOzdd3gU1f4G8Hd3k2w2FZKQBiGh9yoIItKliAiKiOUizXbt8hMFvQpcURQR9FpQvAgodhHkglJUilxEEURB6dJ7TUhv5/cHNyvnu5uZHdiQuLyf59lHz87s2ZnZ2WUy88732JRSCkREREREfmAv7wUgIiIiosDBg0siIiIi8hseXBIRERGR3/DgkoiIiIj8hgeXREREROQ3PLgkIiIiIr/hwSURERER+Q0PLomIiIjIb3hwSURERER+w4PL/7HZbNrDbrcjOjoabdu2xZQpU1BQUOD1dZ06dYLNZsPu3bt9fq+xY8fCZrNh5syZ/ll4P9m9e7fHdnA4HIiJiUHHjh0xc+ZMlDag0/lsh4qg5LOQj6ioKFx++eV4+eWXUVhYeNGXa8iQIbDZbFi+fPlFeb9x48bB4XDg999/vyjvVxGkpaXBZrOV92KUuYu9L/mquLgYlStXhs1mw65du7zOc/XVV8Nms6FZs2Zep585cwZBQUFwOBxIT0/3mH7q1ClMmDABV111FeLj4xEcHIzo6Gi0aNEC9957L5YtW1bq8n366afo0aMH4uLiEBwcjPj4eDRt2hTDhw/H+++/b2ldi4qK8MYbb6BNmzaIjIxESEgIUlNTMWzYMGzfvt2nPrZv3w6XywWbzYaePXt6TM/JyUFSUhJ69+5tadmIykJQeS9ARTN48GAAZ38Mdu/ejdWrV+OHH37AwoULsWjRIgQFBf4mCw8Px4033ggAKCgowPbt27Fy5UqsXLkSy5cvr3AHxf7QrFkzNG/eHMDZz37v3r3473//i7Vr12LRokX48ssvYbcH5t9iR44cwaRJkzBgwAA0bNiwvBcn4NlsNqSmplbYP8RmzpyJoUOHYsyYMRg7dmyZvY/dbke7du3w5Zdf4rvvvkONGjW06UVFRfjhhx8AAJs2bcLp06dRqVIlbZ7Vq1ejqKgIzZs3R3R0tDZt/vz5uP3225Geno7IyEhcfvnliI+PR2ZmJn7//XdMnToVU6dOxXXXXYcvvvhCe+2QIUMwa9YsAECrVq1Qo0YNFBUV4bfffsM777yD999/H7fddptP66mUwg033ID58+cjPDwcV111FSIiIvDzzz9jxowZ+PTTT7Fs2TK0atXKsJ+7774beXl5pU53uVx47LHHMGLECHz77bfo0qWLT8tHVCYUKaWUAqC8bY41a9ao0NBQBUC99957HtM7duyoAKhdu3b5/F7Hjh1TmzdvVqdPn76QRfa7Xbt2KQAqNTXVY9rcuXPd2+i7777zmL5nzx61efNmlZ+ffxGW1H/GjBmjAKgxY8Z4TFu/fr1yuVwKgJozZ85FXa6DBw+qzZs3q6ysrDJ/rwcffFABUBs2bCjz96pIduzYoTZv3nzR37e071hZGTx4sAKgli1b5tP8M2bMKPU74W8TJkxQANQdd9zhMe2nn35SAFSzZs0UALVgwQKPef7xj38oAOqBBx7Qnv/yyy+V3W5XwcHB6qWXXlK5ubker920aZP629/+purXr689/9lnnykAqnLlymrt2rUer9u2bZt6/PHHfV7HL774QgFQNWrUUIcOHXI/X1RUpB555BEFQHXo0MGwj3//+98KgLrrrrsUANWjRw+v82VnZ6tKlSqpyy+/3OflIyoLgXkqxo/atGmDIUOGAAAWL17slz7j4uJQv359j7+0K7J+/fq5L8V42w7Vq1dH/fr1ERwcfLEXrcy0aNHCfQZ35cqVF/W9k5KSUL9+fYSFhZXp+2RnZ2PWrFlo2rRpqZceA1WtWrVQv3798l6MS9pVV10FAFi1apXHtJLnRo4caTpPST8AkJWVhcGDB6O4uBizZs3CiBEj4HQ6PV7bqFEjvPfee5g9e7b2/Oeffw4AuO+++7yeTaxTpw6ef/55n9YP+PO34+6770ZiYqL7ebvdjqeeegoAsHbt2lJff/ToUYwcORLdunXDLbfcYvheLpcL/fv3x48//oj169f7vIxE/saDSx80atQIwNkvuZF58+ahbdu2CA8PR0xMDG655Rbs37/fY77SMpfn5hZ97Qs4e9ll1qxZ6NChAypVqgSXy4WmTZti0qRJpWZFz4fRdpCZy6NHjyIoKAhVq1ZFcXGx1/4++eQT2Gw2j8tLVtenJDunlMKrr76KZs2aISwszH2Z+0IkJCQAgEfuMjc3F9OnT0ffvn1Rs2ZNuFwuVKpUCR06dMBHH33kta+CggK89dZbuPzyyxEXF4ewsDCkpaXh2muv9XhNaTm5c3OC//73v9G0aVO4XC4kJibi7rvvxunTpy2t36effor09PRSL/HZbDakpaUhPz8f//znP1G/fn04nU7069fPPU9mZib++c9/okmTJggLC0NUVBQ6duyIefPmefRXkuvt1KkTMjIy8NBDDyElJQWhoaFo0KABpkyZ4nV/8eUzPnHiBEaOHIk6deogNDQUMTEx6NmzJ5YsWeJ13Ywyl7t378bdd9+NtLQ0OJ1OVKlSBTfeeCN+/fXXUrfl999/j5tuugnJyclwOp2oWrUqevTo4T54mTlzpvv99uzZo2V8O3XqpPVlZZuWmDNnDi6//HK4XC4kJCTg9ttvx8GDB0ud35tOnTph6NChAM7mcM9dRvl79eWXX+Lqq69G5cqVERoainr16mHUqFGW9sHWrVsjNDQUW7ZswbFjx7Rpq1atQkhICPr3749q1arhu+++06YXFhbixx9/BAC0b9/e/fzMmTNx7NgxtG/f3vRgDAAuu+wyrV2yHFWqVPF5PYx4O7AtUbI/xMTElDrPgw8+iJycHEydOtWn97v11lsBAG+//baFpSTys/I9cVpxoJTL4kop9dxzzykA6m9/+5vHtJLL4iNHjlR2u11dfvnl6oYbblApKSkKgKpTp47Kzs7WXlNyKXbGjBkX3FdRUZEaMGCAAqCioqJU165dVd++fVViYqICoK655hpVVFTk0zYwuiyulHJfkvnHP/5R6nY4Nx7Qo0cPBUB9/fXXXvvr27evAqAWLlx4QeuTmprqvmQUHBysunXrpgYOHKiuv/5603U2uiyulFKdO3dWANRrr72mPb9582YFQCUkJKiOHTuqgQMHqo4dO6rg4OBS+xs4cKACoOLi4lSfPn3UwIEDVfv27VVUVJTq2LGjNm9plzJL1nXkyJEqJCREXXnllapfv34qPj5eAVBXXXWVKi4uNl3vEjfeeKMCoH744Qev0wGolJQU1atXLxUeHq6uueYaNWDAAHXPPfcopZQ6fPiwatiwoQKgqlatqq677jrVrVs3FR4ergCoCRMmaP2V7GNt27ZVl112mapUqZK64YYb1LXXXuuOIAwZMsRjOcw+4/3796uaNWsqAKp69epq4MCBqkuXLsrhcCgAavLkyaX2KX333XcqKipKAVCNGjVSN954o7riiiuUzWZTLpdLffvttx6vmTJlirLZbAqAat26tbr55ptVly5dVFxcnPv79N1337k/1/DwcDV48GD349ztZHWbKqXUq6++qgAoh8OhunTpom666SaVlJSkUlJS1LXXXuvzZfEJEyaoK6+80n05+txlPDcOU/KbGBQUpLp27aoGDhyoqlWrpgCounXrqsOHD5u+V4kOHTooAOrzzz/Xnk9KSlLt2rVTSp397oSEhKicnBz39DVr1igAqnbt2trrevfurQCoV1991edlONfQoUMVANWqVSuVmZl5Xn2ca9myZQqAqlmzpsdl8YcfflgBUE888YTX1y5cuFABUP/85z+1vkq7LK6UUjk5OSo4OFhVr179gped6Hzx4PJ/jA4uS378Zs+e7TGt5KAqPDxcffPNN+7ns7KyVLt27RQANX36dO01ZgeXVvp64YUXFAB19dVXq6NHj7qfz8zMVH369PF6YFQao4PL/Px8Vbt2bQVArVq1qtTtcO7B5bvvvqsAqGHDhnnMf+rUKRUSEqLi4uJUQUHBBa1PyUFCXFyc2rRpk0/rWsLbwWVhYaHatWuXGjlypPvgKj09XXvd8ePH1eLFiz0OdP/44w+Vlpam7Ha7ti1Ktm3r1q21fyCVOpuTWr16tfac2cFlUlKS+vnnn93PHzt2zP35nLvvmElMTFTBwcFeM2lK/fm9qF27ttq/f7/H9F69eikA6rHHHtPytjt37lS1atVSDodD/fLLL+7nS7YDANW0aVN17Ngx97QdO3ao5ORkBUB98cUXXte7tM+45ABq0KBB2nJ89913KiwszGM5zu3zXOnp6e5t8umnn2rTli5dqkJCQlTVqlVVXl6e+/kVK1Yom82moqKiPD6vvLw8tWjRIu05oz/glDq/bep0OpXT6dTePysrS1199dXu7e2vzOWPP/6o7Ha7ioyM1P4oyc3Ndf9hOGDAAJ/eSymlnnzySQVAjRgxwv3cjh073H9EKaXUv/71LwVArVy50j3PpEmTFAA1dOhQrb+Sg1xvv1O++O6779x/KFSpUkXddddd6t1331U7duw4r/6UUmrEiBHu3/aePXuqAQMGqFq1aqnQ0FD10EMPab+BJTIzM1VqaqqqV6+ee3/z5eBSKaUuu+wyBUDt3r37vJeZ6ELw4PJ/5MFlUVGR2rFjh7rnnnsUAHXdddd5/QEoOajydjZvzpw5CoAaPHiw9rzZwaWvfRUUFKi4uDgVGRmp/SNd4vDhw8rpdKomTZqYrP1Z3g4u8/Pz1W+//aZuuOEGBUDde++9Xl/r7eDyzJkzKiwsTEVHR3scvLz99tsKgLrvvvsueH1KDhJefPFFn9bzXCWfRWmPm2++2etBlZGSdfvXv/7lfu6HH35QANRDDz3kUx9mB5f//ve/PV7z0ksvGR4USEeOHHGfES9NyXaQB1pKKfXzzz8rAKpdu3Zez5bOmzdPAfrNFuceXC5ZssTjNVOnTlUAVPfu3bXnjT7jnTt3us90nzp1ymN6yT/sd999t9c+zzVlyhQFQI0ePdqjH6WU+0zTuTd4lRwMTpo0yetrJKODy/PZpk899ZQCoO68806P+bds2eI+UPLXweXtt9+uAKinnnrKY9qRI0eUy+VSdrvd5+/NokWL3H94lZg5c6b2R8a6desUAPXss8+65+nXr58CoN555x2tv5IbMLds2eLxXseOHdPOxpY85IHje++9pypXruzxe5CamqqeffZZjz8QfTF58mQVFBSk9desWTM1d+5cr/OX7Gvnnin39eDytttu8/pHGtHFwoPL/zE6wBg+fHipl5ZLDqrO/Yu6xMaNG73+Q2l2cOlrXz/++KMCoHr16lXqejVu3FjZbDaPy+nenPsPv7fHuHHjSn1taXfN33zzzR7/GCv15+Xmc8/Yne/6lBwkbN261XQdpZLPQl4CvOaaa1RSUpJyOBxq6NChpZ7Z++6779Qzzzyj7rnnHjVkyBA1ePBg1b17d48DgPT0dBUeHq6ioqLUtGnT1PHjxw2Xy+zgcu/evR6v+c9//qOAs5eOfVGyTxndWQpA2Ww2r+s/ceJEBUC98MILXl97/PhxBZy9BF6iZB+LiYnx+pr09HQFQEVERGgHV0af8axZs9x/CHhTcsDWsGFD7XlvB5fXXHONAkqPCZTcSTxq1Cil1Nmz3CWX8zMyMry+RjI6uDyfbVryXVq6dKnX17Rs2dKvB5c1atQo9eBNqT/jLp988olP75eRkaEcDocKCgpyX4a+4447FAD396SwsFBFRERovw0lUZDt27dr/ZUcXHrbV0r7jfv++++9LtfMmTPVoEGDVP369bX527Rp49NvqlJnz+jedNNNyuFwqKefflrt2rVLZWRkqG+//VY1btxYAZ6X8NeuXascDoe6/fbbted9Pbh84IEHSv0jlOhi4A09wuDBgzF48GAMHDgQ9erVAwBMnz4dM2bMMHxdtWrVPJ6LiIgAAMPaZBfSV8nNM1999ZXXQuA2mw2bNm2CUgonT570+f3Dw8Pd26F///6oXr06AGD8+PGW75gvuVHk3KLDBw8exIoVK1CjRg1cccUVflufkuU8H/369cPMmTPdj4ULF2L37t0YMmQIZsyYgQceeECbPz09HV27dsVVV12Fp556Cm+++SZmzpyJWbNmuW8gOXPmjHv+qKgovP322yguLsZdd92FKlWqoEGDBrj33nuxZs0ay8vrj/2tpOh0ZGSk4Xzx8fFeb0oo+bwef/xxr59VXFwcAOD48eMer01NTfX6XlFRUahUqRIyMzORkZHhMd3bZ1xy00paWprXPkue9+XmlpJ1atOmjdd1KqkeULJOx48fR05ODuLj4023oy/OZ5uWrFdp+/+FfC+8OXjwoLtWpzdWtjdwdv9r1qwZCgsL3d+FVatWoX79+oiNjQUAOBwOtGnTBqtXr0ZxcTG2bt2Ko0ePIjExEbVr19b6K3mNt/0uLS0N6uxJFSil0LFjR8PlGjx4MN59911s3rwZ+/btw+jRo+FwOPDDDz9g8uTJPq3fhAkT8Mknn+CBBx7AuHHjkJaWhsjISHTu3BlffvklwsPDMXr0aPdvWmFhIe68805ER0dj0qRJPr2HFBUVBQBeC8sTXQyBXxHcInlH5MSJE/H444/jgQceQLdu3Ur9QfXnSB++9lVUVATgbGmMdu3aGc5rdMeiFBcXp22HoqIiPPTQQ3j99dcxePBgbN++3ed/SEtGuFi4cCHS09MRHR2Njz76CMXFxR53KF/o+oSGhvq0TL4KCQnBlClT8M477+Cdd97BxIkT3UWcH3/8cXz77bfo0KED/vnPf6Jx48aoVKkSHA4HlixZgh49eniMZnTLLbegW7du+OKLL7BkyRKsWLHCXch55MiRmDhxos/L5o/9raQUlreDuHOVtl1LPq+rrroKNWvWLPX1JQdEvpLbzZdlAUrfJiXP+7LNStZpwIABhmWg2rRp49N7W3U+27Rke1W00YasLM9VV12F9evX47vvvkPz5s2xdetWDB8+XJvnyiuvxDfffINff/0V69atc79OatasGQ4cOID169eb/o5YUa1aNTz33HPIz8/HSy+9hIULF+LJJ580fd17770HAO4/TM6VkpKCtm3b4ptvvsFPP/2E7t27Y//+/diwYQMSExMxYMAAbf6SO/F//PFHdOrUCREREViwYIFHvyUHlX+lcncUWHhwaeKxxx7DN998gyVLlmDcuHF45513ynuR3ErOXjVu3LhMR81xOBx4+eWXsXz5cvz222+YMmUKnn76aZ9eGxwcjAEDBmDq1KmYM2cOhg0bhg8++ADAnyUzSlys9bEiMjIScXFxOHbsGHbs2OGuezd37lw4HA7Mnz/f4wf8jz/+KLW/KlWq4I477sAdd9wBpRQWL16MgQMH4sUXX8SQIUMu6gg58fHxAGDprPa5Sj6vG2+8EQ8++KCl1+7du9fr8xkZGUhPT0d4eLj77IuZ5ORkACh1CMGSs4FJSUmmfVWrVg1bt27FP/7xDzRt2tR0/ri4OLhcLhw5cgRnzpy54LOX57NNk5OTsW3bNuzZswd16tTxmF7atj5fycnJ2LVrF/bs2eO+unOuPXv2APBte5e46qqr8Morr2DVqlVo0aIFlFK48sortXlK2qtWrTI8uOzVqxe+/PJLfPzxx7j//vt9XgZfderUCS+99JLXM6PelJSQK21/Lnlefg8PHz6Mw4cPe33NqVOnsGLFilIPHk+dOgXAf+WUiKziZXEfvPDCC7DZbHjvvffcP5wVQevWrREdHY1ly5aZnn26UEFBQRg/fjwA4JVXXkFmZqbPry05Q/nBBx9g27ZtWLduHVq2bIkGDRpo813M9fHVmTNn3P+IhIeHu58/deoUIiMjvf64f/LJJz71XTJGcMlYwJs2bfLDEvsuPj4eiYmJ2LNnD3Jyciy/vlu3bgBgWHuxNCdOnMDXX3/t8fyHH34IAGjXrp3PZ75KahwuXLjQa43FkjqT3g5EJKvr5HA43DUqfa0rGBwcXOp49eezTUvW/9NPP/WYtm3bNmzYsMHnvoCzZ+wBz9quJUq2o7fxtY8dO4YlS5a4h3b0VUmfa9ascdd2Pbd2JQC0bdsWdrsd3333ndfi6SWGDBmC2NhYrFq1yr0/WWF05hwAdu7cCeDPP2rMlBRO/+mnnzymFRUV4eeffwbwZ5xAXro/91EyFnrJlZHSaopu3rwZAPxS65fofPDg0gfNmzdH3759UVhYaOnSZVlzOp149NFHcfr0afTv39/rge+vv/6Kjz/+2C/v169fP7Ro0QInT570uaAvcPZAIS0tDcuWLcNLL70EAF6Ldl/s9TGTn5+PRx55BEop1KhRQxvNpW7dujh9+rTHskyZMsX9D8C5fv75Z3z++eceReBPnTrlHj/Z39k4X1x11VUoLCx0/wNnRdu2bdG1a1csW7YMjzzyiMcfHMXFxViyZInXkVWAsyOvnDhxwt3etWsXnnnmGQDAvffe6/Ny1KxZE71798aZM2fw0EMPadv4+++/x9SpU+FwOHzq8+6770aVKlXw3HPPYcaMGR4HGllZWXj33Xe1AQ1K8pHPPPOMR6HvgoICj5xycnIyjhw54vXA4Hy26dChQxESEoJ3331Xe/+cnBw89NBDpQ5iUJqSg6atW7d6nX7ffffBbrfjlVde0Q6Y8vPz8cADDyA7Oxs33HADqlat6vN7xsfHo27dusjKysLMmTORkJDgkaWMiopCkyZNsGTJEuzYsQNRUVFezy5HRERgxowZsNlsGDx4MKZMmeI1h/z777/jwIEDHs/fcccdePbZZ72eNVy7dq17H73hhht8WreSAQeefvppbNu2zf18UVERRo8ejd27dyM1NdV0bHFf5ebmYuPGjahevXq5/KYQAQDvFv8foPQ6l0optWHDBmWz2VRoaKhWCNdobPGSOxNlgWyzu8Wt9FVUVKRuueUWBUA5nU51xRVXqIEDB6quXbu67+rs27evydrr72FUg69knNzExEStHIfZGOtPPPGEexvb7XZ14MABr/Odz/qUVgzbF6XdLd67d293zcWwsDCPO21nz57tXp+rrrpK3XLLLaphw4bKbre7xws+t2xUydjs0dHRqmvXruq2225TvXv3dhfrlgXfze4W96bkTlJZ+spIScmX8ePHe51utj8cPnxYNW3a1H0HeJcuXdzF4atUqaIAqClTprjnP7eIesuWLVXlypVV//79VZ8+fVRYWJgCvA9WYPYZ79+/371/pKamqptvvll17drVXUT9pZde8rnPVatWqZiYGHdfvXv3VjfccINq1aqVu5D5uTVGlVLqxRdfdO8Pl19+ubrllltU165dtSLqJUru5K1Ro4a67bbb1PDhw9XEiRPPe5sq9WcJJYfD4S5qnpycrKpVq2apiLpSZ4twl9yJ3bFjRzV06FA1fPhw9d///tc9z7PPPquAs0XUu3Xrpm6++WZtsAcrRdRLDB8+3L0Nb7jhBq/z3Hvvve55jKpKKHW2fFtkZKQCoCIjI1XXrl3VLbfcoq699lrVpEkTdz9XXnmltrwld7vb7XbVrFkzdeONN6obb7xRtWjRQnvvc2uQGjl+/LiqV6+e+zetc+fOqn///u6i/y6Xy+fatL7cLf71118rAO6BDojKAw8u/8fs4FIp5a71WFLYV6nyP7gs8dlnn6mePXuquLg4FRwcrJKSklTbtm3V2LFjSy0ZUtp7GB1MKKVUq1atFAD1+uuv+7TsSin122+/ubdxly5dTJfFyvr44+BSPpxOp6pdu7a6++67PUqdlFi4cKFq27atioyMVJUqVVLdunVTy5cv93qQd+jQITV+/HjVpUsXVa1aNRUSEqISEhJU+/bt1axZszxqqF6sg8vs7GwVHR3tUaanhC/7Q3Z2tpo8ebJq06aNioyMVE6nU6Wlpanu3bur119/XatZeu5+fPr0aXXvvfeq5ORkFRISourVq6cmTZqkCgsLPd7Dl8/4+PHj6v/+7/9UrVq1VEhIiKpUqZLq3r27Wrx4sdf5jfo8cOCA+r//+z9Vv3595XK5VEREhKpbt64aOHCg+vjjj7Ui6iWWL1+u+vbtq6pUqaKCg4NV1apVVY8ePdT777+vzZeZmanuv/9+lZKS4q57KL/XVrZpiU8++URddtllyul0qri4OHXrrbeq/fv3l7ovGVm7dq26+uqrVXR0tLtOpvy9WrBggeratauKjo5WISEhqnbt2uqxxx5TJ0+e9Pl9zlXyhw7gfUQlpZR6//333fOcW/OyNMePH1fPPPOMateunYqNjVVBQUEqKipKNW3aVN11111et8m+ffvUW2+9pfr3768aNGigoqKiVHBwsEpMTFQ9e/ZU7733nqVRsJQ6W9ZozJgxqmnTpio8PNw9gs7gwYPV77//7nM/vhxcDhs2TAFQ69ats7SMRP5kU8okYEJEAe2RRx7Byy+/7M7ClqXdu3ejRo0a6Nixo8e46RdbQkICMjMzkZWVVa7LQeQvOTk5SE5ORt26dd1xG6LywMwl0SVu9OjRiIiIwPPPP1/ei3LR7N27F8eOHUOtWrXKe1GI/ObNN9/E6dOn8dxzz5X3otAljgeXRJe4+Ph4jBw5EnPmzMHvv/9e3otTpvbu3Yubb74Zbdq0gVLK641lRH9FOTk5mDhxInr16oWuXbuW9+LQJY6XxYnooinvy+IbNmxAy5YtkZSUhEGDBmH8+PEICmK5XyIif+LBJRERERH5DS+LExEREZHf8OCSiIiIyE+mTp2Kpk2bIioqClFRUbjiiivw1VdfATg7sMLjjz+OJk2aIDw8HMnJybj99ttx8OBBrY/Dhw9j0KBBSExMRHh4OFq2bInPPvvM470WLlyINm3awOVyIS4uzufi/mWNB5dEREREflKtWjU8//zz+Omnn/DTTz+hS5cu6Nu3L3777TdkZ2dj/fr1eOqpp7B+/Xp8/vnn2LZtG6677jqtj0GDBmHr1q2YP38+Nm7ciBtuuAEDBw7URlObM2cOBg0ahKFDh+KXX37Bf//7X9x6660Xe3W9YuaSiIiIqAzFxMTgxRdfxPDhwz2mrV27Fpdffjn27NnjHrIzIiICU6dOxaBBg9zzxcbGYuLEiRg+fDgKCwuRlpaGcePGee2zvPHMZTk4cOAA/va3vyE2NhZhYWFo3rw51q1bV96LVaGkpaXBZrN5PO67777yXrQKo7CwEP/4xz9Qo0YNuFwu1KxZE//85z8tjyV9KThz5gwefvhhpKamwuVyoV27dli7dm15L1a5WrlyJfr06YPk5GTYbDbMmzdPm66UwtixY5GcnAyXy4VOnTrht99+K5+FLUdm2+nzzz9Hjx49EBcXB5vNhg0bNpTLctLZcdUzMjLK7JGenu7xnLdx689VVFSEjz76CFlZWbjiiiu8zpOeng6bzYZKlSq5n2vfvj0+/vhjnDx5EsXFxfjoo4+Ql5eHTp06AQDWr1+PAwcOwG63o0WLFkhKSkKvXr0qzHeUNTguslOnTuHKK69E586d8dVXXyE+Ph47d+7Udio6+5dcUVGRu71p0yZcffXVGDBgQDkuVcXywgsv4M0338SsWbPQqFEj/PTTTxg6dCiio6Px0EMPlffiVSh33HEHNm3ahPfeew/JycmYPXs2unXrht9//x1Vq1Yt78UrF1lZWWjWrBmGDh2K/v37e0yfOHEiJk+ejJkzZ6Ju3boYP348rr76amzduhWRkZHlsMTlw2w7ZWVl4corr8SAAQNw5513lsMSEnD2wDKqUlUU5J0ss/eIiIhAZmam9tyYMWMwduxYj3k3btyIK664Arm5uYiIiMDcuXPRsGFDj/lyc3MxatQo3HrrrYiKinI///HHH2PgwIGIjY1FUFAQwsLCMHfuXPfAD3/88QcAYOzYsZg8eTLS0tLw0ksvoWPHjti2bRtiYmL8uObW8bL4RTZq1Cj897//xXfffVfei/KX8vDDD2PBggXYvn07bDZbeS9OhXDttdciISEB06dPdz/Xv39/hIWF4b333ivHJatYcnJyEBkZiS+++AK9e/d2P9+8eXNce+21GD9+fDkuXcVgs9kwd+5c9OvXD8DZs5bJycl4+OGH8fjjjwMA8vLykJCQgBdeeAF33313OS5t+ZHb6VwlNVx//vlnNG/e/KIv26UuIyMD0dHRaNX1EziCwv3ef1FhFn765ibs27dPOwh0Op1wOp0e8+fn52Pv3r04ffo05syZg3//+99YsWKFdoBZUFCAAQMGYO/evVi+fLnW7wMPPIAff/wRzz33HOLi4jBv3jxMmTIF3333HZo0aYIPPvgAt912G9566y3cddddAM5+R6tVq4bx48eX+3eUl8Uvsvnz56NVq1YYMGAA4uPj0aJFC7z99tvlvVgVWn5+PmbPno1hw4bxwPIc7du3xzfffINt27YBAH755ResWrUK11xzTTkvWcVSWFiIoqIihIaGas+7XC6sWrWqnJaqYtu1axcOHz6M7t27u59zOp3o2LEjVq9eXY5LRmQsKCQSwU7/P4JCzp6tL7kDvOTh7cASAEJCQlC7dm20atUKEyZMQLNmzfDKK6+4pxcUFOCmm27Crl27sHTpUu3AcufOnXjttdfwzjvvoGvXrmjWrBnGjBmDVq1a4fXXXwcAJCUlAYB2sOp0OlGzZk3s3bvX79vVKh5cXmR//PEHpk6dijp16mDx4sW455578OCDD+Ldd98t70WrsObNm4fTp09jyJAh5b0oFcrjjz+OW265BfXr10dwcDBatGiBhx9+GLfcckt5L1qFEhkZiSuuuALPPPMMDh48iKKiIsyePRs//PADDh06VN6LVyEdPnwYAJCQkKA9n5CQ4J5GRL5TSrnzmSUHltu3b8fXX3+N2NhYbd7s7GwAgN2uH6I5HA53pv6yyy6D0+nE1q1b3dMLCgqwe/dupKamluWq+ISZy4usuLgYrVq1wnPPPQcAaNGiBX777TdMnToVt99+ezkvXcU0ffp09OrVC8nJyeW9KBXKxx9/jNmzZ+ODDz5Ao0aNsGHDBjz88MNITk7G4MGDy3vxKpT33nsPw4YNQ9WqVeFwONCyZUvceuutWL9+fXkvWoUmrxQopXj1gCo0m90Gm93/+6iVPp944gn06tULKSkpOHPmDD766CMsX74cixYtQmFhIW688UasX78eCxYsQFFRkfsPtpiYGISEhKB+/fqoXbs27r77bkyaNAmxsbGYN28eli5digULFgA4ewb1nnvuwZgxY5CSkoLU1FS8+OKLAFAh7k3gweVFlpSU5BHqbdCgAebMmVNOS1Sx7dmzB19//TU+//zz8l6UCmfkyJEYNWoUbr75ZgBAkyZNsGfPHkyYMIEHl0KtWrWwYsUKZGVlISMjA0lJSRg4cCBq1KhR3otWISUmJgI4ewaz5PIbABw9etTjbCYR6Y4cOYJBgwbh0KFDiI6ORtOmTbFo0SJcffXV2L17N+bPnw8AHtncZcuWoVOnTggODsaXX36JUaNGoU+fPsjMzETt2rUxa9YsLfb04osvIigoCIMGDUJOTg7atGmDb7/9FpUrV76Yq+sVDy4vsiuvvFI7jQ0A27ZtqxCnsSuiGTNmID4+XrsRg87Kzs42vGxCnsLDwxEeHo5Tp05h8eLFmDhxYnkvUoVUo0YNJCYmYunSpWjRogWAs9nnFStW4IUXXijnpSMqnc1mh83m/8SflT7PvclSSktLgy/3UdepU8f0pFNwcDAmTZqESZMm+bxsFwsPLi+yRx55BO3atcNzzz2Hm266CT/++COmTZuGadOmlfeiVTjFxcWYMWMGBg8ejKAg7qpSnz598Oyzz6J69epo1KgRfv75Z0yePBnDhg0r70WrcBYvXgylFOrVq4cdO3Zg5MiRqFevHoYOHVrei1ZuMjMzsWPHDnd7165d2LBhA2JiYlC9enU8/PDDeO6551CnTh3UqVMHzz33HMLCwirMCCAXi9l2OnnyJPbu3esevq/k5EFiYqL7DDDRpYaliMrBggULMHr0aGzfvh01atTAiBEjWB/NiyVLlqBHjx7YunUr6tatW96LU+GcOXMGTz31FObOnYujR48iOTkZt9xyC55++mmEhISU9+JVKJ988glGjx6N/fv3IyYmBv3798ezzz6L6Ojo8l60crN8+XJ07tzZ4/nBgwdj5syZUEph3LhxeOutt3Dq1Cm0adMGr7/+Oho3blwOS1t+zLbTzJkzvf6RUlr9QyobJaWIrrxuKYKC/V+KqLAgC/+dfzXS09O1O7vJOx5cEhER0V8aDy4rFl5rJCIiooBgs9ths5dB5rIM+gxkPLgkIiKigGC3A/YyKEXEY0truLmIiIiIyG945pKIiIgCQkUoRUQ8c0lEREREfsQzl0RERBQQKsLwj8Qzl0RERETkRzy4LEd5eXkYO3Ys8vLyyntRKixuI99wO/mG28kct5FvuJ0qJpvN7i5H5NcHM5eWsIh6OSop+sqirKXjNvINt5NvuJ3McRv5htupYin5PDrftBJBIRF+778wPxPLPunAz9tHzFwSERFRQGDmsmLgwSUREREFBLvNDnsZXMIuiz4DWYU7uCwuLsbBgwcRGRkJmy2w/1LIyMjQ/kueuI18w+3kG24nc9xGvuF28qSUwpkzZ5CcnAw7h7S5pFW4g8uDBw8iJSWlvBfjorrU1vd8cBv5htvJN9xO5riNfMPt5Gnfvn2oVq1a+bx5GV0WBy+LW1LhDi4jIyMBnN05GZolf/muVTuP51Sh8b1sHTZ8X1aLQ0QUcDIyMpCSkuL+d5wuXRXu4LLkUnhUVBQPLslvwh0Oj+dUsfHBJfc/IiLryjPSxht6KoYKd3BJ5M3XVRtf0OttweY/DKqAVbmIiIguFA8uiYiIKCDYbGVT8JxF1K3h1iIiIiIiv+GZSyIiIgoIzFxWDDy4DBALguoZTr+2cKvh9C9d9bX2NTlbLniZ/MksM1mUU2w4/XxO0S9JaGRp/u5HfjuPdwkc36Q10dpdd2/U2ssbNLPcpyPYIdr6JxkWF2b4+uaLV1p+TyL667Lb7WVSY5N1O63h1iIiIiIiv+GZSyIiIgoINputTEohBfqIgf7GM5dERERE5Dc8c3mJMMtk2n2oA3khrOYX7UH68jhcxn8H2SP1bJ7MYBabjMbj7T2tkrU4ux3YVK79rWzUQmsXF+vbxKyup9xmcn6zbSo/8/wThYbz+yK2pbXC9lsGXK2163+69IKXgYgqLt7QUzHwzCURERER+Q3PXBIREVFAsNnL5iwja6hbw81FRERERH7DM5cBQtaxNMtYSsV+Hlfb6vv/FYQmBFua/2JvA/l+jjD9b0eZWzWrDVqUbTzdH6q0jjacfmxtutYOCdM/gyCnnrUlokubHXbYy+A0o53n4izhwSUREREFBN7QUzHwUJyIiIiI/IZnLomIiCgg8MxlxcCDywAl83amNQ3F9IqWmZTrI4XG61k8h8jiFWSZ11jM2Z9vOD0oyjjfl7k91/Q9LoTVz0RmJi9GhtJIdMNwj+cKc4sMXxPTLFJrO5zWfrJY15KI6OLjZXEiIiIKCCXDP5bFw1cTJkxA69atERkZifj4ePTr1w9bt+o33R45cgRDhgxBcnIywsLC0LNnT2zfvl2bp1OnTh7LcPPNN2vzbNu2DX379kVcXByioqJw5ZVXYtmyZee/Af2EB5dEREREfrJixQrcd999WLNmDZYuXYrCwkJ0794dWVlZAAClFPr164c//vgDX3zxBX7++WekpqaiW7du7nlK3HnnnTh06JD78dZbb2nTe/fujcLCQnz77bdYt24dmjdvjmuvvRaHDx++aOvrDS+LExERUUCw222wl0E+0kqfixYt0tozZsxAfHw81q1bhw4dOmD79u1Ys2YNNm3ahEaNzg6T+8YbbyA+Ph4ffvgh7rjjDvdrw8LCkJiY6PV9jh8/jh07duCdd95B06ZNAQDPP/883njjDfz222+lvu5i4MFlgOqVsdlw+ldRDbS2PIV9oXUvQ2L1Xcts3G45TrXVcb7NxhI3y5wCgKtaiNaWGUyrmUqr28AmxneX85uN5S23gVxn2b8k30/OL+tkOoKNM6iOYDF/iOeFEpvD+OJJsMu4tqjNbvz6rQN7aO16Hy82nJ+IyN/S08/W642JiQEA5OXlAQBCQ0Pd8zgcDoSEhGDVqlXaweX777+P2bNnIyEhAb169cKYMWMQGXk2ix4bG4sGDRrg3XffRcuWLeF0OvHWW28hISEBl1122cVaPa94cElEREQBwWa3m/7Reb79AkBGRob2vNPphNPpLPV1SimMGDEC7du3R+PGjQEA9evXR2pqKkaPHo233noL4eHhmDx5Mg4fPoxDhw65X3vbbbehRo0aSExMxKZNmzB69Gj88ssvWLr07I2KNpsNS5cuRd++fREZGQm73Y6EhAQsWrQIlSpV8vMWsIYHl0RERBQQrN58Y6VfAEhJSdGeHzNmDMaOHVvq6+6//378+uuvWLVqlfu54OBgzJkzB8OHD0dMTAwcDge6deuGXr16aa+988473f/fuHFj1KlTB61atcL69evRsmVLKKVw7733Ij4+Ht999x1cLhf+/e9/49prr8XatWuRlJTkhzU/Pzy4JCIiIvLBvn37EBUV5W4bnbV84IEHMH/+fKxcuRLVqlXTpl122WXYsGED0tPTkZ+fjypVqqBNmzZo1apVqf21bNkSwcHB2L59O1q2bIlvv/0WCxYswKlTp9zL9MYbb2Dp0qWYNWsWRo0adYFre/54cHmJMstk+rvOpdVMpcwPmuUFPVxghhPwzGBazY36kvO00p+Z4Eg9AxlWJVRr2y1mJO1BDsPpQSY1J4uLzJdf9inJy1uykHHdD/XgPBFd2sq6iHpUVJR2cOmNUgoPPPAA5s6di+XLl6NGjRqlzhsdHQ0A2L59O3766Sc888wzpc7722+/oaCgwH1GMjs7GwBgF7+TdrsdxcXlW9eYB5dEREREfnLffffhgw8+wBdffIHIyEh3WaDo6Gi4XC4AwKeffooqVaqgevXq2LhxIx566CH069cP3bt3BwDs3LkT77//Pq655hrExcXh999/x//93/+hRYsWuPLKKwEAV1xxBSpXrozBgwfj6aefhsvlwttvv41du3ahd+/e5bPy/8ODSyIiIgoItjIqRWTlbOjUqVMBnC2Cfq4ZM2ZgyJAhAIBDhw5hxIgROHLkCJKSknD77bfjqaeecs8bEhKCb775Bq+88goyMzORkpKC3r17Y8yYMXA4zl5ViouLw6JFi/Dkk0+iS5cuKCgoQKNGjfDFF1+gWbNmF7bCF4gHl0RERER+opR5JOjBBx/Egw8+WOr0lJQUrFixwrSfVq1aYfHiildijQeXBMCz7qXZWN5m41TnnzAfy/tcwSbjdlut2ehK0EPW2fvNa1SGxYqMokN/j6BQ42U8tjbd9D3KUkK7GK0ta0TK9ZHsQTLfKHI8DlmH03h7BIWK8e2LPX9wzc4GyPeoNWuB4fxEdGkr67vFyTcc/pGIiIiI/IZnLomIiCgglPXd4uQbHlwSERFRQLDDBnsZXMK2gweXVvDgks6LHDfbasZScibo+UCr43hL57M86b9nXdB7SrJOpiu29GK73gS59G18dM0pw/mPrD6ptdOuSdbaodFhhq8vLiwynG6WsZSZTTm/t/5rzviPYZ9ERPTXw4NLIiIiCgi8LF4x8IYeIiIiIvIbnrkkIiKigMAzlxUDDy4vUbKupVVmmUazupUFGXr+7kIzllJsS+OxXwHAEaIvo1mm0aqc/flau0rDmFLm9E6OzV2nf5rh/Nvn7Nbau788aOn9Wj7QQn9/kwymVFyo1z6VGcyifP44ExFdCnhwSURERAGBRdQrBmYuiYiIiMhveOaSiIiIAoLdDtjLIB9p56k4S3hweYnqlbHZcPrimIaG062l8TyFp+k1H7N252ltOU625Ag2HgfbF6pYzwgmtY/V2sFheu3Nw+uOG/ZnlkONTjFeJ5lZzD6RqbUL84z7l5lMGUD3Nrb3uTL2n9Dask6lI8T450LObw/S63ymvjXX8PVERBeKl8UrBh6LExEREZHf8MwlERERBQSWIqoYeOaSiIiIiPyGZy7Jqx4nf9faZhlMyRZs7a+8mGaRWru4wGSca/FXpE38mSTzlF77kJlCl96JMzJUa6d1SdHaeWf02pwh4XqOVNad3Dhd36ZW1b+ltuH08PhorV2UX6C18zOt1RINidDXP8gVWsqcZ8m/7B2hIaXMSURUNuy2s4+y6Jd8xzOXREREROQ3PHNJREREAYGZy4qBZy6JiIiIyG945pLOi11kKosL9BqKZjUfpeJCvc5lWLxxvs9MSLj1vJ/MTMpMpiQzmbKOZMNBdbW2WS3Owlx9LPKtH/+htbd8uMPw9XUH1NDarpgIrW22PnL5g8NdWjukkp6L9ezAuI4mEVFZ45nLioEHl0RERBQQbDYb7CyiXu54WZyIiIiI/IZnLomIiCgg2GxldFmcZy4t4ZlLIiIiIvIbnrkknxRkGBc1t0re8BMSq++KBVnGNwTZHfpfkcEOWVTd+t9NRfnWbkKSN8jIv5aDTIqIy/ntQfoyNxpcX2tvX2B8Q0/2yWzx/sFa2xkVZvj6gmz9pqqCrBzD+SVnjF7EvdJjr1p6PRHRhbLZzj7Kol/yHc9cEhEREZHf8MwlERERBQS73eYxPLC/+iXf8cwlEREREfkNz1wSAGBBUL0Len1wlHGBbrPMphJF2IuLiw3nLy7S51eiXZBTYPh6AHAEy7+t9HWwFxsXBVdiGe1B+tfJ7I5FOb24UO9PZiDTuqSYLI++vFZzp8FhehH5qq98bOn1RETlzWazlcmd3bxb3BqeuSQiIiIiv+GZSyIiIgoI9jIaoacs+gxkPLgkIiKigGCzn32URb/kOx5cXqKW1W56Qa8PTdBrKBYXGucTzchMpmy7quk1IwuD9emOEJn5NK9ZqYr11zhEZlHW0jRjD9Jfn5dhXCfSESJqe4qMpayj6YxyWVqewlw9d1pcaJx7TXn9M0v9VwRbB/YwnC5rh9Z5/6uyXBwiIgIPLomIiChA8IaeisHSid6xY8e6P7iSR2Jionv6559/jh49eiAuLg42mw0bNmzw9/ISERERUQVmOUXQqFEjHDp0yP3YuHGje1pWVhauvPJKPP/8835dSCIiIiIzJUXUy+LhqwkTJqB169aIjIxEfHw8+vXrh61bt3rMt3nzZlx33XWIjo5GZGQk2rZti7179wIATp48iQceeAD16tVDWFgYqlevjgcffBDp6elaH+vXr8fVV1+NSpUqITY2FnfddRcyMzMvbCP6geXL4kFBQdrZynMNGjQIALB79+4LWij667EHGX/x5NjhRTl6TceibOO6lh7zu/T8oCoSrw8y/7upME/PZRYX6OtQkG1cK9Mmxzd36TlUmZmUQqP1DKXMYMo6mDKTaUa+/4VmKo8+Mdhwevxzswynb7ulp+l7yPqkspZokNPaT1a+yRj1RET+tmLFCtx3331o3bo1CgsL8eSTT6J79+74/fffER4eDgDYuXMn2rdvj+HDh2PcuHGIjo7G5s2bERoaCgA4ePAgDh48iEmTJqFhw4bYs2cP7rnnHhw8eBCfffaZe55u3bph4MCBeO2115CRkYGHH34YQ4YMcc9TXiwfXG7fvh3JyclwOp1o06YNnnvuOdSsWfO8FyAvLw95eX/+o5mRkXHefREREdGly2Y7+yiLfn21aNEirT1jxgzEx8dj3bp16NChAwDgySefxDXXXIOJEye65zv3WKpx48aYM2eOu12rVi08++yz+Nvf/obCwkIEBQVhwYIFCA4Oxuuvvw77/wbNeP3119GiRQvs2LEDtWvXPp9V9QtLl8XbtGmDd999F4sXL8bbb7+Nw4cPo127djhx4sR5L8CECRMQHR3tfqSkGI9CQkRERFQeMjIytMe5J8dKU3IpOyYmBsDZEegWLlyIunXrokePHoiPj0ebNm0wb948036ioqIQ9L/R4PLy8hASEuI+sAQAl+vsFbFVq1adz+r5jaWDy169eqF///5o0qQJunXrhoULFwIAZs0yvhxmZPTo0UhPT3c/9u3bd959ERER0aXLZreV2QMAUlJStBNiEyZMMFwepRRGjBiB9u3bo3HjxgCAo0ePIjMzE88//zx69uyJJUuW4Prrr8cNN9yAFStWeO3nxIkTeOaZZ3D33Xe7n+vSpQsOHz6MF198Efn5+Th16hSeeOIJAMChQ4f8sTnP2wWVIgoPD0eTJk2wffv28+7D6XTC6XSaz0gXRNa1tAXr5/gj6oRq7ZwD+VpbZiJzj+jZuPA0k89QZCaD4/V8YtZu47/+ZKYz/6SepQsO1Xflwlw9k2n3GEfcs45lcFSo4XTJY3xzi3UyPccCNx5rXCrK17eBRz4xVK8NeuChgYb92UXms1j0b1Ync/ed/cTyiO1hkkEFgKJ8vTao3CayT/kZSHKZtwy4WmvX/3Sp6TIR0V+H3Xb2URb9AsC+ffsQFRXlft7s+OX+++/Hr7/+qp1JLP7fb3Xfvn3xyCOPAACaN2+O1atX480330THjh21PjIyMtC7d280bNgQY8aMcT/fqFEjzJo1CyNGjMDo0aPhcDjw4IMPIiEhAQ6H+e9tWbqgmvN5eXnYvHkzkpKS/LU8RERERBVSVFSU9jA6uHzggQcwf/58LFu2DNWqVXM/HxcXh6CgIDRs2FCbv0GDBu67xUucOXMGPXv2REREBObOnYvgYP3EzK233orDhw/jwIEDOHHiBMaOHYtjx46hRo0afljb82fpzOWjjz6KPn36oHr16jh69CjGjx+PjIwMDB589i7SkydPYu/evTh48CAAuG+9T0xMLPUOcyIiIiJ/qAhF1JVSeOCBBzB37lwsX77c40AvJCQErVu39ihPtG3bNqSmprrbGRkZ6NGjB5xOJ+bPn+++k9ybhIQEAMA777yD0NBQXH311aXOezFYOrjcv38/brnlFhw/fhxVqlRB27ZtsWbNGvfGmD9/PoYOHeqe/+abbwYAjBkzBmPHjvXfUhMRERFVQPfddx8++OADfPHFF4iMjMThw4cBANHR0e4bbkaOHImBAweiQ4cO6Ny5MxYtWoT//Oc/WL58OYCzZyy7d++O7OxszJ49230DEQBUqVLFfdn7tddeQ7t27RAREYGlS5di5MiReP7551GpUqWLvt7nsimlLmxQaD/LyMhAdHS0+64oqhhkZtMsIylVbhKhtXNP6ZnOnP1626rohuGWX+OM0jOJMt/n8JLTPJesuSjHsQ526f1LMg8o61zKTKUkM4xm/YVElP5XLwCEVo7U2qpI788sc5lz0rhwr9n6AJ650ZzTuVo72GUtJm6W+2w07xtL/RFR6crz3++S9x417ThCXf5/79ycDDx/V5xP61baWc4ZM2ZgyJAh7vY777yDCRMmYP/+/ahXrx7GjRuHvn37AgCWL1+Ozp07e+1n165dSEtLAwDcfvvtWLhwITIzM1G/fn08+uij7prj5YljixMRERH5ia/n7IYNG4Zhw4Z5ndapUyef+nn33XctLdvFwoNLIiIiCgg2lFHmEmVwC3oAu6C7xYmIiIiIzsUzl+QTWRfTrK6lzGSe2qjn8WRGMgfWMpeuanqeMf33LEuvB4AqreXur/+tpUxqKBYV6PlAWXOxuFDPC0oeY4eLcbVlhvNCmWUmC3OMl7cw13isdbm8Bdn6Z5qfZS2nCwAHlh21/JpzpV2TrLV9yX0S0V+XzX72URb9ku94cElEREQBwW6zwV4Gl8XLos9AxmNxIiIiIvIbnrkkIiKigGCznX2URb/kOx5ckk8cwWKc0mDv85UIT9PbMrMp84zBUcbjoBZk6HnBC62LCQDH1qZfcB8Xk8wPBoXqH4Ksaynb+ZnGmcrMw6cNXx8cZpyzlfPLzKU/xDTTa3G6YlyG88s6maFR+jpsus57HbkSjecvs7B0REQE8OCSiIiIAgTPXFYMzFwSERERkd/wzCUREREFBLvdBru9DO4WL4M+AxkPLskndoe1L1ZQmL5ryYylI0Q/aR6Rqmfn7GJc74IsvT5hxtZsS8sT29JzLNigUJFRtDiWuKxzKV8v61hKcrocizy0UpjJ68VY5mLs8GJR07G4UF9eSY7DnXdGzyuavd5z+fT1k+N6e7NrwX7D6VFV9cyl/Ewk+RnJscvlNiQiogvHg0siIiIKCMxcVgw8uCQiIqKAYLedfZRFv+Q7XhMiIiIiIr/hmUvySWi0Xh+wyCR/V5RvPI612bjdHnUww/VdtUrraK1tVrPS2/s5I/SMoxwbXLI6Pcji2OAyD2g2lndYnJ4jdQTr2yjIqa9fSKSe4SzME2N/izqYMoNppjDPeNxuq7ldb+QyyfHYJZnJLCwU2d9gno4gCiQ2u800736+/ZLveOaSiIiIiPyGZy6JiIgoIPCGnoqBZy6JiIiIyG945pK82jqwh9Z2ijGZzfJ4nvUFlWibZDbF64sL9AxncJjJ4OZCzok8j+cqp1XS2nmZ1sbC9qjjKDKFsi5ksMt4LHBnlF7r06yuZEG2vk5F+Xr+MMil172UVKG+TeX7ywxlzukcw/481k/WKjXJR/rCau6pqMA4+2vW387B12rtWrMWWHp/Irq4eLd4xcAzl0RERETkNzxzSURERAGBmcuKgQeXREREFBBsdqAsRnW18TqvJTy4JK/qfbxYa+8Y1Ftrm2UmZV5Q5guL8o1rIsosXNbxLK19YNlRw9dLOfs985SFjfVlMKvDaBd1K2UNxfws48ymzDDKdZTbxGwsbjl/Ub7xdEnmYGWdS7k9Tu/Va4lmbtfnl5I7xmnt3NOeuVdJjgEfIrK1eRkiZ2qSS5XbWH5modF6zlRuk5AI49xqIMp843GtXVxgvB9lH9C/i4kT3/P7MhHRXwsPLomIiCgg8LJ4xcATvURERETkNzxzSURERAHBZrPBVganGcuiz0DGg0vyiayBKMl8X7GooRgUqo9zbZYH/G3WFgtL58kuxowuLvCsy7ln0SGtndozybBPR7CegTTLWJqRtTzzMozrSEoyw5kv6nSa1QKV7y9zrBF19LxhbK3Koq33J/OK5zMWr00k8eU6ynqnZuO9y9yoErU3zT7DELGfHnt6mNau8s93DF//l+TQ9/PizGzD2XNOZGhtWRtUMssS15j+heF0Iqr4eHBJREREAcGOMiqi7v8uAxq3FxERERH5Dc9cEhERUUDg3eIVAw8uyScpr39mOP3gIzdrbZmplDUUzcYmb3Z3E60t83symydlHdVrMuad8azJmHHgjNaWGUyrZF1HyRmpZxjlWNy56dYylzJvmJ+tj92dsT/T8PUOp3H2zRkZYjhdknVAZUbVlwymrGNZmGtci7S4wLjOpbw4UyC2kVn+T+63DpEv3HffjVrbbL+uPnWO4fSKoDhX/wzyT2eUMuf/5hf5as/6q3pb1ryVtt3S03B63Q8XGU4va0dG3a61Q6IjDOd3hOl59aIcfZ/y9ltW6bFXz3PpiAeXFQMvixMRERGR3/DMJREREQUEexkN/1gWfQYybi4iIiIi8hueubxEHH1isOH0Ijl+sMiOyVyVVJCt57TMsmdmuSs53R6s5xMLsozziXJM6IKcAs95RKYwql6YYZ8ZW43r/R1ccdxweq2+KVpb5v1kBlPWeJT2LzlsOP1CRcSHa22zz1RmSuVnWJjr+RlI2SeNP1eZMzWtcylKfdocMhdq/Pe1zAvKWqRWa3nKGpBW84hBofoKpb41V2sfGnmb1nZViTHsryjPs85ncYH+OWUdOW3Yh/xtMPutMNuPVHGxaOvzb7+t1wX1L793td9baDi/zNXK9cs/Y/y7IGv8Opz6Z+jx2wsgR3yOkiNY309sYp3sDuMssTwNF/vUW8bz/4Uwc1kx8MwlERERkZ9MmDABrVu3RmRkJOLj49GvXz9s3bpVm2fs2LGoX78+wsPDUblyZXTr1g0//PCDNk9eXh4eeOABxMXFITw8HNdddx3279+vzXPq1CkMGjQI0dHRiI6OxqBBg3D69OmyXkVTPLgkIiKigGC3ld3DVytWrMB9992HNWvWYOnSpSgsLET37t2RlZXlnqdu3bp47bXXsHHjRqxatQppaWno3r07jh075p7n4Ycfxty5c/HRRx9h1apVyMzMxLXXXouioj/Pnt96663YsGEDFi1ahEWLFmHDhg0YNGiQX7blheBlcSIiIiI/WbRIL5c1Y8YMxMfHY926dejQoQOAsweF55o8eTKmT5+OX3/9FV27dkV6ejqmT5+O9957D926dQMAzJ49GykpKfj666/Ro0cPbN68GYsWLcKaNWvQpk0bAMDbb7+NK664Alu3bkW9evUuwtp6x4PLCurwY8Z/eSgl6vvJnJHJn1kysyPbhTl6htJsLHCZcZTZNLMsWXCYU2vL3JS3bJgRme/zVudSvkdoZX0ZZAaySv1Yrb3zi32WlknOn9BOz8PF1JD9b7fUf0isvo0jU40zpErkFWVdS1dlPXPpbRsakftMQY75ZxgSri9DTr6+H5nXtdTJdSzK1/NyhXnG+cAgp75NZbbYav1VOb/cpvL9JPk92nP39Vo7JEr/zAsyjGudyqweABSIDKHMeUqyFuiOuXsN55fZY49lEttI5mrNfos8+xPj1efq++HWgT0MXy9/22Q9V7MssVlOV/72eZvHY3q4vgwqT18GmeuUgsJdhtP/yso6c5mRodd9dTqdcDo9P8NzpaefrbscE+M9A52fn49p06YhOjoazZo1AwCsW7cOBQUF6N69u3u+5ORkNG7cGKtXr0aPHj3w/fffIzo62n1gCQBt27ZFdHQ0Vq9eXa4Hl7wsTkRERAGh5OCyLB4AkJKS4s43RkdHY8KECYbLo5TCiBEj0L59ezRu3FibtmDBAkRERCA0NBRTpkzB0qVLERd3djCOw4cPIyQkBJUrV9Zek5CQgMOHD7vniY+P93jP+Ph49zzlhWcuiYiIiHywb98+REVFudtmZy3vv/9+/Prrr1i1apXHtM6dO2PDhg04fvw43n77bdx000344YcfvB4wllBKwXbOqVmbl9O0cp7ywDOXREREFBDK+oaeqKgo7WF0cPnAAw9g/vz5WLZsGapVq+YxPTw8HLVr10bbtm0xffp0BAUFYfr06QCAxMRE5Ofn49SpU9prjh49ioSEBPc8R44c8ej32LFj7nnKC89cVhAHHhqotWWtNzOydluQyV9TMmulRO02s+yYJHNQwWF6ds6sP7n8cv1lrsssdyVzVTLLBwBFBcYZwswjWVr7wLKjhvNbdWT1ScO2VfHN9cymzIxKssZjrse43vo2jE4xrpnoEPX8ck/qeT9fsnI5p/XP5MR643GtY1tGGU6XGU1HiL7O+Zn6Oksy++aqpGfVso4bZxqliPhIvT+RazXbRh5jnYsMZnGhvjxmeUlvNSHld2/j9N8N+4ioo2cSa19fXWtnHdO/R2b1W83GezerY+mR2RS/bbJ/s7qcuaf15Zf9y8/AaibU2/zOKONMZKHJ+OQycymnF+UY7/d0YZRSeOCBBzB37lwsX74cNWrU8Pl1eXlnP5vLLrsMwcHBWLp0KW666SYAwKFDh7Bp0yZMnDgRAHDFFVcgPT0dP/74Iy6//HIAwA8//ID09HS0a9euDNbMdzy4JCIiooBQEYqo33ffffjggw/wxRdfIDIy0p1/jI6OhsvlQlZWFp599llcd911SEpKwokTJ/DGG29g//79GDBggHve4cOH4//+7/8QGxuLmJgYPProo2jSpIn77vEGDRqgZ8+euPPOO/HWW2cL4d9111249tpry/VmHoAHl0RERER+M3XqVABAp06dtOdnzJiBIUOGwOFwYMuWLZg1axaOHz+O2NhYtG7dGt999x0aNWrknn/KlCkICgrCTTfdhJycHHTt2hUzZ86E45wRmN5//308+OCD7rvKr7vuOrz22mtlv5ImeHBJREREAcFmU7DZjKMT59uvr5Qynjc0NBSff/65aT+hoaF49dVX8eqrr5Y6T0xMDGbPnu3zsl0sPLgsJ/sfGKC1iwutZSwlz8yi8c5dlCXq67n0jKZZDslMkEvPYcnxiiWZ8zLLSZnVgZM5pow/TnnMc/KXM4Z9SNW7J2rtY7/rGcmc/cZ1HOPb6iUlopL0/J238c/PJcfulvXx8jL0+oRm+4C3+nrnkjmtrKN6/tEVE6G3o/R29tF0rZ0psnfeFGSZjz9+LlnH0owcW1zWvZSKRD7QLGMZFmNcW1Tux57jrxvvQ44QmWU2zhcWFxpnnQuyPd9P1nE0k9w8Se9T7MehIqdqdxh/d832S/ndNvstkN8DuY1Ma0qK74HZ2OdmmVFf3l9mayU5XnloJT27K5fJFsSBseni4sElERERBQSbxaEarfRLvuPBJREREQWEinBDD7HOJRERERH5Ec9clhOrGUk5Xdavkzkkq7XWZI7IrJabJNcnL91a/T+ZOfVcHv3voJ2Ldhr2l3vEWnbPm2pd9SK0sm5kratrae2tc7YZ9nd0jch9ttWb0VWjDV9vltczy6pJ8jN2inGpzXJfMuOZl6GPKX3msJ7RPL7htOkyFWUbZ4+j6hlnGs14fAYmKjfRc6Th8Xq2LcipfyZyG5oxy/tJcmxzuQ/IfcTsM8w67pmD3f+NZ1Hmc9UdYFyzT9ZPlcx+6+R46zKj6bnNzN5P36es1rksKtB/S+X8exYZj6V+PhoNrq+1ZRZXbgM5PUhuI+Mob0DhmcuKgWcuiYiIiMhveOaSiIiIAoLdpmAvg1JEZdFnIOOZSyIiIiLyG565vEhkXcsLZZapNMsRyQyjzHKZ1WrzzPzo7yeXz3y8YOPaccWFen9pXVK19u5v9xj2X6W1Z54xvEq4lzn/FBKuZxhlvk0uY73+dQ372zRjs9aW+b+YW/SxwSVZf9Asf2d1H5C5rYIca0EtOS54/hn99WZ5Sl9kbM02n8kCb/vFuYLD9JxtaJTxPmGWofTMWhvnASW5z237dJfh/P6Qdk2y1jarxyqzyWbrLMn8dX6W8W9TkNNaxtMmZt/5xT7D18v6tnuXHDac3yyTKnn7DH+btcVSH/Vvqa218zJytLZZZv7gIzfr8zv1OpoJz79raXnKEzOXFQPPXBIRERGR3/DMJREREQUEnrmsGHjmkoiIiIj8hmcuy8C++240nUdmEs1qv5lluWTdS5mxsVoH02ysc7MMj3y99bqb+vaQte8ks7qW0dU8s3VWc6VyG8vMomf/+vSqneO19oFlR7V2brpxnjDIaa2updnyndx5TGvniYxkkMv4Mw4J13NZuaf1bFz67+ZjiVvlCBNjg1vMcUbU0cdnl9tUkvnB3Ax9HSPijcf6lsxysnIfk45tMa5B6Q8yMyi/u2aZS5n1zc/U96vIpCjD15vmVh3G30tJFevbWH4GZswyls3ubmKpP/nb1mR4Q495ck/rvwWZR86Y9GlcF9gs5yo/Y2eMcRa5IrOjbIZ/5Jk4a3hwSURERAHBBgUb/F82qCz6DGQ8GCciIiIiv+GZSyIiIgoIvKGnYrB0cDl27FiMGzdOey4hIQGHD5/NpCilMG7cOEybNg2nTp1CmzZt8Prrr6NRo0b+W+KLQNb8khkZq/lBwLOGoGQ1wyjzfFYzlHLMYatjHHuOdWtcM9G0vzx9+WV/MrdlVUhEqMdzZttc8twPjJdJZjpja+uZy6QWaVr7p8k/WlqeCyXH6fZ3DUmZb7SbZEABwBGiz2MX41QXF+j7cXGR8aUqmc87tVEf8z5zu3GWN7qhXgs1JFxkJJ3GuV2P5RHfW/m9+/09fXz6Cx1LXdaolLxlq3PTc7zMec70DOPMoqzfmtAuRmub1ea0mquVNR4lmTe0+r03I397zTOg+j7rLfsdFheptb39fp1L5khlLU/5nqGVjGv8BrmM89xEZixfFm/UqBEOHTrkfmzcuNE9beLEiZg8eTJee+01rF27FomJibj66qtx5oxxGJmIiIjoQtltZfcg31k+uAwKCkJiYqL7UaVKFQBnz1q+/PLLePLJJ3HDDTegcePGmDVrFrKzs/HBBx/4fcGJiIiIqOKxfHC5fft2JCcno0aNGrj55pvxxx9/AAB27dqFw4cPo3v37u55nU4nOnbsiNWrV5faX15eHjIyMrQHERERkVU2myqzB/nOUvikTZs2ePfdd1G3bl0cOXIE48ePR7t27fDbb7+5c5cJCQnaaxISErBnT+njPk+YMMEjx3mx+Xvcb295Q7M6loW5eu04mduRfQaFhhhOl2S2So4b7QjWcz9Ws2xyfrO6anIcaunI6pOG0800Glxfa8usG+C5zSWzzyw4LMRwekiUnpfLz9Azjad2HtLatfqmGPYnx0AOidW/vpGp+vuFhBlnv4rF+jma6NtI5hPNyOXxfD/zmpQO8feu3M9Ukbg2ZbKfyv2ycpMIrW22jrJWpxxnWtbJNM9OG4/3LkUkGmcuXbF6Fk9+bwrzjN/PW2ZU7vdmfZhxiNxscsc4rS1riUqh0S6tbVafVtry4R+W5pcZUclVSd/mVsfxljlbb/uEXEezzKX8vZW/bWZ1j6XCHGu1QIkkSweXvXr1cv9/kyZNcMUVV6BWrVqYNWsW2rZtCwCwiVuqlFIez51r9OjRGDFihLudkZGBlBTjf2SJiIiIJN4tXjFcUJ3L8PBwNGnSBNu3b0di4tm/6EvOYJY4evSox9nMczmdTkRFRWkPIiIiIqvsUGX2IN9d0MFlXl4eNm/ejKSkJNSoUQOJiYlYunSpe3p+fj5WrFiBdu3aXfCCEhEREVHFZ+my+KOPPoo+ffqgevXqOHr0KMaPH4+MjAwMHjwYNpsNDz/8MJ577jnUqVMHderUwXPPPYewsDDceuutZbX8PjEb69tqDkrype6lzNlsnbPDuE9R263ewJpaO32/XkvOGWGc//PMROptuXwO0d4xd69h/7LWXPYJ4yzbhWYqJTk+r8wsefuMPXOtxhlMKSTCZTi9WOwXsn9Z29Nqti2imv7+zkjjsb4luQ+ERBrvQ2aCI/VtrgrEPhbs/+tKMpPpMT3YOMMZHGWc3yvI0D8Tz7HArW0zuc+dT83cc0Um6BnSI9C/V/u/MR6LvE7/NI/n5H4p/5E4sOyoz8vnjaxha5ahlNPlfmuW75brmHFIv2lU/haZ/TbVuLaa1pZ5SLm85/MZy98rs3+j5H4o23ki723WX+xTb5ktYoXFy+IVg6WDy/379+OWW27B8ePHUaVKFbRt2xZr1qxBamoqAOCxxx5DTk4O7r33XncR9SVLliAyMtKkZyIiIiIKBJYOLj/66CPD6TabDWPHjsXYsWMvZJmIiIiIrCurskEsRWTJBWUuiYiIiIjO5d9BViuolNc/09p7/97fcH6z+oaSzNh4yxDJXFDa1VUN+5Q1Dff/cEBrh0Tq2S2zbJUZOYayVLWzPi62zF3t+U7PZObsv7CxwGWGMjjMeKxbz/ygqDF5xnzc7IJsOV66yKGKvJ0cz1eSOSeZuSwS42RbzbKZ1SMMchl/vQtz9CxYQZa+fFVaRxu+/tjadK0tM5Uyc+nL2OIeGUmL9VclmUOVeT9ngvFnKDOXBTmifqBcXi/1VHX6dLPfmmM/nzKcXrW9vn7xbStrbTnOtyT3ceDCM+hS3hn9e+WqbJxVluQ2sppHlK+XdSprX19da5vly3ct2K+1Gw6qK97PvJ7rhTKrpekI0f99kJ+z/DcxkJTVUI0c/tEanrkkIiIiIr+5JM5cEhERUeCzQcFWBjUpy6LPQMaDSyIiIgoILEVUMVySB5fVp86xNP+OQb0Np8s6ZrJOHOCZCzLLWskxjOX4uvI9Y2rqWSspN0PPlsl8nxxDWUpsIkdZ0l9/oRlLOeZzfmauYVvWlnPFGo/s5EuOTOblck7pmUmZtTJjllO1SmYgC3NFHjDLuE5ncLjxGM6OEH39i/KtZccyt+ufUXianpP1ZWzxyER9P5Dfk3wRfJKZTMksExlby/h7k7ldH/9d7kdm+bwLJTOfksyQRiXpZd+Owjhzue3TXR7PWR3720zWAX3s7dBo/bsrPyNJfmbecqLnkp+RR3Za7DMyR1uta+kjygGe+fbf39umtWVefOP03w37a3Ffc4/nCnONf0/l5y7JbWCW0STyN+5xREREFBBsZVSKqEzKGwUw3tBDRERERH7Dg0siIiIKCHaoMntYsXLlSvTp0wfJycmw2WyYN2+eNv3IkSMYMmQIkpOTERYWhp49e2L79u3u6bt374bNZvP6+PTTT93zDB8+HDVq1IDL5UKtWrUwZswY5OdfWEzNH3hZnIiIiMiPsrKy0KxZMwwdOhT9++u1tZVS6NevH4KDg/HFF18gKioKkydPRrdu3fD7778jPDwcKSkpOHRIz3xPmzYNEydORK9evQAAW7ZsQXFxMd566y3Url0bmzZtwp133omsrCxMmjTJ8jJv27YNBw4cQE5ODuLi4lCvXj1ERxvXOy4NDy692Dn4Wq1tFq6WNx14K6IrQ+VmIXNZLFq+h7dC7UZk4eCEdjFa+8jqk4av3/rxH4bT5Q1Irsphpcx5lrwhx+r6BYXqNxnYRdHgAh+KpkvFhfrnJm80qDughtY2u7HAbJvV6puiteWNBZJZgW65/JK80cwh+svP1t//zC7r29BIcKj5z41HkXNRBF3eXOLt5jmj/uR301XZePAA6eCK44bT5c0wUnicfsPS9jm7DeeXN4WZkd8juc9K6QfSPZ6T65jaM8nSMkiJl1XR2sEu/TM1u9lE7tdmRdTl4AR2h01MN765Mshp7bdVMruBR/J2s6H8/ZPLKG/olMz+vQlkFeVu8V69erkPAqXt27djzZo12LRpExo1agQAeOONNxAfH48PP/wQd9xxBxwOBxIT9X9X586di4EDByIi4uzvSM+ePdGzZ0/39Jo1a2Lr1q2YOnWqzweXa9aswZtvvomvvvoKx4+f/e4rpWCz2WC329G8eXP87W9/w5AhQywdaPKyOBEREZEPMjIytEdenvEoX96UvCY09M+TLA6HAyEhIVi1apXX16xbtw4bNmzA8OHDDftOT09HTEyM4TwAsGHDBnTq1Ant2rXD2rVrceONN2LatGmYN28eFi9ejA8++AD//Oc/kZycjCeffBIpKSl4/vnnfb7kzjOXREREFBDK+m7xlBT9itOYMWMwduxYS33Vr18fqampGD16NN566y2Eh4dj8uTJOHz4sMel8BLTp09HgwYN0K5du1L73blzJ1599VW89NJLpsvQpk0b3HbbbZg8eTJatmxpOG9WVhY++ugjTJw4EYWFhfjHP/5h2j8PLomIiCgglPUIPfv27UNU1J91lZ1OZ2kvKVVwcDDmzJmD4cOHIyYmBg6HA926dSv1MnpOTg4++OADPPXUU6X2efDgQfTs2RMDBgzAHXfcYboMmzZtQp06dXxa3vDwcAwfPhxDhgzBvn37fHoNDy69qDVrgaX5tw7sccHvKTMxZnkFb7nOc8n8nmybZSzNWM1YRlbVs2hKGS9/SIRxf8UFeuYo59hprS2LrvvCFaPn4Qqy9csdhbn6Ntzy4Q5L/Se1j9XaMlcrs2cyixUarW8TuXxmmcsgp95/XqZ+eUOJ5TEr4C3JoumSL0XZzYo/52fpy+yM1LO7nv3p7ym/N8Fhev5Pqn9Lba0tP3OZR5TbWJLfc/n6PYv0sxZmhfdrXFvNsH+zbF5EFc/M6RHovw1ymczI3KnMC3oOKGG8X8jcrGdRdb19dJNe5FzK2q1/b6Ib6tsguppeiN7qZyZ/GyMSjAd48Ebu93Idrd4H4MsgEuSbqKgo7eDyfF122WXYsGED0tPTkZ+fjypVqqBNmzZo1aqVx7yfffYZsrOzcfvtt3vt6+DBg+jcuTOuuOIKTJs2zaf39/XA8lwOhwNpaWk+zcvMJREREQUEu63sHmUhOjoaVapUwfbt2/HTTz+hb9++HvNMnz4d1113HapUqeIx7cCBA+jUqRNatmyJGTNmwG4yetPFwjOXRERERH6UmZmJHTv+vNKxa9cubNiwATExMahevTo+/fRTVKlSBdWrV8fGjRvx0EMPoV+/fujevbvWz44dO7By5Up8+eWXHu9x8OBBdOrUCdWrV8ekSZNw7Ngx9zR5p7mZefPm4f3338eePXuQm6tf+bPZbPjll18s9ceDSyIiIgoIZZ259NVPP/2Ezp07u9sjRowAAAwePBgzZ87EoUOHMGLECBw5cgRJSUm4/fbbvWYq33nnHVStWtXjoBMAlixZgh07dmDHjh2oVk2PyCjl+/K++OKLePzxx1GlShXUrl0b4eHWSrR5Y1NWluAiyMjIQHR0NNLT0/2Sa7gYtgy4WmvLvIs/yLqOMv8nnTmSqbWPrjmltWUuSNq75LDh9MZDG2htq3UpJZkJMutPZslk/tCjdp3J+wPmuaaCbL1ttUZhWIyembSaNZOZ0IwDejZO5hHNFIi6loW5+mdwaqO+D5mJqCNqlxbon4Et2Py6UkyNSlpb1iwMjzP+0QsO03Ofcr+Q+5UzymXYX9ZRvQ6k3K/k+1n9TCW5vDu/MA7Px7etrLUjE/R9xKwOqDdym1v9PZP1YWVtUrNssSTfX2YgPWpAFljLF8qcrFz/XQv2W+pP1ha1ur6A53fdrO6lJH8f5TZLef0z02U4H+X573fJey/+4QDCI/z/3lmZGejRpupf6tjEVzVq1EDXrl3x1ltvweG4sDqvJXjmkoiIiAJCWZciCkQnTpzArbfe6rcDS4A39BARERFdsq688kps3rzZr33yzCUREREFhIqSufwrefnll3H99dcjJSUFPXv2REiIcYk2X/Dg0g/qf7rUdJ7f+nU1nC7Hv5VZKas5IpmxlELCjXceR5h+UrsoW88hyTqSlWsZjz9ckJWjtbOPn9HaMhMkxx736E9k02SWLThMz3n5khuTWai8DH2ZZa1QmVsNjdbzezL3ZJbHM1ue3NNZYnn0/s1yqnIfyz0t6mSKOpdmdStlvcDM7fo+YZbB9EbmQCWzcahlDUS5TWRdS/MxmvX+Qivpn7HcD82Wz6z+oNUxoOX33NVT3+Zm+4Q3ZsvgCDbuU+5HVvOCkny9x9ji4v1Cwq0VtfaorRps7YKerJNpNva5L59Jzkk97xxaSX8Ps8/o0h5bnJfFrapduza6deuG66+/HjabDWFh+v0BNpsN6enppbzaOx5cEhEREV2iHnvsMbz22mto3rw5GjRowDOXRERERCVsKJubSQL53O/MmTPx+OOPY8KECX7rkzf0EBEREV2iioqKcPXVV5vPaAHPXF4kjeZ9o7VlBtMsUynzdZLVTI1pHcls43ygfH36HuMxkGU2Ta6vHCParI6nZ3ZN5g+Nxx/2RmYaZZYrLFavPSdZrddn+hmI8dMh8oGy5qPVLFv6fj33mndCr5PpS11KIzKDafehv4hkfR2ikqzVk5O1SGV9U5llc0YZj2EfmazXkZT7sWSW4TQb/11mNmv1TTGcX9bBtDoOuDe1r6+utc2+O+Y5U32dzbaRZJZZDAq9sHMkvvw2GAkJ19c/KFS/pCh/m7OO6d87b2Sd4eAofZ1r96mpTw8zzpkyc+mffgNV9+7dsWbNGnTp0sVvffLgkoiIiOgS9dRTT2HgwIEIDw9H7969ERMT4zGPt+eM8OCSiIiIAgJLEVnXrFkzAGeHqCwZplIqKrI48tUFLxURERER/SU9/fTTsNn8G53gwWU5kXUmZRYr74yeVzOrkViQY+2vCrOclJmcU3o+UY7PK8mMpayVJ/OC2SeMx7WW209mNH3JdckckueYynrbbJmss1bT0bSOZZBxdiznVLbh9CCR6zKrSxkSqy9f/gmTvKEPdS49xqUWdSnNcqVbPtxhOD00Qc9gNrq1meH8BaKeq8x0yu+tL+NGn8tznGy9bfY9lflIOb784XXH9ekmnxHgmd+T3yWZYzVTLN5SZhzPJx99Lvk9NXu9nN/se2Pm2Fq9/t+JDRla25f9XpL55OR28VpbfgYX+nseSJi5tG7s2LF+75N7JBEREQUEG8rmEvalc0uUf7AUEREREdElZOLEicjJyTGf8Rzr1q3DwoULfZqXB5dEREQUEEoui5fFI5DMmDEDNWvWxD/+8Q9s2bKl1Plyc3MxZ84c9O7dG+3atfN5GEheFq8gZO5H1ljMO6NnqaQT6zMMp1dpHa21zer1VeuaoLX3f3NEa8t6ekntYw37c4hMpsyqybHUJZnptForzxfm40wbXxiRmUiZH5R5Qav9mTHLmrkq6zUdzxzSM6RFxhFQD8GR+vL5kuczc3CFnhE8iOOlzOkbud/LfNy6KT8Zvl5mGmUuVzLLRpuNyy3Hr9/77UHD+at3Sdbasl5sze5p+vv7kM2T+6XZa8xyprXf8+1MR4m9f+9vaX75vbX622CW45X7gLRj7l6tndS+itYOi9G/d758BvLfA8/annoW2eE0Hq5PKeP9ki49GzduxOuvv45JkyZhwoQJiI+PR8uWLREfH4/Q0FCcPHkSO3fuxMaNG1FYWIjevXtj/fr1aNSokU/98+CSiIiIAgJLEfkmKCgIDz30EO6//3588cUX+PLLL/H9999j9erVyMnJQVxcHOrXr4+nnnoKt956K2rWrGne6bn9l9FyExEREVEF5nA4cMMNN+CGG27wa788uCQiIqKAYIeCvQzOMpZFn4GMB5d+sGWA9QHfzXI+Oaf0u7jMMpUy82hz6LkpmdnJzTDOXMqMpZlDq04YTq/aWa/TJhNAQRZrzcntJ+tomo3VDpiP8yxraZrXmTSeLrNpZvUCZX/y9VZre+ZnifHd843X/0LHFpei6hmP4w0AxSKzmNhY3292Ld5v+Pq45pW0dmiUXrPRHmytBmHOab3OZbBL/8mUGcrCQuP+ZLY4P1PPUpt9j6RdC4y3R+OhDSz1B3hmLmWW1yxXeqGs9u+5vMb7rc1uLcssv4dmtVQPLDuqtesOqKG1fVs/WftT1OQV33WzdTbLZBIBwNGjR7Fnzx6vd5F36NDBUl88uCQiIqKAYEMZFVEP4DOXhw4dwqBBg7Bs2TKPaUop2Gw2Dv9IRERElybe0GPd/fffj59//hkvvPACmjZtCqfTaf4iEzy4JCIiIrpErVixApMmTcLQoUP91icPLv3ALL/oTZBTz/FkHdPH6jbLWJqxOj6vWcZSZjrDYo3zczu/2Ke1c9P17FpkYoTWNqv/Z5ahlBlMs0yrN8Eu4wyk1XGjJY86mCb17sw+w6BQ2TbOVWUeOWM43arM7bmG02XGUuYpvbGLdT5zRK/FKTOVnq/Xs2eFefpnJmsQ5pw0HqFC5ufSrtHrSsr9/GJL7ZmktWX92W3zt2vtBjdaz2BKxSa50guV+tZcw+l77r7ecLr8npnlEeVvhdn3vHr3RMPpe5ccNuxfLp/VOqCA5zZInvKR5T4CFc9cWmez2ZCSkuLXPjlCDxEREdElasCAAViwYIFf++SZSyIiIgoIPHNp3U033YQ777wTxcXF6NOnD2JjPUfca9mypaU+eXBJREREdInq0qULAOC1117D66+/rk3j3eLn+K1fV62dd0bPhpmNDyxzW7JmpKSKzP+ikWNr7/7SeMxgq+QyypyR1QxiQrsYrR1ayaW1c04bZ9Xi21bW2kfXnNLaJ2AtUyqzbmZ8ycHKZZLkmMIe2awi4yyVzG7Jtlm9O7MsmKyZKPOFUn62XhfTESJSMWL4erP9XgqOMqkD6iVDKnOYQaFiG4qsrd0km1ss821iuhzv3Rlprf6fv7+3Zllms9qpZnlCOd77jsXbTJcprIoe5o1vqOc65bjXNWf8x7RPf5KZTLMMptXfPrNtapbN9nx/fR83698XZrnUS5nNVkaliMqgz4pixowZfu8zIA8uiYiIiMjc4MGD/d4nDy6JiIgoIDBzeWG2bduGEydOIC4uDnXq1Dnvfni3OBEREQWEkoPLsngEsk8//RSpqalo0KAB2rdvj/r16yM1NRWfffbZefUXkGcuZa7Ks16gcdatSI45LYZsdojMkdXxgL2pN7Cm1t7xn92G8xdlG6+D3AYZB6zVOHRG6Fk0mfczq8EYGqXvWnJscc/PyDiH5O+sG+BZr85j/F6RzZXL7DAZ01jm5eR4wPlZIuRowiyjadZfsVgfmRmV0n/PMpwuuZL0UR18qWtpJkhkla3mQGVmUzLrLyRWf3+ZYZR1Js3yfWb7mKznGhIhipkK+ZnGtUbluNbpB9IN5weArGPZWtsfGcGydKH5w71/76+15fesuNDa90Zmta3WHCa62L788kvcfPPNaNSoEe6//34kJyfjwIEDmD17Nm6++Wb85z//Qa9evSz1GZAHl0RERHTp4WVx65599ll0794dCxcu1G68HDlyJHr16oXx48dbPrjkn1REREREl6gNGzbg3nvv9ajoYbPZcO+99+KXX36x3CfPXBIREVFA4JlL6xwOB/LzvceqCgoKvJaRMxOQB5f1P12qtTde20lrm+WwZFJM5qhkfUFfyMxhSLieaZR5PLNMpRm5zGFxxmOBR3bXx/o2q+Vmli2TuSQ5lrrMcZmNLV4WzMb2Ns/uGpPbyKP2qMl+KMn3l/tMaJSeecw5ZVyLVJJ1Lys30feJUxv1cb6l88lYmo4pL/JuDpOLLR51Lj3qver9mdWolRlLj+UzqZkryaUPizH+XpplLje/v91wutznqtRLMJz/7Dx6W+atzb43fzVmY4lLrsrGn5ncPqxJeWlauXIlXnzxRaxbtw6HDh3C3Llz0a9fP22ezZs34/HHH8eKFStQXFyMRo0a4ZNPPkH16qLGslK45pprsGjRIo9+rrvuOmzYsAFHjx5F5cqV0a1bN7zwwgtITva9NnTr1q0xceJEXHPNNXC5/qxpnZeXh0mTJqFNmzaW1z+wfiWIiIjoElYMm8lNu+fbrxVZWVlo1qwZhg4div79+3tM37lzJ9q3b4/hw4dj3LhxiI6OxubNmxEa6vkH5csvvwybzfuNdZ07d8YTTzyBpKQkHDhwAI8++ihuvPFGrF692udlHTduHLp27YqaNWtiwIABSExMxKFDh/D555/jxIkT+Pbbb31f8f/hwSURERGRH/Xq1cvwJpgnn3wS11xzDSZOnOh+rmbNmh7z/fLLL5g8eTLWrl2LpKQkj+mPPPKI+/9TU1MxatQo9OvXDwUFBQgO9m00qfbt22PJkiUYNWoUXn/9dSilYLfb0aZNG3z44Ydo166dT/2cizf0EBERUUAoGf6xLB7+UlxcjIULF6Ju3bro0aMH4uPj0aZNG8ybN0+bLzs7G7fccgtee+01JCYmeu/sHCdPnsT777+Pdu3a+XxgWaJjx474/vvvcebMGezbtw8ZGRn473//iw4dOljqp8QlceayyYLlWvvnq68ynL9YZCplbslm13NichxumdXz1oesSXhg2VHDZZJimkVqbZkdM8uCyQykWb09WW9QZkYLcvRxq+UW8Myt6v0X5Bhn2+Q2PrL6pNYOTTD+IqW0r+rxnMzOWs1YeuT3ivXP2CzLJfOGMqcqlycoVN/mGQdPG/ZflG9cn0/uMxm7rWU05Tb3uNPQh5qUIeGyjqXehyoS62BSc9GjLqbJ/Nmnsw2nS7Eto8T76Z+hWYbUGeXS2mb5Rat5QDm+u9l4997IZTL7Hux/YIDh9Gqvfmr6nuUp7e15htN3De+rtc3Ge2fGMrBlZGRobafTCafTWcrc3h09ehSZmZl4/vnnMX78eLzwwgtYtGgRbrjhBixbtgwdO3YEcPasZLt27dC3b1/D/h5//HG89tpryM7ORtu2bbFgwQJrK3WOsLAwhIUZ54p9cUkcXBIREVHgsykFmyqDu8X/12dKSor2/JgxYzB27FhLfZXc/Ni3b1/3Ze3mzZtj9erVePPNN9GxY0fMnz8f3377LX7++WfT/kaOHInhw4djz549GDduHG6//XYsWLCg1JwmALz77rvo3bs3YmNj8e6775q+x+233+7j2p3Fg0siIiIKCGVdimjfvn2IivrzCobVs5YAEBcXh6CgIDRs2FB7vkGDBli1ahUA4Ntvv8XOnTtRqVIlbZ7+/fvjqquuwvLly7X+4uLiULduXTRo0AApKSlYs2YNrrjiilKXYciQIVizZg1iY2MxZMgQw+W12Ww8uCQiIiIqC1FRUdrB5fkICQlB69atsXXrVu35bdu2ITU1FQAwatQo3HHHHdr0Jk2aYMqUKejTp0+pfav/nWHNy8szXIZdu3a5bxDatWuX5XUwc0EHlxMmTMATTzyBhx56CC+//DIA4MiRI3j88cexZMkSnD59Gh06dMCrr76KOnXq+GN5/aLF0u+09ub+3bR2UYG+WfIyjD8kySyTA1jPWEqFuXp2yhWjv6fZONQFOfp0ucwyEynbZmReUGY6zZZPMqu7mXukwHC6t/ezO2SWVl9ms3yaR4axWOZejXOrUrDIusn3zz6h15nMO2M8lrjpONdi/c1qq8pxtkMq6Z+J7M8ZpWdEvZGZRZkDtYnpMusrBbv06fYgkeEU28RqLdAT6/W8VXh3PZtklrmU41SrYn2/DQ4T47Ob7IN1+qdp7UO/HtbaQaH6Z2S2TwCevwUygynXIdDHzpa5XV9+36n8nL0s7v9SRFYvtWdmZmLHjh3u9q5du7BhwwbExMSgevXqGDlyJAYOHIgOHTqgc+fOWLRoEf7zn/+4z0gmJiZ6vYmnevXqqFGjBgDgxx9/xI8//oj27dujcuXK+OOPP/D000+jVq1ahmctAbgPYuX/+8t5/yqsXbsW06ZNQ9OmTd3PKaXQr18//PHHH/jiiy/w888/IzU1Fd26dUNWVpZfFpiIiIioIvvpp5/QokULtGjRAgAwYsQItGjRAk8//TQA4Prrr8ebb76JiRMnokmTJvj3v/+NOXPmoH379j6/h8vlwueff46uXbuiXr16GDZsGBo3bowVK1ZYulxfs2bNUod43LRpk9cSSWbO68xlZmYmbrvtNrz99tsYP368+/nt27djzZo12LRpExo1agQAeOONNxAfH48PP/zQ4xQvERERkb9UlOEfO3Xq5L5EXZphw4Zh2LBhPvcp+2vSpMl5FTiXdu/eXepl9NzcXOzZs8dyn+d15vK+++5D79690a2bfjm5ZOHOrTDvcDgQEhLiDqlKeXl5yMjI0B5EREREdHGUdmf5H3/8gcjISK/TjFg+c/nRRx9h/fr1WLt2rce0+vXrIzU1FaNHj8Zbb72F8PBwTJ48GYcPH8ahQ4e89jdhwgSMGzfO8oL7U4M5X2vt3/p11dq+1OszI8d99phuUqdRZgpdsfoQUZ51K42XWWa5ZBbLW61Ow/6KjOtYWh3TWdagPLb2uNau1VcvB+GZf5R1Oz0zODID6fka47yb5zbTP0OZTcvJyTXpT5/fI/dqUgtU8hi/XbRP/nLGUn/2ION9KixG3yflON++CK2k14GUudidX+yz1F9EHX2Z8sT3qCDDWpZYysvUc69mdStz0/W6ms5I47HDzep0umL08d9rdNAvX8nx52WtVG/kb4Pna4zz0zKDeeChgVq76isfmy5DRSZzrMlTPiqnJSFvbCgum8xlmQwpWX5mzZqFWbNmudt///vfPW5UysnJwS+//OKuu2mFpSOIffv24aGHHsLs2bO9jn8ZHByMOXPmYNu2bYiJiUFYWBiWL1+OXr16weHwHoIePXo00tPT3Y99+6z940FEREREvsvOzsaxY8dw7Ngx2Gw2nD592t0ueRQUFGDgwIF46623LPdv6czlunXrcPToUVx22WXu54qKirBy5Uq89tpryMvLw2WXXYYNGzYgPT0d+fn5qFKlCtq0aYNWrVp57fN8qtsTERERSRUlc1nR/f3vf8ff//53AECNGjUwZ84cNGvWzG/9Wzq47Nq1KzZu3Kg9N3ToUNSvXx+PP/64dnYyOjoawNmbfH766Sc888wzflhcIiIiIu9sqowui5dBnxVFude5jIyMROPGjbXnwsPDERsb637+008/RZUqVVC9enVs3LgRDz30EPr164fu3bv7b6nLmBwn2yqreUXAvE6jJMfWlmMKV+uQZPj6AlHez6z+ncw0ylyW1dpvZjlWV2WXeCZda8nsXY1rq+n922V9Q88fBrkOuaKeqdnnKPNwWcf0cltWM4eFuXo+TuYNJdM6lhYzljKfaKZSqp7PkfuI3Yf1l9v4QjOWUuZ245yrmerd9Tpze5fodSSLC4yzxZLcL/Oz9MymM0qvmynrXpox+14W5uq/M2aZTsBbptImpovapAFW9tJs7HGiQHLs2DHk5HjW/61evbqlfvw+Qs+hQ4cwYsQIHDlyBElJSbj99tvx1FNP+fttiIiIiDS8LH5+xo8fj3/96184ceKE1+lFRdZufrzgg8tzx7cEgAcffBAPPvjghXZLRERERGXsnXfewfPPP49Ro0bh6aefxpNPPgmlFN577z24XC48/vjjlvsMsAsYREREdKk6O/xj2TwC1euvv44nnngCo0ePBnB29KDx48djy5YtiIyMxPHjx0168OT3y+J/RXJscZn7KjYpL+hL3tBbnUV/kvX6di3Ybzh/2jXJWttzLHGR/xPraLbOVrNnktxeVTvHa21ZN9SsJqXZmM9n59GXqSDbOAdb5DHGsthvTJZJkrU/C032GZlx9GA2XTDbRpFJek1FV2U9HyjzfGafCeBZ53Hrx38Yzt9keEPD6bKuo2zL2qNyP5fMcq/H1upZ4Ki+UaXM+b/+TL43+Zl6RlTWzTT7Xklyn5Q1Gs3GLj87j/F+nvL6Z5aWiYgqlh07dqBt27aw/+/f5fz8s1lwl8uF//u//8NTTz2FkSNHWuqTB5dEREQUEHi3uHVBQWcPBW02G6KiorB//58np+Li4nDgwAHLffKyOBEREdElqk6dOu4BbFq3bo23334bBQUFKCoqwrRp05CWlma5T565JCIiooDAu8Wtu+aaa7By5UoMHjwYo0ePRo8ePVCpUiUEBQUhMzMT77zzjuU+eXAJz/GBfckhnUvWecsX/QFAcJiedYpvW9mwz6NrThlOr329XnPq6O/GgdugUFHvTmQs5Tp71ok0Hrvb32SuS2bffMnzmc1vmvssNMuNimWUNQNFhrEgyzjDabXWqNk2MKvxKOtamtX1DHbp+3BopXCt7THWusk42wBgF/M0vVPPcco+CnM9v1tW3lMVW6sna5aRlNll+ZmYjR0u84wyI5qXoY9FbrbP+lK38ly+5MVlTtNsGYjKEy+LW/f000+7/79Lly5YvXo1PvroI9hsNvTu3RudO3e23CcPLomIiIgIwNlL461bt76gPvgnKBEREQUEliKy7sYbb8SXX36JYj9ekeTBJREREdEl6vvvv0efPn1QrVo1jB49Glu2bLngPnlZHEDzxSsv6PU/X32V1nY4PTerHJP4Qsnxz6OqRRrOLzOVZrlSf2cqrWbFrI6rbZY18/b+8j2yvWRlrSxDoUkG0mxsb38LT9NrgQaF6ftlXJ0YrW1WNzMkPETvPzlOnx6n95d31PswYueSmb+QCD1zmXP8tNYOCtWXQZKZTJnBDInQM5Ay8yjJDGStvila22zsc5nJlMKr6HUx5fLL5XOEWPseuWL1/u0hen4ybuy/Dfsj+quxoRg2lEHmsgz6rCj27duHxYsXY+bMmXj55ZcxceJEtGnTBsOHD8dNN92EyEjj4wtveOaSiIiI6BJlt9vRq1cvfPzxxzh06BBeffVVFBQU4M4770RSUhIGDx5svc8yWE4iIiKii08BUKoMHuW9YhdHpUqVcO+992Lt2rVYuXIlYmJiMHv2bMv98LI4EREREQEAli5dihkzZmDevHnIzc1Fu3btLPfBg0sfbOjRwXC6rA/oS76yWtcEw+kyDyj73LPokKX+ZObQvI6kf/MlZjUUzTKTMt8YEu4sZc7/vZ/I2slafQCQl5Gjv8ZkGT2WSWQUi8U6FObqeT1ZV1Iyq0tplcxYhoTr7YjESno7xXgfyj1xWmuHplTV2sVZek3GIJfxZwR4yQIXGddblXUxJbtJtthsnGxJZo/lfiXrze6Yu1dr7/7yoGH/adfo7WCXzJQa18GUZKa0KE/PZjucxplVor861rk8Pzt37sTMmTMxa9YsHDhwAElJSXjooYcwbNgw1KlTx3J/PLgkIiKigMAReqzr2LEjVq1aheDgYPTp0wfDhg1Djx49YL+AARN4cElERER0iTpz5gxefvll3HbbbYiJiTF/gQ94cElERESBoYwuiyOAL4uvX7/e733y4NIHsg7mpuv0cTbzMvIs97n/myOG0+v0T9Pa0Q31cZzTf8+y1F9yR70moc1uPKaw5TGKTepSmo35LF8vay7K6d4ylEbTZb0/bwrzjPNssrZoUZE+v8xYykxmSJjxMgPWMpeVm0QYTpfbsFJ1fTz76Np6zUZHpHF/ECNUqDyx38sfXx8uqRQX6H0Ui0yh1f3QI0ss6mjK7K5ZhlFmPuV+fGKncS1PszqXMjss+w8O06fbg6xdpnI4xbjgPowlTkSXpsWLF2P58uU4fvw4nnrqKVSvXh1r165FWloaqlSpYqkvHlwSERFRYCgpHVQW/Qao7Oxs9O3bF9988w1strN/oP/9739H9erVMWnSJKSkpGDSpEmW+mSdSyIiIqJL1JNPPomffvoJc+bMQXp6OtQ5B9Ldu3fH119/bblPnrkkIiKigMBSRNZ9+umneOaZZ3D99dejSJSDq169Ovbu3VvKK0vHg8vz0Hj+MsPpP7Zv6/FcsMs4b3dg2VGtvX3ObkvLFBJr/FEeXHHcUn8J7YzvGHNG6PXyzDKS5mOZ6/PLen8yi+aMchkvX+VI0Y42nB8Ack9nmUzX83lFomaiR61Qk7G6M/fnGE43Y5ZHDAnV83WuGD1TGRwfr7WLMk3GPrfp76fEZyrbhVnm61eUo+dMzepcoth4m8pMpdxv5HQz8vU/v77BcP7gKH2bh8Ua51hlJlRmLEPjKmltVWT2PRL/AIr1tbr+RBT4jh07hkaNGnmdZrfbkZNj/d8qXhYnIiKigGBTqswegapq1arYuHGj12m//voratSoYblPHlwSERFRYFDFZfcIUDfccAOeffZZ/Pzzz+7nbDYb9uzZgylTpmDAgAGW++TBJREREdElasyYMUhOTsbll1+OVq1awWazYejQoWjcuDHi4+MxatQoy30yc1kGKqdW9nhOjmksyXp4ZmMSS/knjOv1yTqXBdl6zcZja9O19pHVJy29f/XuiYbTzfKBjmCZPdMzl6GV9DqfzhjjDKUcQznniGc9wlM79fHZc04b15m0yUxltsgciozlyV9MMowm5FjkcuxxuTySM0p/vfwMivP0/lSB8T4kFWUZZ1Qh839eeNRdNFmGwtx8k+n6fp2fqa/j5ve3my7TuRxh+t/fsv6szLGGVtbbDpfxePJy/PXoR/9lafmISMcbeqyLjIzE6tWr8corr2DhwoWoVasWwsLCMHr0aDz88MNwuYzvcfCGB5dERERElzCXy4VRo0ad11lKb3hZnIiIiAKCDarMHlasXLkSffr0QXJyMmw2G+bNm6dNHzt2LOrXr4/w8HBUrlwZ3bp1ww8//KDNM23aNHTq1AlRUVGw2Ww4ffp0qe+Xl5eH5s2bw2azYcOGDZaWtSzwzCURERGRH2VlZaFZs2YYOnQo+vfv7zG9bt26eO2111CzZk3k5ORgypQp6N69O3bs2OEeajE7Oxs9e/ZEz549MXr0aMP3e+yxx5CcnIxffvnFp+UbNmyYz+tis9kwffp0n+cHeHB50XjUn/OYrv9VlNozSWvvWaTnA+sOMC4NsO3TXVo7LCZMa+cG6WM6V+9unKmQ427Lupl7lxwW/RlnMCVZ3y8oVM9MBoeL5TPZnvmnM7R25iHPDKnMcUYkVjLs89Av+7W2vzOWksxYSq7Kxp9ZfEM9xytrjZ7Z8ofWjmpUx8LSweMzyD+l53Z9GVtc5ekZygKRkdy5VM9IFuUYf+65RwoMp0uNhzYwnC5zqrLuZbVXP9XaJ8bdqbVlHUvJHhJiOJ2ILCqrO7st9tmrVy/06tWr1Om33nqr1p48eTKmT5+OX3/9FV27dgUAPPzwwwCA5cuXG77XV199hSVLlmDOnDn46quvfFq+b7/91j3Uoxlf5zsXDy6JiIiIykl+fj6mTZuG6OhoNGvWzNJrjxw5gjvvvBPz5s1DWFiY+Qv+Z/fu3RaX0hpmLomIiCgglHUR9YyMDO2Rl5dnskSlW7BgASIiIhAaGoopU6Zg6dKliIuLM3/h/yilMGTIENxzzz1o1aqVpfdeuXIlMjMzTec7fvw43nnnHUt9Azy4JCIiokChVBkVUT97cJmSkoLo6Gj3Y8KECee9qJ07d8aGDRuwevVq9OzZEzfddBOOHj1q/sL/efXVV5GRkWGaxyztvX///Xd3u7i4GCEhIVohdQDYuXMn7rzzTvlyU7wsXgbMcla+KCrQ8x21+qZobZmpNCMzk0FOfRnNxhwOCdezYTITKtd51wI9n2imyfCGWltm3eyibqXZGMv2EH0s9+ReHTzmKThyRGtn7NhrupznMstYhiYYjycv84HhaWJc6Ri9fWK9niPd/42+/FJsbX3scGe0njENEjnWojPmf8Va4kOdy60L9CHHCrP1/TQkUt+GGUezDfuT+2V0SqzWltlnj7HLhepT52jtU8/fZzh/7Ji3DacT0V/bvn37EBUV5W47nU6DuY2Fh4ejdu3aqF27Ntq2bYs6depg+vTpPh8sfvvtt1izZo3HMrRq1Qq33XYbZs2aVeprlRjOUimFwsJCj+fPFw8uiYiIKDAo5T7L6Pd+AURFRWkHl/59C2XpMvu//vUvjB8/3t0+ePAgevTogY8//hht2rQpi0X0GQ8uiYiIiPwoMzMTO3bscLd37dqFDRs2ICYmBrGxsXj22Wdx3XXXISkpCSdOnMAbb7yB/fv3a+N4Hz58GIcPH3b3s3HjRkRGRqJ69eqIiYlB9erVtfeMiDg7QlitWrVQrVq1i7CWpePBJREREQUEG8po+EdY6/Onn35C586d3e0RI0YAAAYPHow333wTW7ZswaxZs3D8+HHExsaidevW+O6779CoUSP3a958802MGzfO3e7Q4Wy8a8aMGRgyZMgFrE3Z48FlGag1a4Hl12wd2ENrq2I9e2YLvrCPSo5VLsdIljUQJZnZlBlLZ6Q+hnKD24xrJuam52jtony9f1n3Uo4VLhVk6uNcyyxd+no923d2Hj3XKcehlsxyqZIz1niZZeZSZixlHc36t9Q27G/Lhzu09tHf9M88oUlVrS3HuzfLH0pyn/HI8PiQuYxM0sfiPrXztNau2aWe1i5sZzy2uCTrUtqD9QxncLi+35plJiuPet3S+xPRpalTp06G+cXPP//ctI+xY8di7NixPr9nWlqapczk1q1bERR09jey6H/3MWzZskWbR7Z9xYNLIiIiCgxlnLkMJN7Ofg4aNEhrK6VYRJ2IiIiIjM2YMaNM++fBJREREQUEmyqjzGVZDClZjgYPHlym/fPgkoiIiAJDBRlb/FLHg8sKwuyGGqn29dUNp8si7LKoubxBxxFsfDOHWWF4eXOMvJFCkjcAyZtL5I0XWQeMRy2Qyxfk0m+OyT/jWXw7+3iGx3NGTm83Lpoe3VAvUp7+e1Ypc3rnCNHXQRauzztjfMORdOSHk1q7eof6Wjv3hL7+QWHGxYBl7qa4QOxDYpvL6d4kNNUHB0i+rIbWLszRa76Z7VfypiSbQ9+mwZH62LuykDwREV04HlwSERFRQDh3HHB/90u+49jiREREROQ3PHNJREREgaG4+OyjLPoln/HgsoKQmUWZHZMZSinIqX+UwS7jjKTMYEoy0ykzmR7ZNrH8sgi65Kyk5xPzTuv5xMxDel4wKFTPYEqR1RO0dlGOeT7RrCh65jF9mfJPGGcI7Q7rtcDOJbdhWIyeD3RGGecDL3ukldY+s/+E1s47pWdG5fqHREca9l+YrRe+D5KF7cVlI7sPhf9lHzZZnN+lZ3PNyOxtsFiniHtfsNQfERFZx4NLIiIiCgwsol4hMHNJRERERH7DM5dEREQUGFjnskLgwWUFITOMDhExNMsHKhE2tgfpH23lJhFa+9TGTMP+ZHbNo46kyEB6ZkaN84dK1PWU/YdE6O3Y1o2N+8vL19rF+fmlzPmnEzuMa2ceWX3ScLqsa2m2Tc04I0T+UGzDkCg9gyk5RMYxLE7PG0bWqKq1846f0tq5x/T1dSVW0dpBYSLzKfbZYvEZwJfxaMU6ypymQ2Qy7SEi5ylEPjjJ/D2JKGCxFFHFwMviREREROQ3PHNJREREgYGXxSsEnrkkIiIiIr/hmcsKQubr5B9JZmN71/t4seH0U+3b6v0FG+fhtn26S2s3GqyPS+0U+b+QKD1/KMlxpkMq6XlAe6hez1COCW2PijbuPyNda5/asEVr52XoNRoBoCCnwLBPMyHhxl+fpPaxhtPl+O5mtUxzTMZCDwrV84iu2CitHRynL48j3DjDKdnNMpbnwS4+Z49ssXhPZiqJyJBSZXTmkplLK3jmkoiIiIj8hmcuiYiIKCDwbvGKgWcuiYiIiMhveOaygqj74SKtvWXA1VrbLFNp5vJVa7T2ruF9DefPOqbn+xwh+q4SWqWypfcPidXnl5lKR6RehxNOa2NKF53Ra0yGJ+n5wjOHdlrqzxfH1uo5T1lLNDc9T2vH1NS3gRy7XGZAMw7o/UenGG9zWXs0JEbPqdpErtXhMP76F+dka+3wO57R2mdee0zv36O2qfnfrnIscSKiC1JcfPZRFv2Sz3hwSURERIGBY4tXCLwsTkRERER+wzOXREREFBhYRL1C4MFlBVX/06Vl2r8zymU4PSRCz+fJOpuyxqHdaTzms0fdylCnPj1M1MkMEoOrC7lb9DqWOWJc7MJsPe8YEq6/HwAc/MF4bHEppplem/PkL2e0dnC48TLnZerbTNZ09Bif3aG3ZaZSqtRUr0VanKtvA9dNIw1fb1Xk/RP92h8REQWGC7osPmHCBNhsNjz88MPu5zIzM3H//fejWrVqcLlcaNCgAaZOnXqhy0lERERkrCRzWRYP8tl5n7lcu3Ytpk2bhqZNm2rPP/LII1i2bBlmz56NtLQ0LFmyBPfeey+Sk5PRt6/xHcpERERE9Nd2XmcuMzMzcdttt+Htt99G5cp6eZTvv/8egwcPRqdOnZCWloa77roLzZo1w08//eSXBSYiIiLyShX/WY7Inw9mLi05rzOX9913H3r37o1u3bph/Pjx2rT27dtj/vz5GDZsGJKTk7F8+XJs27YNr7zyite+8vLykJf3ZzYsI8N4/GTyj+QpH1ma/+AjN2vt/Ay9RmNIJeO/U+xhesZTFRUZtpHjORa41p/IeEbWqKa1M3cf1Ls7qdfBBID8E4UezxlxRurvmdAuRmsfWa3nPqXkjnFaO8ip51BdlfRtFB6v16nMz8w17D9js17LM7JumtbO+Wyy/n43jjDsj8reiXF3am0lLr0pUVuvyj/fKfNlIiK6UJYPLj/66COsX78ea9eu9Tr9X//6F+68805Uq1YNQUFBsNvt+Pe//4327dt7nX/ChAkYN26c1cUgIiIi0vFu8QrB0mXxffv24aGHHsLs2bMRGup9BJV//etfWLNmDebPn49169bhpZdewr333ouvv/7a6/yjR49Genq6+7Fv3z7ra0FEREREFYKlM5fr1q3D0aNHcdlll7mfKyoqwsqVK/Haa68hPT0dTzzxBObOnYvevXsDAJo2bYoNGzZg0qRJ6Natm0efTqcTTqdnmRgiIiIiSzhCT4Vg6eCya9eu2Lhxo/bc0KFDUb9+fTz++OMoKipCQUEB7Hb9hKjD4UAxx+X8Swty6X8ABIWLDGWhyEwKcuxvWeey4KCekbTZ5DjVuuBYPe+YuU3PG2bsO6a1s47rGVFfhCbodSVl3ckjq05obZnBlIoK9O+Aq5J+9j+6up7JjKpbQ399lvE6BMdX0dr2SvryqHy97mXOJy8a9ufvupgXQ/rkh7V29IiXy2U5fCUzlkW5+aXMedaRUbdr7YTn3/X7MhH9pXFs8QrB0sFlZGQkGjdurD0XHh6O2NhY9/MdO3bEyJEj4XK5kJqaihUrVuDdd9/F5MmTvXVJRERERAHE7yP0fPTRRxg9ejRuu+02nDx5EqmpqXj22Wdxzz33+PutiIiIiP7Ey+IVwgUfXC5fvlxrJyYmYsaMGRfaLRERERH9BXFscfJJ/HOzLM2fPulBra0KCrS2LTxMa8sMZvaeA4b9h4q/IsNSkrX2kQ27tHZhnmdNS7M6lZHV9WUszDPOlRbmGtfNdFXWc6rOSD1z6YrXlycoNU1rO2zGxR2US4zPfua0WECxfLK2qJD1zhi9f/EZyrHL5fToR/9l2L83mVNHa+2CdL3ubXGB8TaW9VKPPT1Mn0GO5x6k1xo1y/rKjGSQqN9a6bFXDV/v0Z/Iccnx5Yvy9G1qD9Z/so+PvcOw/7ix/7a0PER/eUqVUSkia2cuz5w5g6eeegpz587F0aNH0aJFC7zyyito3bo1gLOD0YwaNQrz5s3DiRMnkJaWhgcffBB///vftX6+//57PPnkk/jhhx8QHByM5s2b46uvvoLL5fL2thUGDy6JiIiI/OiOO+7Apk2b8N577yE5ORmzZ89Gt27d8Pvvv6Nq1ao+DZX9/fffo2fPnhg9ejReffVVhISE4JdffvG4aboiqvhLSEREROSLYlV2Dx/l5ORgzpw5mDhxIjp06IDatWtj7NixqFGjBqZOnQrAt6GyH3nkETz44IMYNWoUGjVqhDp16uDGG2/8S5Rv5MElERERkQ8yMjK0x7nDV5coLCxEUVGRx2AzLpcLq1atAvDnUNkHDhyAUgrLli3Dtm3b0KNHDwDA0aNH8cMPPyA+Ph7t2rVDQkICOnbs6H59RcfL4lQmZN4uZ/azWlvm82QdTFeiXrNRytp/RGsXZOljkRcX6pmbIKf1Xb24SIzznG+c97M7jPN64XF6JrJynapaOyRBrLP40ZK9q6wz+vSk6vp0kcG0OfR8oezfQ54+lrmSeUeRFyw2qXXqjczmyj4KM7O1dv4ZvS3JDKMSZxvsImPpUb/VZXxGQNZzlRlPuT6FOcbb2B6s11ItyBXfi3yRVXZYy4ieev4+fX5xOc1qRpSowivj4R9TUlK0p8eMGYOxY8dqz0VGRuKKK67AM888gwYNGiAhIQEffvghfvjhB9SpUweA+VDZf/zxBwBg7NixmDRpEpo3b453330XXbt2xaZNm9z9VFQ8uCQiIqLAUMZF1Pft24eoqCj306Vdon7vvfcwbNgwVK1aFQ6HAy1btsStt96K9evXA9CHyk5NTcXKlStx7733IikpCd26dXMPPHP33Xdj6NChAIAWLVrgm2++wTvvvIMJEyb4fx39iAeXRERERD6IiorSDi5LU6tWLaxYsQJZWVnIyMhAUlISBg4ciBo1aiAnJ8d0qOykpCQAQMOGDbV+GzRogL179/p/xfyMmUsiIiIKDCVF1MvicR7Cw8ORlJSEU6dOYfHixejbty8KCgpMh8pOS0tDcnIytm7dqs2zbds2pKamnt+2uYh45pIuCtffnjScLuv15acfNZw/56Se0cw5ZTzutrc6l2ackSFaO/Owcd4vKtn4r9mYutW0dljtmlpbFenLmLfrD8P+QpIStbYt45TeX4Ge9yvO1TOUpkSesDhfH/e68Iy+zQuy9P4PPzZIa4cl6WOnA0BRnt5n7vHT+nuKjKPM0nr0Z5KLDdLz9R4Zzuxj6Yavl3UobfbTWjs4TL9E5nDq+5Ak179QZC6DQvVMZki0qGVqQtYFlcsvM5kAUHnU65beg4g8LV68GEop1KtXDzt27MDIkSNRr149DB06FMHBwaZDZdtsNowcORJjxoxBs2bN0Lx5c8yaNQtbtmzBZ599Vs5rZ44Hl0RERBQYyviGHl+lp6dj9OjR2L9/P2JiYtC/f388++yzCP7fTXy+DJX98MMPIzc3F4888ghOnjyJZs2aYenSpahVq5ZfV60s8OCSiIiIyI9uuukm3HTTTaVO93Wo7FGjRmHUqFH+XLSLggeXREREFBgsFjy31C/5jAeXVCGYjYG8/bZeWtsseye5KoWazlOrr16/LDdDzyxmbNXzeVVaR2ttmWeTck/q42QX/bZFvF4PdztjKxn2J2uFwiYylYX6dCUzkxl6nUypWOQBC0TGUo57LWsyStmHjns8t+n9nw1fI1Vtm2g4PaaOPsb8sd/3ae2sY/o6yPHeQ6ONx+uVmUopP1P/DBwmGVCZKZV1OQE9c1ko6rnKfcaMHJvco/YpgPTJDxv24QgVuVJx56xZvpqIAh8PLomIiCggKFUMVQaZy7LoM5Dx4JKIiIgCgyqjy+LnWYroUsU6l0RERETkNzxzSX8JMmMp61bKrJojRN+1zcb99ibI6ZlHO9extXpNxIiESMP5s4/rmUv7aT3/J2sa5p4yzkTGRIu6mqIuZcGp0/p0MSSa2bjXeSf19fMY91vUZDTLI5454Jm5lGSm8vj2k1r78C/G9U/NpldpGKu10/fpn8mZQ3r9VDPV29XQ2nI/NBtvXWYmVbFxBrNIju9uwmbT+7eJsdW9nY2R45U75H4myPHVicpVBSlFdKnjmUsiIiIi8hueuSQiIqKAoIqLoYrL4IaeMugzkPHMJRERERH5Dc9c0l9CvY8Xa+2tA3voMzj1Xfl8/sr0yGmKfFpCuxitfWS1ngfctWC/1k7uqI+lHRKujzMt62Ie+EmvyZh92Hgs8DYN9LHJC8/oecHM/Xr+cOs8va7mhapzbR2tbbbNzcb9BoADaw5r7dROeu3R0ErGY2s7xdjbB9ft0tp5onZpant9G4bG6rVLpa1f6HU5967eVcqc/pHSNs1wutxHJYdL36eDI8JM39Meptf6tAUZ/zNhjzDOGhNdVEqVzZ3dvFvcEp65JCIiIiK/4ZlLIiIiCgzFyqMyht/6JZ/x4JKIiIgCAy+LVwg8uKS/JJmPlGSe0XPMZk/2ID0l4tAjkohK0uv9HYGeuZQOrpB1Hc3rPFrxw4Qv/dqfVdsXbL/gPsIS9THfg8P1Wp97lus5VH87tV2vc+mKN67VWevqhlo754T++oPr9dxtdIpxjciIBD3jKffTwlx9fHeZWw2J0Lef5EpJ0trF2frY5PZQz9fL2pthtz9l+B5ERBIPLomIiCggsBRRxcAbeoiIiIjIb3jmkoiIiAJDsSqbm294Q48lPLikv6Ta7y3U2rvv7Ke1ZebSF3L8cpnBlHm3yk0iDPs7tdF4nOpGg+trbWeUrC9oUsMwWP/65p/J1qeH6qHR3z74xbA/MzW6pWnt8ITKWttsLHRvn4kzWt+GxQX6eOXVWuufQVC4ccZQ5gULs/W6lkqMDxwcrm9zOb+0a7leK7R2zyZau05CJa1dkGVcq3T3yh2G0y9U0I96Hc4617bU2q4qei1WAFAptbR25vdfGL6Hcug52cjLr7GyiEQUgHhwSURERAFBqWKPPyL91S/5jplLIiIiIvIbnrkkIiKiwMDMZYXAg0sKCGlvz9Pap56/z/Q1Mp8n835FOXr+bs+qDVo7Y6uecZQaD22gtZ1iXGxVWKQvj8hYBjlFoU0hJEavkehw6XnEE7/vMXy9FFVDzz9m7NIzo7u+3q2161yrZ+18qSUqFWTpdReDRE40JMp4LHEpSGQobTaR8xSfeVGOnok0y+rKjKWzsv4ZFOXpdSlDKhnXuWz5aHP99Rl63cxfpi0xfL1ZHc1af9PzjwUHDmrt4lzPTKj9mD4Pkmt6zHMuZiypQlHFZx9l0S/5jJfFiYiIiMhveOaSiIiIAoIqVud1FcWXfsl3PHNJRERERH7DM5cUkOwmNSIBoLhAr1tZcMY4Q1mvj563C741zHD+EJHHkxnLQjHOs0NkLPd887Nh//mZer5PjpMtyUyllNikqtbOPqHXYExrX0NrWx1b3BnrmSGt0VGvqViUr+deC0XuNaRSpOF72IL1HKgzXuRcRa62QGQsg8L0zKaklPHZi6AI/f2CYmMM50eQvryFZ4xro0rVu7Y0nK4Sq2tt+3F9fHtbbT0XDABFTn0dHDnWlomoXKlioCyGamTm0hKeuSQiIiIiv+GZSyIiIgoISinTKwzn2y/5jmcuiYiIiMhveOaS/pJyPnxeaxedOqW1fbqzT9RADI7UM5QyMwmb/reYI9I4w1h4Ul+m4nw9IynzeZl7Dmjto5tOGPYvpXZK0doRifrY38Ui8ymZ1Xjc8aWewWx8WwutLWs8Sps/+83jOTleu6w9KvtURcbr4AjXP0N7uL6Ni7Oy9PkL9fe3m2Qu7aF6LVGbQ8/2ykwn5PKKfQhin9j55TrD96/RqY7WdrRsazi/Evu4rVkbvZ112vNFIfo2dHW5zfA9iCqU4jLKXJZFnwGMB5dEREQUEFiKqGLgZXEiIiIi8hueuSQiIqLAoFQZDf/IM5dW8OCS/hJyPnlRf0Jk3RxxcXo7yjj/BwAI0esuFotxnWXNRFu4nrFUZ4zrSsp8oKyrmb5zp9be/tU2w/6ken3qa22HGJfbJvJ9IeF6XlCSdT5bDO+otX99d5XWPvCjvvypnRoa9t/iris8nvvtk5+0dtVWeq1Ne5C+Dpn7jxm+R97pM1o7JELPDzrj9f0kJClR78Ds0ldiNa1ZGKHnWg/GNtXa0QX68uZOfsaw+9z0PMPpUfX1cb4LIozraGZEJGvtLJs+FnnlgsMerwku0OuvGieLiYg88eCSiIiIAgIzlxUDM5dEREREfnTgwAH87W9/Q2xsLMLCwtC8eXOsW/dnNYghQ4bAZrNpj7Zt/6z+sHv3bo/pJY9PP/20PFbJEp65JCIiooCgiouhyqBskJU+T506hSuvvBKdO3fGV199hfj4eOzcuROVKlXS5uvZsydmzJjhboecE9VKSUnBoUOHtPmnTZuGiRMnolevXue3EhcRDy7pL8HmNM4LKlEvUOYpvRKZSHslPT+3YeKHWjv7aK55nwaqttbzfSER+jo1HKDn9SSZH8zP1DOSMmPpCNG/3sGirqaZAtF/WIy+vNkn9e2Rc+y0YX+hlT3HBW/yNz2HuXH29xaW0DpnlJ6jbfr0nfoMIcb7GfL1dS5w6usUl71Xa4fv0DOl637aZ9h9WofaWvvMwZNa+5c3F2vtlA1bDfuL767nZvOr6XUyj8XU83jNgWI9y9vB8B2ISHrhhReQkpKiHTimpaV5zOd0OpGYmOjxPAA4HA6PaXPnzsXAgQMREVHxk9C8LE5ERESBoViV3QNARkaG9sjL87wJb/78+WjVqhUGDBiA+Ph4tGjRAm+//bbHfMuXL0d8fDzq1q2LO++8E0ePHi11tdatW4cNGzZg+PDh/ttWZYgHl0RERBQQlCouswdw9nJ1dHS0+zFhwgSPZfjjjz8wdepU1KlTB4sXL8Y999yDBx98EO+++657nl69euH999/Ht99+i5deeglr165Fly5dvB6sAsD06dPRoEEDtGvXrmw2nJ/xsjgRERGRD/bt24eoqD9LejmdTo95iouL0apVKzz33HMAgBYtWuC3337D1KlTcfvttwMABg4c6J6/cePGaNWqFVJTU7Fw4ULccMMNWn85OTn44IMP8NRTT5XFKpUJHlxSuchd8KbhdCXqWCJM5PUK9TGcbXYxv3D0y288nrNaV9Kqur31PFtwuD5utcxE2oKM18EeoucFg1z6j1pRrr5N5LjdyNTH1ZZkJjP3+GmtXZgn+hPMSnUER3nmhILj9DqNrR7tq/cpxv62BRn/ZBWc0DOKcjz1je+t1tpFu/Tx0tVlVxn2XxSif4bKoS9PQZCYLvdbEzGt9dyt4zI9uJ+27b9a+9iSFfr7ic/gqJgee5te9zKswLNWa2Kovh9u3nG69AUGkFGo7zdt6lcynJ+oTJVRKaKSy+JRUVHawaU3SUlJaNhQr/vboEEDzJkzx/A1qamp2L59u8e0zz77DNnZ2e4D078CXhYnIiIi8pMrr7wSW7fqN9tt27YNqamppb7mxIkT2LdvH5KSkjymTZ8+Hddddx2qVKni92UtKzy4JCIiosCgioHiMnhYGFLykUcewZo1a/Dcc89hx44d+OCDDzBt2jTcd999AIDMzEw8+uij+P7777F7924sX74cffr0QVxcHK6//nqtrx07dmDlypW44447/LqZyhoPLomIiIj8pHXr1pg7dy4+/PBDNG7cGM888wxefvll3HbbbQDOlhnauHEj+vbti7p162Lw4MGoW7cuvv/+e0RG6lGad955B1WrVkX37t3LY1XOm02pijUae0ZGBqKjo5Genm6aa6DAkfP1LK1ty9XHN0axnp1TGae19k8TS8+yAEB+RoHHcw6X/rdVjQ76uM0yE/nHt3o+TyrI0vOBsm5liMgcBou6lXLscclmt2ntwhz9rsKiHL0Go8xomhUBLhYZzW1fbjKcP7SSnvmselnpl3wAoFKLRp5PylqjVfS6burMaX3+2HjD95D9FcbqY5U7Nut1J3d++q3WrtHH5E5MkyyXI03fh/bW6aG1T97a3/D1kYn6PhIyZaZ4e32fjc/8Q2vnuPRarVLML3qdzMI0z88kvVJ1rX3aHqu1G9f2vGxHBJTvv98l7/3HY39DpNOHOscWncnLR82Js3ls4iOeuSQiIiIiv+Hd4kRERBQQKsLwj8SDSyIiIgoQSimURdqvgiUIKzweXFKZyF7+gda2mdUdO7xfaxYX6BnJQ8v1rNzuFXssLY/MVwJArS76OMtBoXpOxyZqbdbt3djwPZTI+wWJ3E9ItHHNw6Awl+F0yRasZyplhrMwW8+tOlzG42Zn7TtsOL36FXqm0hktMqSR+vtL9shozydF3UolxpDPT2qptUNOHTJ8j+LwSlo7K1LPcEbU0XOwtW/Rt+H+trcY9u8qytTbeela27lqgdZOzZ2ntfUqnJ6qd26utX/Ni/E+4/8cCWqttaNtxrVMY11ifHmRZQYAm7grdn+myFwavgMREQ8uiYiIKFCUlA4qi37JZ7yhh4iIiIj85oIOLidMmACbzYaHH37Y/ZzNZvP6ePHFFy90WYmIiIhKpf43/GNZPMh3531ZfO3atZg2bRqaNtUzTIcO6Zmor776CsOHD0f//sb13Siw2MTY3+rgXsP58w7qeb/MfUe0ttWMpVSU43lJIyhMr9P4/+3deXBU9ZbA8dOdpLuzdUIgCyHNriyyaRiUcV/IG0bR5zIoUrjhc7CseSxVDqLjoK/KkXJKx61k1GIYaupNxWIcR8eFJyOgiDACwe2pCHnBRMhCIEl3Okmn0/fOHwjjuY03idwmTfP9VOWPc/v2796+3Z388rvnd37efJ0TGarV55A9VOeeWVlzNK23UWJdui5luiUHM71I5wfGsa6rbTlerOGQij2WpcaMIfb1Cb2zylR8wcT3VPzt73VNSJFG6ZcPvozbVDhBn1PR7KtU7DmqX1NH8VjbQ+zLmKzi9qh+j88t1HmthYd0ncicaKtt+7UyUsUZXn3++RXFKm6O6s/MlEVHbNv/4p/fVXF54FW9Q7b+zHQN1dfju/TzbdvfPuouFedkROL2KXHpaz40u9WyRy+1RgGc9X7RyGV7e7vMnz9fXn31VRk0SBftLSkpUT9vvvmmXHnllTJ69OifaQ0AAODUmUaiRi8H+pWdWX5R5/KBBx6Qa6+9Vq655hrb/RobG+Wdd96RhQsX/uw+kUhEgsGg+gEAAMCZqd+3xSsrK6Wqqkp27tzZ677r1q2T3Nxcuemmm352nyeffFIef/zx/p4GAACAQhH15NCvzmVdXZ0sXrxY3n//ffH57GvmiRxbcH3+/Pm2+65YsUKWLVt2Ig4GgxIIBPpzWhgAnRvWqNjVrde1No8cVnHb1/ts2wv9oHPR6rYfVPHYX+ncMne6zje01qi0+vr1+Hw/q2ioQ8X7/6DXEi+7UD9uVXS+PkdP0RDb/Y12XZPQsKyXbuUu0O0ZzU0qTivS+X/RIr1GdFeWfc3E3D/tVnG4Qb+HY6+bruL0Cy+1nKAl59QirTE+7zZU9bmKv584Rz/Hpesw+mL2dRw7u3XdSmtOYeH+j1X8zZQ7VVxs6s+dlctSSLkuqGt3HvVY6khaHL5svu3jYsm5lHyds2lk6pxLT7v+3hTmNts2v7VhjIrT3PG1VRuzdf3SXG80bh8AsNOvzuXu3bulqalJysvLT2yLxWLy0UcfyYsvviiRSETSfpxksHXrVtm7d6+89tprtm16vV7xer22+wAAAPQmUTO7mS3eP/3qXF599dXy5Zd6BOjuu++W8ePHy/Lly090LEVE1qxZI+Xl5TJ16lRnzhQAAMAGt8WTQ786l7m5uTJpkl78Kzs7WwYPHqy2B4NBWb9+vTz99NPOnCUAAADOCAlZ/rGyslJM05R58+zX6QUAAHCKaSbotrjJbfH+OOXO5ZYtW+K23XfffXLfffedatM4jawTdKxieXoyiTtTT1yIfV+t4qrndQHunJIs2/aHnKsLiI+ZpSceWCfweHJ1e19V7rFtP7csfqKFJ0e34fbqSUEX/b2ucvDpP7xhe4xwc7uKx143Q8XpBYNsY1eW/WQQs12X6eqZoCfY9GTo19ORpSeD5B/R75FV+PMvVJx1jn4PrJNLopl+Fdfm6wUVrMZ09F5mLC+qJxF93TNRxZEe+0lDRVn6PRhmHFDxD+fOUnFXRL/nQY99ofyq6nwVu1z68Y4uXd3tyvF6wk19tJdC+Rb1oy5WcdTU55tlhFQ8KFRn297VpXri3eb68+L2qT6k/yxEuvVrulzfvAKAOAkZuQQAADjtTPPYTyLaRZ+d0triAAAAwE8xcgkAAFICs8WTA53Ls1TnB/+mN2RYipBbFlI1d29Tccu+71Vc/T/fqbhgTL7t8fNH6BzOWHePPp0sXfvUV6Dz+6o36pJY1pzK0A+62Pb4m2fano9IfM6lK03n950393zb59ds/kbF1pxK9yCdz2d2WYqyp+sC4HFy9DWIenVB7YyIzr/zdevXY3z6kW3zWaNHqrhzwkUqdhu6mHZD7rkq3t9SaNv+0dK/itt2Qam+ZtKicwbHD9a/or42x9keY9f3+pobI3RS5Kd781UcCuvPuddrn/c6vFjvP26wLmSfa7apuGj/VhW3vP+BbfuRyaUqjor+TBzu1q/vSIfev71T56haTc/R13fEkJMtDKBzd7+t1t/N3z5nX8j++cV+28cBpD46lwAAICVQRD050LkEAAApgdviyYEJPQAAAHAMI5cpKi6n0pJD6erW9e6swrurdHyo2Xb/sRU6Fy4jO9N2f6MnpmJ3ereKvQV5Kna5de5cV0vEtv3MwTpn05pPKSKS5te5YUaX/TXJGafrPnbU1Nru39Oq8+8yPJaczjydP2cVLdD5dDGPvqadvnwVH84aoeLcWIuKs88db3u8/WPnqDjdpd+jmOV/0c6YT8VtYfsalKbpi9sWvuIWFWd06xzAA7HRKv6mTr+vVkWD9K2rrh6dsxizDD5cO03X1SyJHLBt3/vBehW3Hzhou3+LdcOiFbb7F7Q3qrjOUtey0KNbbA7rz8SQXP09sjrQXqzihtb478WdV1iKd15uveb27wEwkLgtnhwYuQQAAIBjGLkEAAApgZHL5MDIJQAAABzDyGWqMnS+nFmv69tFW1ptn97RoNdEdqfr/0O8eTn68Qz9UTpZjqM6flCvAZ1ZVGD7/FCNzm3LH2FfS2/UX16o28s8SQ6oT28zR+t1lo10+9fgOarz3wpG6zqW31TqGodlM0apOPvO39i3/9V2FVszGgd7dO6bUa5zJiPpul5h/blXqnjovg9VPObgJhUfHnaBir9u1/mPNY06nzHSbf+f/bRhR+K2tbj0WtvftOs807of9OdufMA+p3CK548qzojqHM6MMZNV3N6jr1Eszf49lz+/RoWfX3a1isf461VcuP4pFXs/sV+fvu7Se1T8xyadI5nt1d/rkXn6M7ijRtePtbKuhf7XFa6T7wicoZgtnhwYuQQAAIBjGLkEAAApgZzL5EDnEgAApATTMMWI0bkcaHQuU0THln9XsTWTypWl10w2mw6LHXe6zvBLz7SvG2nNuRTT8kW0JHtlBXRunVXaIF0DMjPcqeJR43T+Ypzpl6qwKzMvbpf2LL0Wdrqh8/nyGyzrXlu4Jk9TcWC0zknM+99dKm77Xq9D3fH007btWw37zQIVf5R/s4rbj+r3wJtunyPUOEKv9T1K9qv4UI9+j3Z9o7Nourr09RpeZp+vGDPj62D+0Knfg+4e/Tn51XidK5wTa7U9xhddOm/Wl67Xxf7uoM6xHF+qc399kbjKlMr2jKtU7E3TOZCtUZ0LPOg6/Z75Gvbath/Y+i8qLp1QruJomm5/V6de/z1in5Ial3MJAIlA5xIAAKSEY7fFEzGhh5HL/mBCDwAAABxD5xIAAKSE4xN6EvHTV6tXr5YpU6aI3+8Xv98vM2fOlPfee09ERKLRqCxfvlwmT54s2dnZUlpaKnfccYccOnRItVFdXS033nijFBYWit/vl7lz50pjY+PJDpeUuC1+hmr/5L9UnGb54GfOusv2+fYrf4vEZyj2cj6r9ZrJsXDYdn+XJafT5bHP1/MW6RqS6UOH2e5vdgRVHMmJr//nNnW+XG6LXis8WHSO7TGyQ/qL3jZc58flDJ+o4rJmnT94eKSuxWnV5db5gcFuvb77KE+DfkKuDn+/baht+52duk7l0KHTVHzOMH19DEsebXe3fnxInv2tqI6e+Pc41KXPIT1NH2NbbUDF/iz79/3gYf3/8uI5Old4z590+9a1uav959u2f/SwPl9Phm5vX5teP90/Wp/vHzz27/nkS3QudKGh62Zub52kH8/pUnFutv336J6rSLoEEq2srExWrVolY8eOFRGRdevWyQ033CB79uyRsrIyqaqqkkcffVSmTp0qLS0tsmTJErn++utl165jefrhcFgqKipk6tSpsmnTsfrDjz76qMyZM0d27NghbnfyjwvSuQQAACkhGUoRzZmjF7R44oknZPXq1bJjxw5ZuHChbNy4UT3+wgsvyIwZM6S2tlaGDx8u27ZtkwMHDsiePXvE7z82iW/t2rVSUFAgmzZtkmuu0Ys5JKPk7/4CAAAkgWAwqH4ikYjt/rFYTCorKyUcDsvMmTNPuk9bW5u4XC7Jz88XEZFIJCIul0u83v+/8+Lz+cTtdsvHH3/s2GtJJDqXAAAgJSQ65zIQCEheXt6JnyeffPKk5/Hll19KTk6OeL1eWbRokbzxxhsyceLEuP26urrkoYcekttvv/3EKOVFF10k2dnZsnz5cuno6JBwOCwPPvigGIYh9fX1cW0kI26LJ4nwx//Rr/1zLrklQWfyy+Tcf/Iv2HGtT/2Nis1oVMVpw3RuXVfJGBV7G2tUHMvVdTCtakou1s93xf93md3Tptv0WnIcPfbrNIcG6zxQj6Hz37yWHMu2Mr2utbWOpFXNEZ1EeVGJLmK4u15fs+o6nfP4fbXO0bQqHKprJmZ6dT5eW4f+9bByvn78qdf1/6bVP+j2x5Tp+JKJlqTQk/jH/7TmbepbUfdcFV8rsz+aDutrOKxQv8bDnTm2z284qmOvR1+D88p0PVartnbbh6WmtUDFnkH6e9LeqY9384W6fu1luswncNZJ9NridXV1JzqBIqJGF39q3Lhx8tlnn0lra6u8/vrrcuedd8qHH36oOpjRaFRuu+02MQxDXnrppRPbCwsLZf369XL//ffL888/L263W+bNmycXXHCBpKWd2u/A04XOJQAAQB8cnwHeG4/Hc2JCz/Tp02Xnzp3y3HPPycsvvywixzqWc+fOlZqaGtm0aVNcmxUVFVJdXS3Nzc2Snp4u+fn5UlJSIqNG9bKASJKgcwkAAFJCMkzoOenzTfNEfubxjuW+fftk8+bNMthyF+ynhgw5dgdt06ZN0tTUJNdff/0pncfpQucSAADAIQ8//LDMnj1bAoGAhEIhqayslC1btsiGDRukp6dHbrnlFqmqqpK3335bYrGYNDQcKytXUFAgnh/L8q1du1YmTJgghYWFsn37dlm8eLEsXbpUxo0bN5Avrc/oXA4Qa46ly4j9zJ7HZF12ayJPJ+Gsa4/H/Rdoid29XA93SK8BXX3OdSoe3KNrUEbT4vNiPNEO22Mc7c63fTxq6NyXgFcXwT04+nIddxaruL1b10y08mfpa/B1cKSK511inY+n44vn6HWst/23Pp9T9bc3O5/78+BNiZ1j+MQ9+nOw5PmQip/9rX1e6F9M6+0IOm/3XzfrOpp+nSIZ59sDlrzXsM7LjTmfSgakFCNmiuF2fuTSiPW9zcbGRlmwYIHU19dLXl6eTJkyRTZs2CCzZs2SAwcOyFtvvSUiItOmTVPP27x5s1xxxRUiIrJ3715ZsWKFHD16VEaOHCmPPPKILF261KmXk3B0LgEAAByyZs2an31s5MiRYpq9d1RXrVolq1atcvK0Tis6lwAAICUka87l2YY6lwAAAHAMI5cDJDvJ6lQmmn/pP/Vr/47PPlSxa1CJ7f6l4X22j5u++NXSg5mFKg55LXUfRdfGLO7RhRy/6NFFBXe0jlWxz6MT5H79Z6f36+Z0jmUq6i3H8lRZcyR77FOJJTtL/78f1qVTxWufpguc9UwzQXUuTRKe+4POJQAASAncFk8O3BYHAACAYxi5BAAAKcGImWK4BrYUEehcIkkVTHM2X3Dv/tq4bW1RnW83Y7z9euUiRSqyzwIV4cYA2kL6D1JOtutn9vxx/6BOyvy7efyKBnDm4TcXAABICeRcJgeGVgAAAOAYRi4BAEBKMI0ElSJKQJupjM4lzgrftZbGbZsznY8/EmvZr/t7c4jPJIAzH7/JAABASjBjppgJmC1uMlu8X+hcAgCAlGDGJCGliMxeVteCxoQeAAAAOIaRS5wVyK8EgNRnmgkqRWRyW7w/GLkEAACAYxjOAQAAKcGImWIIyz8OtKTrXB4feg4GgwN8JgAAoK+O/93mFjKSrnMZCoVERCQQCAzwmQAAgP4KhUKSl5c3IMc2Y4aY4kpIu+i7pOtclpaWSl1dneTm5orL5fwHJJkEg0EJBAJSV1cnfr9/oE8nKXGN+obr1Ddcp95xjfqG6xTPNE0JhUJSWhq/aAXOLknXuXS73VJWVjbQp3Fa+f1+fjn1gmvUN1ynvuE69Y5r1DdcJ22gRiyPM40EFVFPwAz0VJZ0nUsAAIBfggk9yYFSRAAAAHAMI5cDyOv1ysqVK8Xr9Q70qSQtrlHfcJ36huvUO65R33CdkpMZM8VMwMgla4v3j8ukZgAAADiDBYNBycvLk3fOmSTZaWmOtx+OxeTafV9JW1sbObZ9wMglAABICUbMFCMBY2YGE3r6hZxLAAAAOIaRSwAAkBLMqCmmm1JEA42RSwAAADiGkUsAAJASjB5TjASMXJJz2T90LgEAQErgtnhy4LY4AAAAHMPIJQAASAlGzEzILexElDdKZYxcAgAAwDGMXAIAgJRgRg0xXS7n2zUNx9tMZYxcAgAAOOyll16SUaNGic/nk/Lyctm6detAn9JpQ+cSAACkBLPHPFaOyOEfs6d/OZevvfaaLFmyRB555BHZs2ePXHrppTJ79mypra1N0CtPLnQuAQAAHPTMM8/IwoUL5d5775UJEybIs88+K4FAQFavXj3Qp3Za0LkEAAApwYyaCfvpq+7ubtm9e7dUVFSo7RUVFfLJJ584/ZKTEhN6AABASugQQyQBVYM65NiEnmAwqLZ7vV7xer1qW3Nzs8RiMSkuLlbbi4uLpaGhwfmTS0J0LgEAwBnN4/FISUmJ3NVQk7Bj5OTkSCAQUNtWrlwpjz322En3d1lmrZumGbctVdG5BAAAZzSfzyc1NTXS3d2dsGOcrHNoHbUUERkyZIikpaXFjVI2NTXFjWamKjqXAADgjOfz+cTn8w30aYjH45Hy8nLZuHGj3HjjjSe2b9y4UW644YYBPLPTh84lAACAg5YtWyYLFiyQ6dOny8yZM+WVV16R2tpaWbRo0UCf2mlB5xIAAMBBt956qxw5ckR+97vfSX19vUyaNEneffddGTFixECf2mnhMk1WYwcAAIAzqHMJAAAAx9C5BAAAgGPoXAIAAMAxdC4BAADgGDqXAAAAcAydSwAAADiGziUAAAAcQ+cSAAAAjqFzCQAAAMfQuQQAAIBj6FwCAADAMXQuAQAA4Jj/Ay1VMfErEZEHAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(
,\n", + " )" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 13 + }, + { + "cell_type": "markdown", + "source": [ + "### Crop/Clip" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "path = \"../../examples/data/geotiff/noah-precipitation-1979-europe.tif\"\n", + "meteo_data = Dataset.read_file(path)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:33.910021Z", + "start_time": "2024-12-06T22:27:33.903555Z" + } + }, + "outputs": [], + "execution_count": 14 + }, + { + "cell_type": "code", + "source": [ + "print(meteo_data)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:36.042546Z", + "start_time": "2024-12-06T22:27:36.035041Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.5\n", + " Dimension: 25 * 40\n", + " EPSG: 4326\n", + " Number of Bands: 4\n", + " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", + " Mask: -9.969209968386869e+36\n", + " Data type: float32\n", + " File: ../../examples/data/geotiff/noah-precipitation-1979-europe.tif\n", + " \n" + ] + } + ], + "execution_count": 15 + }, + { + "cell_type": "code", + "source": [ + "fig, ax = meteo_data.plot(\n", + " band=0, figsize=(10, 5), title=\"Noah daily Precipitation 1979-01-01\", cbar_label=\"Raindall mm/day\", vmax=30,\n", + " cbar_length=0.85\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:37.777101Z", + "start_time": "2024-12-06T22:27:37.604723Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAHJCAYAAAD98j0xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABneElEQVR4nO3deXgT1foH8O8kadOFtkChG9ACCgXZRPZFNhEoCMouIFJQEVkUkFVRigpVVAQvF7wiIlzZfoogirKoUK4iWkAUEVmkhbKUCoWm+5Kc3x/c5BK65kxoOs338zzzQGbmPedMMknfnJw5owghBIiIiIiIqFLTuboBRERERER05zHxJyIiIiJyA0z8iYiIiIjcABN/IiIiIiI3wMSfiIiIiMgNMPEnIiIiInIDTPyJiIiIiNwAE38iIiIiIjfAxJ+IiIiIyA0w8SeXUhQFiqKgWrVquHHjRpH7xMTEQFEUvP766+XbOACJiYlQFAXdunUrl/rq1q0LRVFUl/PRRx9BURTExMTYrbc+lx999JHqOooTHR1te12ti7e3Nxo1aoRp06YhOTn5jtUtY9++fVAUBdHR0arLKu/zpSTOPC5nO3nyJN555x08+uijqF+/vu08Ke3cSE1NxcyZM3H33XfDaDQiKCgIQ4YMwa+//lrk/kWdi0Ut58+fLxT79ddf48EHH0TVqlXh4+ODZs2a4c0330RBQYH0cZ84cQJDhw5FzZo14e3tjWbNmuGdd96BxWIpcv+4uDgsWLAA/fr1Q82aNaEoCho1aiRdf0VrBxGVP4OrG0AEADdu3MA777yDBQsWuLop5CSdOnXC3XffDQBISUnBwYMHsXTpUmzatAk//vgj6tat69oGlqOPPvoIY8eOxfz58wt9GZMVExODBQsWYM2aNRUyuS/JypUrsWzZModiLl++jM6dO+Ps2bMIDQ1F3759cenSJXz22Wf44osvsGPHDvTs2dMupnPnzsWWd/LkSRw8eBARERGoU6eO3bY33ngDc+bMgU6nQ7t27VCzZk0cPHgQs2bNwjfffIMdO3bAYHDsz+fBgwfxwAMPICsrC23btkXdunWxf/9+TJ8+HT/88AM++eSTQl/6n3vuuWK/1MiqKO0gItdg4k8up9PpYDAYsHTpUkydOhXVqlVzdZM0b+DAgWjfvj1q1KjhsjY8+eSTdgnp33//jb59++LQoUOYMWMGPv30U5e17VZt27bFiRMnEBAQoLqsWrVq4cSJE/Dx8XFCy9Rx5nE5W7NmzTB79my0bdsWbdq0wf33349z586VGDN+/HicPXsWUVFR+OSTT+Dr6wsA2LJlC4YOHYqRI0fi7NmzqFKlii3mySefxJNPPllkecOHD8fBgwfx2GOP2SW68fHxmDt3Ljw8PPDll1+iV69eAIC0tDQMGDAAu3fvxttvv43Zs2eX+XgLCgrw2GOPISsrC0uWLMG0adMAABkZGejVqxe2bNli+3J4q169emHYsGFo06YNatSogfvuu6/MdVbkdhCRCwkiFwIgjEajmDhxogAg5s2bV2if+fPnCwAiNja23NuXkJAgAIiuXbuWS30RERHiTr4trc/lmjVr7lgdY8aMKbaOuLg4AUB4eXmJvLy8O9aGimbNmjUCgJg/f77TyiyP17K8WM/7y5cvF7n9/PnzAoAwGAwiMTGx0PYhQ4YIAGLZsmVlqi8tLU14e3sLAOLEiRN225544gkBQDz11FOF4n7//XcBQNSsWVMUFBSUqS4hhPi///s/AUC0aNGi0LYjR44IAKJp06YllmH9LIqMjCxzvRW1HUTkOhzjTxXCCy+8AKPRiGXLliE1NbXMcVlZWXj11VfRtGlTeHt7IyAgAF26dMGmTZuK3P/o0aOYNWsWWrVqhZo1a8JoNKJ+/fqYOHEiLl26VGJd2dnZmDNnDiIiImA0GnH33XfjjTfegBDCoWMtKChAbGwsGjRoAC8vL9SvXx8vvfQS8vLyitxfCIGNGzfi0UcfRcOGDeHr6ws/Pz+0bdsWK1asKHJcbnFj/IvStGlTKIqCU6dOFbk9MTEROp0ODRo0cPhYb9eyZUsAQE5ODq5evQrgf+Ow9+3bh127dqF79+6oWrUqFEWxu+7jiy++QO/evREYGAgvLy80bNgQL730EjIyMoqsKz8/HytWrECnTp1s47QbNmyIp556Cr///rttv+LGwt96PcRPP/2E3r17o2rVqvD398eDDz6IgwcPFvlc3T7Gv1u3brYe1AULFtiNLbdea+Hoa1y3bl3bsLixY8falblv374Sjwu4eQ7+4x//QKtWrVClShVUqVIFbdu2xcqVK2E2mwvt361bNyiKgsTERGzbtg3t27eHr68vqlevjhEjRuDChQtFvgbOcuTIEQBAvXr1EBERUWT7AODzzz8vU3lbtmxBdnY22rRpU2is+uHDh+3KvFWTJk1Qo0YN/P333zhw4ECZ2//ll18CAIYMGVJoW8uWLVG/fn38/vvvSExMLHOZMipKO4jIdZj4U4VQq1YtPPXUU0hPT8fbb79dppj09HR06dIFL7/8MlJSUvDQQw+hU6dO+PnnnzFixAhMnTq1UMzrr7+OJUuWwGw2o1OnTujbty+EEFi5ciVat25dbPKfl5eHXr164f3330fjxo3RvXt3XLx4EXPmzMFLL73k0LGOGDECL7zwApKTk9GnTx80a9YMS5YswaBBg4pMrHNzczFy5Ejs3r0bQUFB6N+/P9q1a4fjx49j0qRJGDdunEP13+7pp58GAHzwwQdFbl+9ejWEEHjyySdVX3icnp5u+7/RaLTbtmHDBkRFRSEzMxNRUVFo06aNrb7nn38eAwYMwP79+9G0aVP069cPeXl5eO2119CtWzdkZmbalZWZmYkHHngAkyZNwm+//YaOHTuif//+qFq1Kj766COHhhkdOHAAXbp0wYULFxAVFYXIyEh888036Nq1K/bs2VNqfJ8+fdCpUycAQIsWLTBmzBjbYr0GwtHXeMiQIWjRogWAm9dS3FpmSEhIie0xm814+OGH8eyzz+LMmTPo2bMnevbsiT///BMTJ07E0KFDi73Ic8WKFRg8eDCEEOjTpw+qVKmCTZs2oUePHsjOzi71uZBlfX2LGwZYvXp1ACjzOPSPP/4YAPDYY4/d8bpu3be4ITLW9Xd6HH1FaQcRuZDrfmwg+t9QHyGEuHjxovDy8hJ+fn7i6tWrtn2KG+ozefJkAUD07NlTpKen29afOHFCBAUFCQBix44ddjHffvutuHTpkt06s9ksFixYIACIsWPH2m2z/qwNQNx///3i77//tm2Lj48XBoNB+Pj42NVfkg0bNggAon79+uLChQu29WfPnhW1a9e21XWr/Px8sWXLFpGbm2u3PiUlRbRu3VoAEHFxcXbbihtaUtTwkBs3bggfHx8RFBRUaPhNQUGBqFWrljAYDCI5OblMx1jSUJ/33ntPABC1atUqtD8AsWnTpkIxmzdvFgBEy5YtRUJCgm19Xl6eGD9+vAAgZsyYYRdjHa7RvXt3u3NJCCEuXLggDh06ZHu8d+9eAUCMGTPGbj/rcwVAvPDCC8Jisdi2rVixQgAQYWFhIjs727a+uKFhpQ31kXmNSxvqU9xxvfXWWwKAaNasmbhy5Ypt/aVLl0RkZKQAIP75z3/axXTt2lUAEL6+vuLbb7+1rc/MzBQdO3YUAMTq1auLbEdZlDbUZ/fu3QKACA4OLnJ7bGys7bUq7b144cIFodPphMFgsDt+K+vxrFy5stA2s9lsGyL0/PPPl+HIbqpWrZoAIH799dcit0+dOlUAEO+++26xZThjiE1FaQcRuQ57/KnCCAsLw/jx45Geno633nqrxH0zMzOxevVq6HQ6rFixwu6CvkaNGmHevHkAgHfffdcurkePHggNDbVbp9Pp8PLLL6NWrVrFDhXQ6XT44IMP7C6Wbd26NaKiopCVlYVDhw6V6RhXrlwJAHj11VdRq1Yt2/p69eoV+8uBwWDAoEGD4Onpabe+Zs2aiI2NBVD2IQ5FCQgIwPDhw5GSkoLt27fbbfv6669x8eJFDBgwAMHBwdJ1/P3331izZg1mzZoFAHjmmWcK7dOvXz8MHz680PpFixYBADZu3Gg3E5CHhweWLVuGkJAQfPDBB7Ze6suXL+Ojjz6Ct7c31q1bh8DAQLvyatWqhVatWpW57REREbYhOlbPPPMM2rVrh0uXLmHr1q1lLqs4d/o1vpX1PbF06VIEBQXZ1oeGhuLNN9+02+d206ZNQ48ePWyPfXx88PzzzwMA9u/f75T2FaVdu3bw8vLClStXsHPnTrttFosF69atsz2+9Veloqxfvx4WiwW9e/e2O36rrl27AgDWrl1baNvmzZttv2yUVs+trMPRirvo23qhcnHD1pylorSDiFyHiT9VKHPmzIGXlxeWL19uGwNelMOHDyM7Oxtt27ZFgwYNCm0fPXo0AOCHH34oNHzm2rVrWLNmDZ5//nk88cQTiI6ORnR0NPLz85GamlrkNQZ169ZFw4YNC623rrt8+XKpx5afn4+ffvoJOp2uyDG2I0aMKDH+6NGjWLx4MSZNmoSxY8ciOjra9kXi9OnTpdZfkgkTJgAAVq1aZbfe+vipp55yuMxbx54HBQVh3LhxMJlMGDNmDObMmVNo/wEDBhRal5KSgl9//RWNGzdGZGRkoe1eXl5o3bo1bty4YXsO9u7dC7PZjL59+6J27doOt/t2gwcPLnLqRuvr9f3336uuw+pOvsYAcP78eZw/fx4hISF2CbzVQw89hKpVq+LkyZP4+++/C223znBzK0feA7L8/f0xadIkAMCYMWOwbds2mEwmnDx5EsOGDcPJkyeh0938c2b9tzjWYT7Wz4jbTZo0CQEBATh48CCio6Nx5swZ3LhxA5s3b8akSZNs50Jp9RSluKFyt39G3WkVpR1EVP44nSdVKKGhoZgwYQKWLl2KN998E2+88UaR+1nH4hc3F3zVqlUREBCAtLQ0mEwm25SGGzduxPjx40vs0UpPT7eN47UqLoG0/tKQm5tb4nEBN79w5OXlITQ0tFDPLgD4+fmhatWqhW5klpeXh+joaGzcuLHENqvRtm1btGzZEnv27MG5c+cQERGBy5cv46uvvkJ4eHiRCV9pbp3H38vLCxEREYiKisK9995b5P7h4eGF1lmneDxx4kSp1xdcvXoVkZGRSEpKAgDcddddDre5KEVdTAr879wr7aLwsiiP1xgo/X2jKAoiIiJw48YNXLp0CTVr1rTbXtT7wJH3gBqLFi3ChQsXsHnzZgwcONC23mAw4O2338b06dMB3HzvF+fYsWM4duwY/P39i/yiCdz8RWjr1q0YMmQI1q5da9fz37x5c7Rv3x7vv/++3TUAM2bMKNRR0blzZ9tUolWqVMH169cLXYtilZWVZdtPjYrSDiKquJj4U4Uze/Zs/Otf/8I///lPzJgxo8R9y3KxqXWfc+fOITo6GkIILF26FP369UOtWrXg7e0NAOjYsSN+/PHHInu9nHE3XWu5jpa1ZMkSbNy4EU2bNsWbb76J++67D9WqVYOHhwdOnTqFyMhIp/TUPf3005gwYQI+/PBD242hCgoK8MQTT0j1bt4+j39pvLy8Cq2zzjATGhpa6peP24f0OOM1K4kze0fL6zW2cuR942jcneLp6YlNmzZhypQp+Prrr5GSkoKwsDAMGzYMiqJACGG7o29x/v3vfwO4+SuO9X1flO7du+Ovv/7C5s2b8dtvv9lu5DV06FA8/vjjAG7O8GP16aefFnkfAmvCHR4ejuvXr+PChQto3rx5of2ssyIV9eXXERWlHURUcTHxpwonJCQEzzzzDJYsWYLFixfbxp3eKiwsDACQkJBQZBlpaWlIS0uzTYsIAF999RXy8vLw/PPP47nnnisUc/bsWSceRWE1atSAp6cnkpOTkZeXV6jXPz09vVBvPwDbGHJrYngrZ7Z51KhRmDlzJj788EO89NJLtmso1M4apIa1hzkkJMQ29WVprHdhPXPmjFPaUNyNpc6fPw/gf+eiGuX1Gpf2vgH+d1y3XwtTUXTq1Mk2S5LVP/7xDwBFT8FpZbFYbL+oFDfM51ZVq1a1zXhlVVBQgLi4OOh0OnTp0sW2vrTpL1u0aIFff/0VR44cQd++fQttt05XWlQy7oiK0g4iqrg4xp8qpNmzZ8PHxwcrVqzAlStXCm1v1aoVvL298fPPPxc59tk6jrdz5862Xsrr168D+F9ieKv9+/cXWY8zeXh4oG3btrBYLNiyZUuh7cXde6Ckdv/f//2f09pXpUoVjBw5EhcuXMDMmTNtd0l1xjh5WbVr10ZkZCR+++23EpPVW3Xr1g16vR5fffUVLl68qLoNW7ZsKXJue+vrdXsSWhTrl7yCgoIit8u8xqWVWZTw8HCEh4cjOTkZ3333XaHtO3bswPXr1xEZGVlomE9FlZeXh3/+858ASr4WZd++fbhw4QLq1Klju4DXUevXr8eVK1fQp0+fIl+r4vTr1w8AipxG9pdffsHZs2dxzz33oF69elLt0lo7iMh1mPhThRQUFISJEyciKyuryNk1fH19MW7cOFgsFkyaNMluzOqpU6fw2muvAQCmTJliW2+9CPHjjz+22//ixYu2i1vvNGsP4ssvv2x3MeS5c+fw6quvFhljbfd7771nt/7TTz+1m83EGazPw9KlSwHIXdTrbPPmzYPZbMbgwYPtbrxl9ddff+HDDz+0PQ4LC8Pjjz+O7OxsREdHF7pY+9KlS7aezbI4d+6c7WZZVu+//z5+/PFHhISE2I03L461p/3kyZNFbpd5jUsrszjW98S0adPsLuBNTk7GzJkz7fapSM6fP1/oguP09HQ89thjOHnyJKKjo9G2bdti462dAaNGjSp16Nrhw4cLDa3as2cPpkyZAi8vLyxZssShtg8cOBD16tXDr7/+infeece2PjMz03bRsvUahTuporSDiFzIRdOIEgkh7Ofxv11KSorw9fW1zc99+zz+JpNJtGrVSgAQQUFBYujQoaJv377Cy8tLABDPPvus3f65ubmiSZMmAoAICQkRgwcPFv369RM+Pj6iY8eOtvm7b50rvrh52a1Km0v9dhaLRQwcOFAAEH5+fuKRRx4RDz/8sPD19RV9+/YV4eHhhebxj4uLE3q9XgAQrVq1EiNGjLDN7T5jxgyH5o0vS3vbtm0rAIjQ0FCRn59fpuO6VUnz+Je0/969e4vdZ9asWQKA0Ov1onXr1mLo0KGid+/eolGjRgKAaNGihd3+JpNJdOjQwfY89+3bVwwbNky0bdtWGAwGu+eltHn8n3rqKeHh4SGaNGkiRowYIdq0aSMACA8PD/H111/bxRR3vmRnZ9vuLdG1a1cxduxY8cQTT4gffvhBCCH3Glvve6HX60WfPn3EuHHjxBNPPCH+/PPPEo+roKBAREVFCQAiICBADBw4UDzyyCPCz89PABCPPPKIMJvNdjHWefxvfW+UdswlOXz4sGjXrp1t8fT0FADEfffdZ1u3atUqu5g1a9YIg8Eg2rdvL4YNGyYeeughERAQIACI3r17291P4XbZ2dnC399fABC///57qe2LiIgQtWvXFlFRUeLRRx8VLVu2FACEt7e3+PLLL8t8nLf64YcfbPcAaNeunRg2bJgIDQ0t9jkXQohVq1bZno97771XABBeXl52z93hw4c12Q4icg0m/uRSJSX+Qvwv4Ssq8RdCiIyMDLFgwQJxzz33CKPRKPz8/ETnzp3Fhg0biiwvNTVVPPPMM6Ju3brCaDSK+vXri9mzZ4vMzMwikxtnJ/5C3Lzx1MKFC0X9+vWFp6eniIiIEHPmzBE5OTm2Gxnd7scffxQ9evQQ1apVE35+fqJjx45iy5YtDt8wqiztnTt3ru2mVTLuROIvxM2brw0cOFCEhIQIDw8PERQUJO677z4xc+bMIpOOnJwc8c4774jWrVsLX19f4ePjIxo2bCjGjx9vl/yVlvivWbNGHDhwQDzwwAPCz89PVKlSRTzwwAO2pP1WJZ0v8fHx4sEHHxQBAQFCUZRCz5Gjr7EQQuzatUt06tRJVKlSxfY+sT6PxR2XEDdvGLZs2TLRsmVL4ePjI3x8fETr1q3FP//5T1FQUFBof2cn/ta2lbTcfu7+9ttv4tFHHxV169YVXl5eIiAgQHTu3FmsXr3a7uZqRbn1JnBlERsbK9q1ayeqV69ue4+OHz9e/PXXX2U+xqL8/vvvYvDgwSIwMFAYjUZxzz33iLfeeqvI51wI+5vIFbeU9r6pyO0govKnCMGJe4noJiEEGjVqhNOnT+PMmTOoX7++q5vkMjExMbbZjRyZnYiIiKii4hh/IrL59NNPcerUKfTt29etk34iIqLKiNN5EhGefPJJ3LhxA19++SX0ej1eeeUVVzeJiIiInIyJPxFh9erVMBgMaNiwIV599VXcd999rm4SERERORnH+BMRERERuQGO8SciIiIicgNM/ImIiIiI3AATfyIiIiIiN8DEn4iIiIjIDVT4xL9u3bpQFMVumTNnjqubRRq3YsUK1KtXD15eXmjVqhX+85//uLpJVInExMQU+twKCQlxdbNI4/bv34/+/fsjLCwMiqJg27ZtdtuFEIiJiUFYWBi8vb3RrVs3HD9+3DWNJc0q7TyLjo4u9PnWvn171zSWHFbhE38AeOWVV3D58mXbMm/ePFc3iTRs8+bNmDp1Kl588UX88ssvuP/++xEVFYXz58+7umlUiTRp0sTuc+vYsWOubhJpXGZmJlq0aIHly5cXuX3x4sVYsmQJli9fjvj4eISEhODBBx9Eenp6ObeUtKy08wwA+vTpY/f59tVXX5VjC0kNTczj7+fnx94ycpolS5bgiSeewJNPPgkAWLp0KXbt2oWVK1ciNjbWxa2jysJgMPBzi5wqKioKUVFRRW4TQmDp0qV48cUXMWjQIADA2rVrERwcjA0bNuDpp58uz6aShpV0nlkZjUZ+vmmUJnr833jjDQQGBuLee+/FwoULkZeX5+omkUbl5eXh8OHD6NWrl936Xr164cCBAy5qFVVGp0+fRlhYGOrVq4dHH30UZ8+edXWTqBJLSEhAcnKy3Web0WhE165d+dlGTrdv3z4EBQWhYcOGeOqpp5CSkuLqJlEZVfge/+eeew733XcfqlWrhp9//hlz585FQkICPvjgA1c3jTTo6tWrMJvNCA4OtlsfHByM5ORkF7WKKpt27dph3bp1aNiwIa5cuYLXXnsNHTt2xPHjxxEYGOjq5lElZP38Kuqz7dy5c65oElVSUVFRGDp0KCIiIpCQkICXXnoJPXr0wOHDh2E0Gl3dPCqFSxL/mJgYLFiwoMR94uPj0bp1a0ybNs22rnnz5qhWrRqGDBli+xWASIaiKHaPhRCF1hHJuvVn8mbNmqFDhw646667sHbtWkyfPt2FLaPKjp9tdKcNHz7c9v+mTZuidevWiIiIwI4dO2zDzKjickniP3nyZDz66KMl7lO3bt0i11uvHD9z5gwTf3JYjRo1oNfrC/Xup6SkFOopI3IWX19fNGvWDKdPn3Z1U6iSso63Tk5ORmhoqG09P9voTgsNDUVERAQ/3zTCJYl/jRo1UKNGDanYX375BQDsPtiIysrT0xOtWrXCnj17MHDgQNv6PXv24OGHH3Zhy6gyy83NxYkTJ3D//fe7uilUSdWrVw8hISHYs2cPWrZsCeDmNU1xcXF44403XNw6qsyuXbuGpKQk5mUaUaHH+P/44484ePAgunfvjoCAAMTHx2PatGkYMGAAwsPDXd080qjp06dj9OjRaN26NTp06ID3338f58+fx4QJE1zdNKokZsyYgf79+yM8PBwpKSl47bXXYDKZMGbMGFc3jTQsIyMDZ86csT1OSEjA0aNHUb16dYSHh2Pq1KlYtGgRGjRogAYNGmDRokXw8fHByJEjXdhq0pqSzrPq1asjJiYGgwcPRmhoKBITE/HCCy+gRo0adp1pVIGJCuzw4cOiXbt2IiAgQHh5eYnIyEgxf/58kZmZ6eqmkcb985//FBEREcLT01Pcd999Ii4uztVNokpk+PDhIjQ0VHh4eIiwsDAxaNAgcfz4cVc3izRu7969AkChZcyYMUIIISwWi5g/f74ICQkRRqNRdOnSRRw7dsy1jSbNKek8y8rKEr169RI1a9YUHh4eIjw8XIwZM0acP3/e1c2mMlKEEMJVXzqIiIiIiKh8aGIefyIiIiIiUoeJPxERERGRG2DiT0RERETkBpj4ExERERG5ASb+RERERERugIk/EREREZEbqHCJf25uLmJiYpCbm+vqplAlxvOMygPPMyoPPM+oPPA8qxwq3Dz+JpMJAQEBSEtLg7+/v6ubQ5UUzzMqDzzPqDzwPKPywPOscqhwPf5EREREROR8TPyJiIiIiNyAwdUNuJ3FYgEApKWlubglVJmZTCa7f4nuBJ5nVB54nlF5sOZl1jyNtKnCjfE/e/Ys7rrrLlc3g4iIiIhu89dff6F+/fqubgZJqnA9/oGBgQCArU2bwVevdzi+IMesqv78rAJV8WpUCfaWjg2oU1U61qemn3QsAJjz5J+zlN8vq6q79bd7VcUTUeWyO6iVqnivME/pWP86VVTVbc6X70lNPSb/K7nOS92oX723fLxXVfnnGwAC6gRIx3pWMUrHmi7ekI4FgPxs+b+bbffuU1W3LJPJhDp16tjyNNKmCpf4K4oCAPDV6+USf8dD7OTrXPcDiK9BvvFVPORfSl9PD+lYADBDkY7NVHHMADizABHZ8VHUfaZ461R8DhvU/Uk1C/nEP0fFcet1KhN/FfFeEn/nb6Xmb59Rxd8+i8rXOk8vn2u4+u+eNU8jbeLFvUREREREboCJPxERERGRG2DiT0RERETkBpj4ExERERG5ASb+RERERERugIk/EREREZEbYOJPREREROQGmPgTEREREbkBJv5ERERERG6AiT8RERERkRtg4k9ERERE5AaY+BMRERERuQGDqxtQnPRzWbAoeofjFA9FVb06g3y8T4iXqrqrhleTjq12V4h0rLGGfL0AYMnLl47Nz8pTVfePbdtIx3b4OV5V3URU8fTN/lNV/IFWraVjFZ26vjS9h3xseI8w6dgqwf7yFQO4evKKdGxWao6quk2XTNKxRj/5us0FFulYABBmIR2r5u8eAOg9Hc+tACCjoEBVvVQxsMefiIiIiMgNMPEnIiIiInIDTPyJiIiIiNwAE38iIiIiIjfAxJ+IiIiIyA0w8SciIiIicgNM/ImIiIiI3AATfyIiIiIiN8DEn4iIiIjIDTDxJyIiIiIqo5UrV6J58+bw9/eHv78/OnTogK+//tq2XQiBmJgYhIWFwdvbG926dcPx48dd2OL/YeJPRERERFRGtWvXxuuvv45Dhw7h0KFD6NGjBx5++GFbcr948WIsWbIEy5cvR3x8PEJCQvDggw8iPT3dxS13MPGPiYmBoih2S0hISJH7Pv3001AUBUuXLnVGO4mIiIiIXK5///7o27cvGjZsiIYNG2LhwoWoUqUKDh48CCEEli5dihdffBGDBg1C06ZNsXbtWmRlZWHDhg2ubjoMjgY0adIE33zzje2xXq8vtM+2bdvw008/ISwsTF3riIiIiIhKkZOTg7y8PFVlCCGgKIrdOqPRCKPRWGyM2WzGJ598gszMTHTo0AEJCQlITk5Gr1697Mro2rUrDhw4gKefflpVG9VyOPE3GAzF9vIDwMWLFzF58mTs2rUL/fr1U9U4IiIiIqKS5OTkwL9qLeTnpqoqp0qVKsjIyLBbN3/+fMTExBTa99ixY+jQoQNycnJQpUoVbN26Fffccw8OHDgAAAgODrbbPzg4GOfOnVPVPmdwOPE/ffo0wsLCYDQa0a5dOyxatAj169cHAFgsFowePRozZ85EkyZNylRebm4ucnNzbY9NJpOjTSIiIiIiN5WXl4f83FS0efBT6A2+UmWYCzIRv2cIkpKS4O/vb1tfXG9/ZGQkjh49ihs3bmDLli0YM2YM4uLibNtv/+WgqF8TXMGhxL9du3ZYt24dGjZsiCtXruC1115Dx44dcfz4cQQGBuKNN96AwWDAs88+W+YyY2NjsWDBgkLre56Lt3vitWBf4xaq4k2X5b/0FOQWSMca/a5KxwKAh4+ndKyiU/cmMPrJ132gVWvp2I6HD0nHErmDb+s2k47NS5X/PNN7q5uzwquG/GdK1tUsVXV7+HpIx1av7ycd6xceXPpOJbieeE061pxvVlW3p6/D/Zc2BqNrYgHA4it/ngmLUFW3sFik4gx6dfWWB73BFwYPucTfyjpTT2k8PT1x9913AwBat26N+Ph4LFu2DLNnzwYAJCcnIzQ01LZ/SkpKoV8BXMGhT8ioqCgMHjwYzZo1Q8+ePbFjxw4AwNq1a3H48GEsW7YMH330kUPfaObOnYu0tDTbkpSU5NgREBEREZHbU3SKqkUNIQRyc3NRr149hISEYM+ePbZteXl5iIuLQ8eOHdUeomqqvrL6+vqiWbNmOH36NHQ6HVJSUhAeHm7bbjab8fzzz2Pp0qVITEwssozSLpogIiIiIiqNouigKHK/+jkS98ILLyAqKgp16tRBeno6Nm3ahH379mHnzp1QFAVTp07FokWL0KBBAzRo0ACLFi2Cj48PRo4cKdU2Z1KV+Ofm5uLEiRO4//77MXr0aPTs2dNue+/evTF69GiMHTtWVSOJiIiIiEqipufekbgrV65g9OjRuHz5MgICAtC8eXPs3LkTDz74IABg1qxZyM7OxsSJE3H9+nW0a9cOu3fvhp+f/JA8Z3Eo8Z8xYwb69++P8PBwpKSk4LXXXoPJZMKYMWMQGBiIwMBAu/09PDwQEhKCyMhIpzaaiIiIiOhWik4HRSfZ4+9A3OrVq0suS1EQExNT5GxAruZQ4n/hwgWMGDECV69eRc2aNdG+fXscPHgQERERd6p9RERERETkBA4l/ps2bXKo8OLG9RMREREROZNOB+gkh/pI/lCgOermoyIiIiIiqgDK6+JeLWPiT0RERESaV14X92qZe3y9ISIiIiJyc+zxJyIiIiLNUxQVs/pwqA8RERERkTZwqE/pmPgTERERkebpFB10kj33snFaw8SfiIiIiLRPRY8/3KTH3z2+3hARERERubkK2+O/s9p98FH05V6v3kf+u5DeW933KHN2hnRszo1c6Vijv6d0LAB4eHuoilcjNz3PZXWT+7j++iTp2MyLKdKxV09dkY4FAEuBWVW8Gh6+8n9ezNkWl8QCQGZSjnSszqCux1DxkK87MzlLRb0J0rEAkJdaIB2r9vVSU3d2dfm/m3oPdfmJp4r3h8GoLnUzF8g95wUu/DwpK47xL12FTfyJiIiIiMqKN/AqHRN/IiIiItI89viXjok/EREREWmeTqeDTnIef9k4rXGPoyQiIiIicnPs8SciIiIizVMUBYoiOdRHMk5rmPgTERERkeZxjH/pmPgTERERkeYpOvkE3k0m9eEYfyIiIiIid8AefyIiIiLSPB100El23evcpC+ciT8RERERaR7H+JeOiT8RERERaR4T/9K5x+8aRERERFSpWafzlF3KKjY2Fm3atIGfnx+CgoLwyCOP4OTJk2Vqy5tvvunsw3YIE38iIiIiojKKi4vDpEmTcPDgQezZswcFBQXo1asXMjMzbftcvnzZbvnwww+hKAoGDx7swpZzqA8RERERVQI6nQKd5JAdR+J27txp93jNmjUICgrC4cOH0aVLFwBASEiI3T6ff/45unfvjvr160u1z1mY+BMRERGR5ik6HRSd3GAWa5zJZLJbbzQaYTQaS4xNS0sDAFSvXr3I7VeuXMGOHTuwdu1aqbY5ExP/25izLNKxIl+oqrvAZJaONWeraLdZXbtzTXkuq9tikT9uvYdeOvZAq9bSsa7W8fAhVzdBc66fPC8dm3UtQzrWdCFdOhYA8m7kS8cqHuoudFPzeaaGdy1PVfEeXvJ/FvNzClTVnX1R/rM075q6urVKzd9dNX83dQZ17488f/m/P3pvdaO0ZY870+Ka97QjHB2rf3ssANSpU8du/fz58xETE1NsnBAC06dPR+fOndG0adMi91m7di38/PwwaNAgqbY5ExN/IiIiIiIASUlJ8Pf3tz0urbd/8uTJ+O233/D9998Xu8+HH36IUaNGwcvLy2ntlMXEn4iIiIg0zxnTefr7+9sl/iWZMmUKtm/fjv3796N27dpF7vOf//wHJ0+exObNm6Xa5WxM/ImIiIhI8xQVF/c68oVBCIEpU6Zg69at2LdvH+rVq1fsvqtXr0arVq3QokULqXY5GxN/IiIiItI8Z4zxL4tJkyZhw4YN+Pzzz+Hn54fk5GQAQEBAALy9vW37mUwmfPLJJ3j77bel2nQnMPEnIiIiIs0rrzv3rly5EgDQrVs3u/Vr1qxBdHS07fGmTZsghMCIESOk2nQnMPEnIiIiIiojIco2m9T48eMxfvz4O9waxzDxJyIiIiLN00GBTnKojw7qpmjVCib+RERERKR55TXUR8uY+BMRERGR5jHxLx0TfyIiIiLSvPKa1UfL1N33mYiIiIiINIE9/kRERESkeTodpG/gpXOTrnAm/kRERESkeRzqUzom/kRERESkeby4t3QVNvHXecjNxWrJL9tNFe4EtXXrPORPOnO2RTo2MylHOhYA9N6u+31MqHjO9d5m6ViDv146FgB0Kn5TNPp7qKrbHe0ObuLqJkhR874GAHOWung11HyeqXl/6T3UvTe9q3tJx3rmq3u+1Xye5aUWqKpbDUuBfLvVnqOq/u6qiBUqzm+1PHzVpW56yfdXvtlNxsJUchU28SciIiIiKiudcnORjXUHTPyJiIiISPM41Kd0TPyJiIiISPOY+JeOiT8RERERaZ6iyF0fao11B7xSg4iIiIjIDbDHn4iIiIg0T1FUDPVxkx5/Jv5EREREpHmKcnORjXUHTPyJiIiISPN0OgU6yR5/2Tit4Rh/IiIiIiI3wB5/IiIiItI8RVGkx+pzjD8RERERkUboVEznKRunNQ4N9YmJibF9m7IuISEhAID8/HzMnj0bzZo1g6+vL8LCwvD444/j0qVLd6ThRERERERWik7d4g4c7vFv0qQJvvnmG9tjvV4PAMjKysKRI0fw0ksvoUWLFrh+/TqmTp2KAQMG4NChQ85rMRERERHRbTjUp3QOf78xGAwICQmxLTVr1gQABAQEYM+ePRg2bBgiIyPRvn17/OMf/8Dhw4dx/vx5pzeciIiIiKi8xcbGok2bNvDz80NQUBAeeeQRnDx5stj9n376aSiKgqVLl5ZfI4vhcI//6dOnERYWBqPRiHbt2mHRokWoX79+kfumpaVBURRUrVq12PJyc3ORm5tre2wymQAAlnwBiyIcbZ6mWfJVHK+aWJXMWRbpWJ2H675hWwrknzNjoKequoMa15SOjdy8S1XdrvKVdyNV8areH1TuFBXvbXO2/GdK9pXc0ncqgTDLn2cWi3y7ASA/3Swdq+b51hnUfQ4rKj5Lhcr3tZrPBTV/fwz+eulYQN1z7uGr7vJMvadc2/MLClTVWx7KazrPuLg4TJo0CW3atEFBQQFefPFF9OrVC3/88Qd8fX3t9t22bRt++uknhIWFSbXL2Rw6e9q1a4d169ahYcOGuHLlCl577TV07NgRx48fR2BgoN2+OTk5mDNnDkaOHAl/f/9iy4yNjcWCBQvkWk9EREREBOfcwMvaAW1lNBphNBrt1u3cudPu8Zo1axAUFITDhw+jS5cutvUXL17E5MmTsWvXLvTr10+uYU7m0FCfqKgoDB48GM2aNUPPnj2xY8cOAMDatWvt9svPz8ejjz4Ki8WCFStWlFjm3LlzkZaWZluSkpIcPAQiIiIicneKTlG1AECdOnUQEBBgW2JjY0utNy0tDQBQvXp12zqLxYLRo0dj5syZaNKkyZ05YAmqfi/y9fVFs2bNcPr0adu6/Px8DBs2DAkJCfjuu+9K7O0Hiv4mRURERETkCJ1yc5GNBYCkpCS73LW0HFUIgenTp6Nz585o2rSpbf0bb7wBg8GAZ599Vq5Bd4iqxD83NxcnTpzA/fffD+B/Sf/p06exd+/eQsN/iIiIiIgqKn9//1I7rW81efJk/Pbbb/j+++9t6w4fPoxly5bhyJEjFW62IIeG+syYMQNxcXFISEjATz/9hCFDhsBkMmHMmDEoKCjAkCFDcOjQIaxfvx5msxnJyclITk5GXl7enWo/EREREVGhe005ujhqypQp2L59O/bu3YvatWvb1v/nP/9BSkoKwsPDYTAYYDAYcO7cOTz//POoW7euE4/YcQ71+F+4cAEjRozA1atXUbNmTbRv3x4HDx5EREQEEhMTsX37dgDAvffeaxe3d+9edOvWzVltJiIiIiKyo+gAneSNuBy5gZcQAlOmTMHWrVuxb98+1KtXz2776NGj0bNnT7t1vXv3xujRozF27Fi5BjqJQ4n/pk2bit1Wt25dCMHp9oiIiIio/ClQcQMvlD1u0qRJ2LBhAz7//HP4+fkhOTkZwM17Wnl7eyMwMLDQcHcPDw+EhIQgMjJSqn3O4iY3KCYiIiIiUm/lypVIS0tDt27dEBoaals2b97s6qaVSt1dIIiIiIiIKgBF59iQndtjy0pmhEtiYqLDMXcCE38iIiIi0jydokAnOdRHNk5rmPgTERERkeY54869lR0TfyIiIiLSPCb+pePFvUREREREboA9/kRERESkeTqdAp1Ocoy/ZJzWMPEnIiIiIs3jUJ/SVdjEv8/1I/D393c47kuDa2+MoEU6D3VnuyVf/sZtamLVUjPOLc+Ur6ru3PQcVfFqnB3bXzr26um/pWNd+VqT49R+LriKUHmeZV/OdVJLHKeoeM713vKfaDqDytc62yIdavDXq6paTdvV1O3p4yEdCwDCIn+e6vTafG+WB51yc5GNdQcc409ERERE5AYqbI8/EREREVFZKToFimTXvWyc1jDxJyIiIiLN4xj/0jHxJyIiIiLN4xj/0jHxJyIiIiLNY49/6XhxLxERERGRG2CPPxERERFpnqIDdJJd2oqbdIUz8SciIiIizeNQn9Ix8SciIiIizVMUBYpkBi8bpzVM/ImIiIhI83RQMauPU1tScbnLcRIRERERuTX2+BMRERGR5nGMf+mY+BMRERGR5jHxLx0TfyIiIiLSPJ2K6Txl47Smwib+O6vdBx9F7+pmUCVmyRfSsXmpBarqbv5VnHTssYe6qapbZ5B/X+Wa8lTV7Y70PvJ/TXQGdV1QlgL5c1zvre6voFDx/jJnW6RjPYM8pGMBwBjgKR/rJx8LAH6h/tKxek/5P+cGL3XPWcYVk3SssMi/1gDg6WtUUbf8Oaq23abL6dKxeoO696bOQ+5vgEeBm3SJV3Ju8v2GiIiIiCoz61Af2aWsYmNj0aZNG/j5+SEoKAiPPPIITp48abfPZ599ht69e6NGjRpQFAVHjx516Fi2bNkCi8ovmEVh4k9EREREmqdT1C1lFRcXh0mTJuHgwYPYs2cPCgoK0KtXL2RmZtr2yczMRKdOnfD6669LHcvQoUMRERGBhQsXIiUlRaqMolTYoT5ERERERGXljIt7TSb7oWtGoxFGo/2Qsp07d9o9XrNmDYKCgnD48GF06dIFADB69GgAQGJiolR79u3bh+XLl2PBggV49dVXMXToUEyaNAnt27eXKs+KPf5EREREpHnOGOpTp04dBAQE2JbY2NhS601LSwMAVK9e3WnH0qVLF/zf//0fzp07h1mzZuHbb79Fp06d0KpVK3z00UfIzc2VKpeJPxERERERgKSkJKSlpdmWuXPnlri/EALTp09H586d0bRpU6e3JzQ0FK+88grOnz+Pjz/+GDqdDk888QRq166NuXPn4vLlyw6Vx8SfiIiIiDTPGWP8/f397Zbbh/ncbvLkyfjtt9+wcePGO3psCQkJ+Omnn3D69Gno9Xo0a9YMy5YtQ8OGDfHFF1+UuRwm/kRERESkeeU1q4/VlClTsH37duzduxe1a9d2+vEIIbB9+3b07t0bjRs3xoYNGzB58mQkJibiu+++Q2JiIrp164Zp06aVuUxe3EtEREREmqcoAooid38GR+KEEJgyZQq2bt2Kffv2oV69elJ1luSNN97Ae++9h3PnzqFFixZYtWoVRo4cafcLRFBQEGbOnInu3buXuVwm/kREREREZTRp0iRs2LABn3/+Ofz8/JCcnAwACAgIgLe3NwAgNTUV58+fx6VLlwDANs9/SEgIQkJCSq1j3rx5GDBgAD766CN07dq12P3uuusuvPzyy2VuOxN/IiIiItI8xcH5+G+PLauVK1cCALp162a3fs2aNYiOjgYAbN++HWPHjrVte/TRRwEA8+fPR0xMTKl1nDlzBhEREaXuV6tWLcyfP79sDQcTfyIiIiKqBJwxj39ZCFH6sKDo6GjblwAZZUn6ZTDxJyIiIiLNK6/Ev7ykpqZiw4YNOHHiBLKzs+22KYqC1atXO1wmE38iIiIi0jydIqCTvLhXNu5OOX/+PNq0aYOsrCxkZWWhRo0aSE1NhdlsRrVq1RAQECBVLqfzJCIiIiKqQObMmYMmTZrgypUrEELg66+/RmZmJv7xj3/Ay8sLO3bskCqXiT8RERERaV55z+N/J/3444945pln4OXlBeDmdQWenp6YNGkSnnjiCcycOVOqXA71caKHCk66ugmkEfsat5CO9fBS97a1mOV/zsy+kquqblfReaj7RDf466VjPfzkYw0+6l5rg5d83Tq9uuesIMcsHZt5KUc6VlH5Whv9PKVjAxsEqaq7Zgf5zwWdn790rMhIl44FAK+TZ6VjDd4l3xW1ND531ZWOFfn50rGpR45LxwKAOd8iHetfq5qquj39fKTi0nPzgH0HVdV9p1WmMf5XrlxBaGgodDod9Ho9TCaTbVvXrl3x7rvvSpXLHn8iIiIi0jwdbk7nKbW4uvG3CQ4ORmpqKgCgbt26OHTokG1bYmIiDAa5jiH2+BMRERERVSDt27fHL7/8ggEDBmDQoEF45ZVXkJubC09PT7z55pvo0aOHVLlM/ImIiIhI8xQIKJAbziobd6fMmDEDiYmJAICXX34ZJ06cwPz58yGEQJcuXbBs2TKpcpn4ExEREZHmVaYx/q1atUKrVq0AAL6+vti+fTtMJhMURYGfn590uUz8iYiIiEjzrOP1ZWMrOn9/+Yv4rZj4ExEREZHmKYqAInkjLtk4Z1q3bp1D+z/++OMO18HEn4iIiIjIxaKjo+0eK/8dfySEKLQOYOJPRERERG5K62P8ExISbP9PTk7G8OHD0bt3b4wcORIhISFITk7G+vXrsXv3bmzevFmqDib+RERERKR5OgjoJGfnkY1zpoiICNv/58yZg4EDB+Kdd96xrYuMjETXrl0xbdo0LFmyRCr5r2j3KyAiIiIicpi1x192qUi+/vpr9OvXr8htffv2xa5du6TKZeJPRERERNr334t7ZRZUgIt7b2WxWHD69Okit50+fdpu3L8jHEr8Y2JioCiK3RISEmLbLoRATEwMwsLC4O3tjW7duuH48eNSDSMiIiIickd9+vTBiy++iB07dtit//LLLzFv3jz07t1bqlyHe/ybNGmCy5cv25Zjx47Zti1evBhLlizB8uXLER8fj5CQEDz44INIT0+XahwRERERUVlY5/GXXSqSZcuWISQkBAMGDEDVqlURGRmJqlWr4uGHH0ZQUFD53bnXYDDY9fJbCSGwdOlSvPjiixg0aBAAYO3atQgODsaGDRvw9NNPF1lebm4ucnNzbY9NJpOjTSIiIiIiN6dAQJG8SFc27k4JDQ3FkSNH8NFHH2Hfvn24du0aWrZsie7du+Pxxx+Ht7e3VLkOJ/6nT59GWFgYjEYj2rVrh0WLFqF+/fpISEhAcnIyevXqZdvXaDSia9euOHDgQLGJf2xsLBYsWFBofZ/rR5xyhzIq3ZeGSFXx/pE+0rFdjv+iqm41vq3bzGV156UWSMfmGvJV1W0M9pCO9YuQf60zDdnSsYC650zxUNeVo/eWvxyqSpivdKx/qLrPQM8qXtKxOoO6S8A8q8j9UQKAa6cvS8f616ouHQsANXt0lA+uGqiq7vyqwdKxuhtXpGMzj6kbkpt+8Zp0bEA9+WMGAGE2S8fmX78hHZuXkSMdCwA176ktHesdUlNV3RlJcu8vi9miqt7yoPXpPH/99Ve0aNHC9tjLywsTJkzAhAkTnFaHQ5/s7dq1w7p167Br1y6sWrUKycnJ6NixI65du4bk5GQAQHCw/Zs4ODjYtq0oc+fORVpamm1JSkqSOAwiIiIiIu1q2bIl7r77bsyePRvx8fF3pA6HEv+oqCgMHjwYzZo1Q8+ePW0XHKxdu9a2j3LbVyYhRKF1tzIajfD397dbiIiIiIgcITujj21mHwfs378f/fv3R1hYGBRFwbZt2+y2Z2RkYPLkyahduza8vb3RuHFjrFy5ssQyjx49ilGjRmHHjh1o164dwsPDMXXqVHz//ffSs/jcTtVvub6+vmjWrBlOnz5tG/d/e+9+SkpKoV8BiIiIiIicyXoDL9nFEZmZmWjRogWWL19e5PZp06Zh586d+Pjjj3HixAlMmzYNU6ZMweeff15smc2bN8eCBQvw+++/448//sDTTz+N/fv3o0uXLggLC8MzzzyDb7/9FmYVQ9xUJf65ubk4ceIEQkNDUa9ePYSEhGDPnj227Xl5eYiLi0PHjirGTBIRERERlaI8b+AVFRWF1157zTahze1+/PFHjBkzBt26dUPdunUxfvx4tGjRAocOHSpT+Y0aNcKLL76II0eO4K+//sK0adPwyy+/oFevXggODsa4cePw1VdfOdZoOJj4z5gxA3FxcUhISMBPP/2EIUOGwGQyYcyYMVAUBVOnTsWiRYuwdetW/P7774iOjoaPjw9GjhzpcMOIiIiIiMrKGUN9TCaT3XLrzJOO6Ny5M7Zv346LFy9CCIG9e/fi1KlTUvPv16tXD7NmzcLBgweRmJiIefPm4cyZM3j44YcdLsuhWX0uXLiAESNG4OrVq6hZsybat2+PgwcPIiIiAgAwa9YsZGdnY+LEibh+/TratWuH3bt3w8/Pz+GGERERERGVpzp16tg9nj9/PmJiYhwu591338VTTz2F2rVrw2AwQKfT4YMPPkDnzp1Vt2/q1KmYOnUqrlxxfDYvhxL/TZs2lbhdURTExMRIPUFERERERLKcMY9/UlKS3UQzRqNRqrx3330XBw8exPbt2xEREYH9+/dj4sSJCA0NRc+ePctczvHjx3Hu3Dnk5NhPIasoCgYOHOhwuxyex5+IiIiIqKJRcwdea5wzZpjMzs7GCy+8gK1bt6Jfv34Abl64e/ToUbz11ltlSvz/+usvDBkyBL/99hsAFJrVR1EUqYt8mfgTERERkeZVlDv35ufnIz8/Hzqd/aW0er0eFkvZboQ2fvx4JCcn45133kHjxo3h6enplLYx8SciIiIickBGRgbOnDlje5yQkICjR4+ievXqCA8PR9euXTFz5kx4e3sjIiICcXFxWLduHZYsWVKm8n/++WesWrUKjz76qFPbzcSfiIiIiDRP5kZct8Y64tChQ+jevbvt8fTp0wEAY8aMwUcffYRNmzZh7ty5GDVqFFJTUxEREYGFCxdiwoQJZSq/Zs2aCAgIcKhNZcHEn4iIiIg0rzyH+nTr1q3Eu+mGhIRgzZo1Um0BgGeeeQarVq1CVFSUdBlFYeJPRERERJpXnj3+d9rMmTPx/PPPo1WrVoiKikL16tXttiuKgmnTpjlcLhN/IiIiItI8BQ7emfa22Irkp59+wtq1a5Gamopffvml0HYm/pXAV96NpGMVD/lT1ru2uivFq0bIT3uVuWqeqrr1IWHSsbXahEjHXjuTKh0LALlX8qVjyzYfQPE8fTykY70CvFTWrka2y2r2CZI/bp/qPtKxXlXlYwHAGFBFOlYIdWeaOSdPOjaiVxvpWOW+jtKxAJBSU/5z2C/T8Zvp2FHkP8c98+XuLgoAOddM0rEAYLp0Qzo2PVld3V7Hz0vHVq0fLB0bNrCPdCwApNdvJR1r+HWvqrpvxB2VisvIL1BVLzlm8uTJqFGjBj788EPO6kNEREREdKvKNNTn+PHj2LRpEwYMGODUcpn4ExEREZHmVZR5/J0hPDy8xIuHZckOhSIiIiIiqjCsPf6yS0UyZ84cvPXWW8jJyXFquezxJyIiIiLNUyDfc1/RLu49cuQILl68iLvuugvdu3cvclafZcuWOVwuE38iIiIiogpk+fLltv9v2LCh0HYm/kRERETktirTxb0Wi9o5/IrGxJ+IiIiINK8yXdx7pzDxJyIiIiLN00FAJ5nAy8aVh6ysrCIv8r193H9ZMPEnIiIiIqpAsrKy8MILL2D9+vVITS36pqFms9nhcpn4ExEREZHmKVAxxr+C9fhPnjwZ//73v9G/f3/euZeIiIiI6FaVaYz/F198gdjYWMyYMcOp5TLxJyIiIiLNq0yJPwC0bNnS6WXyzr1EREREpHnWxF92qUgGDRqE3bt3O71c9vgTEREREVUgb7/9NgYPHozp06ejb9++Rc7gc9999zlcLhN/IiIiItK8ynQDr+zsbBQUFGDp0qWF7tArhICiKJVrVp9v72oLX53e4TgPP8djbmXOlr9TmppYANB7y4+8UjwU6Vi17U6/nCEde+XAr6rq9qp6Rjo27UKadGx2Sq50LABY8uU/YNSOz7vxh/zrle6dJR2r5hwFAKHiOVPz3gIAnV7F+yuvQDo254b88w0AVWoHScfqDOo+Sw3do6RjBy+vJR07q8s90rEA0HrrTOlYvZdRVd2G0FDp2PwrV6RjM5JvSMfejJc/T/We6t6b2anZ0rG5GXnSseacfdKxAOAd9Jt07N+Xrqqq25zveLKoJq48VaYx/k888QTi4+MxdepUzupDRERERHSrypT47927F0uWLMFTTz3l1HJ5cS8RERERUQXi5+eHunXrOr1cJv5EREREpHmVaVafxx9/HJs2bXJ6uUz8iYiIiEjzyjPx379/P/r374+wsDAoioJt27bZbY+OjoaiKHZL+/bty1x+ixYtsHfvXgwcOBAffPABPvvss0KLDI7xJyIiIqJKwAIFshOWOBaXmZmJFi1aYOzYsRg8eHCR+/Tp0wdr1qyxPXbkAt1Ro0YBABITE/H5558X2l7pZvUhIiIiIiqr8pzOMyoqClFRJc9eZjQaERISItWevXv3SsWVhok/EREREREAk8lk99hoNMJolJuqd9++fQgKCkLVqlXRtWtXLFy4EEFBZZtmuWvXrlJ1loZj/ImIiIhI8xQhVC0AUKdOHQQEBNiW2NhYqbZERUVh/fr1+O677/D2228jPj4ePXr0QG6uuvsAqcUefyIiIiLSPGfM45+UlAR/f3/betne/uHDh9v+37RpU7Ru3RoRERHYsWMHBg0aJFWmMzDxJyIiIiLNu9lzL3dxr7XH39/f3y7xd5bQ0FBERETg9OnTTi/bEUz8iYiIiEjzKvKde69du4akpCSEhobe0XpKw8SfiIiIiMgBGRkZOHPmjO1xQkICjh49iurVq6N69eqIiYnB4MGDERoaisTERLzwwguoUaMGBg4c6MJWM/EnIiIiokpAgUV+qI+D8/gfOnQI3bt3tz2ePn06AGDMmDFYuXIljh07hnXr1uHGjRsIDQ1F9+7dsXnzZvj5+Um1z1mY+BMRERGR5pXnUJ9u3bpBiOJjdu3a5XAb1q1b59D+jz/+uMN1VNjEXxQICImbMOSlFtyB1pSNOVv2bnE3KR6KdKxeRaxamZdypGMTric6ryEOyr2S77K61bDk39lxiCXX7fhdAq10Ks9RNcdtKVD3nGVczpaOzb4hP3Wbd1W52SSs/GsHSsdWqVdbVd36vCzp2Lfnh0nH3nVgsXQsABxYJn/THM+qHqrqDmkeLB1brYH8c+ZTQ10PZLV68n93C3LlP1MAICdN/u9P+uUM6dgb59OkYwHA00f+XCnIUfecycqUuEtseVOEih5/yThnio6OLvO+iqJUrsSfiIiIiMhdJCQk3PE6mPgTERERkeZV5Fl9yiIiIuKO18HEn4iIiIg079Y78MrEugMm/kRERESkeVof4z9u3Lgy76soClavXu1wHUz8iYiIiEjztD7U57vvvoOilG0ijLLudzsm/kRERERELpaYmHjH62DiT0RERESap/WhPuWBiT8RERERaR4v7i2dztUNICIiIiJSS4FF1VLRfPzxx2jdujV8fX2h1+sLLTKY+BMRERERVSDbt2/H2LFj0bJlS2RnZ2Ps2LEYMWIEfH190aBBA7z88stS5TLxJyIiIiLtEwCEkFxc3Xh7r7/+OqZPn4733nsPADBx4kR8/PHHOHXqFMxmM+rUqSNVrqrEPzY2FoqiYOrUqbZ1GRkZmDx5MmrXrg1vb280btwYK1euVFMNEREREVGJrBf3yi4VycmTJ9GzZ0/btJ0FBQUAgJCQEMybNw9LliyRKlf64t74+Hi8//77aN68ud36adOmYe/evfj4449Rt25d7N69GxMnTkRYWBgefvhh2eqIiIiIiIql9Xn8b2U2m+Hp6QmdTgdfX18kJyfbtoWHh+Ps2bNS5Ur1+GdkZGDUqFFYtWoVqlWrZrftxx9/xJgxY9CtWzfUrVsX48ePR4sWLXDo0CGpBhIRERERlUpNb38F6/GvV68eLl26BABo0aIFNm7caNv26aefIjQ0VKpcqcR/0qRJ6NevH3r27FloW+fOnbF9+3ZcvHgRQgjs3bsXp06dQu/evYssKzc3FyaTyW4hIiIiInJXDzzwAL755hsAwHPPPYfNmzfj7rvvxj333IP33nsPEyZMkCrX4aE+mzZtwpEjRxAfH1/k9nfffRdPPfUUateuDYPBAJ1Ohw8++ACdO3cucv/Y2FgsWLCg0Pqe5+Lh7+/vaPPwlXcjh2NuZcl33U89ai64MKuYhkqoPGbFQ+620QBgzlb3DVtt26n8qH1v6VScZ2oVmMwuifX08ZCOBYCsq/IdKflZf6mqWxw7LR0bFvaNfL21QqRjAaBG0+rSsbmmHFV16wxy0/MBgLeK41YTCwA6wynp2KunrqiqW5jlP1d8qntJx5oLXNc7nJeVryreP6yKXGBBAXBSVdV3nvVCXdnYCmThwoXIzc0FAAwdOhR6vR7r16+HoiiYNWsWoqOjpcp1KPFPSkrCc889h927d8PLq+g3zLvvvouDBw9i+/btiIiIwP79+zFx4kSEhoYW+QvB3LlzMX36dNtjk8kkfaUyEREREbmnynTnXqPRCKPRaHs8aNAgDBo0SHW5DiX+hw8fRkpKClq1amVbZzabsX//fixfvhxpaWl44YUXsHXrVvTr1w8A0Lx5cxw9ehRvvfVWkYn/7QdGREREROQo3rm3dA4l/g888ACOHTtmt27s2LFo1KgRZs+eDbPZjPz8fOh09oNW9Ho9LJaK9U2KiIiIiCoRNRfpVoAe/x49epR5X0VR8O233zpch0OJv5+fH5o2bWq3ztfXF4GBgbb1Xbt2xcyZM+Ht7Y2IiAjExcVh3bp10vONEhERERFVdhaLxTZvP3BzLv/k5GREREQgJCQEycnJOHfuHEJDQxEZGSlVh/Q8/sXZtGkT5s6di1GjRiE1NRURERFYuHCh9NXHRERERESl0foY/3379tn+v3PnTjz11FP44Ycf0KFDB9v6AwcOYPjw4ZgxY4ZUHaru3Gtt5NKlS22PQ0JCsGbNGly8eBHZ2dn4888/MX36dLtvMEREREREzmS9gZfs4oj9+/ejf//+CAsLg6Io2LZtm21bfn4+Zs+ejWbNmsHX1xdhYWF4/PHHbfPyl8W8efMQExNjl/QDQMeOHTF//ny8+OKLDrXXSnXiT0RERETkctYx/rKLAzIzM9GiRQssX7680LasrCwcOXIEL730Eo4cOYLPPvsMp06dwoABA8pc/vHjx4ud5TI8PBx//vmnQ+21cvpQHyIiIiIiLbr9RrLFzT4ZFRWFqKioIssICAjAnj177Nb94x//QNu2bXH+/HmEh4eX2o7g4GBs2bIFvXr1KrTtk08+QXBwcKllFIWJPxERERFpnjOm87y9l33+/PmIiYlR2zSkpaVBURRUrVq1TPtPnDgRc+bMQWpqKkaOHGm7uHf9+vXYunUrYmNjpdrBxJ+IiIiItE8IFdN53kz8k5KS4O/vb1vtjHtN5eTkYM6cORg5cqRd2SWZNWsWsrKysHjxYnz22Wf/baKAl5cXXnzxRcyaNUuqLUz8iYiIiEj7hLAl8FKxAPz9/cucnJdFfn4+Hn30UVgsFqxYscKh2JiYGEybNg0//vgjrl27hsDAQLRv377MvxoUhYk/EREREWmeAhXTecL503nm5+dj2LBhSEhIwHfffSf1hSIgIAB9+vRxWpuY+BMREREROZE16T99+jT27t2LwMBAh8sQQiA+Ph7nzp1DdnZ2oe2PP/64w2Uy8SciIiIi7XPCUJ+yysjIwJkzZ2yPExIScPToUVSvXh1hYWEYMmQIjhw5gi+//BJmsxnJyckAgOrVq8PT07PU8q3Tf54+fRqiiLYpisLEHwD6ZsvNa+oMXxrkbp9sZcmXPFkBQE2sSmpuBqHqmInKSGdw3Q0ELQXy53ja6UxVdWdcSFAVr4beW/6ToVabDOnYOmFyU9xZNRzZUzo2/++rqupOPXFOOjbncop0rCUvXzoWAEwXr0vHCou64RVeVeUvvPQLkR/HnZ5sKn2nEmSn5kjH5qUWqKrbBLn3V6bZrKre8lCed+49dOgQunfvbns8ffp0AMCYMWMQExOD7du3AwDuvfdeu7i9e/eiW7dupZY/adIk5OTkYPPmzWjevLlTLjIGKmHiT0RERERuSOJGXHaxDujWrVuRPfG24mR/efivn3/+GatWrcKQIUNUlXM73rmXiIiIiKgCqVKlilNnF7Ji4k9EREREmme9gZfsUpGMHTsWGzZscHq5HOpDRERERNpnsdxcZGMrkKZNm2Ljxo0YMGAA+vfvX+SsQIMGDXK4XCb+RERERKR95Tirz502cuRIADdnC/ryyy8LbVcUBWaJC66Z+BMRERGR9pXjxb132t69e+9IuUz8iYiIiIgqkK5du96Rcpn4ExEREZHmqblIt6Jd3HunMPEnIiIiIu3T+FCfcePG4aWXXkK9evUwbty4EvdVFAWrV692uA4m/kRERESkfUKoSPxd3+O/d+9ePPfccwCA7777DopS/F3nS9pWEib+RERERKR5Wh/qk5CQYPt/YmLiHamDN/AiIiIiInID7PEnIiIiIu2rRDfwulPY409ERERE2me9gZfsUsF8/PHHaN26NXx9faHX6wstMtjj70QPFZx0Wd1fGiKlY/U+6r7/6QxyF5gAgN5bVdUwZ8t/Q7fku+5NruY5V/N8A4ClQP64hYrnzJXPt5rzRC2XHneW/HF7+Mv9UbGq2thPOjYwsrZ0rD6whnQsAAhvX+nYgsQkVXWn/vW3dGzKH5elY8156t4f2ddypWPVfKYAgOIh/3kozPJ156bnSccCgM5D/m9Aldrq/nD6hVaRijPmFwCnVVV952l8Vp9bbd++HWPHjkV0dDSOHDmCcePGIScnB9u3b0dYWBhGjBghVS57/ImIiIiIKpDXX38d06dPx3vvvQcAmDhxIj7++GOcOnUKZrMZderUkSqXiT8RERERaV8lGupz8uRJ9OzZ0zZtZ0FBAQAgJCQE8+bNw5IlS6TK5VAfIiIiItI+oeLi3go21MdsNsPT0xM6nQ6+vr5ITk62bQsPD8fZs2elymWPPxERERFpn3WMv+xSgdSrVw+XLl0CALRo0QIbN260bfv0008RGhoqVS4TfyIiIiLSvko01OeBBx7AN998AwB47rnnsHnzZtx9992455578N5772HChAlS5XKoDxERERFRBbJw4ULk5t6cMWvo0KHQ6/VYv349FEXBrFmzEB0dLVUuE38iIiIi0r5KdAMvo9EIo9Foezxo0CAMGjTI9lgIYbvw1xEc6kNERERE2leJhvqUZMOGDWjcuLFULBN/IiIiItI+IVRc3OtY4p+eno6pU6ciIiIC3t7e6NixI+Lj41UfQlpaGtauXYvFixdj27ZtsNzyS8Rnn32Gpk2b4rHHHrMNA3IUh/oQERERETngySefxO+//45///vfCAsLw8cff4yePXvijz/+QK1ataTKPHPmDO6//36kpKTYhvJ07doV27Ztw4gRI7Bz505UrVoVixcvxpQpU6TqYOJPRERERNpnETcX2VgAJpPJbvXtY+0BIDs7G1u2bMHnn3+OLl26AABiYmKwbds2rFy5Eq+99ppUE1566SWYTCbExMSgdevWOHv2LBYuXIiOHTvijz/+wJNPPonFixejatWqUuUDTPyJiIiIqDJQMx//f+Pq1Kljt3r+/PmIiYmxW1dQUACz2QwvLy+79d7e3vj+++/l6gcQFxeHefPmYe7cubZ1d999N6KiojBhwgSsWLFCumwrJv5EREREpH1OmNUnKSkJ/v7+ttW39/YDgJ+fHzp06IBXX30VjRs3RnBwMDZu3IiffvoJDRo0kKsfwN9//41OnTrZrevcuTMAYPjw4dLl3ooX9xIRERGR9jlhVh9/f3+7pajEHwD+/e9/QwiBWrVqwWg04t1338XIkSOh1+ulm1/UrwjWx35+ftLl3oo9/kREREREDrjrrrsQFxeHzMxMmEwmhIaGYvjw4ahXr56qck+ePAmD4X/pudlsBgD8+eefhfa97777HC6fiX8l8VDBSenYvXc3V1W34uH4DSSsRL66eXPN2a654YaaYwYAnUE+Xm+U700AAEWv4vUyy79eeTfypWMBIC+1QFW8GhaV56ksvY+6H2VrdwmWjq0/qKuqunV+/qXvVIyCK1ekY//+Vn58LQBcPSVfd/qlDFV1Z1+Wm54PcN1nIeC69wcAePjLfx6mX8mUjvWt6SMdCwC1WkVIx3r4eququyA3TyrOmJsP7FZV9Z3nhDH+jvL19YWvry+uX7+OXbt2YfHixXL1/1dxd+QdPXq07f/WGX+sXwocwcSfiIiIiLTPCbP6lNWuXbsghEBkZCTOnDmDmTNnIjIyEmPHjpWrH8CaNWukY8uKiT8RERERaZ4QFgjJnntH49LS0jB37lxcuHAB1atXx+DBg7Fw4UJ4eHhI1Q8AY8aMkY4tKyb+REREREQOGDZsGIYNG+bqZjiMiT8RERERaZ9QMdRHuO5alfLExJ+IiIiItM8FF/dqDRN/IiIiItI8YbFASN7ASzZOa5j4ExEREZH23XIjLqlYN8A79xIRERERuQH2+BMRERGR9lkEIDtkR/aiYI1h4k9ERERE2sehPqVi4k9EREREmseLe0unaox/bGwsFEXB1KlT7dafOHECAwYMQEBAAPz8/NC+fXucP39eTVVERERERMWzCHWLG5BO/OPj4/H++++jefPmduv/+usvdO7cGY0aNcK+ffvw66+/4qWXXoKXl5fqxhIRERERkRypoT4ZGRkYNWoUVq1ahddee81u24svvoi+ffti8eLFtnX169cvtqzc3Fzk5ubaHptMJpkmEREREZEbE8ICIXkjLtk4rZFK/CdNmoR+/fqhZ8+edom/xWLBjh07MGvWLPTu3Ru//PIL6tWrh7lz5+KRRx4psqzY2FgsWLBAqvHkHN3P/KYqPvGpR6Rjc03ZqurOuJIuHWsucN2bXNEp0rEGo7pLczy85eM9vD2lY9UcMwDkZeaWvlMxMv/OVFX3jZMZ0rF6b/kRleFdakvHAkDYs89Ix35h6a+q7nuDL0rH1lz/inTs+QMJ0rEAkPan/LliyXePoQLOpPdRN6u4mveXTicf6+HtIR0LAIpBrypejayUNLm4vHwnt+QOUDNkh0N9irZp0yYcOXIEsbGxhbalpKQgIyMDr7/+Ovr06YPdu3dj4MCBGDRoEOLi4oosb+7cuUhLS7MtSUlJjh8FEREREbk3YVG3uAGHuv6SkpLw3HPPYffu3UWO2bf894rohx9+GNOmTQMA3HvvvThw4ADee+89dO3atVCM0WiE0WiUaTsREREREZWRQ4n/4cOHkZKSglatWtnWmc1m7N+/H8uXL0dmZiYMBgPuueceu7jGjRvj+++/d06LiYiIiIhuIywCQnLIjmyc1jiU+D/wwAM4duyY3bqxY8eiUaNGmD17NoxGI9q0aYOTJ0/a7XPq1ClERESoby0RERERUVGERf7OvRzqU5ifnx+aNm1qt87X1xeBgYG29TNnzsTw4cPRpUsXdO/eHTt37sQXX3yBffv2Oa3RRERERES3EkJASN6BVzZOa5x+596BAwfivffeQ2xsLJ599llERkZiy5Yt6Ny5s7OrIiIiIiK6yaKix99N7tyrOvEvqid/3LhxGDdunNqiiYiIiIjISZze409EREREVN54cW/pmPgTERERkfYJIX+RrpuM8Vd3yzwiIiIiogrA2uMvuzji4sWLeOyxxxAYGAgfHx/ce++9OHz48B06Mudhjz8RERERURldv34dnTp1Qvfu3fH1118jKCgIf/31F6pWrerqppWKiT8RERERaZ6wWCAkZ+dxJO6NN95AnTp1sGbNGtu6unXrStVb3jjUh4iIiIi0zyLULQBMJpPdkpubW6ia7du3o3Xr1hg6dCiCgoLQsmVLrFq1qryPVgoTfyIiIiLSPCEsqhYAqFOnDgICAmxLbGxsoXrOnj2LlStXokGDBti1axcmTJiAZ599FuvWrSvvQ3YYh/oQERERkfapmM7T2uOflJQEf39/22qj0Vh4V4sFrVu3xqJFiwAALVu2xPHjx7Fy5Uo8/vjjcvWXEyb+pFqNsdHSsYarF1XVXXBZPj79zDnp2JzUDOlYwLGxhLczeHmqqlvvKf+21xvl6/bw85GOBQCPKvLx+SZ1r9flmmekY3NNhX8mLivfoADpWLWaByeriq/72xbp2Pgt8jNjpJ/Oko4FAEu+Nqf003korm6CS1gKXPN63btrv6r4s2P7S8dmX1d3jt84d0MqLtNsVlWvVvj7+9sl/kUJDQ3FPffcY7eucePG2LJF/nOvvDDxJyIiIiLtExZAtmPNgfn/O3XqhJMnT9qtO3XqFCIiIuTqLkdM/ImIiIhI88rrzr3Tpk1Dx44dsWjRIgwbNgw///wz3n//fbz//vtSdZcnXtxLRERERJpnnc5TdimrNm3aYOvWrdi4cSOaNm2KV199FUuXLsWoUaPu4NE5B3v8iYiIiEjzhBAQQrLH38G4hx56CA899JBUXa7EHn8iIiIiIjfAHn8iIiIi0j6Liot7Vcy2pyVM/ImIiIhI88rr4l4tY+JPRERERJonLPIJvAOzeWoax/gTEREREbkB9vgTERERkeY5Oi3n7bHugIk/EREREWkex/iXjok/EREREWkee/xLx8SfiIiIiDRPCBU9/pI3/tIaXtxLREREROQG2ONPqp0I7CodWyvwvKq6qxsOSsdWyc2TjvWskiYdC7i2Z0EUmKVjzXkF0rEWFc83AOTm50vHpif9raruq6dTpWNFvvxr7Req7jyrfvYP6di6+Tmq6s468ad0bO41+XPFouL5Vkvvo64vLaCBr3RslWD52PTLGdKxAGD6K0s6VmdQVNWt5v2Vc1XdZ5IaF36+IB2bd0P+sxAA8tPl/gZkCfm/HeVGiJuLbKwbYOJPRERERJrHMf6lY+JPRERERJrHWX1KxzH+RERERERugD3+RERERKR5HOpTOib+RERERKR5HOpTOib+RERERKR5TPxLx8SfiIiIiDSPQ31Kx4t7iYiIiIjcAHv8iYiIiEjzONSndEz8iYiIiEjzhEXAYmbiXxIm/kRERESkeTd7/GXH+LtH4s8x/kRERESkedahPrJLWa1cuRLNmzeHv78//P390aFDB3z99dd38Mich4k/EREREVEZ1a5dG6+//joOHTqEQ4cOoUePHnj44Ydx/PhxVzetVBzqQ0RERESaV14X9/bv39/u8cKFC7Fy5UocPHgQTZo0kaq/vDDxJ9XuyjkmHWtMT1FVt/liknywTv4HL89qAfL1AlCMnvLBKsch5t9Ik4/NTJWOzbmeLh0LADk3MqVj/z55TVXdWYm50rGKhyIde37/BelYAMhI+VI6tnr9mqrqNl28Lh1rznbdfNo6Fa+XV5CHqrr9QquoipeVn1OgKl7ky38mmVXEqpbtuqq7HP/FZXV/5d1IKk6Iij8G3hmJv8lksltvNBphNBqLjTObzfjkk0+QmZmJDh06SNVdnjjUh4iIiIg0z3oDL9kFAOrUqYOAgADbEhsbW2Rdx44dQ5UqVWA0GjFhwgRs3boV99xzT3kerhT2+BMRERERAUhKSoK/v7/tcXG9/ZGRkTh69Chu3LiBLVu2YMyYMYiLi6vwyT8TfyIiIiLSPGcM9bHO1FMaT09P3H333QCA1q1bIz4+HsuWLcO//vUvqfrLCxN/IiIiItI8i1nAopNL/GVv/GUlhEBurvz1YOWFiT8RERERaV55zerzwgsvICoqCnXq1EF6ejo2bdqEffv2YefOnVJ1lycm/kRERESkeUL87yJdmdiyunLlCkaPHo3Lly8jICAAzZs3x86dO/Hggw9K1V2emPgTEREREZXR6tWrXd0EaUz8iYiIiEjzymuoj5Yx8SciIiIizbOYBSyKay7u1Qom/kRERESkeezxLx3v3EtERERE5AZUJf6xsbFQFAVTp04tcvvTTz8NRVGwdOlSNdUQEREREZVIWCyqFncgPdQnPj4e77//Ppo3b17k9m3btuGnn35CWFiYdOOIiIiIiMpCmAWE5Bh/4SZj/KV6/DMyMjBq1CisWrUK1apVK7T94sWLmDx5MtavXw8PDw/VjSQiIiIiKokw//cCX4lFmF3d+vIhlfhPmjQJ/fr1Q8+ePQtts1gsGD16NGbOnIkmTZqUWlZubi5MJpPdQkRERETkCCGE7QJfhxfhHj3+Dg/12bRpE44cOYL4+Pgit7/xxhswGAx49tlny1RebGwsFixY4GgzqALxOrpPOlZXtfAvRo4Q3t7SsfoaQfIVe3jKxwIQBhW/hN24pqru/Btp0rHmvALp2JwbmdKxAHD93A3p2IzEbFV1W/JV/EFQEWvOUjfm9Ep6qnRs6p/y5wkAmLPl264mVq2+2X+6rG41dgeX3tFWnAKTuq5OVe8PjfrSEOmyuh8qOKkqXvYcN5lMQECAqrrJ9RxK/JOSkvDcc89h9+7d8PLyKrT98OHDWLZsGY4cOQJFUcpU5ty5czF9+nTbY5PJhDp16jjSLCIiIiJycxazgAWcx78kDg31OXz4MFJSUtCqVSsYDAYYDAbExcXh3XffhcFgwL59+5CSkoLw8HDb9nPnzuH5559H3bp1iyzTaDTC39/fbiEiIiIicoQwW1Qt7sChHv8HHngAx44ds1s3duxYNGrUCLNnz0ZoaCh69+5tt713794YPXo0xo4dq761RERERERFEBYVs/q4yQ28HEr8/fz80LRpU7t1vr6+CAwMtK0PDAy02+7h4YGQkBBERrpuPBwRERERVW4c6lM63rmXiIiIiMgNSN/Ay2rfvn0lbk9MTFRbBRERERFRiYRZQEj2+LvLDbxUJ/5ERERERK5mMQtYJOfjt3CMPxERERGRNoh8AaHjxb0l4Rh/IiIiIiI3wB5/IiIiItI8S4GARbLHn0N9iIiIiIg0gkN9SsfEn4iIiIg0z2IW0j33shcFaw0TfyIiIiLSPJFvgVAUuVhhcXJrKiZe3EtERERE5KAVK1agXr168PLyQqtWrfCf//zH1U0qVYXt8f+lb09UMTjevOp31VRVr18d+XjvWiGq6obkt1QAyL5wWTo268p16VgAsBSYpWOrN71LVd2edevKB3t4SofmB9aSrxfAtcCG0rHB535SVXfukWPSsWlJ16RjTRfTpWMBIPtarqp4d2TOku/BEvnqfvbum/2nqnhyTN61Alc3wa3ofdT1m+oM8n/vqXiiQMCiSI7xd3Coz+bNmzF16lSsWLECnTp1wr/+9S9ERUXhjz/+QHh4uFQbykOFTfyJiIiIiMoqM98sfefeLNzsKDGZTHbrjUYjjEZjof2XLFmCJ554Ak8++SQAYOnSpdi1axdWrlyJ2NhYqTaUByb+RERERKRZnp6eCAkJQXRygqpyqlSpgjp16titmz9/PmJiYuzW5eXl4fDhw5gzZ47d+l69euHAgQOq2nCnMfEnIiIiIs3y8vJCQkIC8vLyVJUjhIBy27Dronr7r169CrPZjODgYLv1wcHBSE5OVtWGO42JPxERERFpmpeXF7y8vMq1ztu/JBT1xaGi4aw+RERERERlVKNGDej1+kK9+ykpKYV+BahomPgTEREREZWRp6cnWrVqhT179tit37NnDzp27OiiVpUNh/oQERERETlg+vTpGD16NFq3bo0OHTrg/fffx/nz5zFhwgRXN61ETPyJiIiIiBwwfPhwXLt2Da+88gouX76Mpk2b4quvvkJERISrm1YiJv5ERERERA6aOHEiJk6c6OpmOIRj/ImIiIiI3AATfyIiIiIiN8DEn4iIiIjIDTDxJyIiIiJyA0z8iYiIiIjcABN/IiIiIiI3UGGn80w9aUKuTu9wXE5arqp6fc6nSscqulOq6s66miUdm5eVLx0r8oV0LADojY6/TlYZV9JU1R3cXP71Mvh6S8d6R2ZLxwJAULZJOjb74A+q6j73n5PSsRmX5Y87L7VAOhYAokwnVMUTlcVX3o2kYw3+8p+FAKAzKNKxeh/5fjy1fwMsKuPV0HnIP2dqXi+9t+v6Tb+p1VRVfM+LvzupJaRF7PEnIiIiInIDTPyJiIiIiNwAE38iIiIiIjfAxJ+IiIiIyA0w8SciIiIicgNM/ImIiIiI3AATfyIiIiIiN8DEn4iIiIjIDTDxJyIiIiJyA0z8iYiIiIjcABN/IiIiIiI3wMSfiIiIiMgNMPEnIiIiInIDBlc34HZCCABAlsUsV4BZMu6/LAUF0rGKTlFVd7aKtuepiBUWIR0LAHoVT7lnvvzzDQA+uXnSsXq9Xjo2PytHOhYALMYs6dicHPljBoDMAvkXLFP2fQkgX6h7b5pMJlXxRGWRpeI81VvU1a2zyP8NKVDRbuvfXVkWlfFq6IT8c6bm9dKr/Luphtq/2bKfpdY4tecLuZYiKtgrePbsWdx1112ubgYRERER3eavv/5C/fr1Xd0MklThevyrV68OADh//jwCAgJc3BqqrEwmE+rUqYOkpCT4+/u7ujlUSfE8o/LA84zKQ1paGsLDw215GmlThUv8dbqblx0EBATwA4zuOH9/f55ndMfxPKPywPOMyoM1TyNt4qtHREREROQGmPgTEREREbmBCpf4G41GzJ8/H0aj0dVNoUqM5xmVB55nVB54nlF54HlWOVS4WX2IiIiIiMj5KlyPPxEREREROR8TfyIiIiIiN8DEn4iIiIjIDTDxJyIiIiJyA0z8iYiIiIjcABN/IiIiIiI3wMSfiIiIiMgNMPEnIiIiInID/w+RC8M+Io8ZMwAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 16 + }, + { + "cell_type": "code", + "source": [ + "meteo_data_r = meteo_data.to_crs(4647)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:41.216510Z", + "start_time": "2024-12-06T22:27:41.204559Z" + } + }, + "outputs": [], + "execution_count": 17 + }, + { + "cell_type": "code", + "source": [ + "meteo_data_r.plot(band=0)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:42.739736Z", + "start_time": "2024-12-06T22:27:42.543411Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAILCAYAAACAWtbPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhCElEQVR4nO3deXxU1f3/8fdMlkkISRAEkkAIiywKERGQfVMEI1KtWhcomyuyqKXYyhcsUcGodUFKxYrIIps/KwhVymIVEAWEAEIBESSQgAkICglb1vv7gzI6JJPkZGZCMnk9H4/7aOfO+ZwFkuvhc8+9x2ZZliUAAACgCPbL3QEAAABUXEwWAQAA4BaTRQAAALjFZBEAAABuMVkEAACAW0wWAQAA4BaTRQAAALjFZBEAAABuMVkEAACAW0wWAQAA4BaTRQAAqqh169apf//+iomJkc1m00cffWQUn5iYKJvNVugICwvzTYdxWTBZBACgijpz5oxat26tadOmlSl+7NixSk9PdzmuueYa/e53v/NyT3E5MVkEAKCKSkhI0KRJk3TnnXcW+X1OTo7+9Kc/qV69egoLC1OHDh20Zs0a5/fVq1dXVFSU8zh69Kh2796tBx98sJxGgPIQeLk7AAAAKqZhw4bp4MGDWrRokWJiYrRkyRLdcsst2rlzp5o2bVqo/DvvvKNmzZqpW7dul6G38BUyiwAAoJDvv/9eCxcu1AcffKBu3bqpSZMmGjt2rLp27apZs2YVKp+dna358+eTVfRDZBYBAEAhW7dulWVZatasmcv57Oxs1apVq1D5xYsXKysrS4MHDy6vLqKcMFkEAACFFBQUKCAgQMnJyQoICHD5rnr16oXKv/POO7rtttsUFRVVXl1EOWGyCAAACmnTpo3y8/N17NixEtcgpqSk6PPPP9eyZcvKqXcoT0wWAQCook6fPq39+/c7P6ekpGj79u2qWbOmmjVrpoEDB2rw4MF69dVX1aZNGx0/flyfffaZ4uPjdeuttzrj3n33XUVHRyshIeFyDAM+ZrMsy7rcnQAAAOVvzZo16tWrV6HzQ4YM0ezZs5Wbm6tJkyZp7ty5OnLkiGrVqqVOnTrp2WefVXx8vKQLt6vj4uI0ePBgTZ48ubyHgHLAZBEAAABu8eocAAAAuMVkEQAAAG4xWQQAAIBbTBYBAADgFpNFAAAAuMVkEQAAAG4xWQQAAIBblWqyOH36dF177bWKiIhQRESEOnXqpH//+99uy6enp2vAgAFq3ry57Ha7nnzyyWLrX7RokWw2m+644w7vdrwMfDXWkydPauTIkYqOjlZISIiuvvpqLV++3EejKD1fjXfKlClq3ry5QkNDFRsbqz/84Q86f/68j0ZROqZjXbx4sW6++WbVrl3bWX7lypWFyn344Ye65ppr5HA4dM0112jJkiW+HEap+WK8M2bMULdu3XTFFVfoiiuuUO/evfX111/7eigl8tXf7UUV6Rol+W68/nKdKu14/eE6tX79enXp0kW1atVSaGioWrRooddff71QuYp6nULxKtVksX79+nrxxRe1ZcsWbdmyRTfeeKNuv/127dq1q8jy2dnZql27tsaPH6/WrVsXW/ehQ4c0duzYEve/LC++GGtOTo5uvvlmHTx4UP/85z+1d+9ezZgxQ/Xq1fPlUErFF+OdP3++nn76aU2cOFF79uzRzJkz9f7772vcuHG+HEqJTMe6bt063XzzzVq+fLmSk5PVq1cv9e/fX9u2bXOW2bBhg+69914NGjRI33zzjQYNGqR77rlHmzZtKq9hueWL8a5Zs0b333+/Pv/8c23YsEENGjRQnz59dOTIkfIaVpF8MdaLKto1SvLNeP3pOlWa8frLdSosLEyjRo3SunXrtGfPHk2YMEETJkzQ22+/7SxTka9TKIFVyV1xxRXWO++8U2K5Hj16WE888USR3+Xl5VldunSx3nnnHWvIkCHW7bff7t1OeomnY50+fbrVuHFjKycnxwe98z5Pxzty5EjrxhtvdDk3ZswYq2vXrt7qoteUdqwXXXPNNdazzz7r/HzPPfdYt9xyi0uZvn37Wvfdd5/X+uhNno73Unl5eVZ4eLg1Z84cb3TPq7wx1spyjbIsz8frr9epiy4drz9fp377299av//9752fK9t1Cr+oVJnFX8vPz9eiRYt05swZderUyaO6nnvuOdWuXVsPPvigl3rnXd4a67Jly9SpUyeNHDlSdevWVatWrfTCCy8oPz/fi731nLfG27VrVyUnJztvTx44cEDLly9Xv379vNVVj5VlrAUFBcrKylLNmjWd5zZs2KA+ffq4lOvbt6+++uorr/bXU94a76XOnj2r3NzcYsuUN2+OtaJfoyTvjdefr1NFjddfr1Pbtm3TV199pR49ejjPVZbrFIpwuWerpnbs2GGFhYVZAQEBVmRkpPXJJ5+UKs5d9mn9+vVWvXr1rB9//NGyLKtC/avd22Nt3ry55XA4rAceeMDasmWLtXDhQqtmzZrFZmzKk7fHa1mWNXXqVCsoKMgKDAy0JFmPPfaYF3tcdmUdq2VZ1ssvv2zVrFnTOnr0qPNcUFCQNX/+fJdy8+fPt4KDg73WZ094e7yXGjFihNWkSRPr3Llz3uiuR7w91op8jbIs74/XX69TluX+Z9mfrlP16tWzgoODLbvdbj333HMu31X06xTcq3STxezsbGvfvn3W5s2braefftq68sorrV27dpUYV9SEIjMz02rYsKG1fPly57mKdCH25lgty7KaNm1qxcbGWnl5ec5zr776qhUVFeXNbpeZt8f7+eefW3Xr1rVmzJhh7dixw1q8eLEVGxtb6AJ2OZR1rAsWLLCqVatmrV692uV8UFCQtWDBApdz8+bNsxwOh1f7XVbeHu+vvfTSS9YVV1xhffPNN97scpl5c6wV/RplWd7/u/XX65S78frbderAgQPWjh07rLffftuqWbOmy3Wpol+n4F6lmyxe6qabbrIeeeSREssVNaHYtm2bJckKCAhwHjabzbLZbFZAQIC1f/9+H/W6bDwZq2VZVvfu3a2bbrrJ5dzy5cstSVZ2dra3uuk1no63a9eu1tixY13Ovffee1ZoaKiVn5/vrW56RWnGumjRIis0NNT6+OOPC30XGxtrvfbaay7nXnvtNatBgwZe7ae3eDrei/76179akZGR1ubNm73dRa/xZKyV7RplWZ7/3frjdaq48frbderXnn/+eatZs2bOz5XtOoVfVNo1ixdZlqXs7OwyxbZo0UI7d+7U9u3bncdvfvMb9erVS9u3b1dsbKyXe+sZT8YqSV26dNH+/ftVUFDgPPfdd98pOjpawcHB3uiiV3k63rNnz8pud/0RDwgIkHXhH0meds+rShrrwoULNXToUC1YsKDItUydOnXS6tWrXc6tWrVKnTt39npfvcHT8UrSX//6Vz3//PNasWKF2rVr56uuesyTsVa2a5Tk+d+tv12nShqvP12nSipf2a5T+JXLMUMtq3Hjxlnr1q2zUlJSrB07dlj/93//Z9ntdmvVqlWWZVnW008/bQ0aNMglZtu2bda2bdustm3bWgMGDLC2bdtWbBq9otzi8cVYU1NTrerVq1ujRo2y9u7da3388cdWnTp1rEmTJpXr2Irii/FOnDjRCg8PtxYuXGgdOHDAWrVqldWkSRPrnnvuKdexXcp0rAsWLLACAwOtv//971Z6errzOHnypLPMl19+aQUEBFgvvviitWfPHuvFF1+0AgMDrY0bN5b7+C7li/G+9NJLVnBwsPXPf/7TpUxWVla5j+/XfDHWS1WUa5Rl+Wa8/nSdKs14/eU6NW3aNGvZsmXWd999Z3333XfWu+++a0VERFjjx493lqnI1ykUr1JNFm+99VYrNDTUkmRJsq699lrnD65lXbiI9ujRwyXmYtlfHzVq1LCaNm1qBQcHW/Xr17cmT57sUkdFuBA/8MADVlxcnBUcHGzVrl3buummm8o01ri4OJcyX331ldWhQwfL4XBYjRs3tiZPnuyyNuhy8cV4c3NzrcTERKtJkyZWSEiIFRsba40YMcL6+eefy2dQbpiOtUePHkWOdciQIS71fvDBB1bz5s2toKAgq0WLFtaHH35YTiMqni/GGxcXV2SZiRMnlt/AiuCrv9tfqyjXKMvy3Xj95TpVmvH6y3Vq6tSpVsuWLa1q1apZERERVps2baw333yz0K30inqdQvEq1WRx+fLl1vjx460PP/zQkmQtWbLEuI7Ro0dbzZs3t5YuXWodOHDA2rZtW7GL5wEAADzxwgsvWO3atbOqV69u1a5d27r99tutb7/91qVMVlaWNXLkSKtevXpWSEiI1aJFC+vNN98sse7XX3/datasmRUSEmLVr1/fevLJJ92+GeKFF16wJLl9g4g7gV6/r+1DCQkJSkhIcPt9Tk6OJkyYoPnz5+vkyZNq1aqVXnrpJfXs2VOStGfPHk2fPl3//e9/1bx583LqNQAAqMrWrl2rkSNHqn379srLy9P48ePVp08f7d69W2FhYZKkP/zhD/r88881b948NWzYUKtWrdKIESMUExOj22+/vch6L+4A9O6776pz58767rvvNHToUEkqtN3i5s2b9fbbb+vaa6817n+lmiyWZNiwYTp48KAWLVqkmJgYLVmyRLfccot27typpk2b6l//+pcaN26sjz/+WLfccossy1Lv3r318ssvV6iX+QIAAM+dP39eOTk5PqnbsizZbDaXcw6HQw6Ho1DZFStWuHyeNWuW6tSpo+TkZHXv3l3ShZeWDxkyxJngeuSRR/SPf/xDW7ZscTtZ3LBhg7p06aIBAwZIkho2bKj777/f+ZL3i06fPq2BAwdqxowZmjRpkvFYK/3T0Bd9//33WrhwoT744AN169ZNTZo00dixY9W1a1fNmjVL0oU34x86dEgffPCB5s6dq9mzZys5OVl33333Ze49AADwpvPnzyuiRj1FRkb65Khfv36hc0lJSaXq26lTpySp0G4+y5Yt05EjR2RZlj7//HN999136tu3r9t6SrsD0MiRI9WvXz/17t3b9I9Rkh9lFrdu3SrLstSsWTOX89nZ2apVq5akC1stZWdna+7cuc5yM2fOVNu2bbV3715uTQMA4CdycnKUm/2T2t30/xQQGObVuvPzzmjLf+5RWlqaIiIinOeLyipeyrIsjRkzRl27dlWrVq2c56dOnaqHH35Y9evXV2BgoOx2u9555x117drVbV333XeffvzxR3Xt2lWWZSkvL0+PPfaYnn76aWeZRYsWaevWrdq8eXMZR+tHk8WCggIFBAQoOTlZAQEBLt9Vr15dkhQdHa3AwECXCeXVV18tSUpNTWWyCACAnwkMDldgkHcni7b/vRszIiLCZbJYGqNGjdKOHTu0fv16l/NTp07Vxo0btWzZMsXFxWndunUaMWKEoqOj3WYE16xZo8mTJ+vNN99Uhw4dtH//fj3xxBOKjo7WM888o7S0ND3xxBNatWqVQkJCyjZY+dFksU2bNsrPz9exY8fUrVu3Ist06dJFeXl5+v7779WkSRNJF172KklxcXHl1lcAAFD1jB49WsuWLdO6detUv3595/lz587p//7v/7RkyRLnLeRrr71W27dv1yuvvOJ2svjMM89o0KBBeuihhyRJ8fHxOnPmjB555BGNHz9eycnJOnbsmNq2beuMyc/P17p16zRt2jRlZ2cXSrAVpVKtWTx9+rRzFwNJSklJ0fbt25WamqpmzZpp4MCBGjx4sBYvXqyUlBRt3rxZkydP1sCBA5Wdna3evXvr+uuv1wMPPKBt27YpOTlZjz76qG6++eZCt68rq+zsbCUmJnq080llUZXGKlWt8ValsUqM159VpbFKFXO8NrvNJ4cJy7I0atQoLV68WJ999pkaNWrk8n1ubq5yc3OL3M3n17sZXaqkHYBuuummQrtAtWvXTgMHDtT27dtLNVGUJJtlVbD9hIqxZs0a9erVq9D5IUOGaPbs2crNzdWkSZM0d+5cHTlyRLVq1VK7du308ccf69SpU4qIiNAPP/yg0aNHa9WqVQoLC1NCQoJeffVVv3kaOjMzU5GRkc7x+rOqNFapao23Ko1VYrz+rCqNVapY473Yl079Vnj9NnRe7hlt+OSWUo9zxIgRWrBggZYuXeqy5C0yMlKhoaGSpJ49e+r48eOaNm2a4uLitHbtWj322GN67bXX9Nhjj0mSBg8erHr16jkfpElMTNRrr72mt99+23kb+rHHHlPbtm31/vvvF9mXnj176rrrrtOUKVNKPd5KdRu6Z8+exe6VGRQUpGeffVbPPvus89zFH5aLYmJi9OGHH/q0nwAAoGKw2eyy2bx7I9W0vunTp0uS87U4F82aNcv5XsRFixZp3LhxGjhwoH766SfFxcVp8uTJGj58uLN8amqqSyZxwoQJstlsmjBhgo4cOaLatWurf//+mjx5ctkG5kalmiwCAABUNqW5iRsVFeV81Z87a9ascfkcGBioiRMnauLEiaXuy6V1lEalmCwWFBTohx9+UHh4eKEXYJYkMzPT5X/9XVUab1Uaq1S1xluVxioxXn9WlcYqFR6vZVnKyspSTExMobV15aUsawxLU2dVUinWLB4+fFixsbGXuxsAAKAM0tLSXJ7+LQ8Xl6F1+c1qn6xZ/HLZzRVibWZ5qBSZxfDwcEkq9PJLuLepew/jmOxM32yJ9Gvdt2/weRsAgIohMzNTsbGxzv+OXw42u935XkRv1lmVVIrJ4sVbz2V5+WVVFVbKx+F/LdBuHmOKvz8AqHpMl5B5k90u2b1827iKzRUr13sWAQAAUL4qRWYRAACgLCrCq3Mqu6o1WgAAABghswgAAPwWr87xHJlFAAAAuEVmEQAA+C2bzQevzmHNIgAAAHABmUUAAOC3WLPoOSaLAADAb9ltdtm9fNvY2/VVdEwW/VRWylnjmOCavv9x2NTpBuOY+jc0Mo7Jz8kzjknfnmZUvsOGr43bAACgsmGyCAAA/JcPbkOrit2Grlp5VAAAABghswgAAPwWD7h4jswiAAAA3CKzCAAA/JbNZvf6S7R5KTcAAADwP2QWAQCA32LNoueYLAIAAL9lt9tl9/Le0N6ur6KrWqMFAACAETKLAADAb9lsNtlsXr4N7eX6KjoyiwAAAHCLzKKfsgWZ/6sn/1yBcUy1qBCj8o1vbmXchqPWFcYxVm6ucUzu2WzjGMCXloe2MI6p1tBhVD6yfoRxGxmbjhvHBISa5yZMY2La1jVuI7i62TVMkk4d/tmofO5Z8+sRe897Dw+4eI7MIgAAANwiswgAAPyWze79TGAVeyc3mUUAAAC4R2YRAAD4Lbvssns5FWivYrk2JosAAMBv8YCL56rW1BgAAABGyCwCAAC/RWbRc2QWAQAA4BaZRQAA4LfY7s9zZBYBAAB8KCkpSe3bt1d4eLjq1KmjO+64Q3v37nUpM3ToUOfE9uLRsWPHYuvNzc3Vc889pyZNmigkJEStW7fWihUrXMokJiYWqjcqKsqo/2QWAQCA37LbbbJ7eY2haX1r167VyJEj1b59e+Xl5Wn8+PHq06ePdu/erbCwMGe5W265RbNmzXJ+Dg4OLrbeCRMmaN68eZoxY4ZatGihlStX6re//a2++uortWnTxlmuZcuW+vTTT52fAwICjPrPZBEAAMCHLs32zZo1S3Xq1FFycrK6d+/uPO9wOIyyfu+9957Gjx+vW2+9VZL02GOPaeXKlXr11Vc1b948Z7nAwEDjbOKvMVn0U32O7iqXdta1bFNyoV85vivVuI3g6seMY66Mb2wcc2zPUaPyTYxbAMzceu5b45gNN7Q3Kl+Wpzob3lzPOCasTqRxzPHvMszK7/vJuI3qdcNKLnSJ/NwCs/I5ZuUlaXP3TsYx7ddtMI6pCmx2u2x27666u1hfZmamy3mHwyGHw1Fi/KlTpyRJNWvWdDm/Zs0a1alTRzVq1FCPHj00efJk1alTx2092dnZCgkJcTkXGhqq9evXu5zbt2+fYmJi5HA41KFDB73wwgtq3Lj0/51kzSIAAPBbl67X89YhSbGxsYqMjHQeSUlJJfbHsiyNGTNGXbt2VatWrZznExISNH/+fH322Wd69dVXtXnzZt14443Kzs52W1ffvn312muvad++fSooKNDq1au1dOlSpaenO8t06NBBc+fO1cqVKzVjxgxlZGSoc+fOOnHiRKn/DMksAgAAlEFaWpoiIiKcn0uTVRw1apR27NhRKPt37733Ov9/q1at1K5dO8XFxemTTz7RnXfeWWRdb7zxhh5++GG1aNFCNptNTZo00bBhw1zWPSYkJDj/f3x8vDp16qQmTZpozpw5GjNmTKnGSWYRAAD4rYsv5fb2IUkREREuR0mTxdGjR2vZsmX6/PPPVb9+/WLLRkdHKy4uTvv27XNbpnbt2vroo4905swZHTp0SN9++62qV6+uRo0auY0JCwtTfHx8sfVeiskiAACAD1mWpVGjRmnx4sX67LPPip3MXXTixAmlpaUpOjq6xLIhISGqV6+e8vLy9OGHH+r22293WzY7O1t79uwpVb0XMVkEAAB+y/a/V+d48zB9MGzkyJGaN2+eFixYoPDwcGVkZCgjI0Pnzp2TJJ0+fVpjx47Vhg0bdPDgQa1Zs0b9+/fXlVdeqd/+9rfOegYPHqxx48Y5P2/atEmLFy/WgQMH9MUXX+iWW25RQUGB/vSnPznLjB07VmvXrlVKSoo2bdqku+++W5mZmRoyZEip+8+aRQAAAB+aPn26JKlnz54u52fNmqWhQ4cqICBAO3fu1Ny5c3Xy5ElFR0erV69eev/99xUeHu4sn5qaKvuvnuw+f/68JkyYoAMHDqh69eq69dZb9d5776lGjRrOMocPH9b999+v48ePq3bt2urYsaM2btyouLi4UvefySIAAPBbFWG7P8uyiv0+NDRUK1euLLGeNWvWuHzu0aOHdu/eXWzMokWLSqy3JNyGBgAAgFtkFgEAgN+ylWGNYWnqrEqYLAIAAL9ll012L9+GtqtqTRa5DQ0AAAC3yCwCAAC/xW1ozzFZrCQ+Dmzu8zYCqpknmoNrVswfoRO7UoxjQiJDSi70KxtuaG/cRqevNxvHAPCdQEeAz2Mc1YON28jPLTCOAXzFeHZw5MgR/f73v1etWrVUrVo1XXfddUpOTi42Zu3atWrbtq1CQkLUuHFjvfXWW2XuMAAAQGn5cru/qsIoLfTzzz+rS5cu6tWrl/7973+rTp06+v77711e/niplJQU3XrrrXr44Yc1b948ffnllxoxYoRq166tu+66y9P+AwAAwIeMJosvvfSSYmNjNWvWLOe5hg0bFhvz1ltvqUGDBpoyZYok6eqrr9aWLVv0yiuvMFkEAAA+VRFeyl3ZGd2GXrZsmdq1a6ff/e53qlOnjtq0aaMZM2YUG7Nhwwb16dPH5Vzfvn21ZcsW5ebmFhmTnZ2tzMxMlwMAAADlz2iyeODAAU2fPl1NmzbVypUrNXz4cD3++OOaO3eu25iMjAzVrVvX5VzdunWVl5en48ePFxmTlJSkyMhI5xEbG2vSTQAAAEmS3S7Z7TYvH5d7VOXL6DZ0QUGB2rVrpxdeeEGS1KZNG+3atUvTp0/X4MGD3cZdmq69uEeiuzTuuHHjNGbMGOfnzMxMJowAAMAYt6E9ZzQ3jo6O1jXXXONy7uqrr1ZqaqrbmKioKGVkZLicO3bsmAIDA1WrVq0iYxwOhyIiIlwOAAAAlD+jzGKXLl20d+9el3Pfffed4uLi3MZ06tRJ//rXv1zOrVq1Su3atVNQUJBJ8wAAAEZ4KbfnjDKLf/jDH7Rx40a98MIL2r9/vxYsWKC3335bI0eOdJYZN26cyy3p4cOH69ChQxozZoz27Nmjd999VzNnztTYsWO9NwoAAAD4hNFksX379lqyZIkWLlyoVq1a6fnnn9eUKVM0cOBAZ5n09HSX29KNGjXS8uXLtWbNGl133XV6/vnnNXXqVF6bAwAAfM5u881RlRjv1Xbbbbfptttuc/v97NmzC53r0aOHtm7datoUAAAALrOKubEvAACAF7Bm0XNMFuEUEOr7F0cd3/eTcUxIDYdxTKDD/Ec753S2UXkr3zJuA1XXfxrGG8fknyswjgmta/b7cvb4WeM2cs8VvaFCcaLaNzeOOXmo6HfxuuNPv5NVbTKCio3JIgAA8FtkFj3HZBEAAPgtm80mOy/l9kgV27AGAAAAJsgsAgAAv2Wz+eA2NJlFAAAA4AIyiwAAwG/ZbBcOb9dZlZBZBAAAgFtkFgEAgN+y222ye3nNorfrq+jILAIAAMAtMosAAMBv2Ww2rz+9zNPQAAAAwP+QWYRTXma+z2OsXPO9W+0B5v+CO3/SbJ9nScrPNRtLQFCAcRswc+qVx41jDn32jXFMfq75HsymgiOCjGNO/3TOOObs4fPGMaZsQea/kztPfGUck3PSbA/q3Czza1hBgfnfvenvviMi2LiNQAfXF2+x+2AHF2/XV9ExWQQAAH7LZr9weLvOqqSKDRcAAAAmyCwCAAC/xQMuniOzCAAAALeYLAIAAL918aXc3j5MJCUlqX379goPD1edOnV0xx13aO/evS5lEhMT1aJFC4WFhemKK65Q7969tWnTphLr/vDDD3XNNdfI4XDommuu0ZIlS1y+b9iwoTO7+utj5MiRpe4/k0UAAAAfWrt2rUaOHKmNGzdq9erVysvLU58+fXTmzBlnmWbNmmnatGnauXOn1q9fr4YNG6pPnz768ccf3da7YcMG3XvvvRo0aJC++eYbDRo0SPfcc4/LJHPz5s1KT093HqtXr5Yk/e53vyt1/1mzCAAA/JbNduHwdp0mVqxY4fJ51qxZqlOnjpKTk9W9e3dJ0oABA1zKvPbaa5o5c6Z27Nihm266qch6p0yZoptvvlnjxo2TJI0bN05r167VlClTtHDhQklS7dq1XWJefPFFNWnSRD169Ch1/8ksAgAAlEFmZqbLkZ1dunf8njp1SpJUs2bNIr/PycnR22+/rcjISLVu3dptPRs2bFCfPn1czvXt21dffVX0e01zcnI0b948PfDAA0YP6TBZBAAAfstmt/nkkKTY2FhFRkY6j6SkpBL7Y1mWxowZo65du6pVq1Yu33388ceqXr26QkJC9Prrr2v16tW68sor3daVkZGhunXrupyrW7euMjIyiiz/0Ucf6eTJkxo6dGiJ/fw1bkMDAAC/ZbddOLxdpySlpaUpIiLCed7hcJQYO2rUKO3YsUPr168v9F2vXr20fft2HT9+XDNmzHCuP6xTp47b+i7NEFqW5TZrOHPmTCUkJCgmJqbEfv4amUUAAIAyiIiIcDlKmiyOHj1ay5Yt0+eff6769esX+j4sLExXXXWVOnbsqJkzZyowMFAzZ850W19UVFShLOKxY8cKZRsl6dChQ/r000/10EMPlXJ0v2CyCAAA/FZRr43xxmHCsiyNGjVKixcv1meffaZGjRqVOq64dZCdOnVyPt180apVq9S5c+dCZS8+VNOvXz+jvkvchsavFORaxjH2ILNfmNysfOM2CvLOG8eE1i35VoCnAkMCjGM23NDeBz1x1enrzT5vo7z8tOeQccypw1nGMTmZucYxpvIyzX/2Q+sFG8cEhZhd1nPP5xm3ce5IjnFM5t6zxjHloSxjsQeaXfdyIsx/vgJCyeX4k5EjR2rBggVaunSpwsPDndnAyMhIhYaG6syZM5o8ebJ+85vfKDo6WidOnNCbb76pw4cPu7ziZvDgwapXr55zbeQTTzyh7t2766WXXtLtt9+upUuX6tNPPy10i7ugoECzZs3SkCFDFBhoPvVjsggAAPyWzS7ZvTz3thnWN336dElSz549Xc7PmjVLQ4cOVUBAgL799lvNmTNHx48fV61atdS+fXt98cUXatmypbN8amqq7L8aTOfOnbVo0SJNmDBBzzzzjJo0aaL3339fHTp0cGnn008/VWpqqh544AGzjv8Pk0UAAAAfsqzi79yFhIRo8eLFJdazZs2aQufuvvtu3X333cXG9enTp8Q+FIfJIgAA8Fs2ma8xLE2dVQmLIgAAAOAWmUUAAOC3bHbzNYalqbMqYbIIAAD8lt1mk93Lt6G9XV9FV8XmxgAAADBBZhEAAPgtm+3C4e06qxIyiwAAAHCLzCIAAPBbZBY9R2YRAAAAbpFZBAAAfstut8lu9/LT0F6ur6JjsngZfBzY/HJ3wWsKcs22DwoIKp9fsHNHs41jLMOxlEVAUIBxjCMi2Ac9uTxW1W1ZciEP5Z8rMI85ax4TWt9//l4qqqAIs9+X3Mx84zbK8ndvGV7HbGW47gVHBBnHfHHt9cYx3XZsNY5B1cNkEQAA+C3WLHqOySIAAPBbdtuFw9t1ViU84AIAAAC3yCwCAAC/ZbPbZPNyKtDb9VV0ZBYBAADgFplFAADgt3jAxXNkFgEAAOAWmUUAAOC3eBrac2QWAQAA4JbRZDExMVE2m83liIqKKjZm/vz5at26tapVq6bo6GgNGzZMJ06c8KjTAAAApXFxzaK3j6rEOLPYsmVLpaenO4+dO3e6Lbt+/XoNHjxYDz74oHbt2qUPPvhAmzdv1kMPPeRRpwEAAErDZpfsXj5sVey+rPGaxcDAwBKziRdt3LhRDRs21OOPPy5JatSokR599FG9/PLLps0CAADgMjCeLO7bt08xMTFyOBzq0KGDXnjhBTVu3LjIsp07d9b48eO1fPlyJSQk6NixY/rnP/+pfv36FdtGdna2srOznZ8zMzNNu1mh3Za31zjm48DmPuhJ+cs/W1AuMfYg83sENsOYgKAA4zbqtqxjHNNs4QrjGPjeucM5RuXL8jMZFGL+DGK1K6sZlS/IzTduw8q1jGNyfsozjoEZR0Tw5e5ChcSrczxnlEjt0KGD5s6dq5UrV2rGjBnKyMhQ586d3a5B7Ny5s+bPn697771XwcHBioqKUo0aNfS3v/2t2HaSkpIUGRnpPGJjY026CQAAAC8xmiwmJCTorrvuUnx8vHr37q1PPvlEkjRnzpwiy+/evVuPP/64/vKXvyg5OVkrVqxQSkqKhg8fXmw748aN06lTp5xHWlqaSTcBAAAkqdCDud46qhKP3rMYFham+Ph47du3r8jvk5KS1KVLFz311FOSpGuvvVZhYWHq1q2bJk2apOjo6CLjHA6HHA6HJ10DAACAF3j0PE92drb27NnjdtJ39uxZ2e2uTQQEXFjnZVnma14AAABM2PXLi7m9dlzuQZUzo/GOHTtWa9euVUpKijZt2qS7775bmZmZGjJkiKQLt48HDx7sLN+/f38tXrxY06dP14EDB/Tll1/q8ccf1w033KCYmBjvjgQAAABeZ3Qb+vDhw7r//vt1/Phx1a5dWx07dtTGjRsVFxcnSUpPT1dqaqqz/NChQ5WVlaVp06bpj3/8o2rUqKEbb7xRL730kndHAQAAUASehvac0WRx0aJFxX4/e/bsQudGjx6t0aNHG3UKAADAG5gseq6q3XYHAACAAY+ehgYAAKjILm7R5+06q5IqNlwAAACYILMIAAD8FmsWPcdk8TLwl32ey6Is++MWlGEf2rLEmKbZczJzjdvIzjpvHFMeloe2MI4py59xVWa697gknfnB/OclP8dsL/WCgjLs137OPCYg1PxGVkGe2c9YeV1fAiPM9oW3B5r3KziM/zyj4uA2NAAA8FtefyH3/w4TSUlJat++vcLDw1WnTh3dcccd2rt3r0sZy7KUmJiomJgYhYaGqmfPntq1a1ex9e7atUt33XWXGjZsKJvNpilTphQqk5WVpSeffFJxcXEKDQ1V586dtXnzZqP+M1kEAADwobVr12rkyJHauHGjVq9erby8PPXp00dnzpxxlnn55Zf12muvadq0adq8ebOioqJ08803Kysry229Z8+eVePGjfXiiy8qKiqqyDIPPfSQVq9erffee087d+5Unz591Lt3bx05cqTU/SfPDQAA/JYv1yxmZma6nHc4HHI4HIXKr1ixwuXzrFmzVKdOHSUnJ6t79+6yLEtTpkzR+PHjdeedd0qS5syZo7p162rBggV69NFHi+xH+/bt1b59e0nS008/Xej7c+fO6cMPP9TSpUvVvXt3SVJiYqI++ugjTZ8+XZMmTSrVeMksAgAAv3VxsujtQ5JiY2MVGRnpPJKSkkrVp1OnTkmSatasKUlKSUlRRkaG+vTp4yzjcDjUo0cPffXVV2Uee15envLz8xUSEuJyPjQ0VOvXry91PWQWAQAAyiAtLU0RERHOz0VlFS9lWZbGjBmjrl27qlWrVpKkjIwMSVLdunVdytatW1eHDh0qc//Cw8PVqVMnPf/887r66qtVt25dLVy4UJs2bVLTpk1LXQ+TRQAA4LfK8kBKaeqUpIiICJfJYmmMGjVKO3bsKDKzZ7vkfrllWYXOmXrvvff0wAMPqF69egoICND111+vAQMGaOvWraWug9vQAAAA5WD06NFatmyZPv/8c9WvX995/uLDKRczjBcdO3asULbRVJMmTbR27VqdPn1aaWlp+vrrr5Wbm6tGjRqVug4miwAAwG/5cs1iaVmWpVGjRmnx4sX67LPPCk3UGjVqpKioKK1evdp5LicnR2vXrlXnzp298cegsLAwRUdH6+eff9bKlSt1++23lzqW29AAAAA+NHLkSC1YsEBLly5VeHi4M4MYGRmp0NBQ2Ww2Pfnkk3rhhRfUtGlTNW3aVC+88IKqVaumAQMGOOsZPHiw6tWr53yQJicnR7t373b+/yNHjmj79u2qXr26rrrqKknSypUrZVmWmjdvrv379+upp55S8+bNNWzYsFL3n8kiAADwWzabJZvNuztOmdY3ffp0SVLPnj1dzs+aNUtDhw6VJP3pT3/SuXPnNGLECP3888/q0KGDVq1apfDwcGf51NRU2e2/3BT+4Ycf1KZNG+fnV155Ra+88op69OihNWvWSLrw5PW4ceN0+PBh1axZU3fddZcmT56soKCgUvefySIAAIAPWVbJk0ubzabExEQlJia6LXNxAnhRw4YNS6z7nnvu0T333FOabrrFZBEAAPgtmw+ehvb2S74rOiaLQAV38OE7jMof25NRcqFLFOR69xZNVWAP8v1/Lawy/L2cP57j8zYCQs2fjSxLjM4VGBUPjAgwbqIs/QoKM/tPZ2CIeb/KwubtGZGf8OUOLlUFT0MDAADALTKLAADAb5FZ9ByZRQAAALhFZhEAAPgtu82S3cuvzvF2fRUdmUUAAAC4RWYRAAD4LdYseo7MIgAAANwiswgAAPwWmUXPkVkEAACAW2QWAQCA37LL+9v9VbVMG5NFAADgt2yyZJN3X3Xj7foquqo2OQYAAIABMot+6ra8vZe7C0VaHtricnfBrYJcs38p5vyUZ9xG/MdrjGP23NXbqHzumVzjNiqqgGrm/561B5rfbyrIM88SBISa9S0vM9+4jeA6QcYxITUdRuUz958xbqMsmtzc1DjmzLFTRuUL8s3/HoPDgo1jTP186GfjmEBHgHGMPdA8pirgARfPkVkEAACAW2QWAQCA37LbfPCAC5lFAAAA4AIyiwAAwG/ZbJZsNi8/De3l+io6MosAAABwi8wiAADwWzwN7TkmiwAAwG/ZZcnu5Zdoe7u+io7b0AAAAHCLzCIAAPBb3Ib2HJlFAAAAuEVmEQAA+C8fvDpHvDoHAAAAuIDM4mVwW97ey92Fy+bWc99e7i5cVl+2aWscU5Bv9i/Y7BM5xm2g6rry2hrGMRH1Ir3fEbioc02McYwjsroPelL5sd2f58gsAgAAwC0yiwAAwG/ZZMnm5fcieru+io7JIgAA8Fu8Osdz3IYGAACAW2QWAQCA37L54NU5Xn8VTwVnlFlMTEyUzWZzOaKiooqNyc7O1vjx4xUXFyeHw6EmTZro3Xff9ajTAAAAKB/GmcWWLVvq008/dX4OCAgotvw999yjo0ePaubMmbrqqqt07Ngx5eXlmfcUAADAkF2W7F5+IMXb9VV0xmsWAwMDFRUV5Txq167ttuyKFSu0du1aLV++XL1791bDhg11ww03qHPnzsW2kZ2drczMTJcDAACgMlq3bp369++vmJgY2Ww2ffTRRy7fX3rX9uLx17/+1W2dixcvVrt27VSjRg2FhYXpuuuu03vvvVeo3JtvvqlGjRopJCREbdu21RdffGHcf+PJ4r59+xQTE6NGjRrpvvvu04EDB9yWXbZsmdq1a6eXX35Z9erVU7NmzTR27FidO3eu2DaSkpIUGRnpPGJjY027CQAA4Hwa2tuHiTNnzqh169aaNm1akd+np6e7HO+++65sNpvuuusut3XWrFlT48eP14YNG7Rjxw4NGzZMw4YN08qVK51l3n//fT355JMaP368tm3bpm7duikhIUGpqalG/Te6Dd2hQwfNnTtXzZo109GjRzVp0iR17txZu3btUq1atQqVP3DggNavX6+QkBAtWbJEx48f14gRI/TTTz8Vu25x3LhxGjNmjPNzZmYmE0YAAFChXHrn0+FwyOFwFCqXkJCghIQEt/Vc+vzH0qVL1atXLzVu3NhtTM+ePV0+P/HEE5ozZ47Wr1+vvn37SpJee+01Pfjgg3rooYckSVOmTNHKlSs1ffp0JSUlFTu2XzPKLCYkJOiuu+5SfHy8evfurU8++USSNGfOnCLLFxQUyGazaf78+brhhht066236rXXXtPs2bOLzS46HA5FRES4HAAAAKYuPg3t7UOSYmNjXe6EmkzA3Dl69Kg++eQTPfjgg6WOsSxL//nPf7R37151795dkpSTk6Pk5GT16dPHpWyfPn301VdfGfXJo1fnhIWFKT4+Xvv27Svy++joaNWrV0+Rkb/sI3r11VfLsiwdPnxYTZs29aR5VAAfBzY3Kh/RvJpxG913bTOOKYvPr7rWqHxBnvkC57zMfOOYavVDjGMqquBaZpecoPDiH6ArSmA188tacJh5jC3AbBXPyX1Z5m0Emb/51xEebFT+ymbFv9GiyJhO1xnH2Ozmr/UN/Xa/UfmA0MIZnRLbaOI+c+NWXq5R8bDkncZNFOSZXytQNF/u4JKWluaS0Coqq2hqzpw5Cg8P15133lli2VOnTqlevXrKzs5WQECA3nzzTd18882SpOPHjys/P19169Z1ialbt64yMjKM+uTRS7mzs7O1Z88eRUdHF/l9ly5d9MMPP+j06dPOc999953sdrvq16/vSdMAAACX1aV3Qb0xWXz33Xc1cOBAhYSUnCgIDw/X9u3btXnzZk2ePFljxozRmjVrXMrYLllgaVlWoXMlMZosjh07VmvXrlVKSoo2bdqku+++W5mZmRoyZIikC2sNBw8e7Cw/YMAA1apVS8OGDdPu3bu1bt06PfXUU3rggQcUGhpq1FEAAABTdptvDl/44osvtHfvXucawxLHZrfrqquu0nXXXac//vGPuvvuu523wq+88koFBAQUyiIeO3asULaxxHZMCh8+fFj333+/mjdvrjvvvFPBwcHauHGj4uLiJF14mufXT9hUr15dq1ev1smTJ9WuXTsNHDhQ/fv319SpU406CQAA4O9mzpyptm3bqnXr1mWKtyxL2dnZkqTg4GC1bdtWq1evdimzevXqEl9heCmjhTqLFi0q9vvZs2cXOteiRYtCHQUAACgPvlyzWFqnT5/W/v2/rMFNSUnR9u3bVbNmTTVo0EDShSerP/jgA7366qtF1jF48GDVq1fPmTlMSkpSu3bt1KRJE+Xk5Gj58uWaO3eupk+f7owZM2aMBg0apHbt2qlTp056++23lZqaquHDhxv1n72hAQAAfGjLli3q1auX8/PF1wMOGTLEmWhbtGiRLMvS/fffX2Qdqampsv/qQbEzZ85oxIgROnz4sEJDQ9WiRQvNmzdP9957r7PMvffeqxMnTui5555Tenq6WrVqpeXLlzvvCJcWk0UAAOC3fv2qG2/WaaJnz56yrOJjHnnkET3yyCNuv7/0wZVJkyZp0qRJJbY9YsQIjRgxolT9dMejp6EBAADg38gsAgAAv1UR1ixWdkwWAQCA36oIt6ErO25DAwAAwC0yiwAAwG/Z5P3MmI/eyV1hkVkEAACAW2QW4fTviKuNY0LrBxuVv6JRpHEbZ96daBxjj/b93uM5P+UZx9gDzf89mp+bb1Q+rF75bKVZlvEHhQcYla8eE2bcRmQ985+x4Ool78F6KXug2VjCrjxp3EZkbE3jmCtv7GZUvuCKK43byIk02ypMkvKXFb+pQ1Gyjhw3Kh/ZMMq4DeWb/X5JUu6Jn4zK55w+b9zGldebX4/PHDpiHFMVsGbRc2QWAQAA4BaZRQAA4Ld4dY7nyCwCAADALTKLAADAb7Fm0XNMFgEAgN+yyfu3jXl1DgAAAPA/ZBYBAIDf4ja058gsAgAAwC0yiwAAwG/x6hzPkVkEAACAW2QWAQCA37LLkt3LmUBv11fRkVkEAACAW2QWPfRpvVbGMQGh5nP0nJ/yjGNMlaVf+ecKfNCTy8MRGWxU/tyRHOM2yvKnFVwtyKh8SGRIGVopi3PGESE1HUblq9cOM2+jhnmMI9I8xiowyyzEXdfcvI02XY1jDte62qh85Lmjxm1YNvNrRXjnLsYxh9bNMCqf+cMp4zZC/nvQOOaKJtFG5eve2c+4DWWdNA45uWarcUxd44jKxyYfPA1dxTKLTBYBAIDf4gEXz3EbGgAAAG6RWQQAAH6LzKLnyCwCAADALTKLAADAb5FZ9ByZRQAAALhFZhEAAPgtm80Hr87xcn0VHZlFAAAAuEVmEQAA+C3WLHqOySIAAPBbTBY9x21oAAAAuEVmEQAA+C0yi55jsuih/HMF5RJTkGf2g2kPtBm3UR4yj2QZxxz7crt5zO5/G8eczThvVL4g1/xiUZZU/sndp43KZ4WeNW7DFmT+81JRf8YAXzu645BR+bxz2cZtVIuqZRyTl51nHAOUBpNFAADgt8gseo41iwAAAHCLySIAAPBjBbJ5+ZDMlpOtW7dO/fv3V0xMjGw2mz766CO3ZR999FHZbDZNmTKl1PUvWrRINptNd9xxh8v5pKQktW/fXuHh4apTp47uuOMO7d2716jvEpNFAAAAnzpz5oxat26tadOmFVvuo48+0qZNmxQTE1Pqug8dOqSxY8eqW7duhb5bu3atRo4cqY0bN2r16tXKy8tTnz59dObMGaP+s2YRAAD4LV9u95eZmely3uFwyOFwFCqfkJCghISEYus8cuSIRo0apZUrV6pfv36l6kd+fr4GDhyoZ599Vl988YVOnjzp8v2KFStcPs+aNUt16tRRcnKyunfvXqo2JDKLAADAj9ksyyeHJMXGxioyMtJ5JCUllamPBQUFGjRokJ566im1bNmy1HHPPfecateurQcffLBU5U+dOiVJqlmzplH/yCwCAACUQVpamiIiIpyfi8oqlsZLL72kwMBAPf7446WO+fLLLzVz5kxt3769VOUty9KYMWPUtWtXtWrVyqh/TBYBAIDf8uWrcyIiIlwmi2WRnJysN954Q1u3bpXNVrr312ZlZen3v/+9ZsyYoSuvvLJUMaNGjdKOHTu0fv164z4yWQQAALhMvvjiCx07dkwNGjRwnsvPz9cf//hHTZkyRQcPHiwU8/333+vgwYPq37+/81xBwYUntAMDA7V37141adLE+d3o0aO1bNkyrVu3TvXr1zfuI5NFAADgty6sMTTfOa2kOr1l0KBB6t27t8u5vn37atCgQRo2bFiRMS1atNDOnTtdzk2YMEFZWVl64403FBsbK+nCrefRo0dryZIlWrNmjRo1alSmPjJZBAAA8KHTp09r//79zs8pKSnavn27atasqQYNGqhWLdftHYOCghQVFaXmzZs7zw0ePFj16tVTUlKSQkJCCq07rFGjhiS5nB85cqQWLFigpUuXKjw8XBkZGZKkyMhIhYaGlrr/TBY9VKZ9nsuwp3BANf94cP3MD2b7L0vSgZ8PGMdkH801jikPZfm7NxVQ+t9/J6ss/SrD3tABwQFG5cuy1+35k2bvD5Ok8AZ1jWPsQWaXz74f9zVuY1y7zsYx3ZY+ZVQ+IMR8QX5gPfPbWHkZ6cYxpzPM9jkPDDH7+ZKks8fN91KvXjfMOAaXT0XY7m/Lli3q1auX8/OYMWMkSUOGDNHs2bNLVUdqaqrsdrO5wPTp0yVJPXv2dDk/a9YsDR06tNT1MFkEAADwoZ49e8oyuHVd1DrFNWvWFBtT1KTTpM3iGE1RExMTZbPZXI6oqKhSxX755ZcKDAzUddddV5Z+AgAAGLOpQDbLy4fhdn+VnXFmsWXLlvr000+dnwMCSk77nzp1SoMHD9ZNN92ko0ePmjYJAACAy8R4shgYGFjqbOJFjz76qAYMGKCAgIBiN88GAADwpoqwZrGyM35qYt++fYqJiVGjRo1033336cCB4h8+mDVrlr7//ntNnDix1G1kZ2crMzPT5QAAADDl9VvQ/zuqEqPJYocOHTR37lytXLlSM2bMUEZGhjp37qwTJ04UWX7fvn16+umnNX/+fAUGlj6JmZSU5LLX4sX3BQEAAKB8GU0WExISdNdddyk+Pl69e/fWJ598IkmaM2dOobL5+fkaMGCAnn32WTVr1syoU+PGjdOpU6ecR1pamlE8AACA9MttaG8fVYlHr84JCwtTfHy89u3bV+i7rKwsbdmyRdu2bdOoUaMkXdiKxrIsBQYGatWqVbrxxhuLrNfhcJR5M24AAAB4j0eTxezsbO3Zs0fdunUr9F1EREShrWjefPNNffbZZ/rnP/9Z5i1nAAAASuvCdn9efsDFy/VVdEaTxbFjx6p///5q0KCBjh07pkmTJikzM1NDhgyRdOH28ZEjRzR37lzZ7fZCW9HUqVOnyC1qAAAAUDEZTRYPHz6s+++/X8ePH1ft2rXVsWNHbdy4UXFxcZKk9PR0paam+qSjAAAApnzx9HJVexraaLK4aNGiYr8vaX/DxMREJSYmmjQJAACAy4i9oSuJ/LNm/4qxgmzGbdjyzGOsXLN1G7Yy9Cv/XNX6F5yncjPzy6WdgjzzNTtZh88YlT974pxxG9VqhRrHRMRmGceE3/5bo/JT+8cbt3HNlleMY76a+h+j8sERQcZtRMXXNY65omk945iaTWoYlc89l2fcxvlT541jstJPG5X/KeVb4zYc4cHGMXnny+d3v7LhpdyeY7IIAAD8FrehPWe8gwsAAACqDjKLAADAb/HqHM+RWQQAAIBbZBYBAIDfsqlANnl5zaKX66voyCwCAADALTKLAADAf1mSvL3GsGotWSSzCAAAAPfILAIAAL/FexY9x2QRAAD4LXZw8Ry3oQEAAOAWmUUAAOC/fHAbWtyGholbz5lvEF8WHwc2NypfkFuGFHkZYuxBNvN2UOGU199jXma+T8tLkiM82Djm3IlM45icefONyjeqv8q4DSsmyjim9jU1jcqf+/mccRsBweb/6QhtUM84psaJU0blj3931LiNsgiJdBiVDy7Dz2RZZGfllEs7qHqYLAIAAP9lWT54dQ5rFgEAAABJZBYBAIAf49U5niOzCAAAALfILAIAAL9lsyzZvLzG0Nv1VXRMFgEAgP+yCrz/qhtuQwMAAAAXkFkEAAB+iwdcPEdmEQAAAG6RWQQAAH7LJks2efkBFy/XV9GRWQQAAPChdevWqX///oqJiZHNZtNHH33k8v3ixYvVt29fXXnllbLZbNq+fXuJdc6ePVs2m63Qcf78+SLLJyUlyWaz6cknnzTuP5NFAADgvy4+De3tw8CZM2fUunVrTZs2ze33Xbp00YsvvmhUb0REhNLT012OkJCQQuU2b96st99+W9dee61R/RdxG7qSuC1vr1H5jwOb+6gnnsk/W7UWBfsze6DN520U5Jnf6jn57WnjmKh44xBUQAV5+cYxIZGF/8NakvCoCKPyWRmZxm2cPX7WOCbnpzzjmDVXtzYq33PPN8ZtQEpISFBCQoLb7wcNGiRJOnjwoFG9NptNUVFRxZY5ffq0Bg4cqBkzZmjSpElG9V9EZhEAAPitiy/l9vYhSZmZmS5HdnZ2uY7t9OnTiouLU/369XXbbbdp27ZthcqMHDlS/fr1U+/evcvcDpNFAADgvyzLB7ehL0wWY2NjFRkZ6TySkpLKbVgtWrTQ7NmztWzZMi1cuFAhISHq0qWL9u3b5yyzaNEibd261eN+cRsaAACgDNLS0hQR8cuyBIfDUW5td+zYUR07dnR+7tKli66//nr97W9/09SpU5WWlqYnnnhCq1atKnIdowkmiwAAwH9ZljMT6NU6deEBk19PFi8nu92u9u3bOzOLycnJOnbsmNq2bessk5+fr3Xr1mnatGnKzs5WQEBAqepmsggAAFDJWZal7du3Kz7+whN7N910k3bu3OlSZtiwYWrRooX+/Oc/l3qiKDFZBAAAfswmH2z3J7P6Tp8+rf379zs/p6SkaPv27apZs6YaNGign376Sampqfrhhx8kSXv3XngDSlRUlPNp58GDB6tevXrO9YfPPvusOnbsqKZNmyozM1NTp07V9u3b9fe//12SFB4erlatWrn0IywsTLVq1Sp0viRMFgEAAHxoy5Yt6tWrl/PzmDFjJElDhgxxPqQybNgw5/f33XefJGnixIlKTEyUJKWmpspu/+W55JMnT+qRRx5RRkaGIiMj1aZNG61bt0433HCD1/vPZBEAAPgvH65ZLK2ePXvKKiZm6NChGjp0aLF1rFmzxuXz66+/rtdff92oH5fWUVq8OgcAAABukVkEAAB+y2b5YM2il+ur6JgsAgAA/1WGvZxLVWcVwmQRTgHVzFclmO4PHBBq3ITyz5n/Uhbkenl9ShHK8udVFpbhWMpj7P5m38f7Sy50iYBQs7//+h3M96yuH13XOKbpwFuMyuceO2bcxk+7U4xjzh/JMI5xRFY3jgHgfUwWAQCA3/r1Xs7erLMq4QEXAAAAuEVmEQAA+K+CgguHt+usQsgsAgAAwC0yiwAAwH9VgJdyV3ZkFgEAAOAWmUUAAOC/eM+ix5gsAgAAv8WrczzHbWgAAAC4RWYRAAD4L25De8wos5iYmCibzeZyREVFuS2/ePFi3Xzzzapdu7YiIiLUqVMnrVy50uNOAwAAoHwY34Zu2bKl0tPTncfOnTvdll23bp1uvvlmLV++XMnJyerVq5f69++vbdu2edRpAACAUrGsX7KLXjuq1ppF49vQgYGBxWYTf23KlCkun1944QUtXbpU//rXv9SmTRu3cdnZ2crOznZ+zszMNO1mlXdb3l7jmM+vutY4xhZkMypv5Zr/guWfM0/3m/arLPIy841jCvL85wJTlr8XUwVl+Hkpi4BQ8+XbVzSJMCpf6+pY4zYCrqxjHGNVq25UPu/gIeM2fjrwo3HM0f/+YByTn2P2M3Y247xxG2W5VliGu3dkZ+UYt2EPMv+ZDI+rZh4TZfbzgqrJ+Kdx3759iomJUaNGjXTffffpwIEDpY4tKChQVlaWatasWWy5pKQkRUZGOo/YWPOLLAAAwMWnob19VCVGk8UOHTpo7ty5WrlypWbMmKGMjAx17txZJ06cKFX8q6++qjNnzuiee+4ptty4ceN06tQp55GWlmbSTQAAAHiJ0W3ohIQE5/+Pj49Xp06d1KRJE82ZM0djxowpNnbhwoVKTEzU0qVLVadO8bdWHA6HHA6HSdcAAAAKKyi4cHi7zirEo1fnhIWFKT4+Xvv27Su23Pvvv68HH3xQH3zwgXr37u1JkwAAAKXH3tAe8+il3NnZ2dqzZ4+io6Pdllm4cKGGDh2qBQsWqF+/fp40BwAAgHJmNFkcO3as1q5dq5SUFG3atEl33323MjMzNWTIEEkX1hoOHjzYWX7hwoUaPHiwXn31VXXs2FEZGRnKyMjQqVOnvDsKAACAonj9tTk+eMl3BWc0WTx8+LDuv/9+NW/eXHfeeaeCg4O1ceNGxcXFSZLS09OVmprqLP+Pf/xDeXl5GjlypKKjo53HE0884d1RAAAAwCeM1iwuWrSo2O9nz57t8nnNmjWm/QEAAPAe1ix6zKM1iwAAAPBvHj0NDQAAUKFZPnh1DmsWAQAAgAvILAIAAP/li6eXq1hmkckinHrt32Eck/rYXUblz588Y97GusPGMWVhD7QZla9WP8S8jQCzNiSpIN9sIXX2iRzjNnJ+yjOOKYuCXN8vCg+oZn7DpOtf7zOOsYdHGpXPy0g3buP46jXGMT9+m2FUPuuH08ZtnEvPNo4pyDP/u7fK4eclMCLAOOZ0xlmj8mG1Q43biGnfyDgmKMy8nfzz5tcLVD1MFgEAgP/iaWiPMVkEAAD+i72hPcYDLgAAAHCLzCIAAPBf3Ib2GJlFAAAAuMVkEQAA+C/L+uX1OV47zDKLeXl5mjBhgho1aqTQ0FA1btxYzz33nApKWPuYnZ2t8ePHKy4uTg6HQ02aNNG7777r/H727Nmy2WyFjvPnz5fpj8odbkMDAAD40EsvvaS33npLc+bMUcuWLbVlyxYNGzZMkZGReuKJJ9zG3XPPPTp69Khmzpypq666SseOHVNenuurziIiIrR3716XcyEh5q92Kw6TRQAA4L8KrAuHt+s0sGHDBt1+++3q16+fJKlhw4ZauHChtmzZ4jZmxYoVWrt2rQ4cOKCaNWs64y5ls9kUFRVl1B9T3IYGAAAog8zMTJcjO7voF9Z37dpV//nPf/Tdd99Jkr755hutX79et956q9u6ly1bpnbt2unll19WvXr11KxZM40dO1bnzp1zKXf69GnFxcWpfv36uu2227Rt2zbvDfB/yCwCAAD/5cPt/mJjY11OT5w4UYmJiYWK//nPf9apU6fUokULBQQEKD8/X5MnT9b999/vtokDBw5o/fr1CgkJ0ZIlS3T8+HGNGDFCP/30k3PdYosWLTR79mzFx8crMzNTb7zxhrp06aJvvvlGTZs29dpwmSwCAAD/5cOXcqelpSkiIsJ52uFwFFn8/fff17x587RgwQK1bNlS27dv15NPPqmYmBgNGTLETRMFstlsmj9/viIjL2wv+tprr+nuu+/W3//+d4WGhqpjx47q2LGjM6ZLly66/vrr9be//U1Tp0711miZLAIAAJRFRESEy2TRnaeeekpPP/207rvvwj708fHxOnTokJKSktxOFqOjo1WvXj3nRFGSrr76almWpcOHDxeZObTb7Wrfvr327dtXxhEVjckiKryaLSJLLnSJ/Fzzf0Xa7Taj8gEO81+foNAgn8fYDMchSTlncoxjTh/NMo45ufe0UfmAUPNl1XE9Y0sudIlF9ScYx7SN/dGofOzuvxi3cWj9AeOYaldWM44pD/lnK+b2aGX5GTMVVM38994eEOCDnhR25ujP5dLOZVUBXsp99uxZ2e2uP2sBAQHFvjqnS5cu+uCDD3T69GlVr15dkvTdd9/Jbrerfv36brplafv27YqPjzfqX0l4wAUAAMCH+vfvr8mTJ+uTTz7RwYMHtWTJEr322mv67W9/6ywzbtw4DR482Pl5wIABqlWrloYNG6bdu3dr3bp1euqpp/TAAw8oNDRUkvTss89q5cqVOnDggLZv364HH3xQ27dv1/Dhw73afzKLAADAf/nwAZfS+tvf/qZnnnlGI0aM0LFjxxQTE6NHH31Uf/nLL3cc0tPTlZqa6vxcvXp1rV69WqNHj1a7du1Uq1Yt3XPPPZo0aZKzzMmTJ/XII48oIyNDkZGRatOmjdatW6cbbrjB8zH+CpNFAAAAHwoPD9eUKVM0ZcoUt2Vmz55d6FyLFi20evVqtzGvv/66Xn/9dS/0sHhMFgEAgP+qAC/lruxYswgAAAC3yCwCAAC/ZVkFsry8ZtHb9VV0TBYBAID/snxwG9rbr+Kp4LgNDQAAALfILAIAAP9VAV6dU9mRWQQAAIBbZBYBAIDfsgoKZBWzrV5Z66xKmCzCI1cMe9CovH3HBuM2sr47aBxz/mfzfYstwwXQQdWCjdsICDbfIzbAYRYTFB5m3MYPm/Yax1RUdZ983DzI/Melwkpfb7ZndUFu1Vqo789+3HnQOOanA2Z7Qzc2bgH+gMkiAADwX5bl/aeXeRoaAAAAuIDMIgAA8F8FluTtNYZVbLs/JosAAMB/cRvaY9yGBgAAgFtkFgEAgN/i1TmeI7MIAAAAt8gsAgAA/1Vgef+BlCr2gAuZRQAAALhFZhEAAPgtyyqQZXl5zaKX66voyCwCAADALTKLAADAf7Fm0WNMFuG0fneWcUzsFWbbyteJO2bcRvWcHOOY4MhTxjFWOfzy55w0/zMuDw1ubGMck5t12jgmve4+o/LZWeeN2yiL6+sfN45pvucDo/LJ/9xs3Mapb88YxxTkVsz/iNmDbJe7C0XKP2d+OzEozKz8tcvXGreR8uDtxjFwwyq4cHi7ziqE29AAAABwi8wiAADwW1aB5fU7R+VxJ6oiIbMIAAAAt8gsAgAA/2UVSN7eno81iwAAAMAFRpPFxMRE2Ww2lyMqKqrYmLVr16pt27YKCQlR48aN9dZbb3nUYQAAgNKyLMsnR1VifBu6ZcuW+vTTT52fAwIC3JZNSUnRrbfeqocffljz5s3Tl19+qREjRqh27dq66667ytZjAAAAlBvjyWJgYGCJ2cSL3nrrLTVo0EBTpkyRJF199dXasmWLXnnlFSaLAADA9wp8sGbR2/VVcMZrFvft26eYmBg1atRI9913nw4cOOC27IYNG9SnTx+Xc3379tWWLVuUm5vrNi47O1uZmZkuBwAAgKmLr87x9lGVGE0WO3TooLlz52rlypWaMWOGMjIy1LlzZ504caLI8hkZGapbt67Lubp16yovL0/Hj7vfMSEpKUmRkZHOIzY21qSbAAAA8BKjyWJCQoLuuusuxcfHq3fv3vrkk08kSXPmzHEbY7O5bvF0cVHoped/bdy4cTp16pTzSEtLM+kmAADABZb1y5Z/XjuqVmbRo/cshoWFKT4+Xvv2Fb3fa1RUlDIyMlzOHTt2TIGBgapVq5bbeh0OhxwOhyddAwAAgBd4NFnMzs7Wnj171K1btyK/79Spk/71r3+5nFu1apXatWunoKAgT5qGDzQv2GUcE3LiR6Py1uGDxm34k6DwasYxBTnu1/cWJT87x+dtSFJm6jHjmB/3ul9+UpT67eobtxGU8l/jmKvqZxvHnNu926z8MfM2CnJ9n70IinD/Rgt3whuZ/xyHR1c3jsk8kmVW/vuzxm1YZfgzPn/c/HfMVNrGVOOYnJPmv8e5WfnGMZUN2/15zug29NixY7V27VqlpKRo06ZNuvvuu5WZmakhQ4ZIunD7ePDgwc7yw4cP16FDhzRmzBjt2bNH7777rmbOnKmxY8d6dxQAAADwCaPJ4uHDh3X//ferefPmuvPOOxUcHKyNGzcqLi5OkpSenq7U1F/+NdSoUSMtX75ca9as0XXXXafnn39eU6dO5bU5AACgXFgFBT45TJhuajJ06NBC5W02m1q2bOks07NnzyLL9OvXr8x/Vu4Y3YZetGhRsd/Pnj270LkePXpo69atRp0CAADwJyabmrzxxht68cUXnZ/z8vLUunVr/e53v3OeW7x4sXJyflkSceLEiUJlvMWjNYsAAAAVWoF14fB2nVKh90AX94CuyaYmF18deNFHH32kn3/+WcOGDXOeq1mzpkvMokWLVK1aNZ9MFo1fyg0AAFBZWFaBTw5Jio2NdXkvdFJSktt+mGxqcqmZM2eqd+/ezmV/7srcd999CgsLK/0fTimRWQQAACiDtLQ0RUREOD+7yype3NSkWbNmOnr0qCZNmqTOnTtr165dxb5KULrwPMi///1vLViwwG2Zr7/+Wv/97381c+bMsg2kBEwWAQCA//LF9nz/qy8iIsJlsuhOQkKC8//Hx8erU6dOatKkiebMmaMxY8YUGzt79mzVqFFDd9xxh9syM2fOVKtWrXTDDTeUrv+GuA0NAABQjkra1OQiy7L07rvvatCgQQoODi6yzNmzZ7Vo0SI99NBDvuiqJCaLAADAn1kFUoGXD8vs1TmXuripSXR0dLHl1q5dq/379+vBBx90W+b//b//p+zsbP3+97/3qE/FYbIIAADgQ6abmlw0c+ZMdejQQa1atXJb98yZM3XHHXeUuPbRE6xZBAAAfqsibPd3cVOT48ePq3bt2urYsWOxm5pI0qlTp/Thhx/qjTfecFvvd999p/Xr12vVqlXmgzDAZBEAAMCHyrKpSWRkpM6eLX6/82bNmsmyfL9PNZNFOFX/5nPjmLwm7lPjXlPMW+7dCa55hXGMLcj3vw65P500jjl35pxR+fM/nzZv4yfzmGN7fjSOOXsw26j8wcxDxm1kZSwzjql1VR3jmFNpJ4zK55/zbI1TadmDbEblg2ua/9xH1As3jilLZif3fJ5ZG7nmbeSXIUZmv5Jl0n3XNt83Iml5aItyaedyKsv2fKWpsyphsggAAPyWZVlez76VRzavIuEBFwAAALhFZhEAAPivi6+78XadVQiZRQAAALhFZhEAAPitivDqnMqOzCIAAADcIrMIAAD8llXg/Uygh7v9VTpkFgEAAOAWmUUAAOC3eCm358gsAgAAwC0yiwAAwG/xNLTnKtVkcXv/m1U9sPRdrtm4tlH94Q3qmnZJofWjjWPKotqwxHJpx1TQ8SNG5a3QasZtBF5pvm+vFeQwjpHBz5Yk6aTZ3sCSpDLsDZ1/PseofFn2eT6Z+rNxTFnYDPctBvzBx4HNy6Wd2/L2Gsfceu5bH/SkYuE2tOe4DQ0AAAC3KlVmEQAAwIRl+eA2tFW1bkOTWQQAAIBbZBYBAID/sqwLh7frrELILAIAAMAtMosAAMBv8TS058gsAgAAwC0yiwAAwG/xUm7PMVkEAAB+i9vQnuM2NAAAANwiswgAAPwWt6E9R2YRAAAAblWqzOKJ3ad03h5Q6vLnfjpvVH+1gydMu6TmA6KNY8rixPOPGpU/m2E+lrL8S+mKlk2Mygc1bGzchhUcbByTU6u+ccyxGs2Mytc7ssm4jZyt3xjHVFSndp/xeRv5Z83XBWVkHTeOObH7Z+OY/HNmfTMtX1a3nvu2XNoxtapuS+OYvMx8o/IFuVUr24PSIbPoOTKLAAAAcKtSZRYBAABM8DS058gsAgAAwC0yiwAAwG+xZtFzTBYBAIDfsgosFeQzWfQEt6EBAADgFplFAADgty7chvb2Ay5kFgEAAABJZBYBAIAf4wEXz5FZBAAA8KGkpCS1b99e4eHhqlOnju644w7t3bu3xLj58+erdevWqlatmqKjozVs2DCdOOG6Q9uUKVPUvHlzhYaGKjY2Vn/4wx90/rzZDnYlYbIIAAD81sXMorcPE2vXrtXIkSO1ceNGrV69Wnl5eerTp4/OnHG/ber69es1ePBgPfjgg9q1a5c++OADbd68WQ899JCzzPz58/X0009r4sSJ2rNnj2bOnKn3339f48aNK/OfV1G4DQ0AAFAGmZmZLp8dDoccDkehcitWrHD5PGvWLNWpU0fJycnq3r17kXVv3LhRDRs21OOPPy5JatSokR599FG9/PLLzjIbNmxQly5dNGDAAElSw4YNdf/99+vrr7/2aFyXqlSTxZu+/1oRERGlLv9lm7Y+7M0F+z/43DjmzPGzxjHZWTlG5a1c8/UUAY4A45is9JNG5ete95NxG4HVQo1jbDfVN46pqE6lmf2ZZWw/ZtxGzk95xjEVVf5Z86cey/L7cuu5b41jqrKcE/7zM1YeAqpx489bfLlmMTY21uX8xIkTlZiYWGL8qVOnJEk1a9Z0W6Zz584aP368li9froSEBB07dkz//Oc/1a9fP2eZrl27at68efr66691ww036MCBA1q+fLmGDBlShlG5V6kmiwAAACZ8uTd0WlqaSxKrqKxioVjL0pgxY9S1a1e1atXKbbnOnTtr/vz5uvfee3X+/Hnl5eXpN7/5jf72t785y9x333368ccf1bVrV1mWpby8PD322GN6+umnPRhdYR790yUpKUk2m01PPvlkseVKs0ATAACgMomIiHA5SjNZHDVqlHbs2KGFCxcWW2737t16/PHH9Ze//EXJyclasWKFUlJSNHz4cGeZNWvWaPLkyXrzzTe1detWLV68WB9//LGef/55j8f2a2XOLG7evFlvv/22rr322mLLXVyg+frrr6t///46cuSIhg8froceekhLliwpa/MAAAAlqkivzhk9erSWLVumdevWqX794pdLJSUlqUuXLnrqqackSddee63CwsLUrVs3TZo0SdHR0XrmmWc0aNAg50Mv8fHxOnPmjB555BGNHz9edrt3ljOUqZbTp09r4MCBmjFjhq644opiy/56gWajRo3UtWtXPfroo9qyZYvbmOzsbGVmZrocAAAAlZFlWRo1apQWL16szz77TI0aNSox5uzZs4UmewEBAc76iitjWZazjDeUabI4cuRI9evXT7179y6xbOfOnXX48GEtX75clmXp6NGjhRZoXiopKUmRkZHO49IFpAAAAKVRkG/55DAxcuRIzZs3TwsWLFB4eLgyMjKUkZGhc+fOOcuMGzdOgwcPdn7u37+/Fi9erOnTp+vAgQP68ssv9fjjj+uGG25QTEyMs8z06dO1aNEipaSkaPXq1XrmmWf0m9/8xjmx9Abj29CLFi3S1q1btXnz5lKVL80CzUuNGzdOY8aMcX7OzMxkwggAACql6dOnS5J69uzpcn7WrFkaOnSoJCk9PV2pqanO74YOHaqsrCxNmzZNf/zjH1WjRg3deOONeumll5xlJkyYIJvNpgkTJujIkSOqXbu2+vfvr8mTJ3u1/0aTxbS0ND3xxBNatWqVQkJCShXz6wWaffv2VXp6up566ikNHz5cM2fOLDLG3XuKAAAATFSENYuluSU8e/bsQudGjx6t0aNHu40JDAzUxIkTNXHiRKP+mDKaLCYnJ+vYsWNq2/aX9xfm5+dr3bp1mjZtmrKzswulPUuzQBMAAAAVk9Fk8aabbtLOnTtdzg0bNkwtWrTQn//85yLvj589e1aBga7NXLpAEwAAwBcsywfvWbS8W19FZzRZDA8PL/QCybCwMNWqVct5fty4cTpy5Ijmzp0r6cLiy4cffljTp0933oZ+8sknXRZoAgAA+EJFuA1d2Xl9B5eyLNAEAABAxWSzKsG94MzMTEVGRurUqVNGe0PD93bdcZNR+brXlfxuqUuVZW/okBYtjGPya9Y1Kp+z3nxf8K1vrTOOMd23OSFzj3Eb8B/LQ81+9gMjzF+vYQ+0GcfkZuUbx5ju2V1Qhj2+y8IeZDb+svwZB4WbxxTkmY//poM7Sy7kgcv53++Lba/t3kHVA72bGzudl6ce6zZVmXkJO5UDAADALa/fhgYAAKgoWLPoOTKLAAAAcIvMIgAA8FtWgQ9enePl+io6MosAAABwi8wiAADwW1a+Jcvm5TWL+VVrzSKTRQAA4LesfKnA65NFr1ZX4XEbGgAAAG6RWQQAAH7Lsnzw6pyKv5+JV5FZBAAAgFtkFgEAgN8qyLdUIO9mAguq2AMuZBYBAADgFplFeKTlR/+53F24bMK63m0cc9PTPugIgAqtz9Fdl7sLVZqVXyBLNq/XWZWQWQQAAIBbZBYBAIDfsgp88FJuLz9dXdExWQQAAH6LB1w8x21oAAAAuEVmEQAA+C0r35Ll5cxiVdsbmswiAAAA3CKzCAAA/FZBvqUCL2/PV1DFHnAhswgAAAC3yCwCAAC/ZeVasuy8OscTZBYBAADgFplFAADgtwryLBV4ObNY1dYsVorJovW/hamZmZmXuScAULGdtfKNygeUYYtbe4H5Prt5hv2Sfrn2l5a3H2Jwx26Zjb8q/7fr4thN/y69idvQnqsUk8WsrCxJUmxs7GXuCQD4mezL3YFKyPTPLDLSJ92oTLKyshTJn0OlVSkmizExMUpLS1N4eLhsNvN/0cXGxiotLU0RERE+6mHFUZXGW5XGKlWt8ValsUqM159VpbFKhcdrWZaysrIUExNz2fpUkG95/bZxeWWxK4pKMVm02+2qX7++R3VERERUiV/Ui6rSeKvSWKWqNd6qNFaJ8fqzqjRWyXW8ZBQrv0oxWQQAACgLK7dAluFdyRLrtMqw2LcS49U5AAAAcMvvJ4sOh0MTJ06Uw+G43F0pF1VpvFVprFLVGm9VGqvEeP1ZVRqrVDHHa+VZF16f48XDyivbmsU333xTjRo1UkhIiNq2basvvvii2PJr165V27ZtFRISosaNG+utt94qVObDDz/UNddcI4fDoWuuuUZLliwpU9+KY7Mu5/PsAAAAPpCZmanIyEh9EHKVqtkCvFr3WStfvzu/X6dOnSr1WtT3339fgwYN0ptvvqkuXbroH//4h9555x3t3r1bDRo0KFQ+JSVFrVq10sMPP6xHH31UX375pUaMGKGFCxfqrrvukiRt2LBB3bp10/PPP6/f/va3WrJkif7yl79o/fr16tChg9fGy2QRAAD4nYuTxf8X0MQnk8V78r83mix26NBB119/vaZPn+48d/XVV+uOO+5QUlJSofJ//vOftWzZMu3Zs8d5bvjw4frmm2+0YcMGSdK9996rzMxM/fvf/3aWueWWW3TFFVdo4cKFZR1eIX5/GxoAAFRdZ1Wgs1a+dw9deMAlMzPT5cjOLvolnDk5OUpOTlafPn1czvfp00dfffVVkTEbNmwoVL5v377asmWLcnNziy3jrs6y4mloAADgd4KDgxUVFaWhGSk+qb969eqFNguZOHGiEhMTC5U9fvy48vPzVbduXZfzdevWVUZGRpH1Z2RkFFk+Ly9Px48fV3R0tNsy7uosKyaLAADA74SEhCglJUU5OTk+qd+yrEIbhZT0YM+l5Yuqo6Tyl543rbMsmCwCAAC/FBISopCQkMvdDV155ZUKCAgolPE7duxYoczgRVFRUUWWDwwMVK1atYot467OsmLNIgAAgA8FBwerbdu2Wr16tcv51atXq3PnzkXGdOrUqVD5VatWqV27dgoKCiq2jLs6y4rMIgAAgI+NGTNGgwYNUrt27dSpUye9/fbbSk1N1fDhwyVJ48aN05EjRzR37lxJF558njZtmsaMGaOHH35YGzZs0MyZM12ecn7iiSfUvXt3vfTSS7r99tu1dOlSffrpp1q/fr1X+85kEQAAwMfuvfdenThxQs8995zS09PVqlUrLV++XHFxcZKk9PR0paamOss3atRIy5cv1x/+8Af9/e9/V0xMjKZOnep8x6Ikde7cWYsWLdKECRP0zDPPqEmTJnr//fe9+o5FifcsAgAAoBisWQQAAIBbTBYBAADgFpNFAAAAuMVkEQAAAG4xWQQAAIBbTBYBAADgFpNFAAAAuMVkEQAAAG4xWQQAAIBbTBYBAADgFpNFAAAAuPX/Ae//qd7nNrKhAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(
, )" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 18 + }, + { + "cell_type": "code", + "source": [ + "rhine_meteo_data = meteo_data_r.crop(dataset)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:45.192987Z", + "start_time": "2024-12-06T22:27:45.162486Z" + } + }, + "outputs": [], + "execution_count": 19 + }, + { + "cell_type": "code", + "source": [ + "rhine_meteo_data.plot(band=0)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:46.864993Z", + "start_time": "2024-12-06T22:27:46.668549Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAKqCAYAAAAe3Ns5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaTUlEQVR4nO3deXgUVdr38V8ngU4MSSRsWQghRFkERASEsIkji1EZUFxAh02d0RFQ5EEHBIfAABEVB1dmBsMuhEdZZBRZXAggoIJEUBkWARMggQE1ISANSer9g5d+bLN1Ux06TX0/11XXTFefOnUfSs3NfU5O2QzDMAQAAIBLEuDrAAAAAPwZyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAlGHDhg3q3bu3YmJiZLPZtGLFCo+uT0lJkc1mK3GEhoZWTsDwCZIpAADKcPr0abVq1Uqvv/76JV0/evRo5eTkuBzXXXed7r33Xi9HCl8imQIAoAzJycmaPHmy7r777lK/P3funJ555hnFxsYqNDRU7du31/r1653f16hRQ1FRUc7j2LFj+u677/Twww9fphHgcgjydQAAAPiroUOH6tChQ0pPT1dMTIyWL1+u2267Tbt27dK1115bov1bb72lxo0bq0uXLj6IFpWFyhQAAJfg+++/1+LFi/XOO++oS5cuSkxM1OjRo9W5c2fNmTOnRHuHw6G3336bqtQViMoUAACX4KuvvpJhGGrcuLHLeYfDoVq1apVov2zZMp06dUqDBg26XCHiMiGZAgDgEhQXFyswMFDbt29XYGCgy3c1atQo0f6tt97SnXfeqaioqMsVIi4TkikAAC5B69atVVRUpOPHj1e4BurgwYP69NNPtXLlyssUHS4nkikAAMpQUFCg/fv3Oz8fPHhQmZmZioyMVOPGjfXggw9q0KBBmj59ulq3bq0TJ07ok08+UcuWLXX77bc7r5s9e7aio6OVnJzsi2GgktkMwzB8HQQAAFXR+vXrdcstt5Q4P3jwYM2dO1fnz5/X5MmTNX/+fB05ckS1atVSUlKSJk6cqJYtW0q6MB0YHx+vQYMGacqUKZd7CLgMSKYAAABMYGsEAAAAE0imAAAATCCZAgAAMIFkCgAAwASSKQAAABNIpgAAAEwgmQIAADDhsidTM2fO1PXXX6/w8HCFh4crKSlJH374YZntly1bph49eqhOnTrO9mvWrHFpM2vWLHXp0kU1a9ZUzZo11b17d33xxRcubVJSUmSz2VwOs+9HqoyxLFu2TG3bttXVV1+t0NBQ3XDDDVqwYEGJvt58800lJCQoODhYbdq00caNG02NxZfj8Zdn82vp6emy2Wzq27dvie/85dm4Mx5/eTZz584tEafNZtPZs2dd2vnLs3FnPP7ybCTp559/1rBhwxQdHa3g4GA1a9ZMq1atcmnjL8/GnfFUxrNB1XbZk6n69evr+eef17Zt27Rt2zb97ne/U58+ffTtt9+W2n7Dhg3q0aOHVq1ape3bt+uWW25R7969tWPHDmeb9evXa8CAAfr000+1ZcsWNWjQQD179tSRI0dc+mrevLlycnKcx65du6rcWCIjIzVu3Dht2bJFO3fu1NChQzV06FCXf6GXLFmikSNHaty4cdqxY4e6dOmi5ORkZWVl+eV4JP94Nhf98MMPGj16dKnv4vKnZ+POeCT/eTbh4eEucebk5Cg4ONj5vb89m4rGI/nHszl37px69OihQ4cO6d1339WePXs0a9YsxcbGOtv407NxZzyS958NqjijCqhZs6bx1ltvud3+uuuuMyZOnFjm94WFhUZYWJgxb94857kJEyYYrVq1MhOmW7w9FsMwjNatWxvjx493fr7pppuMxx57zKVN06ZNjTFjxngWrBsux3j86dkUFhYanTp1Mt566y1j8ODBRp8+fVy+97dnU9F4/OXZzJkzx4iIiCj3Gn96Nu6Mx1+ezcyZM41GjRoZ586dK/Maf3o27ozncj0bVB0+XTNVVFSk9PR0nT59WklJSW5dU1xcrFOnTikyMrLMNmfOnNH58+dLtNm3b59iYmKUkJCg/v3768CBA6bi/7XKGIthGPr444+1Z88ede3aVdKFvxVt375dPXv2dGnbs2dPbd682dwgfuVyjecif3k2kyZNUp06dfTwww+XuMYfn01547nIX55NQUGB4uPjVb9+fd15550lqgn+9mzKG89F/vBsVq5cqaSkJA0bNkz16tVTixYtNHXqVBUVFUnyv2dT0XguqsxngyrIFxnczp07jdDQUCMwMNCIiIgwPvjgA7evfeGFF4zIyEjj2LFjZbZ5/PHHjcTEROOXX35xnlu1apXx7rvvGjt37jTWrVtn3HzzzUa9evWMEydOVLmx/Pzzz0ZoaKgRFBRk2O12Iy0tzfndkSNHDEnGZ5995nLNlClTjMaNG5sai2Fc/vEYhv88m02bNhmxsbHGf//7X8MwjBKVHH97NhWNxzD859ls2bLFWLBggZGZmWls2LDB6NevnxESEmLs3bvXMAz/ezYVjccw/OfZNGnSxLDb7cZDDz1kbNu2zVi8eLERGRnprPb427OpaDyGUXnPBlWXT5Iph8Nh7Nu3z/jyyy+NMWPGGLVr1za+/fbbCq9btGiRcdVVVxnr1q0rs820adOMmjVrGl9//XW5fRUUFBj16tUzpk+f7nH8v1YZYykqKjL27dtn7Nixw3jppZeMiIgI49NPPzUM4//+w7N582aXayZPnmw0adLE1Fh8MZ7SVMVnk5+fbzRs2NBYtWqV81xZyZQ/PBt3xlOaqvhsSlNUVGS0atXKGDFihGEY/vVsSvPb8ZSmqj6ba6+91oiLizMKCwud56ZPn25ERUUZhuF/z6ai8ZTGW88GVVeVWDN16623Gn/605/KbZOenm6EhIQY77//fpltXnzxRSMiIsL48ssv3bpv9+7dS8zTm+Wtsfzaww8/bPTs2dMwjAv/YQgMDDSWLVvm0uaJJ54wunbtemlBl6Oyx1OWqvZsduzYYUgyAgMDnYfNZjNsNpsRGBho7N+/36+ejTvjKUtVezZleeSRR4zbbrvNMIwr49+bX4+nLFXx2XTt2tW49dZbXc6tWrXKkGQ4HA6/ezYVjacslfFsUHVUiX2mDMOQw+Eo8/vFixdryJAhWrRoke64445S27z44ov629/+ptWrV6tt27YV3tPhcGj37t2Kjo6+5LhL442xlNdn9erV1aZNG61bt86lzbp169SxY8dLD9yNe5fG7HhKUxWfTdOmTbVr1y5lZmY6j9///ve65ZZblJmZqbi4OL96Nu6MpzRV8dmU1V9mZqYzTn96NmX19+vxlKaqPptOnTpp//79Ki4udp7bu3evoqOjVb16db97NhWNpzSV9WxQhVzu7G3s2LHGhg0bjIMHDxo7d+40nn32WSMgIMBYu3atYRiGMWbMGGPgwIHO9osWLTKCgoKMN954w8jJyXEeP//8s7PNtGnTjOrVqxvvvvuuS5tTp0452/zP//yPsX79euPAgQPG1q1bjTvvvNMICwszDh06VKXGMnXqVGPt2rXG999/b+zevduYPn26ERQUZMyaNcvZJj093ahWrZqRlpZmfPfdd8bIkSON0NBQU2Px5Xj85dn8VmnTYv70bNwZj788m5SUFGP16tXG999/b+zYscMYOnSoERQUZHz++efONv70bNwZj788m6ysLKNGjRrG8OHDjT179hjvv/++UbduXWPy5MnONv70bNwZT2U8G1Rtlz2Zeuihh4z4+HijevXqRp06dYxbb73V+Q+2YVz4D/rNN9/s/HzzzTcbkko9li9fbhiGYcTHx5f6/YQJE5z93H///UZ0dLQRFBRkhIeHGzVq1DCqVatm1K9f35gyZYpPxzJ48GBnm3HjxhnXXHONERwcbNSsWdNISkoy0tPTS9z7jTfecN77xhtvNDIyMi5pDFVhPBefTbVq1YyYmBjj7rvvdmtNw+Uey2+VtcbIX56NO+Pxl2czcuRIo0GDBs4+e/bsWWINjmH4z7NxZzz+8mwMwzA2b95stG/f3rDb7UajRo2MKVOmuKw5Mgz/eTbujKcyng2qNpthGIaXi12V5sMPP9Rnn32mG2+8Uf369dPy5ctL3YG6PE888YTWrl2rF154QS1btlReXp5OnDih7t27V07QAADgiuZXydSv2Wy2EsnUuXPnNH78eL399tv6+eef1aJFC02bNk3dunWTJO3evVvXX3+9vvnmGzVp0sQ3gQMAgCtKlViA7i1Dhw7VZ599pvT0dO3cuVP33nuvbrvtNu3bt0+S9O9//1uNGjXS+++/r4SEBDVs2FCPPPKIfvzxRx9HDgAA/NUVk0x9//33Wrx4sd555x116dJFiYmJGj16tDp37qw5c+ZIkg4cOKAffvhB77zzjubPn6+5c+dq+/btuueee3wcPQAA8FdBvg7AW7766isZhqHGjRu7nHc4HKpVq5akC68GcDgcmj9/vrNdWlqa2rRpoz179jD1BwAAPHbFJFPFxcUKDAzU9u3bFRgY6PJdjRo1JEnR0dEKCgpySbiaNWsmScrKyiKZAgAAHrtikqnWrVurqKhIx48fV5cuXUpt06lTJxUWFur7779XYmKipAubrUlSfHz8ZYsVAABcOfxqzVRBQYEyMzP1xRdfSLrwVu7MzExlZWWpcePGevDBBzVo0CAtW7ZMBw8e1Jdffqlp06Zp1apVkqTu3bvrxhtv1EMPPaQdO3Zo+/btevTRR9WjR48S04OXk8PhUEpKSrm78vqTK2k8V9JYpCtrPFfSWKQrazxX0likK2888D6/2hph/fr1uuWWW0qcHzx4sObOnavz589r8uTJmj9/vo4cOaJatWopKSlJEydOVMuWLSVJR48e1YgRI7R27VqFhoYqOTlZ06dPV2Rk5OUejlN+fr4iIiKUl5en8PBwn8XhLVfSeK6ksUhX1niupLFIV9Z4rqSxSFfeeOB9fjXN161bNxmGUeY/2NWqVdPEiRM1ceLEMvuIiYnR0qVLL0e4AADAAvxqmg8AAKCq8YvKVHFxsY4ePaqwsDDZbDbl5+dLkvN//R3jqbqupLFIV9Z4rqSxSFfWeK6ksUiVOx7DMHTq1CnFxMQoIID6hr/yizVThw8fVlxcnK/DAACgUmRnZ6t+/fq+DgOXyC8qU2FhYZIu/MPmL4v/Vte80dchXNECqtl8HYJHeh7f7usQPLKxbUdfh+CRLts2+zoE4JLk5+crLi7O+XMO/skvkimb7cIPzvDwcL9Jpq6yBVbcCJcswOZfyZS//HN7UWigf/3z629/vsBv2fzsv2lwxQQtAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAlBvg7gSnVn4R5fh+CR94Oa+DoEj9iq2XwdgkfWRF7n6xA80uvH73wdAgD4DSpTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABggkfJVEpKimw2m8sRFRVVZvshQ4aUaG+z2dS8eXPTgQMAAFQFHlemmjdvrpycHOexa9euMtu+8sorLm2zs7MVGRmpe++911TQAAAAVUWQxxcEBZVbjfq1iIgIRUREOD+vWLFCP/30k4YOHerpbQEAAKokjytT+/btU0xMjBISEtS/f38dOHDA7WvT0tLUvXt3xcfHl9vO4XAoPz/f5QAAAKiKPEqm2rdvr/nz52vNmjWaNWuWcnNz1bFjR508ebLCa3NycvThhx/qkUceqbBtamqqs6oVERGhuLg4T8IEAAC4bGyGYRiXevHp06eVmJioZ555RqNGjSq3bWpqqqZPn66jR4+qevXq5bZ1OBxyOBzOz/n5+YqLi1NeXp7Cw8MvNVyU4/2gJr4OwSOBV/nXL6IGBNl8HYJHev34na9DACwhPz9fERER/Hzzcx6vmfq10NBQtWzZUvv27Su3nWEYmj17tgYOHFhhIiVJdrtddrvdTGgAAACXham/3jscDu3evVvR0dHltsvIyND+/fv18MMPm7kdAABAleNRMjV69GhlZGTo4MGD+vzzz3XPPfcoPz9fgwcPliSNHTtWgwYNKnFdWlqa2rdvrxYtWngnagAAgCrCo2m+w4cPa8CAATpx4oTq1KmjDh06aOvWrc7fzsvJyVFWVpbLNXl5eVq6dKleeeUV70UNAABQRZhagH65sECv8rEAvXKxAB1Aafj5dmXwr59IAAAAVQzJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAMCnZs6cqeuvv17h4eEKDw9XUlKSPvzwQ+f3y5YtU69evVS7dm3ZbDZlZmZW2Ge3bt1ks9lKHHfccYdLuzfffFMJCQkKDg5WmzZttHHjRo/jJ5kCAAA+Vb9+fT3//PPatm2btm3bpt/97nfq06ePvv32W0nS6dOn1alTJz3//PNu97ls2TLl5OQ4j2+++UaBgYG69957nW2WLFmikSNHaty4cdqxY4e6dOmi5OTkEhuQV4RNOyGJTTsrG5t2AigNP9/KFhkZqRdffNHlvb6HDh1SQkKCduzYoRtuuMGj/mbMmKG//vWvysnJUWhoqCSpffv2uvHGGzVz5kxnu2bNmqlv375KTU11u2+PXicDAACuHGfPntW5c+cqpW/DMGSzuf5F0m63y263l3tdUVGR3nnnHZ0+fVpJSUleiyctLU39+/d3JlLnzp3T9u3bNWbMGJd2PXv21ObNmz3qm2QKAAALOnv2rMKvjtV5x4+V0n+NGjVUUFDgcm7ChAlKSUkptf2uXbuUlJSks2fPqkaNGlq+fLmuu+46r8TyxRdf6JtvvlFaWprz3IkTJ1RUVKR69eq5tK1Xr55yc3M96p9kCgAACzp37pzOO35U21v/V4FBoV7tu6jwtLZ9fJ+ys7Ndpi/Lq0o1adJEmZmZ+vnnn7V06VINHjxYGRkZXkmo0tLS1KJFC910000lvvtt9ay0ilpFSKYAALCwoOphCqrm3WTKFnBhXevF385zR/Xq1XXNNddIktq2basvv/xSr7zyiv75z3+aiuXMmTNKT0/XpEmTXM7Xrl1bgYGBJapQx48fL1Gtqoh/reIFAACWYBiGHA6H6X7+93//Vw6HQ3/4wx9czlevXl1t2rTRunXrXM6vW7dOHTt29OgeVKYAALAwW4BNtgDv/saxp/09++yzSk5OVlxcnE6dOqX09HStX79eq1evliT9+OOPysrK0tGjRyVJe/bskSRFRUUpKipKkjRo0CDFxsaW+C28tLQ09e3bV7Vq1Spx31GjRmngwIFq27atkpKS9K9//UtZWVl67LHHPIqfZAoAAPjUsWPHNHDgQOXk5CgiIkLXX3+9Vq9erR49ekiSVq5cqaFDhzrb9+/fX5LrgvasrCwFBLhOuO3du1ebNm3S2rVrS73v/fffr5MnT2rSpEnKyclRixYttGrVKsXHx3sUP/tMQRL7TFU29pkCUBpf/ny7eO+Od671+pqpwvOntfn9npb5uU1lCgAAC6sK03z+zr/+eg8AAFDFUJkCAMDCbAEBzq0MvNmnlVhrtAAAAF5GZQqSpGrhgb4OwSNFvxT7OgSPVK9bzdcheGRzm7a+DsEjHbdv83UIgN8KCJACvLzGyWKFKSpTAAAAZlCZAgDAwmy2ANlsXl4z5eX+qjprjRYAAMDLqEwBAGBh7DNlHskUAAAWZrNVwtYITPMBAADAXVSmAACwMKb5zKMyBQAAYAKVKQAALCzAFqAAL69x8nZ/VZ21RgsAAOBlVKYAALCySlgzJdZMAQAAwF1UpgAAsDB+m888kikAACyMd/OZZ63RAgAAeBmVKQAALIxpPvOoTAEAAJhAZQoAAAsLCAhQgJdfdOzt/qo6a40WAADAy6hMAQBgYTabTTabl9dMebm/qo7KFAAAgAlUpgAAsDB+m888kikAACzMFuD95Mdie3YyzQcAAGAGlSkAACwsQAEK8HIpKcBitRprjRYAAMDLSKYAALCwiwvQvX14IjU1Ve3atVNYWJjq1q2rvn37as+ePS5tCgoKNHz4cNWvX18hISFq1qyZZs6cWWHfM2bMUJMmTRQSEqK4uDg99dRTOnv2bJlx2Gw2jRw50qP4meYDAAA+lZGRoWHDhqldu3YqLCzUuHHj1LNnT3333XcKDQ2VJD311FP69NNPtXDhQjVs2FBr167V448/rpiYGPXp06fUft9++22NGTNGs2fPVseOHbV3714NGTJEkvT3v//dpe2XX36pf/3rX7r++us9jp9kCgAAC6sKWyOsXr3a5fOcOXNUt25dbd++XV27dpUkbdmyRYMHD1a3bt0kSX/605/0z3/+U9u2bSszmdqyZYs6deqkBx54QJLUsGFDDRgwQF988YVLu4KCAj344IOaNWuWJk+e7FHsEtN8AACgkuTn57scDofDrevy8vIkSZGRkc5znTt31sqVK3XkyBEZhqFPP/1Ue/fuVa9evcrsp3Pnztq+fbszeTpw4IBWrVqlO+64w6XdsGHDdMcdd6h79+6eDlESlSkAACytMl8nExcX53J+woQJSklJKfdawzA0atQode7cWS1atHCef/XVV/XHP/5R9evXV1BQkAICAvTWW2+pc+fOZfbVv39//fe//1Xnzp1lGIYKCwv15z//WWPGjHG2SU9P11dffaUvv/zyEkZ6AckUAAAWFhBgU4CXp/ku9pedna3w8HDnebvdXuG1w4cP186dO7Vp0yaX86+++qq2bt2qlStXKj4+Xhs2bNDjjz+u6OjoMitK69ev15QpU/Tmm2+qffv22r9/v5588klFR0frueeeU3Z2tp588kmtXbtWwcHBlzxem2EYxiVffZnk5+crIiJCeXl5Lg8F3rMm8jpfh+CRol+KfR2CR0Jiq/s6BI/YI/wr3o7bt/k6BOCS+PLn28V793viG1Wzh3m17/OOU1r6aguPxzVixAitWLFCGzZsUEJCgvP8L7/8ooiICC1fvtxliu6RRx7R4cOHS6y5uqhLly7q0KGDXnzxRee5hQsX6k9/+pMKCgq0cuVK3XXXXQoMDHR+X1RUJJvNpoCAADkcDpfvykJlCgAAC7MFBMgW4N0l1J72ZxiGRowYoeXLl2v9+vUuiZQknT9/XufPn1fAb/oNDAxUcXHZf7k+c+ZMqdcYhiHDMHTrrbdq165dLt8PHTpUTZs21V/+8he3EimJZAoAAPjYsGHDtGjRIr333nsKCwtTbm6uJCkiIkIhISEKDw/XzTffrKefflohISGKj49XRkaG5s+fr5dfftnZz6BBgxQbG6vU1FRJUu/evfXyyy+rdevWzmm+5557Tr///e8VGBiosLAwl3VZkhQaGqpatWqVOF8ekikAACysMhegu+vi5psXtz24aM6cOc59odLT0zV27Fg9+OCD+vHHHxUfH68pU6bosccec7bPyspyqUSNHz9eNptN48eP15EjR1SnTh317t1bU6ZMubSBlYE1U5DEmqnKxpqpysWaKfirqrBm6t6ndlfKmql3/t7MMj+3qUwBAGBhVWHTTn/Hpp0AAAAmUJkCAMDCbJWwz5TVKlMkUwAAWFhVWIDu75jmAwAAMIHKFAAAFsYCdPOoTAEAAJhAZQoAAAsLkE0BXl7jFCAqUwAAAHATlSkAACyMNVPmUZkCAAAwgcoUAAAWRmXKPJIpAAAsjE07zWOaDwAAwAQqUwAAWFhAgLz+br4Ai5VqLDZcAAAA76IyBQCAhbFmyjwqUwAAACZQmQIAwMLYGsE8KlMAAAAmUJkCAMDCAmwXDm/3aSVUpgAAAEygMgUAgIWxZso8kikAACyMZMo8pvkAAABMoDIFAICF2Ww2BbBppylUpgAAAEygMgUAgIXZbJWwZorKFAAAANxFZQoAAAuz2S4c3u7TSqhMAQAAmEAyBQCAhQUE2Crl8ERqaqratWunsLAw1a1bV3379tWePXtc2gwZMuTC+q5fHR06dCi33/Pnz2vSpElKTExUcHCwWrVqpdWrV5dod+TIEf3hD39QrVq1dNVVV+mGG27Q9u3b3Y6faT4AACzsYmLi7T49kZGRoWHDhqldu3YqLCzUuHHj1LNnT3333XcKDQ11trvttts0Z84c5+fq1auX2+/48eO1cOFCzZo1S02bNtWaNWt01113afPmzWrdurUk6aefflKnTp10yy236MMPP1TdunX1/fff6+qrr3Y7fo8qUykpKSWywqioqHKvcTgcGjdunOLj42W325WYmKjZs2d7clsAAHAFW716tYYMGaLmzZurVatWmjNnjrKyskpUh+x2u6KiopxHZGRkuf0uWLBAzz77rG6//XY1atRIf/7zn9WrVy9Nnz7d2WbatGmKi4vTnDlzdNNNN6lhw4a69dZblZiY6Hb8Hlemmjdvro8++sj5OTAwsNz29913n44dO6a0tDRdc801On78uAoLCz29LQAAqAQBlbBp58X+8vPzXc7b7XbZ7fYKr8/Ly5OkEsnS+vXrVbduXV199dW6+eabNWXKFNWtW7fMfhwOh4KDg13OhYSEaNOmTc7PK1euVK9evXTvvfcqIyNDsbGxevzxx/XHP/6xwjgv8jiZCgoKqrAaddHq1auVkZGhAwcOOP9AGjZs6OktAQCAH4qLi3P5PGHCBKWkpJR7jWEYGjVqlDp37qwWLVo4zycnJ+vee+9VfHy8Dh48qOeee06/+93vtH379jITtF69eunll19W165dlZiYqI8//ljvvfeeioqKnG0OHDigmTNnatSoUXr22Wf1xRdf6IknnpDdbtegQYPcGqfHydS+ffsUExMju92u9u3ba+rUqWrUqFGpbVeuXKm2bdvqhRde0IIFCxQaGqrf//73+tvf/qaQkJAy7+FwOORwOJyff5vZAgAA77AFXDi83ackZWdnKzw83HnenarU8OHDtXPnTpfqkSTdf//9zv/fokULtW3bVvHx8frggw909913l9rXK6+8oj/+8Y9q2rSpbDabEhMTNXToUJd1V8XFxWrbtq2mTp0qSWrdurW+/fZbzZw50+1kyqM/vvbt22v+/Plas2aNZs2apdzcXHXs2FEnT54stf2BAwe0adMmffPNN1q+fLlmzJihd999V8OGDSv3PqmpqYqIiHAev81sAQBA1RceHu5yVJRMjRgxQitXrtSnn36q+vXrl9s2Ojpa8fHx2rdvX5lt6tSpoxUrVuj06dP64Ycf9J///Ec1atRQQkKCSz/XXXedy3XNmjVTVlaWGyO8wKNkKjk5Wf369VPLli3VvXt3ffDBB5KkefPmldq+uLhYNptNb7/9tm666SbdfvvtevnllzV37lz98ssvZd5n7NixysvLcx7Z2dmehAkAANz0218s89bhCcMwNHz4cC1btkyffPKJS7JTlpMnTyo7O1vR0dEVtg0ODlZsbKwKCwu1dOlS9enTx/ldp06dSmzDsHfvXsXHx7sdv6nCXmhoqFq2bFlmVhgdHa3Y2FhFREQ4zzVr1kyGYejw4cNl9mu320tkswAA4Mo0bNgwLVy4UIsWLVJYWJhyc3OVm5vrLLwUFBRo9OjR2rJliw4dOqT169erd+/eql27tu666y5nP4MGDdLYsWOdnz///HMtW7ZMBw4c0MaNG3XbbbepuLhYzzzzjLPNU089pa1bt2rq1Knav3+/Fi1apH/9618VzqL9mqlkyuFwaPfu3WVmhZ06ddLRo0dVUFDgPLd3714FBARUWL4DAACVryps2jlz5kzl5eWpW7duio6Odh5LliyRdGHngF27dqlPnz5q3LixBg8erMaNG2vLli0KCwtz9pOVlaWcnBzn57Nnz2r8+PG67rrrdNdddyk2NlabNm1y2UOqXbt2Wr58uRYvXqwWLVrob3/7m2bMmKEHH3zQ7fhthmEY7jYePXq0evfurQYNGuj48eOaPHmyMjIytGvXLsXHx2vs2LE6cuSI5s+fL+lCJtmsWTN16NBBEydO1IkTJ/TII4/o5ptv1qxZs9wOMj8/XxEREcrLy6NKVUnWRF5XcaMqpOiXYl+H4JGQ2PI3lqtq7BH+FW/H7dt8HQJwSXz58+3ivf/n9eOyh3j33o5f8jV9eF3L/Nz2qDJ1+PBhDRgwQE2aNNHdd9+t6tWra+vWrc55xZycHJcFWzVq1NC6dev0888/q23btnrwwQfVu3dvvfrqq94dBQAAgI94tDVCenp6ud/PnTu3xLmmTZtq3bp1HgUFAAAuD1uATTYPp+Xc6dNKeNExAACACbzoGAAACwuwXTi83aeVUJkCAAAwgcoUAAAWdimbbLrTp5VQmQIAADCByhQAABZmC5ACKulFx1ZBMlVJNrdp6+sQPBJ+TaivQ/BI/v7Tvg7hilYttJqvQ/DIgaG9fR2CR+re1MLXIXjEFhTo6xA8kv+fA74OwW2nHOd9HYJsqoRpPjHNBwAAADdRmQIAwMJsAd6flrPaNJ/FhgsAAOBdVKYAALCwAJtNAV5eM+Xt/qo6KlMAAAAmUJkCAMDCbLYLh7f7tBIqUwAAACZQmQIAwMKoTJlHMgUAgIUFBNgUEODlBehe7q+qY5oPAADABCpTAABYGNN85lGZAgAAMIHKFAAAFhZgu3B4u08roTIFAABgApUpAAAszBZgk83LpSRv91fVUZkCAAAwgcoUAAAWxm/zmUcyBQCAhbEA3Tym+QAAAEygMgUAgIUxzWcelSkAAAATqEwBAGBhtgApwMulFZvFSjUWGy4AAKhqUlNT1a5dO4WFhalu3brq27ev9uzZ49ImJSVFTZs2VWhoqGrWrKnu3bvr888/r7DvpUuX6rrrrpPdbtd1112n5cuXu3xfWFio8ePHKyEhQSEhIWrUqJEmTZqk4uJit+MnmQIAwMIurpny9uGJjIwMDRs2TFu3btW6detUWFionj176vTp0842jRs31uuvv65du3Zp06ZNatiwoXr27Kn//ve/Zfa7ZcsW3X///Ro4cKC+/vprDRw4UPfdd59LEjZt2jT94x//0Ouvv67du3frhRde0IsvvqjXXnvN/T9DwzAMz4Z8+eXn5ysiIkJ5eXkKDw/3dThu2dymra9D8Igt0L9WC+bvP11xoyqkeqR/zajXiAn1dQgeqZVY29cheKTuTS18HYJHbEGBvg7BI/n/OeDrENx2ynFeTd541yc/3y7+bH3hnZ8VcpV37/3LmXw9c+/Vlzyu//73v6pbt64yMjLUtWvXUttcjP+jjz7SrbfeWmqb+++/X/n5+frwww+d52677TbVrFlTixcvliTdeeedqlevntLS0pxt+vXrp6uuukoLFixwK14qUwAAWJjNZquUQ7qQ8Pz6cDgcbsWUl5cnSYqMjCz1+3Pnzulf//qXIiIi1KpVqzL72bJli3r27OlyrlevXtq8ebPzc+fOnfXxxx9r7969kqSvv/5amzZt0u233+5WrBIL0AEAsLQAVcKmnf//f+Pi4lzOT5gwQSkpKeVeaxiGRo0apc6dO6tFC9cq7vvvv6/+/fvrzJkzio6O1rp161S7dtmV6dzcXNWrV8/lXL169ZSbm+v8/Je//EV5eXlq2rSpAgMDVVRUpClTpmjAgAEVD/T/I5kCAACVIjs722Waz263V3jN8OHDtXPnTm3atKnEd7fccosyMzN14sQJzZo1y7n+qW7dumX2Z/vNAi7DMFzOLVmyRAsXLtSiRYvUvHlzZWZmauTIkYqJidHgwYPdGSbJFAAAVlaZm3aGh4d7tGZqxIgRWrlypTZs2KD69euX+D40NFTXXHONrrnmGnXo0EHXXnut0tLSNHbs2FL7i4qKcqlCSdLx48ddqlVPP/20xowZo/79+0uSWrZsqR9++EGpqaluJ1OsmQIAAD5lGIaGDx+uZcuW6ZNPPlFCQoLb15W3DispKUnr1q1zObd27Vp17NjR+fnMmTMK+M1GW4GBgR5tjUBlCgAAC6sKr5MZNmyYFi1apPfee09hYWHOalJERIRCQkJ0+vRpTZkyRb///e8VHR2tkydP6s0339Thw4d17733OvsZNGiQYmNjlZqaKkl68skn1bVrV02bNk19+vTRe++9p48++shlCrF3796aMmWKGjRooObNm2vHjh16+eWX9dBDD7kdP8kUAADwqZkzZ0qSunXr5nJ+zpw5GjJkiAIDA/Wf//xH8+bN04kTJ1SrVi21a9dOGzduVPPmzZ3ts7KyXKpMHTt2VHp6usaPH6/nnntOiYmJWrJkidq3b+9s89prr+m5557T448/ruPHjysmJkaPPvqo/vrXv7odP8kUAAAWFlAJr5PxtL+KtrwMDg7WsmXLKuxn/fr1Jc7dc889uueee8q8JiwsTDNmzNCMGTMq7L8srJkCAAAwgcoUAAAWVhXWTPk7kikAACwswFYJm3ZaLJlimg8AAMAEKlMAAFgY03zmUZkCAAAwgcoUAAAWRmXKPCpTAAAAJlCZAgDAwvhtPvOoTAEAAJhAZaqS1GsR5esQPBIQFOjrEDxSo26er0PwSFj01b4OwSP1urWvuFEVYouo6esQPFJUs66vQ/BIwb9X+DoEjxTk/uTrENx2+nyhr0NgzZQXUJkCAAAwgcoUAAAWZrMZstnKf9HwpfRpJSRTAABYmK0SFqAzzQcAAAC3UZkCAMDCWIBuHpUpAAAAE6hMAQBgYVSmzKMyBQAAYAKVKQAALCzAZijAy1sZeLu/qo7KFAAAgAlUpgAAsDDWTJlHMgUAgIWRTJnHNB8AAIAJVKYAALCwAHn/dTJWq9RYbbwAAABeRWUKAAALs8mQTd7dysDb/VV1VKYAAABMoDIFAICF8dt85lGZAgAAMIHKFAAAFhZgq4Tf5qMyBQAArMJmMyrl8ERqaqratWunsLAw1a1bV3379tWePXtc2hiGoZSUFMXExCgkJETdunXTt99+W26/3377rfr166eGDRvKZrNpxowZJdqcOnVKI0eOVHx8vEJCQtSxY0d9+eWXHsVPMgUAAHwqIyNDw4YN09atW7Vu3ToVFhaqZ8+eOn36tLPNCy+8oJdfflmvv/66vvzyS0VFRalHjx46depUmf2eOXNGjRo10vPPP6+oqKhS2zzyyCNat26dFixYoF27dqlnz57q3r27jhw54nb8TPMBAGBhVWEB+urVq10+z5kzR3Xr1tX27dvVtWtXGYahGTNmaNy4cbr77rslSfPmzVO9evW0aNEiPfroo6X2265dO7Vr106SNGbMmBLf//LLL1q6dKnee+89de3aVZKUkpKiFStWaObMmZo8ebJb8VOZAgAAlSI/P9/lcDgcbl2Xl5cnSYqMjJQkHTx4ULm5uerZs6ezjd1u180336zNmzdfcnyFhYUqKipScHCwy/mQkBBt2rTJ7X5IpgAAsLAAGZVySFJcXJwiIiKcR2pqaoXxGIahUaNGqXPnzmrRooUkKTc3V5JUr149l7b16tVzfncpwsLClJSUpL/97W86evSoioqKtHDhQn3++efKyclxux+m+QAAQKXIzs5WeHi487Pdbq/wmuHDh2vnzp2lVoZsv5k/NAyjxDlPLViwQA899JBiY2MVGBioG2+8UQ888IC++uort/ugMgUAgIVdXDPl7UOSwsPDXY6KkqkRI0Zo5cqV+vTTT1W/fn3n+YuLx39bhTp+/HiJapWnEhMTlZGRoYKCAmVnZ+uLL77Q+fPnlZCQ4HYfJFMAAMCnDMPQ8OHDtWzZMn3yySclEpmEhARFRUVp3bp1znPnzp1TRkaGOnbs6JUYQkNDFR0drZ9++klr1qxRnz593L6WaT4AAKzsEvaFcqdPTwwbNkyLFi3Se++9p7CwMGcFKiIiQiEhIbLZbBo5cqSmTp2qa6+9Vtdee62mTp2qq666Sg888ICzn0GDBik2Nta5NuvcuXP67rvvnP//yJEjyszMVI0aNXTNNddIktasWSPDMNSkSRPt379fTz/9tJo0aaKhQ4e6HT/JFAAAFlYVdkCfOXOmJKlbt24u5+fMmaMhQ4ZIkp555hn98ssvevzxx/XTTz+pffv2Wrt2rcLCwpzts7KyFBDwf5NuR48eVevWrZ2fX3rpJb300ku6+eabtX79ekkXfnNw7NixOnz4sCIjI9WvXz9NmTJF1apVczt+kikAAOBThlFxJctmsyklJUUpKSlltrmYIF3UsGHDCvu+7777dN9997kTZplIpgAAsDCbDNnk3Wk+b/dX1bEAHQAAwAQqUwAAWFhVeJ2Mv6MyBQAAYAKVKQAALMxWCVsjeH2rhSqOyhQAAIAJVKYAALCwX7+Y2Jt9WgnJFAAAFsYCdPOY5gMAADCByhQAABbGAnTzPKpMpaSkyGazuRxRUVFltl+/fn2J9jabTf/5z39MBw4AAFAVeFyZat68uT766CPn58DAwAqv2bNnj8LDw52f69Sp4+ltAQBAJeB1MuZ5nEwFBQWVW40qTd26dXX11Vd7eiu/FhJZw9cheMQo9q9/8ONbNPJ1CB4JurG9r0PwSF7dxr4OwSNXFRzzdQiesfnXctWIpHa+DsEjh7cu9nUIbisoLPR1CPACj/+N3rdvn2JiYpSQkKD+/fvrwIEDFV7TunVrRUdH69Zbb9Wnn35aYXuHw6H8/HyXAwAAeF+ArXIOK/EomWrfvr3mz5+vNWvWaNasWcrNzVXHjh118uTJUttHR0frX//6l5YuXaply5apSZMmuvXWW7Vhw4Zy75OamqqIiAjnERcX50mYAAAAl41H03zJycnO/9+yZUslJSUpMTFR8+bN06hRo0q0b9KkiZo0aeL8nJSUpOzsbL300kvq2rVrmfcZO3asS3/5+fkkVAAAVALWTJlnamuE0NBQtWzZUvv27XP7mg4dOmjhwoXltrHb7bLb7WZCAwAAbmBrBPNMrYJ0OBzavXu3oqOj3b5mx44dHrUHAACoyjyqTI0ePVq9e/dWgwYNdPz4cU2ePFn5+fkaPHiwpAvTc0eOHNH8+fMlSTNmzFDDhg3VvHlznTt3TgsXLtTSpUu1dOlS748EAAB4jGk+8zxKpg4fPqwBAwboxIkTqlOnjjp06KCtW7cqPj5ekpSTk6OsrCxn+3Pnzmn06NE6cuSIQkJC1Lx5c33wwQe6/fbbvTsKAAAAH/EomUpPTy/3+7lz57p8fuaZZ/TMM894HBQAALg8WDNlnn/tHAcAAFDF8KJjAAAszCbvV1YstmcnlSkAAAAzqEwBAGBhrJkyj2QKAAALY2sE85jmAwAAMIHKFAAAFsY0n3lUpgAAAEygMgUAgIXZ5P01TmyNAAAAALeRTAEAYGEX10x5+/DEhg0b1Lt3b8XExMhms2nFihW/idFW6vHiiy+W2eeyZcvUtm1bXX311QoNDdUNN9ygBQsWeHRfd5FMAQAAnzp9+rRatWql119/vdTvc3JyXI7Zs2fLZrOpX79+ZfYZGRmpcePGacuWLdq5c6eGDh2qoUOHas2aNW7f112smQIAwMKqwj5TycnJSk5OLvP7qKgol8/vvfeebrnlFjVq1KjMa7p16+by+cknn9S8efO0adMm9erVy637uotkCgAACwuQoQAvJ1MX+8vPz3c5b7fbZbfbTfV97NgxffDBB5o3b57b1xiGoU8++UR79uzRtGnTTN2/NEzzAQCAShEXF6eIiAjnkZqaarrPefPmKSwsTHfffXeFbfPy8lSjRg1Vr15dd9xxh1577TX16NHDdAy/RWUKAAALs6kSNu38/5Wp7OxshYeHO8+brUpJ0uzZs/Xggw8qODi4wrZhYWHKzMxUQUGBPv74Y40aNUqNGjUqMQVoFskUAACoFOHh4S7JlFkbN27Unj17tGTJErfaBwQE6JprrpEk3XDDDdq9e7dSU1NJpgAAgPdUhQXo7kpLS1ObNm3UqlWrS7reMAw5HA4vR0UyBQAAfKygoED79+93fj548KAyMzMVGRmpBg0aSLqwmP2dd97R9OnTS+1j0KBBio2Nda7LSk1NVdu2bZWYmKhz585p1apVmj9/vmbOnOnRfd1BMgUAgIVVhcrUtm3bdMsttzg/jxo1SpI0ePBgzZ07V5KUnp4uwzA0YMCAUvvIyspSQMD//V7d6dOn9fjjj+vw4cMKCQlR06ZNtXDhQt1///0e3dcdNsMwqvyrnfPz8xUREaG8vDyvzr1WpqNP9fd1CB4xiqv8PwYuwhrG+DoEjwTd2N7XIXgkv25jX4fgkasKjvk6BM/Y/OsXqasf2evrEDzy7d8X+zoEtxUUFqrbZ1/65OfbxZ+tW7/aoxphYV7tu+DUKXW4sYlf/dw2g8oUAAAWVhUqU/7Ov/56BAAAUMVQmQIAwMIu5cXE7vRpJSRTAABYGNN85jHNBwAAYAKVKQAALIzKlHlUpgAAAEygMgUAgIVRmTKPyhQAAIAJVKYAALAwKlPmUZkCAAAwgcoUAACWViybir3ep5WQTAEAYGHsgG4e03wAAAAm+FVl6tCw/gqrXs3XYbjFHh7i6xAAwCuC+4zwdQgeaeNH8ebn50sRET6NwWYYshlerkx5ub+qjsoUAACACX5VmQIAAN7F1gjmUZkCAAAwgcoUAAAWdmHNlHe3MmDNFAAAANxGZQoAAAtjzZR5JFMAAFiYTcXen+az2A7oTPMBAACYQGUKAAALY5rPPCpTAAAAJlCZAgDAwmxGJayZ8nJ/VR2VKQAAABOoTAEAYGGsmTKPyhQAAIAJVKYAALCwC6+T8XJlymKvkyGZAgDAwliAbh7TfAAAwKc2bNig3r17KyYmRjabTStWrCiz7aOPPiqbzaYZM2a43X96erpsNpv69u3rcn7mzJm6/vrrFR4ervDwcCUlJenDDz/0OH6SKQAALOziAnRvH544ffq0WrVqpddff73cditWrNDnn3+umJgYt/v+4YcfNHr0aHXp0qXEd/Xr19fzzz+vbdu2adu2bfrd736nPn366Ntvv/Uofqb5AACATyUnJys5ObncNkeOHNHw4cO1Zs0a3XHHHW71W1RUpAcffFATJ07Uxo0b9fPPP7t837t3b5fPU6ZM0cyZM7V161Y1b97c7fhJpgAAsLDKXDOVn5/vct5ut8tut3vcX3FxsQYOHKinn37aoyRn0qRJqlOnjh5++GFt3Lix3LZFRUV65513dPr0aSUlJXkUH8kUAACoFHFxcS6fJ0yYoJSUFI/7mTZtmoKCgvTEE0+4fc1nn32mtLQ0ZWZmlttu165dSkpK0tmzZ1WjRg0tX75c1113nUfxkUwBAGBhlbk1QnZ2tsLDw53nL6UqtX37dr3yyiv66quvZLPZ3Lrm1KlT+sMf/qBZs2apdu3a5bZt0qSJMjMz9fPPP2vp0qUaPHiwMjIyPEqoSKYAAECluPhbcmZs3LhRx48fV4MGDZznioqK9D//8z+aMWOGDh06VOKa77//XocOHXJZE1VcfGHqMSgoSHv27FFiYqIkqXr16rrmmmskSW3bttWXX36pV155Rf/85z/djpFkCgAAC7OpWDZ5ec2UF/sbOHCgunfv7nKuV69eGjhwoIYOHVrqNU2bNtWuXbtczo0fP16nTp3SK6+8UmL68dcMw5DD4fAoRpIpAACszJDk7R3LPeyuoKBA+/fvd34+ePCgMjMzFRkZqQYNGqhWrVou7atVq6aoqCg1adLEeW7QoEGKjY1VamqqgoOD1aJFC5drrr76aklyOf/ss88qOTlZcXFxOnXqlNLT07V+/XqtXr3ao/hJpgAAgE9t27ZNt9xyi/PzqFGjJEmDBw/W3Llz3eojKytLAQGebZ957NgxDRw4UDk5OYqIiND111+v1atXq0ePHh71QzIFAICFVYXXyXTr1k2GB9Wx0tZJrV+/vtxrSkvK0tLS3L5nedgBHQAAwAQqUwAAWNilvP7FnT6thMoUAACACVSmAACwskpYMyVv91fFUZkCAAAwgcoUAABWZhiVsM+UtdZMkUwBAGBhVWFrBH/HNB8AAIAJVKYAALAwm2HI5uVpOW/3V9VRmQIAADCByhQAAFZmFHt/KwPWTAEAAMBdVKYAALAwfpvPPCpTAAAAJlCZAgDAwnjRsXkkUwAAWBkL0E3zq2TKkXdG1ar5R8g1Ymv5OgSPBAQG+joEj/zxyEhfh+CRkbfV9HUIHmmy7Blfh+ARIyTY1yF4pHq9er4OwTNte/k6AqBK84/MBAAAVAo27TSPBegAAAAmUJkCAMDKDKMS1kxRmQIAAICbqEwBAGBlhuH9ShKVKQAAALiLyhQAABZmUyW8TkbsMwUAAKyCaT7TmOYDAAAwgcoUAAAWZjMqYZrPYq+ToTIFAABgApUpAACsjBcdm+ZRZSolJUU2m83liIqKcuvazz77TEFBQbrhhhsuJU4AAIAqyePKVPPmzfXRRx85PwcGBlZ4TV5engYNGqRbb71Vx44d8/SWAACgkvCiY/M8XjMVFBSkqKgo51GnTp0Kr3n00Uf1wAMPKCkp6ZKCBAAAV64NGzaod+/eiomJkc1m04oVK1y+X7ZsmXr16qXatWvLZrMpMzOzwj7nzp1bYjbNZrPp7NmzzjZmZtx+zeNkat++fYqJiVFCQoL69++vAwcOlNt+zpw5+v777zVhwgS37+FwOJSfn+9yAACASlBcXDmHB06fPq1WrVrp9ddfL/P7Tp066fnnn/eo3/DwcOXk5LgcwcHBLm2aN2/u8v2uXbs8uofk4TRf+/btNX/+fDVu3FjHjh3T5MmT1bFjR3377beqVatWifb79u3TmDFjtHHjRgUFuX+r1NRUTZw40ZPQAADApagCm3YmJycrOTm5zO8HDhwoSTp06JBH/bpTabo442aGR5Wp5ORk9evXTy1btlT37t31wQcfSJLmzZtXom1RUZEeeOABTZw4UY0bN/YoqLFjxyovL895ZGdne3Q9AADwvd/OMjkcjst6/4KCAsXHx6t+/fq68847tWPHjhJtPJ1xK42pfaZCQ0PVsmVL7du3r8R3p06d0rZt2zR8+HAFBQUpKChIkyZN0tdff62goCB98sknZfZrt9sVHh7ucgAAgEpwcWsEbx+S4uLiFBER4TxSU1Mv27CaNm2quXPnauXKlVq8eLGCg4PVqVMnl5zl4ozbmjVrNGvWLOXm5qpjx446efKkR/cytc+Uw+HQ7t271aVLlxLfhYeHl5h3fPPNN/XJJ5/o3XffVUJCgplbAwCAKi47O9ulIGK32y/bvTt06KAOHTo4P3fq1Ek33nijXnvtNb366quS5DK12LJlSyUlJSkxMVHz5s3TqFGj3L6XR8nU6NGj1bt3bzVo0EDHjx/X5MmTlZ+fr8GDB0u6MD135MgRzZ8/XwEBAWrRooXL9XXr1lVwcHCJ8wAAwDcqc2uEqjS7FBAQoHbt2pU6m3ZReTNu5fbtSePDhw9rwIABatKkie6++25Vr15dW7duVXx8vCQpJydHWVlZHgUAAABQ2QzDUGZmpqKjo8tsc3HGrbw2pfGoMpWenl7u93Pnzi33+5SUFKWkpHhySwAAUJmqwOtkCgoKtH//fufngwcPKjMzU5GRkWrQoIF+/PFHZWVl6ejRo5KkPXv2SJJzz0tJGjRokGJjY53rsiZOnKgOHTro2muvVX5+vl599VVlZmbqjTfecN6nohk3d/FuPgAA4FPbtm3TLbfc4vx8cb3S4MGDnYvIhw4d6vy+f//+kqQJEyY4izRZWVkKCPi/Cbeff/5Zf/rTn5Sbm6uIiAi1bt1aGzZs0E033eRsc3HG7cSJE6pTp446dOjgMuPmLpIpAACszDAqoTLl2Rqsbt26ySjnmiFDhmjIkCHl9rF+/XqXz3//+9/197//vdxrKppxc5eprREAAACsjsoUAAAWxouOzSOZAgDAyi7hXXpu9WkhTPMBAACYQGUKAAArqwIvOvZ3VKYAAABMoDIFAICVVYFNO/0dlSkAAAATqEwBAGBlrJkyjcoUAACACVSmAACwMqMS9pmy2JopkikAAKyMBeimMc0HAABgApUpAACsjAXoplGZAgAAMIHKFAAAVsaLjk2jMgUAAGAClSkAAKyMNVOm+VUy1WThSoWHh/s6DLccefJ+X4fgkcg7k30dgkcmN/Kvf1FjPn3R1yF4ZMubm3wdgke6H/nG1yEAsDC/SqYAAICXGUYl7DPlX3/hNYtkCgAAKys2Lhze7tNCWIAOAABgApUpAACsjNfJmEZlCgAAwAQqUwAAWBmbdppGZQoAAMAEKlMAAFgZm3aaRmUKAADABCpTAABYGb/NZxrJFAAAVsamnaYxzQcAAGACyRQAABZmGMWVcniisLBQ48ePV0JCgkJCQtSoUSNNmjRJxRVsseBwODRu3DjFx8fLbrcrMTFRs2fPdn7frVs32Wy2Escdd9xxSX9WZWGaDwAA+NS0adP0j3/8Q/PmzVPz5s21bds2DR06VBEREXryySfLvO6+++7TsWPHlJaWpmuuuUbHjx9XYWGh8/tly5bp3Llzzs8nT55Uq1atdO+993o1fpIpAACszKiENVMebo2wZcsW9enTx1kxatiwoRYvXqxt27aVec3q1auVkZGhAwcOKDIy0nndr108f1F6erquuuoqrydTTPMBAIBKkZ+f73I4HI5S23Xu3Fkff/yx9u7dK0n6+uuvtWnTJt1+++1l9r1y5Uq1bdtWL7zwgmJjY9W4cWONHj1av/zyS5nXpKWlqX///goNDTU3sN+gMgUAgJVV4tYIcXFxLqcnTJiglJSUEs3/8pe/KC8vT02bNlVgYKCKioo0ZcoUDRgwoMxbHDhwQJs2bVJwcLCWL1+uEydO6PHHH9ePP/7osm7qoi+++ELffPON0tLSzI2tFCRTAACgUmRnZys8PNz52W63l9puyZIlWrhwoRYtWqTmzZsrMzNTI0eOVExMjAYPHlzqNcXFxbLZbHr77bcVEREhSXr55Zd1zz336I033lBISIhL+7S0NLVo0UI33XSTl0b3f0imAACwMKO4WIaXX0x8sb/w8HCXZKosTz/9tMaMGaP+/ftLklq2bKkffvhBqampZSZT0dHRio2NdSZSktSsWTMZhqHDhw/r2muvdZ4/c+aM0tPTNWnSJDPDKhNrpgAAsLKL7+bz9uGBM2fOKCDANSUJDAwsd2uETp066ejRoyooKHCe27t3rwICAlS/fn2Xtv/7v/8rh8OhP/zhDx7F5S6SKQAA4FO9e/fWlClT9MEHH+jQoUNavny5Xn75Zd11113ONmPHjtWgQYOcnx944AHVqlVLQ4cO1XfffacNGzbo6aef1kMPPVTqFF/fvn1Vq1atSomfaT4AAKys2JC8PM3n6VYLr732mp577jk9/vjjOn78uGJiYvToo4/qr3/9q7NNTk6OsrKynJ9r1KihdevWacSIEWrbtq1q1aql++67T5MnT3bpe+/evdq0aZPWrl1rbkzlIJkCAAA+FRYWphkzZmjGjBlltpk7d26Jc02bNtW6devK7btx48YyPJx29BTJFAAAVnYJa5zc6tNCWDMFAABgApUpAAAsrDK3RrAKKlMAAAAmUJkCAMDKiivhRcfe7q+KI5kCAMDCDKNYhpffzeft/qo6pvkAAABMoDIFAICVMc1nGpUpAAAAE6hMAQBgZUbxhcPbfVoIlSkAAAATqEwBAGBhRrEhw8trnLzdX1VHZQoAAMAEKlMAAFiZUSx5+/UvFlszRTIFAICFGYYhw/DyNJ+X+6vqmOYDAAAwgcoUAABWVlwJ03ze7q+KozIFAABgApUpAAAsjK0RzKMyBQAAYAKVqUoS+8oSX4fgkYMP9/F1CB65OnaDr0PwiBFVx9cheKT7kW98HQKAy8UwKuF1MlSmAAAA4CYqUwAAWBhrpswjmQIAwMKM4mIZXt7KwNv9VXVM8wEAAJhAZQoAACsrNi4c3u7TQqhMAQAAmEBlCgAACzOMYhle3hrB2/1VdVSmAAAATKAyBQCAlVXC1gismQIAAIDbSKYAALAyo1gq9vLh4ZqplJQU2Ww2lyMqKqrM9kOGDCnR3mazqXnz5s4258+f16RJk5SYmKjg4GC1atVKq1evvuQ/pvKQTAEAAJ9r3ry5cnJynMeuXbvKbPvKK6+4tM3OzlZkZKTuvfdeZ5vx48frn//8p1577TV99913euyxx3TXXXdpx44dXo+dNVMAAFhYVXmdTFBQULnVqF+LiIhQRESE8/OKFSv0008/aejQoc5zCxYs0Lhx43T77bdLkv785z9rzZo1mj59uhYuXOhxfOXG7tXeAACAX6nM18nk5+e7nLfb7bLb7aVes2/fPsXExMhut6t9+/aaOnWqGjVq5Nb90tLS1L17d8XHxzvPORwOBQcHu7QLCQnRpk2bPBmKW5jmAwAAlSIuLs5ZRYqIiFBqamqp7dq3b6/58+drzZo1mjVrlnJzc9WxY0edPHmywnvk5OToww8/1COPPOJyvlevXnr55Ze1b98+FRcXa926dXrvvfeUk5PjlbH9GpUpAAAszDAMGYaXp/n+f3/Z2dkKDw93ni+rKpWcnOz8/y1btlRSUpISExM1b948jRo1qtx7zZ07V1dffbX69u3rcv6VV17RH//4RzVt2lQ2m02JiYkaOnSo5syZc4mjKhuVKQAAUCnCw8NdjrKSqd8KDQ1Vy5YttW/fvnLbGYah2bNna+DAgapevbrLd3Xq1NGKFSt0+vRp/fDDD/rPf/6jGjVqKCEh4ZLHUxaSKQAArMzb2yJcPExwOBzavXu3oqOjy22XkZGh/fv36+GHHy6zTXBwsGJjY1VYWKilS5eqT58+pmIrDckUAADwqdGjRysjI0MHDx7U559/rnvuuUf5+fkaPHiwJGns2LEaNGhQievS0tLUvn17tWjRosR3n3/+uZYtW6YDBw5o48aNuu2221RcXKxnnnnG6/GzZgoAAAurClsjHD58WAMGDNCJEydUp04ddejQQVu3bnX+dl5OTo6ysrJcrsnLy9PSpUv1yiuvlNrn2bNnNX78eB04cEA1atTQ7bffrgULFujqq6++pDGVh2QKAAD4VHp6ernfz507t8S5iIgInTlzpsxrbr75Zn333XdmQ3MLyRQAABZmFF/aJpsV9WklJFMAAFhYZW7aaRUsQAcAADCByhQAABZWFRag+zsqUwAAACZQmQIAwMJYM2WeR5WplJQU2Ww2lyMqKqrM9ps2bVKnTp1Uq1YthYSEqGnTpvr73/9uOmgAAICqwuPKVPPmzfXRRx85PwcGBpbZNjQ0VMOHD9f111+v0NBQbdq0SY8++qhCQ0P1pz/96dIiBgAAXmMYlbBmyssvTq7qPE6mgoKCyq1G/Vrr1q3VunVr5+eGDRtq2bJl2rhxI8kUAAC4Ini8AH3fvn2KiYlRQkKC+vfvrwMHDrh97Y4dO7R582bdfPPN5bZzOBzKz893OQAAQCUwjMo5LMSjZKp9+/aaP3++1qxZo1mzZik3N1cdO3bUyZMny72ufv36stvtatu2rYYNG6ZHHnmk3PapqamKiIhwHnFxcZ6ECQAA3HRxAbq3DyvxKJlKTk5Wv3791LJlS3Xv3l0ffPCBJGnevHnlXrdx40Zt27ZN//jHPzRjxgwtXry43PZjx45VXl6e88jOzvYkTAAAgMvG1NYIoaGhatmypfbt21duu4SEBElSy5YtdezYMaWkpGjAgAFltrfb7bLb7WZCAwAAbmDTTvNMbdrpcDi0e/duRUdHu32NYRhyOBxmbgsAAFBleFSZGj16tHr37q0GDRro+PHjmjx5svLz8zV48GBJF6bnjhw5ovnz50uS3njjDTVo0EBNmzaVdGHfqZdeekkjRozw8jAAAMClYNNO8zxKpg4fPqwBAwboxIkTqlOnjjp06KCtW7cqPj5ekpSTk6OsrCxn++LiYo0dO1YHDx5UUFCQEhMT9fzzz+vRRx/17igAAAB8xKNkKj09vdzv586d6/J5xIgRVKEAAKjCWDNlHi86BgAAMIEXHQMAYGFUpswjmQIAwMJYgG4e03wAAAAmUJkCAMDCmOYzj2QKkqSEtPd8HYJH/vvXh3wdwhVtR48uvg7BI2fzzvo6BI/Uvra2r0PwyLVvf+jrEIAqjWQKAAALM4oNFRdRmTKDNVMAAAAmUJkCAMDCLqyZ8vZv81GZAgAAgJuoTAEAYGH8Np95JFMAAFgYyZR5TPMBAACYQGUKAAALozJlHpUpAADgU6mpqWrXrp3CwsJUt25d9e3bV3v27KnwujfeeEPNmjVTSEiImjRpovnz57t8/+2336pfv35q2LChbDabZsyYUSnxk0wBAGBhF1907O3DExkZGRo2bJi2bt2qdevWqbCwUD179tTp06fLvGbmzJkaO3asUlJS9O2332rixIkaNmyY/v3vfzvbnDlzRo0aNdLzzz+vqKioS/4zqgjTfAAAwKdWr17t8nnOnDmqW7eutm/frq5du5Z6zYIFC/Too4/q/vvvlyQ1atRIW7du1bRp09S7d29JUrt27dSuXTtJ0pgxYyotfpIpAAAsrDLXTOXn57uct9vtstvtFV6fl5cnSYqMjCyzjcPhUHBwsMu5kJAQffHFFzp//ryqVavmadiXjGk+AABQKeLi4hQREeE8UlNTK7zGMAyNGjVKnTt3VosWLcps16tXL7311lvavn27DMPQtm3bNHv2bJ0/f14nTpzw5jAqRGUKAAALKy4yVBzg3crUxRcnZ2dnKzw83HnenarU8OHDtXPnTm3atKncds8995xyc3PVoUMHGYahevXqaciQIXrhhRcUGBhobgAeojIFAICFXZzm8/YhSeHh4S5HRcnUiBEjtHLlSn366aeqX79+uW1DQkI0e/ZsnTlzRocOHVJWVpYaNmyosLAw1a5d22t/Pu6gMgUAAHzKMAyNGDFCy5cv1/r165WQkOD2tdWqVXMmXunp6brzzjsVEHB5a0UkUwAAWJhheL6VgTt9emLYsGFatGiR3nvvPYWFhSk3N1eSFBERoZCQEEnS2LFjdeTIEedeUnv37tUXX3yh9u3b66efftLLL7+sb775RvPmzXP2e+7cOX333XfO/3/kyBFlZmaqRo0auuaaa7wxVElM8wEAAB+bOXOm8vLy1K1bN0VHRzuPJUuWONvk5OQoKyvL+bmoqEjTp09Xq1at1KNHD509e1abN29Ww4YNnW2OHj2q1q1bq3Xr1srJydFLL72k1q1b65FHHvFq/FSmAACwsKrwOhnDqLj93LlzXT43a9ZMO3bsKPeahg0butW3WVSmAAAATKAyBQCAhRUXGSq2Vc7WCFZBZQoAAMAEKlMAAFhYVVgz5e9IpgAAsDCjuBK2RvByf1Ud03wAAAAmUJkCAMDCjCJDhpcXoBssQAcAAIC7qEwBAGBhRpG8vjWCUeTV7qo8KlMAAAAmUJkCAMDCDKMStka4DK9wqUqoTAEAAJhAZQoAAAsrLjJULF4nYwbJFAAAFmYUFcuQzet9WgnTfAAAACZQmQIAwMKM4krYtNNi7+ajMgUAAGAClSkAACyMBejmUZkCAAAwgcoUAAAWZhQZMrxcmeJFxwAAAHAblSkAACysuMhQsZdf/1LMb/MBAADAXVSmAACwMOO8ISOAfabMIJmCJOmj2Ba+DsEj0e3q+ToEjzSoW9vXIXik8f3dfB2CR87996SvQ/DIj//J8nUIgFNxoaFiLydTTPMBAADAbVSmAACwMKb5zKMyBQAAYAKVKQAALKy4yPD6Gidvb7VQ1VGZAgAAMIHKFAAAFmacL5Zhs3m3T6PYq/1VdVSmAABAlfDmm28qISFBwcHBatOmjTZu3Fhu+4yMDLVp00bBwcFq1KiR/vGPf7h8P2vWLHXp0kU1a9ZUzZo11b17d33xxRdej5tkCgAACzMKjQt7TXnxMAo9XzO1ZMkSjRw5UuPGjdOOHTvUpUsXJScnKyur9H3ZDh48qNtvv11dunTRjh079Oyzz+qJJ57Q0qVLnW3Wr1+vAQMG6NNPP9WWLVvUoEED9ezZU0eOHLnkP6/S2Ayj6q8Sy8/PV0REhPLy8hQeHu7rcK5IbNpZuRp0b+PrEDwSEGz3dQgeYdPOypU4731fh3DF8uXPt4v3/t/ARF1lC/Rq32eMIt1X9L1H42rfvr1uvPFGzZw503muWbNm6tu3r1JTU0u0/8tf/qKVK1dq9+7dznOPPfaYvv76a23ZsqXUexQVFalmzZp6/fXXNWjQIA9HVTbWTAEAYGFnVCx5uaxyRhfWTOXn57uct9vtsttL/mXt3Llz2r59u8aMGeNyvmfPntq8eXOp99iyZYt69uzpcq5Xr15KS0vT+fPnVa1atZJxnTmj8+fPKzIy0qPxVIRkCgAAC6pevbqioqI0JPdgpfRfo0YNxcXFuZybMGGCUlJSSrQ9ceKEioqKVK+e66xDvXr1lJubW2r/ubm5pbYvLCzUiRMnFB0dXeKaMWPGKDY2Vt27d/dwNOUjmQIAwIKCg4N18OBBnTt3rlL6NwxDtt/8lmBpValf+2370vqoqH1p5yXphRde0OLFi7V+/XoFBweXG4enSKYAALCo4OBgrycWl6J27doKDAwsUYU6fvx4ierTRVFRUaW2DwoKUq1atVzOv/TSS5o6dao++ugjXX/99d4NXvw2HwAA8LHq1aurTZs2Wrduncv5devWqWPHjqVek5SUVKL92rVr1bZtW5f1Ui+++KL+9re/afXq1Wrbtq33gxfJFAAAqAJGjRqlt956S7Nnz9bu3bv11FNPKSsrS4899pgkaezYsS6/gffYY4/phx9+0KhRo7R7927Nnj1baWlpGj16tLPNCy+8oPHjx2v27Nlq2LChcnNzlZubq4KCAq/GzjQfAADwufvvv18nT57UpEmTlJOToxYtWmjVqlWKj4+XJOXk5LjsOZWQkKBVq1bpqaee0htvvKGYmBi9+uqr6tevn7PNm2++qXPnzumee+5xuVdZC+EvFftMQRL7TFU29pmqXOwzVbnYZ6ry8PPtysA0HwAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkeJVMpKSmy2WwuR1RUVJntly1bph49eqhOnToKDw9XUlKS1qxZYzpoAACAqiLI0wuaN2+ujz76yPk5MDCwzLYbNmxQjx49NHXqVF199dWaM2eOevfurc8//1ytW7e+tIj9xJrI63wdgkciW0T4OgSP1Goc4+sQPBJUu7avQ/CI7apQX4fgkcJDh30dgkd+PHjS1yF4JNHXAQBVnMfJVFBQULnVqF+bMWOGy+epU6fqvffe07///e8rPpkCAADW4PGaqX379ikmJkYJCQnq37+/Dhw44Pa1xcXFOnXqlCIjI8tt53A4lJ+f73IAAABURR4lU+3bt9f8+fO1Zs0azZo1S7m5uerYsaNOnnSvZD19+nSdPn1a9913X7ntUlNTFRER4Tzi4uI8CRMAAOCy8SiZSk5OVr9+/dSyZUt1795dH3zwgSRp3rx5FV67ePFipaSkaMmSJapbt265bceOHau8vDznkZ2d7UmYAAAAl43Ha6Z+LTQ0VC1bttS+ffvKbbdkyRI9/PDDeuedd9S9e/cK+7Xb7bLb7WZCAwAAuCxM7TPlcDi0e/duRUdHl9lm8eLFGjJkiBYtWqQ77rjDzO0AAACqHI+SqdGjRysjI0MHDx7U559/rnvuuUf5+fkaPHiwpAvTc4MGDXK2X7x4sQYNGqTp06erQ4cOys3NVW5urvLy8rw7CgAAAB/xKJk6fPiwBgwYoCZNmujuu+9W9erVtXXrVsXHx0uScnJylJWV5Wz/z3/+U4WFhRo2bJiio6Odx5NPPundUQAAAPiIR2um0tPTy/1+7ty5Lp/Xr1/vaTwAAAB+hXfzAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgAskUAACACSRTAAAAJpBMAQAAmEAyBQAAYALJFAAAgAkkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYEOTrANxhGIYkKT8/38eRuO+0UeTrEDxSvbDQ1yF45JTjnK9D8IjtzFlfh+ARm5/9PavAz/55KPCzf9/86b+9/ubin+3Fn3PwTzbDD57g4cOHFRcX5+swAACoFNnZ2apfv76vw8Al8otkqri4WEePHlVYWJhsNpvy8/MVFxen7OxshYeH+zo80xhP1XUljUW6ssZzJY1FurLGcyWNRarc8RiGoVOnTikmJkYBAf5VEcb/8YtpvoCAgFIz9vDw8CviX9SLGE/VdSWNRbqyxnMljUW6ssZzJY1FqrzxREREeL1PXF6kwQAAACaQTAEAAJjgl8mU3W7XhAkTZLfbfR2KVzCequtKGot0ZY3nShqLdGWN50oai3TljQfe5xcL0AEAAKoqv6xMAQAAVBUkUwAAACaQTAEAAJhAMgUAAGACyRQAAIAJJFMAAAAmkEwBAACYQDIFAABgwv8DihQkiRPiDMcAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(
, )" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 20 + }, + { + "cell_type": "code", + "source": [ + "rhine_meteo_data" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:27:51.033898Z", + "start_time": "2024-12-06T22:27:51.027104Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + " Cell size: 42702.67218171488\n", + " Dimension: 14 * 10\n", + " EPSG: 4647\n", + " Number of Bands: 4\n", + " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", + " Mask: -9.969209968386869e+36\n", + " Data type: float32\n", + " projection: PROJCS[\"ETRS89 / UTM zone 32N (zE-N)\",GEOGCS[\"ETRS89\",DATUM[\"European_Terrestrial_Reference_System_1989\",SPHEROID[\"GRS 1980\",6378137,298.257222101,AUTHORITY[\"EPSG\",\"7019\"]],AUTHORITY[\"EPSG\",\"6258\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4258\"]],PROJECTION[\"Transverse_Mercator\"],PARAMETER[\"latitude_of_origin\",0],PARAMETER[\"central_meridian\",9],PARAMETER[\"scale_factor\",0.9996],PARAMETER[\"false_easting\",32500000],PARAMETER[\"false_northing\",0],UNIT[\"metre\",1,AUTHORITY[\"EPSG\",\"9001\"]],AXIS[\"Easting\",EAST],AXIS[\"Northing\",NORTH],AUTHORITY[\"EPSG\",\"4647\"]]\n", + " Metadata: {}\n", + " File: \n", + " " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 21 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/examples/notebooks/03convert-longitude.ipynb b/examples/notebooks/03convert-longitude.ipynb index ef2e89612..276ec68f0 100644 --- a/examples/notebooks/03convert-longitude.ipynb +++ b/examples/notebooks/03convert-longitude.ipynb @@ -1,293 +1,293 @@ { - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# convert_longitude" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "- some files (espicially netcdf files) uses longitude values from 0 degrees to 360 degrees, instead of the usual,\n", - "GIS-standard, arrangement of -180 degrees to 180 degrees for longitude centered on the Prime Meridian, and -90 degrees\n", - "to 90 degrees for latitude centered on the Equator. the `convert_longitude` method corrects such behavior." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "- to run this notebook make sure that the currect work directory points to the root directory of the pyramids package" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "from pyramids.dataset import Dataset\n", - "path = r\"../../examples/data/geotiff/noah-precipitation-1979.tif\"" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:17.437259Z", - "start_time": "2024-07-01T22:08:13.230130Z" - } - }, - "outputs": [], - "execution_count": 1 - }, - { - "cell_type": "markdown", - "source": [ - "## Read the raster file" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "dataset = Dataset.read_file(path)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:21.697472Z", - "start_time": "2024-07-01T22:08:21.677664Z" - } - }, - "outputs": [], - "execution_count": 2 - }, - { - "cell_type": "code", - "source": [ - "print(dataset)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:23.059239Z", - "start_time": "2024-07-01T22:08:23.052320Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 0.5\n", - " Dimension: 360 * 720\n", - " EPSG: 4326\n", - " Number of Bands: 4\n", - " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", - " Mask: -9.969209968386869e+36\n", - " Data type: float32\n", - " File: ../../examples/data/geotiff/noah-precipitation-1979.tif\n", - " \n" - ] - } - ], - "execution_count": 3 - }, - { - "cell_type": "code", - "source": [ - "print(f\"Min longitude: {min(dataset.lon)}\")\n", - "print(f\"Max longitude: {max(dataset.lon)}\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:24.339178Z", - "start_time": "2024-07-01T22:08:24.332287Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Min longitude: 0.25\n", - "Max longitude: 359.75\n" - ] - } - ], - "execution_count": 4 - }, - { - "cell_type": "markdown", - "source": [ - "## Plot the first band in the raster" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "fig, ax = dataset.plot(\n", - " band=0, figsize=(10, 5), title=\"NOAH daily Precipitation 1979-01-01\", cbar_label=\"Rainfall mm/day\", vmax=30,\n", - " cbar_length=0.85\n", - ")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:30.179781Z", - "start_time": "2024-07-01T22:08:26.578067Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgcVbn/P7X1Ot2zZWayLxCykBAIgbAKCLKKC+ICchVQcUP8IYq4A1cviF5RrgKKInDd4F4QryLIJgn7FhDCFpbs6ySz9UyvtZzfH9VVU93TPVtmMpPkfJ4nT3qqq6pPna4+dd7zvu/3VYQQAolEIpFIJBKJRCLpB3WsGyCRSCQSiUQikUjGP9JwkEgkEolEIpFIJAMiDQeJRCKRSCQSiUQyINJwkEgkEolEIpFIJAMiDQeJRCKRSCQSiUQyINJwkEgkEolEIpFIJAMiDQeJRCKRSCQSiUQyINJwkEgkEolEIpFIJAMiDQeJRCKRSCQSiUQyINJwkOwWKIqCoijU19fT2dlZcZ8rrrgCRVH44Q9/WPU89957Lx/+8IeZMmUK4XCYpqYmjjvuOG644QZM0xxUW/bff38URWHu3Ln97nfrrbeiKArnnXdev/vNnDkTRVFYu3btoD5/ILzz7Sxe+6+44oqS7V4/33rrrTv9GdU477zz/O/c+xeNRpk3bx5f+cpX2Lp166h99nBYtmzZoL7rwbB27VoUReG4447b6XPtLCN5XSPNqlWr+OlPf8pZZ53FPvvs498nA90b7e3tXHrppcyePZtwOExzczMf/vCHeemllyruX+lerPRv/fr1fY697777OPHEE6mrqyMWi3HAAQfw4x//GMuyhn3dr7/+Oh/5yEdoamoiGo1ywAEH8NOf/hTHcSruv3z5cq688kre+9730tTUhKIozJs3b9ifP97aIZFIdi36WDdAIhkKnZ2d/PSnP+XKK68c0nG5XI5PfOIT3HnnnSiKwmGHHcYxxxxDe3s7jz32GMuXL+f666/n3nvvZcaMGVXP8/zzz/P6668D8Oabb/Lss8+ydOnSnbomSXWOOuooZs+eDUBraytPP/00P/vZz7j99tt56qmnmDlz5tg2cBdy6623cv7553P55Zf3MeaGyxVXXMGVV17JLbfcMi6Ng/648cYbue6664Z0zJYtWzj66KNZvXo1kyZN4rTTTmPz5s38+c9/5m9/+xt///vfec973lNyzNFHH131fKtWreLpp59mxowZTJs2reS9a665hm984xuoqsphhx1GU1MTTz/9NF//+td56KGH+Pvf/46uD+0R/PTTT3PCCSeQyWRYunQpM2fO5NFHH+WSSy7hiSee4H//93/7LBr8v//3/6oaRcNlvLRDIpGMAUIi2Q0AhKqqIhQKiWQyKdrb2/vsc/nllwtAXH311X3eO+OMMwQgFi1aJF577bWS9zo6OsTHPvYxAYiZM2eKzs7Oqu348pe/LAAxadIkAYiLLrqo6r633HKLAMS5557b77XNmDFDAGLNmjX97jdYvPPtLJ2dneL1118X27dvL9nu9fMtt9yy059RjXPPPbfiZ7S2topDDjlEAOLMM88ctc8fKul0Wrz++uti8+bNO32uQqEgXn/9dbFu3bqS7d79dPnll+/0Z3gM9F2O5HWNNL/5zW/EZZddJu666y6xfv16/77fsmVL1WNOP/10AYhTTz1V9PT0+NvvvPNOoSiKaGpqEt3d3YNuw0c/+lEBiG9/+9sl25999lmhKIowDEPcf//9/vbOzk5xzDHHCED88Ic/HMLVCmGapth3330FIK699lp/e3d3tzjiiCMEIH7729/2Oe7SSy8V//Ef/yEeeOAB8cILLwhAzJ07d0ifPR7bIZFIxgZpOEh2CwARDofFF7/4RQGI73znO332qWY4/OlPfxKAmDhxYp9JsIdt2+LEE08UgPj85z9fcR/TNEVzc7MAxIMPPigA0dTUJEzTrLj/7m44VGMsDQchhFi+fLkARCQSEYVCYdTaMN4YC8Nhd2Igw2H9+vUCELqui7Vr1/Z5/8Mf/rAAxHXXXTeoz+vq6hLRaFQA4vXXXy9579Of/rQAxAUXXNDnuFdeecUfOyzLGtRnCSHE//zP/whAHHjggX3e8ybiCxcu7Pcca9as2ekJ+3hph0QiGRtkjoNkt+Jb3/oW4XCY6667jvb29kEdc+211wLwve99jwkTJlTcR1VVP+zh1ltvrXju+++/n9bWVo466ije8573cOSRR7J9+3buv//+YV7N8LEsi6uvvpr99tuPSCTCPvvsw3e/+10KhULF/YUQ/OlPf+Kss85izpw5xONxEokES5cu5YYbbqgYl1wtx6ESCxcuRFEU3nzzzYrvr127FlVV2W+//RBCDOlay1m8eDHghp/t2LED6I1DX7ZsGffffz/vfve7qaurQ1GUkpyYv/3tb5x88sk0NjYSiUSYM2cO3/3ud+np6an4WaZpcsMNN3DUUUf5cepz5szhggsu4JVXXvH3q5YLEMwHeeaZZzj55JOpq6sjmUxy4okn8vTTT1fsq/Ich+OOO47zzz8fgCuvvLIktt7LNRnqdzxz5kw/5O/8888vOeeyZcv6vS5w78Gf//znLFmyhJqaGmpqali6dCk33ngjtm332f+4447zc3n+8pe/cPjhhxOPx2loaODss89m48aNFb+DkeKFF14AYNasWRXDEb3+/r//+79Bne+uu+4im81y6KGH9onVX7FiRck5gyxYsIAJEyawfft2nnzyyUG3/5577gHgwx/+cJ/3Fi9ezD777MMrr7wyYrlS470dEolkbJCGg2S3YsqUKVxwwQV0d3fzk5/8ZMD9d+zYwXPPPYeiKJx11ln97jt//nwOOuggcrkcjzzySJ/3f/e73wHwb//2byX/e9t3JWeffTbf+ta32Lp1K6eccgoHHHAA1157LR/60IcqTszz+Twf//jHeeCBB2hubuZ973sfhx12GK+++ioXXnghn/rUp3aqPZ/73OcA+M1vflPx/ZtvvhkhBJ/5zGd2OnG7u7vbfx0Oh0ve++Mf/8ipp55KOp3m1FNP5dBDD/U/76tf/Srvf//7efTRR1m4cCHvfe97KRQK/OAHP+C4444jnU6XnCudTnPCCSdw4YUX8vLLL3PkkUfyvve9j7q6Om699VbuvPPOQbf5ySef5JhjjmHjxo2ceuqpzJ07l4ceeohjjz2WBx98cMDjTznlFI466igADjzwQM4991z/n5cDMtTv+MMf/jAHHngg4OaSBM85ceLEfttj2zYf+MAH+PKXv8zbb7/Ne97zHt7znvfwxhtv8MUvfpGPfOQjVZNkb7jhBs4880yEEJxyyinU1NRw++23c/zxx5PNZgfsi+Hifb/19fUV329oaAAYdBz+73//e6B3HBjNzwrue/DBB1d839s+2nkE46UdEolkjBhLd4dEMlgohioJIcSmTZtEJBIRiURC7Nixw9+nUqiSF1K07777DupzvBCD8lAoLywhFAqJtrY2IYQQbW1twjAMEY1GRVdXV59zjVao0h//+EcBiH322Uds3LjR37569WoxdepUAfQJVTJNU9x1110in8+XbA/mDCxfvrxi+8tDYyqFt3R2dopYLCaam5v7hA9ZliWmTJkidF0XW7duHdQ19heq9Mtf/lIAYsqUKX32B8Ttt9/e55g77rhDAGLx4sUl/VwoFMRnP/tZAYivfe1rJcd498K73/3ukvtMCCE2btwonn/+ef/vRx55pOJ37fUVIL71rW8Jx3H892644QYBiMmTJ4tsNutv98I4jj322JJzDRSqNJzveKBQpWrX9Z//+Z8CEAcccIDYtm2bv33z5s1i7ty5AhDXX399yTHHHnusAEQ8HhcPP/ywvz2dTosjjzxSAOLmm2+u2I7BMFCo0gMPPCAA0dLSUvH9q6++2v+uBspz2Lhxo1BVVei6XnL9Ht713HjjjX3es23bD3H66le/Oogrc6mvrxeAeOmllyq+f/HFFwtA/Nd//VfVc4xEiNB4aYdEIhkbpMdBstsxefJkPvvZz9Ld3c1//ud/9rtvW1sbAM3NzYM6d1NTE4AfAuNx5513ks1mOfXUU/3VwoaGBk499VSy2Sx33XVX1XPedttt/co4rlu3blBt87jxxhsB+P73v8+UKVP87bNmzeK73/1uxWN0XedDH/oQoVCoz/VeffXVwOBDNCpRW1vLxz72MVpbW/nrX/9a8t59993Hpk2beP/7309LS8uwP2P79u3ccsstfP3rXwfgC1/4Qp993vve9/Kxj32sz/arrroKgD/96U8lSkyGYXDdddcxceJEfvOb3/ir5Fu2bOHWW28lGo3y3//93zQ2Npacb8qUKSxZsmTQbZ8xY4YfYuTxhS98gcMOO4zNmzdz9913D/pc1Rjt7zjIf/3XfwHws5/9rOS3NWnSJH784x+X7FPOV77yFY4//nj/71gsxle/+lUAHn300RFpXyUOO+wwIpEI27Zt4x//+EfJe47j8N///d/+30GvViX+8Ic/4DgOJ598csWx5dhjjwXc3345d9xxh+9ZGehzgnjhdLFYrOL78Xi8ZL/RYry0QyKRjA1SjlWyW/KNb3yDm266iV/84hd89atfrZq7IIphO2KQcfXefuXhNF440ic+8YmS7Z/4xCf461//yu9//3s/Br2cfffdt19JxzvvvLNPmEw1TNPkmWeeQVXVijHGZ599th82VIl//etfPPDAA6xbt45MJoMQwp+8vPXWW4NqQzU+//nPc8stt/DrX/+aM88809/+61//GoALLrhgyOc8//zzK/brueeeyze+8Y0+29///vf32dba2spLL73E/PnzK9beiEQiHHLIIdxzzz289dZbzJ07l0ceeQTbtjnttNOYOnXqkNtdzplnnllRevPss8/mmWee4fHHH+fss8/e6c+B0f2OAdavX8/69euZOHFiiQHgcfrpp1NXV8eqVavYvn27b4x7nHTSSX2OmTNnDuAabKNFMpnkwgsv5Cc/+Qnnnnsuv/rVrzj++OPZsmUL3/72t1m1ahWqquI4Dqra/5qaF6ZUPh54XHjhhdxwww08/fTTnHfeeXznO99hwoQJ3H///Vx44YXouo5lWQN+TiWqhfoNdowbKcZLOyQSya5FGg6S3ZJJkybx+c9/np/97Gf8+Mc/5pprrqm4n2dQtLa2Duq827dvByhZYd6wYQPLly+nrq6O008/vWT/973vfdTW1rJs2TI2btxYcZJ59NFH91ssbdmyZYM2HNra2igUCkyaNKnPyjJAIpGgrq6uT5G8QqHAeeedx5/+9Keq5x7K6mclli5dyuLFi3nwwQdZt24dM2bMYMuWLdx7771Mnz694oRxIIJ1HCKRCDNmzODUU0/loIMOqrj/9OnT+2zzPDqvv/76gPkVO3bsYO7cuWzYsAFwjb6RoFptEM/7sXnz5p3+jF3xHUNvW6vV0FAUhRkzZtDZ2cnmzZv7GA6VfiM1NTWAm6cxmlx11VVs3LiRO+64gzPOOMPfrus6P/nJT7jkkksAqKurq3qOlStXsnLlSpLJZEVDFVyP1N13382HP/xhbrvtthLPw6JFizj88MO56aabSnIgvva1r/XxdB599NF85jOfAdw+6ujoqDpWZDIZf7+dYby0QyKRjE+k4SDZbbnsssv41a9+xfXXX8/Xvva1ivt4yZ9r1qyho6OjarKih6eGEpyY/v73v0e40sWccMIJFY9zHIc//vGPfhjNaFHNIzIQ1157LX/6059YuHAhP/7xjzn44IOpr6/HMAzefPNN5s6dOyIrhZ/73Of4/Oc/z29/+1u/sJhlWXz6058e1urqZz7zmSEVJotEIn22eQo/kyZNGtB4KQ9JGokK3P0xkquzu+o79hhM31TaZ7T7tD9CoRC33347F110Effddx+tra1MnjyZj370oyiKghDCryhdDc/7eOaZZxKNRqvu9+53v5t33nmHO+64g5dfftkvBPeRj3yET37yk4CrsORx5513Vgxb9Cbs06dPp6Ojg40bN7Jo0aI++3mqVJWM56EwXtohkUjGJ9JwkOy2TJw4kS984Qtce+21/OhHP/Jja4M0NTWxZMkSVqxYwe23314xLt7jtdde46WXXiIcDpfIKHphCV1dXTzxxBNVj//d73436obDhAkTCIVCbN26lUKh0Mfr0N3d3cfbAPgx9N7EMsjq1atHrH3nnHMOl156Kb/97W/57ne/y80334yqqjut2rQzeCvcEydO7NfzE8SrAvz222+PSBuq5bGsX78ecPN2dpZd9R17bV2zZk3VfbzrmjRp0oh97khy1FFH+SpVHj//+c+ByhKqHo7j+B6damFKQerq6vqEDlqWxfLly1FVlWOOOcbfPpB86YEHHshLL73ECy+8wGmnndbnfU9uttJkfiiMl3ZIJJLxiUyOluzWXHbZZcRiMW644Qa2bdtWcR8v/ODf//3f+7jgPRzH4Stf+Qrgxs97K88rVqzgtddeo6WlBcuyfM9D8J/jOEydOpVXXnll1CUIDcNg6dKlOI5TMSH79ttvr3hcR0cH0DshDvI///M/I9a+mpoaPv7xj7Nx40YuvfRSVq9ezamnnjoieQLDZerUqcydO5eXX36538lukOOOOw5N07j33nvZtGnTTrfhrrvuqljbwPu+yiexlfCMRMuyKr4/nO94oHNWYvr06UyfPp2tW7fyz3/+s8/7f//73+no6GDu3Ll9wpTGK4VCgeuvvx7oPxfHC0mcNm2anwA9VP7whz+wbds2TjnllIrfVTXe+973AlSUAX7xxRdZvXo1+++/P7NmzRpWu3a3dkgkkrFBGg6S3Zrm5ma++MUvkslkKiqYAHz84x/n/e9/P1u3buU973kPr7/+esn7nZ2dnHPOOTzwwANMnz69JF/CC0v42Mc+hqZpFc+vKAof/ehHS/YfTbwVzO9973slyaTr1q3j+9//fsVjvOTTX/7ylyXb77zzzhI1mZHg85//POAq7sDwkqJHmu985zvYts2ZZ55ZUrjN45133uG3v/2t//fkyZP55Cc/STab5bzzzutTEHDz5s3+yupgWLdunV9szeOmm27iqaeeYuLEiSXx9tXwVvpXrVpV8f3hfMcDnbMaF110EeAqJHl5QQBbt27l0ksvLdlnPLF+/fqS9oLrpfu3f/s3Vq1axXnnncfSpUurHu95H88555wBQ+9WrFjRJzTswQcf5KKLLiISifiFKQfLGWecwaxZs3jppZf46U9/6m9Pp9NceOGFQO8iyWgyXtohkUjGiF2r/iqRDA8CdRzKaW1tFfF43NdgD9Zx8MhkMuKDH/ygAISqquKII44QZ599tjj55JNFLBYTgJg3b55YvXq1f4xpmqKlpUUA4qmnnuq3fc8++6yvyW/bthBi9Oo4OI4jzjjjDAGIRCIhPvjBD4oPfOADIh6Pi9NOO01Mnz69Tx2H5cuXC03TBCCWLFkizj77bF/b/2tf+9qQ6gYMpP0vhBBLly4VgJg0aZIwTXNQ1xWkvzoO/e3/yCOPVN3n61//ugCEpmnikEMOER/5yEfEySefLObNmycAceCBB5bsn0qlxBFHHOH382mnnSY++tGPiqVLlwpd10v6ZaA6DhdccIEwDEMsWLBAnH322eLQQw8VgDAMQ9x3330lx1Sr45DNZkVzc7P/3vnnny8+/elPiyeeeEIIMbzv2KuJommaOOWUU8SnPvUp8elPf1q88cYb/V6XZVni1FNPFYCora0VZ5xxhvjgBz8oEomEAMQHP/hB/3fg4dVxqHSfV7vm/lixYoU47LDD/H+hUEgA4uCDD/a3/frXvy455pZbbhG6rovDDz9cfPSjHxWnn366qK2tFYA4+eSTS+pplJPNZkUymRSAeOWVVwZs34wZM8TUqVPFqaeeKs466yyxePFiAYhoNCruueeeQV9nkCeeeMKvAXHYYYeJj370o2LSpElV+1wIIX7961/7/XHQQQcJQEQikZK+W7FixW7ZDolEsuuRhoNkt6A/w0GI3klhNcPB429/+5s444wzxKRJk4RhGKKhoUG8613vEj//+c/7FM76+9//LgAxc+bMQbVx9uzZAhAPPPCAEGL0DAch3MJl//Ef/yH22WcfEQqFxIwZM8Q3vvENkcvl/POV89RTT4njjz9e1NfXi0QiIY488khx1113Dbng2GAMh29+85t+0bPhMBqGgxBCPPzww+KMM84QEydOFIZhiObmZnHwwQeLSy+9tOKkJZfLiZ/+9KfikEMOEfF4XMRiMTFnzhzx2c9+tmTyOJDhcMstt4gnn3xSnHDCCSKRSIiamhpxwgkn+JP+IP1Nop977jlx4oknitraWqEoSp8+Gup3LIQQ999/vzjqqKNETU2N/xvy+rHadQnhGtbXXXedWLx4sYjFYiIWi4lDDjlEXH/99cKyrD77j7Th4LWtv3/l9+7LL78szjrrLDFz5kwRiUREbW2tOProo8XNN99cUpyvEsEigoPh6quvFocddphoaGjwf6Of/exnxTvvvDPoa6zEK6+8Is4880zR2NgowuGw2H///cV//ud/VuxzIUqLEFb7N9DvZjy3QyKR7FoUIaToskQiGTmEEMybN4+33nqLt99+m3322WesmzRmXHHFFb661FDUoSQSiUQiGY/IHAeJRDKi3Hnnnbz55pucdtppe7XRIJFIJBLJnoaUY5VIJCPCZz7zGTo7O7nnnnvQNI1///d/H+smSSQSiUQiGUGk4SCRSEaEm2++GV3XmTNnDt///vc5+OCDx7pJEolEIpFIRhCZ4yCRSCQSiUQikUgGROY4SCQSiUQikUgkkgGRhoNEIpFIJBKJRCIZEGk4SCQSiUQikUgkkgGRhoNEIpFIJBKJRCIZkN3ecLjhhhuYNWsWkUiEJUuW8Nhjj411k3YbrrjiChRFKfk3ceJE/30hBFdccQWTJ08mGo1y3HHH8eqrr45hi8cvjz76KO973/uYPHkyiqLwl7/8peT9wfRlPp/noosuYsKECcTjcd7//vezcePGXXgV44+B+vW8887rcw8ffvjhJfvIfi3l6quv5tBDDyWRSNDc3MwHP/hBVq1aVbKPvF+HzmD6Vd6vw+PGG29k0aJFJJNJkskkRxxxBPfdd5//vrxfh8dA/SrvV0kldmvD4Y477uDiiy/m29/+Ni+++CLvete7OPXUU1m/fv1YN223YcGCBWzZssX/t3LlSv+9H/3oR1x77bX84he/4LnnnmPixImceOKJdHd3j2GLxyfpdJoDDzyQX/ziFxXfH0xfXnzxxdx9993cfvvtPP744/T09HD66adj2/auuoxxx0D9CnDKKaeU3MP33ntvyfuyX0tZvnw5F154IU8//TQPPvgglmVx0kknkU6n/X3k/Tp0BtOvIO/X4TB16lR++MMf8vzzz/P8889z/PHH84EPfMA3DuT9OjwG6leQ96ukAmI3ZunSpeLzn/98ybZ58+aJb3zjG2PUot2Lyy+/XBx44IEV33McR0ycOFH88Ic/9LflcjlRW1srfvnLX+6iFu6eAOLuu+/2/x5MX3Z2dgrDMMTtt9/u77Np0yahqqr4xz/+scvaPp4p71chhDj33HPFBz7wgarHyH4dmNbWVgGI5cuXCyHk/TpSlPerEPJ+HUnq6+vFb37zG3m/jjBevwoh71dJZXZbj0OhUGDFihWcdNJJJdtPOukknnzyyTFq1e7HW2+9xeTJk5k1axZnnXUWq1evBmDNmjVs3bq1pH/D4TDHHnus7N8hMpi+XLFiBaZpluwzefJkFi5cKPt7AJYtW0ZzczNz5szhggsuoLW11X9P9uvAdHV1AdDQ0ADI+3WkKO9XD3m/7hy2bXP77beTTqc54ogj5P06QpT3q4e8XyXl7LaVo3fs2IFt27S0tJRsb2lpYevWrWPUqt2Lww47jP/+7/9mzpw5bNu2jR/84AcceeSRvPrqq34fVurfdevWjUVzd1sG05dbt24lFApRX1/fZx95P1fn1FNP5SMf+QgzZsxgzZo1fPe73+X4449nxYoVhMNh2a8DIITgkksu4eijj2bhwoWAvF9Hgkr9CvJ+3RlWrlzJEUccQS6Xo6amhrvvvpv999/fn6DK+3V4VOtXkPerpDK7reHgoShKyd9CiD7bJJU59dRT/dcHHHAARxxxBPvuuy+33XabnwAl+3fkGE5fyv7un4997GP+64ULF3LIIYcwY8YM/v73v/OhD32o6nGyX12+9KUv8fLLL/P444/3eU/er8OnWr/K+3X4zJ07l3/96190dnZy1113ce6557J8+XL/fXm/Do9q/br//vvL+1VSkd02VGnChAlomtbHqm1tbe2z8iAZHPF4nAMOOIC33nrLV1eS/bvzDKYvJ06cSKFQoKOjo+o+koGZNGkSM2bM4K233gJkv/bHRRddxF//+lceeeQRpk6d6m+X9+vOUa1fKyHv18ETCoWYPXs2hxxyCFdffTUHHngg1113nbxfd5Jq/VoJeb9KYDc2HEKhEEuWLOHBBx8s2f7ggw9y5JFHjlGrdm/y+Tyvv/46kyZNYtasWUycOLGkfwuFAsuXL5f9O0QG05dLlizBMIySfbZs2cIrr7wi+3sItLW1sWHDBiZNmgTIfq2EEIIvfelL/PnPf+af//wns2bNKnlf3q/DY6B+rYS8X4ePEIJ8Pi/v1xHG69dKyPtVAuzeqkq33367MAxD3HzzzeK1114TF198sYjH42Lt2rVj3bTdgq9+9ati2bJlYvXq1eLpp58Wp59+ukgkEn7//fCHPxS1tbXiz3/+s1i5cqU4++yzxaRJk0QqlRrjlo8/uru7xYsvvihefPFFAYhrr71WvPjii2LdunVCiMH15ec//3kxdepU8dBDD4kXXnhBHH/88eLAAw8UlmWN1WWNOf31a3d3t/jqV78qnnzySbFmzRrxyCOPiCOOOEJMmTJF9ms/fOELXxC1tbVi2bJlYsuWLf6/TCbj7yPv16EzUL/K+3X4fPOb3xSPPvqoWLNmjXj55ZfFt771LaGqqnjggQeEEPJ+HS799au8XyXV2K0NByGEuP7668WMGTNEKBQSBx98cIn0naR/Pvaxj4lJkyYJwzDE5MmTxYc+9CHx6quv+u87jiMuv/xyMXHiRBEOh8UxxxwjVq5cOYYtHr888sgjAujz79xzzxVCDK4vs9ms+NKXviQaGhpENBoVp59+uli/fv0YXM34ob9+zWQy4qSTThJNTU3CMAwxffp0ce655/bpM9mvpVTqT0Dccsst/j7yfh06A/WrvF+Hz6c+9Sn/Od/U1CROOOEE32gQQt6vw6W/fpX3q6QaihBC7Dr/hkQikUgkEolEsvdy4403cuONN7J27VrALcb7ve99zxetEUJw5ZVXctNNN9HR0cFhhx3G9ddfz4IFC8aw1S67bY6DRCKRSCQSiUSyuzES1dDHCulxkEgkEolEIpFIxpCGhgZ+/OMf86lPfYrJkydz8cUXc9lllwGueE1LSwvXXHMNn/vc58a0nbt9HQeJRCKRSCQSiWRnyOVyFAqFYR8vKtSvCIfDhMPhfo+zbZv//d//HXQ1dGk4SCQSiUQikUgkY0QulyNZNwUz3z7sc9TU1NDT01Oy7fLLL+eKK66ouP/OVEMfS6ThIJFIJBKJRCLZaykUCpj5dg454X/Q9PiQj7etNM8//FE2bNhAMpn0t/fnbRiNaui7Amk4SCQSiUQikUj2evRQAt0YuuGgqK7WUDKZLDEc+sOr2g1wyCGH8Nxzz3Hdddf5eQ1bt271i+3B+KnILVWVJBKJRCKRSCR7PYqqDPvfziKGUA19LNntDYd8Ps8VV1xRtUS6ZHjIfh0dZL+ODrJfRw/Zt6OD7NfRQfbr6LC39KuiqMP+NxS+9a1v8dhjj7F27VpWrlzJt7/9bZYtW8Y555yDoihcfPHFXHXVVdx999288sornHfeecRiMT7+8Y+P0pUPnt1ejjWVSlFbW0tXV9eg3UOSgZH9OjrIfh0dZL+OHrJvRwfZr6OD7NfRYU/vV+/6jnr/g8MKVbLMNE/89cRB98+nP/1pHn74YbZs2UJtbS2LFi3isssu48QTTwR6C8D96le/KikAt3DhwiG3baSROQ4SiUQikUgkEsku4uabb+73fUVRuOKKK6oqMo0l0nCQSCQSiUQikez1KKrqJzoP9bi9hd3ecHAcB4Curq4xbsmeRSqVKvlfMjLIfh0dZL+OHrJvRwfZr6OD7NfRYST6VQhBd3c3kydPRh2nE21VBXUYic7j9HJGhd3ecGhvd4t1TJ8+fYxbsmcybdq0sW7CHons19FB9uvoIft2dJD9OjrIfh0dRqJfN2zYwNSpU0egNSPPcBKdveP2FnZ7w6GxsRGgT9ENiUQikUgkEsn4IJVKMW3aNBKJxFg3pSrDlVYdCTnW3YXd3nDwqugNpeiGRCKRSCQSiWTXMx6qH0uGz25vOEgkEolEIpFIJDuLogwzOVqGKkkkEolEIpFIJHsPMlRpYKThIJFIJBKJRCLZ61EVFXUY3oPhHLO7svdcqUQikUgkEolEIhk20uMgkUgkEolEIpEMM1QJGaokkUgkEolEIpHsPcgch4GRhoNEIpFIJBLJLuKBlgXDOu6kba+OcEsk5cgCcAMjDQeJRCKRSCQjzmOLDuZdL7/AY4sORtgCAMdxOO71l1g2/0AAhCn8/R2r9/UJa1fu2sYOkuFO+gdDsC8qcX/D/hW3n9z+2mg0Z69EehwGRhoOEolEIpFIhswzRywFwLF7J7wi8FrVFJ5YvARVU3C8bag8umAxqqriOA6K4U64hClQdcU3Hh6eeYC/3SNoWJQzWqvxD01ZOKjPHwoDGQhDJWhQlLfx1NTrI/pZEok0HCQSiUQikfDCCUdVfS9oEAA4jkA1NAAULWg4uCaCYwsUTfGP01QF4QjQFN/QUAPCjo7hFLcFPsMSfQwLyt738DwBngExWM9A+TkHs+9wDYiRMBiG89n3Jedzaup17o3O47TsGzvdhj0ZVVVRh1EAbjjH7K6MquFgWRZXXHEFf/jDH9i6dSuTJk3ivPPO4zvf+Y7fyUIIrrzySm666SY6Ojo47LDDuP7661mwYPTcgZLR4R59bp9tp1urqr4ffE8ikUgku45/nXxMn22qrlU/QMed+Hv7Fv8Xjjvh9w0LXcVxRFVjQtgCrRjWIYr7OLZA0zT3HGE3nAlAM5TeyXbAG1HehvdsegVwvQOeh2AoBsFoMhxjYTjGQX+fI0zBvdF5AP7/AM4g2ra3PacVRUFRhhGqNIxjdldG1XC45ppr+OUvf8ltt93GggULeP755zn//POpra3l//2//wfAj370I6699lpuvfVW5syZww9+8ANOPPFEVq1aRSKRGM3mSQbAm+hXGjgqGQn9ncOjmiGxuwxOg72eSu9LJBLJWPHyacf6rxVVQTNUDrhnGStPP27I5woaEI5dnDAFDAulzJhwioaCognfiHCPLe6vuv97hoRi907ChNqbG6EZge2mgKJx8MjsRSXeiX7bPsJhQjv7GUMxEobT9sE+qyuxNz6/ZI7DwChCiFH7FZ1++um0tLRw8803+9vOPPNMYrEYv/vd7xBCMHnyZC6++GIuu+wyAPL5PC0tLVxzzTV87nOfG/AzUqkUtbW1dHV1kUwmR+tSSrhHn+v/oHbmR+kxlj/Owbb/dGvVTl/rnjQIycFYIpGMB1488V2AO3E56P5HS94rNxYqvy4NsVC1gSdAJTkNjhN4LUpel+4n/P2DYU+Ov734f9GwOOypZ/19nlxySJmxUjmnwj1f0WipMsmuNlHvb1Le3+R+MJP5gYyDQZ1jFA2eXfVMGov52mDx2vbeC17ACNUM+Xiz0MPff33wuLy2kWZUPQ5HH300v/zlL3nzzTeZM2cOL730Eo8//jg/+9nPAFizZg1bt27lpJNO8o8Jh8Mce+yxPPnkkxUNh3w+Tz6f9/9OpVIj1t6gCw/6/6GOhMEAYz+J7O/zdya0qD9vxWiyO4RDBQ1PiUQiGQmCE2soDUVSNaXXG6CWv3aKr10DwilLbi7HKZuoK6oaOEfpuUvyFXrPiqL2GhyalwehKixZ9mTFaztyxfP+6yeXHOKf18ujgF4DolLS9UCMtNEwGC9CSdL3LvCCVEI+h/qiqMPzHuxFaqyjazhcdtlldHV1MW/ePDRNw7Zt/uM//oOzzz4bgK1btwLQ0tJSclxLSwvr1q2reM6rr76aK6+8cjSb7aMayqj9oHeHH+zOtHGsrm9Xfe7OeJwGOnZ3uDckEsnosuK4I/t935tkL37wsYrvH3T/o743wnZE72TIFr5BIALbhWP3mTAFooqGRdCQ8D7TO+XiB5/o99jnjjnCb2N5wrWHSiDcKZCIXY3ghL7SpH9nPQODMTLGykjwGInogT0ZFRV1GFaAyt5jOYyq4XDHHXfw+9//nj/+8Y8sWLCAf/3rX1x88cVMnjyZc88919+vPKlECFE10eSb3/wml1xyif93KpVi2rRpo3MBI0C1SWBwRX53jPWXuAzFYzPQ9vL35b0gkexZPHv04RW3L3386T7bPMOg2jHB7d7x3mTb49BHn/JfrzjuyN7Vead0klNuMFTyNAw3hrv8OE1VOOCeZf7fXjiVZwAIRyAcB81QfU+E7bULp49akxpQaQpSTcZ1MPKug80lGKw3YqyNhSDy+dI/MsdhYEbVcLj00kv5xje+wVlnnQXAAQccwLp167j66qs599xzmThxIoCvuOTR2traxwvhEQ6HCYfDo9Le07JvcF9yfsk2LeDuHM6Pv9qPNPi3/AHv/lQKP9qZpPJK+8v7RCLZvXhyySEcueJ5nlxyyLDPYWUt/7VSJf/gqaWHcsSzz+GYdsl2r86CormGwtJlfQ0MtWzCo2gKB93/RIk0a3kexM4YGkGjYeXpx/n7lcq1ep6KYgiUo/QJxfLwlJqgN7/BzvbNcxjI21C+z1ApP+d4MhbKkc+S6kjDYWBG1XDIZDJ9tG01TfN/3LNmzWLixIk8+OCDLF68GIBCocDy5cu55pprRrNpVSkvluIZEorRG69ZPiBUU9ZRAwoP90bnoRiKLMayBxE0FoY6EJfvX8mgkLkQEsnuxSOzF6EYSkllZO//ahz3+ksVtz+6wH0mHvPqi/62xxYd3O+5vITiJxYv8be5Exr3mesZMF7OwFNLDy2Z9B/21LM8e/ThJd6M4PGVjAyo4sEIhEQtunc5L592LIvuXV6y3wH3LOOV97+7eI4qq/+28MOVPCPBS7wWtsBxHHdhrzjp914PtnCcd8xIMZ4NBg/pdRh7rr76av785z/zxhtvEI1GOfLII7nmmmuYO7d3LlAt8uZHP/oRl1566a5qah9GVVXpvPPO46GHHuJXv/oVCxYs4MUXX+Szn/0sn/rUp3zD4JprruHqq6/mlltuYb/99uOqq65i2bJlg5Zj3dVZ+sEEallIZWRY8+kPYGbyFNJ5CukC2fYcZs5CmIJ3v/3yWDdv0FRKzK42QI9WjOne+CCQD0HJrmIov9vTrVUDPi/KPdyVFpa8qsAnt7/mb+uvuNlJ2171369WyyAoWxrcx9tevuBXkldQ5l0oUWgqe++IZ5+r2s5yPKPGMyCCngQ7b/vGQNBA8DwLsHtM2McTYzFe7g6qSmd8aSVGeOilAMx8N3f/4oBBX9spp5zCWWedxaGHHoplWXz7299m5cqVvPbaa8TjcaA3D9jjvvvu49Of/jRvv/02++yzz5DbOFKMquHQ3d3Nd7/7Xe6++25aW1uZPHkyZ599Nt/73vcIhUJAbwG4X/3qVyUF4BYuXDjA2V3G840ogdZXn0W3cmhWDtXMo5o51HwGpZDD3roZq72DQqoHK52j0JPFzBTIdqQxsya26ZTE6I5Xxlui2e4yga4UhjXSRoD02khGgpH8jfcnjhD0UgcNjXLFv4Hwji03TPzPKTMofIOhyvaB3vP3CRgcQU/JYPHqMUAgmTjgPejjSZDGwrAYqzFxPM/XvLad+eVXhm043PVfC4d9bdu3b6e5uZnly5dzzDF9izMCfPCDH6S7u5uHH354yOcfSUbVcNgVjOcbcW9k0yrXQyCKqgQhM+MbDlohi2rmUPJZlFwGe9sWrFQ3VncaO1/AyuaZ/NPbd0k7h5M7MN4MhP4Yj5NlbxK/szUwpIdBsqsZy9/+aNQMqmaIlBsKJ7e/5ns8yg2FgSoze9WcRwLPABpsqO/uNFaPBdJw6IvXtg9f/NqwDYc7f7Y/GzZsKLm2weblvv322+y3336sXLmy4sL5tm3bmDp1Krfddhsf//jHh9y+kWRUcxwkewfdz9xDIVqHrYXQVB1H1RCAQEFzTFS74HsblFya6EmfGusmA8NTRJIMD68/R7JwnpSzlewqBrqnRjP0sD9DeWfEFioRDFCyTeEbGIqhQNET4BkMdtlqf9CwOGnbq0Nq10AMNTdwJI2tPREpulEdRVGq5hYMdBzQR+Xz8ssv54orruj3WCEEl1xyCUcffXTVaJvbbruNRCLBhz70oSG3baSRhoNk53nuUeJTpiIStdixWuxwDMuIYelhjFwKrZAlftTY3eyVHrwDyeTurozXh8DO5HhUU6va3b8rye5HtdC3kc5hGqzqnmdYVBLoGI53Lxj6EwybEqbwDQOnzIAI7gOVQ5jGimrCJRKX8fq82J2p5HEYiC996Uu8/PLLPP7441X3+e1vf8s555xDJBIZkXbuDNJwGAGG6kbdU3hi8RL0iIYRM6hpThCpixOujROZUEe0sQG1to7Ihy4e62aOyErd7kKlScR4eDiUG2/9TbQG297xcF2SPZP+xoeBxo7TrVUDTlhH8t6tZEgHf2f9tbdabtFgRUDub9i/JGlbMv6R42b/7KwcazKZHFIY1kUXXcRf//pXHn30UaZOnVpxn8cee4xVq1Zxxx13DLldo4HMcZAMmRL3Ne7Kk2IoaFEVLapWlRccbQaKfd9TjYXBoJatAvY3GegvEdNbkRzph89gJjcSya5kJHMKdvbzhrP4MVSPQ9CICI4XQQ/CqanX/ZyHSu9XYqTDlnaGvfkZMB7G0fE8X/Pa9rFLVxEaRo5DId/NHT+eO+hrE0Jw0UUXcffdd7Ns2TL222+/qvued955vPLKKzz//PNDbtdoID0OkkHTZ9AtTiJtRmdQGsyDsXy//sJYdjYxdzyiGsqAD+5KxQsr1RvxzqNFS6UYoTc8QTMURDH22THFiH3v/X03lWRuJZLRZKTGifLzqIYyZCWg4YbbDGbfSucOjinlUq0PtCwYcihSuXTsWBoSe+IzYCDkeDk0djbHYbBceOGF/PGPf+T//u//SCQSvvRqbW0t0WjU3y+VSvG///u//OQnPxlym0YLaThIBsV4HmzLHwaDnYDuLlRb/fM8Pf0hTAG6ghatXjm13GAoj112LOEbDOCVgnITKUciFGokEzzlQ1Kys4zWOFHu9RsslQpNDraNlSbKg/2NeOPASOcsPNCyYFx5ISSSseDGG28E4LjjjivZfsstt3Deeef5f99+++0IITj77LN3Yev6RxoOkgEZUIljhB8s1T6v/HO8VW+PPW01KXi93qS+PDys2sO9UtXUkuJJel/Dofyc3rG+0aArJX87wOkVQp4qhYztqu9lvOR0jAQPTSlV1xhJeUvJzjOU8WZnx8jy+3qwv63BVqSvdo6dMRr6q8ZcHu7kWGJc5whW+/5kHYk9j53NcRgsg80S+OxnP8tnP/vZIbdnNJGGwy5izac/gGPZ2AXLr5B88MNP8EDLAoQpxnWC2WBiX+9Lzh+Rgb9SfP1gB+3xYjT0N0kY6EFTqX+DE/qS/1UVRVNQtcoDXXkFVsdxeo2H6OBUUDwjwvMyBI0IxRLcl5yPMIWfMzEYz89oM1T5StVQxlUV+GpVfz1DYjwYEKOd8DuWDGZSPhQPwEgvrFRqy2DDNQd7jiDlCwn9Uc1YqHZccP97o/PG1e/Qo7/vz3tvbzQg9tR6OioK6jBClVTGj5rYaCOTo0eRNZ/+gP/ayhWwcib5ngJm1sTKWVg5m3xbAXBXlPWYTjgZIpIMs+je5WPV7H65v2H/AR8eO2NABCudVnoIjUcPQ3mOwFAJSh2WxxR72/ozGLzX/nGa650QtoNjFz0MtkA4oo8REaSazGIlvAquwf+9a4Hd60GqGgp6Uutz3WM1Qb+/Yf8+np+xNBZGUlp0vDFSk5/BeklH4ncxWNW0weaIBbk3Oq9fD6RH+TOg4lhdNib423cix2Mk8RY9oHKbKo3r/kJKlbBPj7EY/6o9D0cz/3Co5x7P8zWvbf/2rXcIRYaRHJ3r5vdX7Tsur22kkR6HEWDLpedg9uTIpzKouoaqawjHwbEc7IKFmS2Qac+STxWwMlbJgGpn3bVcxVCwTRszbQ7LTbarGIxnZGeSWYOqHU5ge39u77Gi/MFS6QE7KGMiWvpnv8ZD0WiohGcw9N4/KmqxFx1A0RQUVSA0gWIrCLX40HTcfTRDwc46OJYYlPFQXhRqIINyPOOFXnnXvbMT9Z35DYwH7+NIGuQ7s/I9mupd/U3Ahzox2pWLGCOZuF3t+gb6/Q/0e/cWFPy/d2L8Hq3wQyOhAdUNHI9KY7hW3BYM4fQYq2fVrlxEG8+LATvLrgpV2p2RHoch8tTSQ0lOThJvShBtTBKqS6CFQwgh6Fm3hZ6tnaR39JBtz1HoNv2JWKVV2XI8SdPIhBDJqQkcy8bMmDi2IJwIEZ9QQ6Y9g5k1aZrbQu0+k2j49i9H9PqeO+YI/7Vj2hz21LPDOs9DUxYOOAkNDrbePt6kyQvX8FeEKjyIxtLjEFQeCSYVV1uhG01KVsQChkWJFyIwqFXyUCiqgqoqOMXwJi/MyfNaOKaDXXBwHAcrZe+2noZqYQeDSTov8bD0c53DCRUJGqHe5+/qBNLx4L0bDuOhIGClNgTvtbH+XQx2rOwvbO+R2Yv6/t6LfwfvVc8rfWrq9T55aDvDaExWnzliKdC76LL08ad5aumhCLt3HPS8tkFEhW2eF9fOOuS2mSPe1sEynif1u4PH4RPfWT1sj8PvfrDPuLy2kUZ6HAbBowsWo2gKmqESToSI1sfQIwaObZNr68TOFci297DjrR2YaYtCp+l7EoIEV2kqVegUpkDoAjNtkdrYXXKsYzqYGRMrZwPQtbGDfCrDptOPo6c1jWM6HPXiin6v497oPLSoSrjFIBQz0EJqH8PAmzACfd67LzmfSLOBHtNRNYWjXlzBM0cs9See3vF2wSbaHMYuOJhpq6JKj3e95atW5Qmh/uTcUBB67/6eos9Yo+pKyURT1RW0cHEly+l7DwyG/tz+5e+X91+wLVpURVWLXohAaJMW0tB0FdXQ0Ay14gqLcHpDmxzLxjYdHNPGLjjYWQcV14shAvf5WE+OoP945P68P+WVccsFafv0cz+ymkO9Lz0jtNxgGe3k6PHw+xkJxsN19NeG0fpdBKtGD9QHg+0jpyi1rEXVEs/XsvkHuveotx+DW1k/LfvGLq+HMRS8Z5y3YPbcMUeghTR/wUTRFFSj+vHeAoyiqf4xZtrC7LZ36WLKeDYWdjd2lRzr7ow0HPrhmSOW4tgCPaIhHHcQUTTFTXDuyUFPDjNToGdbN93b0uS3mSVx4pWUblRdcUMi6B1QvP9VwzUsrJSNnXX6TKyD+vrZ1jyAb6DoSY0XT3wXoXiIhn1bmPSTP/a5ntOyb/DOuadjxMI4lk3n+naeWnooVs7mXS+/ALgrLuAOoCuOOxLV0NDDGnpYZ84Z+1K3zyT3c/MFNv2/j9GycDKFnhzpHWkc04biJFSEBHrEQQtVqAkQiLuvhDfhLje+hC7QKHofdIFiDOweHq1B2zGFP3nWy/IPPIKvS44dwKBQAtKnUMHb0o/nyjYFitV737n9pPhBS5rqPegU9LAbVqcZKqquVTQeHMvGyltu2J3pYOUtFE1xDdmc5XofxpnBMFCydzWvULlKlTAFhXaran9X+syhxHOrAQMveI5qHquHZx7gv/fut1+uel7J+KHcM7qzXtLyCeJAFaKH+nnldWG8e87bFhybPENiV+TfjHbsvpk2S0JAg8+moIfW80z476nBY9zjFM2NHPAWuoJHjORYKY2F0UFVQR1G2FGVx/0eiTQc+iHWGOOAe5YBsOpjJxdXXm06N3T6yc2FlEmh3epXoabSyrpiKL2ylkEDwhTYZcd7yZtaVMXOuiu+tnfesoEoUhtFj0fo/sXXMbtSZFs7mHJdb5nyUE0ELaRjF3oHQ2+QfHLJIWghdyUawHHcQU9RFaINNdTuM5noAYtAOIhsGieVorCjney2NvLdOSxAOO5qNKoCuvtLKnf1qkbxM8tWcspDbOyYO1n1k3mLEqJKURUI4IS1K11lKr3Ude71+3AKLg0FVe+VJlUBx3BKkpeDeP2glq1n92dIBK+n0gS2UpyxSu8D3jckou7nCi3QP0XvkqKqRU+E7r92PQ4OjqWhqCqOZaOolh/SVMiYaLZGqEF3J9djaDwMRbXGCweMNoaJTYgRa4gRqokQroujGe71C8fBzptkdqTY+vIWch0F10Cq9vnBiX5Z8qQ2QNtU3W1PcNwoDwMp/wzFUFg2/0CEKXbKgBgPIT57Mt5vYiSVxkay5kklKnm+KnngPO+5Yig8NGVhifEQ9FTcG503rDG4v8Rkr00jlfvw0JSFfcQnPBRNAZOAEIVwX1cI7wyiRVVsej2zMPTcB2kYjA3S4zAw0nDoB89oWPPpDxCqiVDoyZHvKZBa31NiLJQMisXJqm0KyFLy/mBXRctxinGTnhcieA5vYuJYgrbXOuhc04Xy7AaMiO6vhkwJnCuzoxtVV/1J4xHPPlfyWXbBjWW3TQfb7HW3prenKfTkaNY0tEgYAGHbWJksZiaPmTWxzd6pVTWLvdzLUCneXtPV4oq4wLYc7ILtrnDT2+cnrF0J9A3n2NU4lkDxHqxlK8VKYHXf/bs48ddK42YrGRLBlb3B5MeUtwlLILwHIWDjQBQUu/gALBoIqqag6qqf1O+3WVUQjuJPpIXjFJP+BY7mhjs5pttOPalhpVxzd1cbEJWMhmDYUTlaVCXWHKFx30aaFu1DZL/ZiOYp5JPNCMU1mFXHRMtnqOtsJd6yjI53tpDanCLbmfe9gQO2axASlt5ERYuqaGHNv088Q7kkl4TShEwvfyiohz/cvAhpQEig72/JG1uVoie83BM2GEEEbxwLypZWk7sNLpAZcR09ovkeay9E11OFs/N2n/t/uKIChXYLcMcG14h3/OsLXodmaGioUEGcQlQwHkqiC4YgHCENBsl4RxoO/fDcMUcQa4ihh3WsvEWuM0t6e9YNSepnglTtvZK8hgH2LcfO9E5WtJiKkdD8EAcvvCmYkBVcsXlk9iJCCYOjXlzB3Dvu5+XTjkVRFcyMyTNHLMXK2f6ADPiTlmBys53NkE+Z9LR2Y0QNVN2dZJlZk0K6QD7lysqWS4SWnztIcDUH8MPC4hPiaIaKbTqYWRNTNbGwINcbtuPVv/D7tloOwBishHvXbsSNkiRjNMU3GLRATgiB6wfQNM2dPBqOr1oEfY2GYMwx9P9wUnV3JU3V3FWyYF6DYxWVvYoGRe/57GK4klNsq1Ni8Ciq4nvB/DCbYHvG0AtR7gH0Jume0dC8eD/Ciw4i3zKTbLSRvB5DoKAgUIWNHisQjjdQd4xJzcw1dL+zgc61rb4B4U02BtOOgZLltbCGEdcJxYyi8lVRTtfxvG1uvomwe416szvfx4BR6Z3secbIMa++OGAby5WGpAGx9zJUYQdVV3h3cRGnEv1Jc3veCHDv11CDTqwpgh7WUQ3NX9gAShalhOP4OVeFpOUb2l7y9gn9tKcSwZyw8jDG3hw7N6RTj+p9QjrLcRdjXKMBaTDsdkhVpYGRhkMF1n3uDAo9OYyoQaY9Q6G74Icr2FlnRCZE5ecYrAKHFlMHrJPw8MwD/Nf+BEpV3MSvYjy7MB1yXXnsQnHSqPVO9hVbwTYcN8TFcle7nW4bs9smvSFXGuOq9x+nnWs1B6WVrUVVd7XJcMNioHfiGrwWb7W12qrvzn43Q9Fdd0zhrwIrRq+b2zOeHNP2XdqKWlzNLoZneRNB6DUYfI9E0ZjQUNEM1+gy05YfnqVFVUIxw9+33Ogr+X4CYVOqoaKFNFRDQ9XccCQrb6HaApF15YOdYr2HcrxJLIBtOX7bNUMj1NDXK+IaE6VektEwJAY8p+e1MRQUy83NKKTzZLe1ob29inDHdsJGCJHuwe7uodDWQa49RS6VoSdnsjVr+tLKnsKZEdExJuuoRtEQM7QSD5ttOVhZN5TRTFsV85V8LOGKKeRtrJxdrOOiE05EiNTFfAPdeyjZBYt8KssOYweFTKkIg6orvnCBZ7w/tfRQ36v48MwDfEPP82YAGEnN/90+0LIAI6nhWKJksUIyPhjtYnLlVMoH8u6V415/aVjnXDb/QABiM8OoqooWUtEjbh6dFtZ78wkCv6nFDz4GwMrTjwM0jKg79hkx14AXtmDJsieH1Z5TU6/z3DFH+GFHjtl3sSvoGReOKGmbqrpGgqJqKJqKXbCLAhk2Qi9GH1B5rBppY2HZ/ANLQq28vlUNzV3wK3qYg4sTjuXmrvU+Q9z/D330qRFt2+6Cqrj/hnPc3oI0HCrghmyo7mp32iTXURjQy1CJ8kFhJFbyvIe5V6nZK5gWrN4bqQ9hxIsTS9shnzLJdxXItuX9yYUe0TDiBkbc3SeY9GUXbKyM5edaVF3BNwXCKI3R9lSF9Ig74bGzDma3XXUS4nh5CEVPQiFj0r2lpyRsw1Vqcr0f3r8+bRkhvPYMBtVzwycCSbVlbmx3gq32WY1w/y7KuNKr4CFs4ecYgLt65QDRxrCbdBdyHwB62F2Rs/J2735ekTfTdvNTAqFSwQeFp6TkX7PnWSgqKPW2vfdBUuI58a7B8xipKo7h9ObsAIqllPwtBujX0fZOePlDqXcyZFvzdG1IEW/eSCTpht1l2jPkuwvkuwsl3oSgIEFwkh5q0AmpBmpEL/Znb25Ioah+Vm40lP8G/PCNomFuZx0KKZNMNEsoZlA7zSIUD7HfH+4DYONFH2HGr+4GoOuYI9z7JdZrbDq2wDZt3vVy5QndCWtX8tCUhSWKL15oSDAp3KPQPn6S3yW7xmioJp89nOKWnoFQiaDam28UWw6KZiOcQI5B8b2XTzuWRfcu54B7lvHyace6bbUFiqr6RsXO4hkNdsEpkWH1FlmEraCF+iZI97m24iKcUlysUCyFU3dhbZZjXn2xt+8Lbj9phjvuq5qbx+WHB2vFhQnTzcYQthhWYvCehPQ4DIw0HAKsPv992AULK2eSS+XJtuUw05Yfv70zDGQ0DPXhLIqyeUHub9gfPemGPSiqhRZSUTR3xcFMW/6EyEg40BhCj+juIOElMTuVV5urEZz4eHHliqFgxHVqmuOE4mEKma19wjqqJct5oVF21qko4Vqe4zFaDOa7UMs8DR7C7k2UtguOu1KFg7B76yVUQ1RZ7dcjGqGYgWpohOIhjKhRkszc5zzFVaSgEdD7nmsc+MpWTmVPg6prqGHFDQnIW77BELwGRXNX5fyCcraAMH6MsFccSSmqYAXZ1UnsHnYmoLXeUfBDmEom+AEDwXtdLkQgTIGddCcYRtxAUYveI9Mm05orWdH39i/HM1K9346fm1Js35ErHi7Zf+rP/7fkby2k9Z6/GMaU3Zbv9/q9JNYHWhb4Md3V1L887wTScBgXDGVRY6c+x+pVjDtp0yuup6rC53qT06F6HsolooMIWyBsu3fhqPhTFI7Kiye+yx97Drr/0SF95kAc+uhTvuBAJVECL8cBQAuBtxhUre6NHnG953mzwAm7sB7Lca+/5H8vwhTYxeU/EdbIdxew8jZG1PGVEqFXHKOYjVFV7XBvQRoOAyMNhyKvvP/dZDtzmGmzd/Uu3zvxUgxl2A/QkY4ZLo9J9gyI4CTHjtq+Z0HR3Mm8hxZV0YxeYwHw3bNeoa/gJD04MS6pmFnEG2y14uCamFjDhHlTqZk1FVX/F+11bWS25/xJWbkh5kmbegnllQyH4PXtyhXQSiFk5Yof5apKOCDsvvUTPEUO1dD6PGg8oyG4ygX4cb6efKpmqGghHS2kE07GUDStxPUMxbAiR2DnC66RUDQiPKUkK2eiFGszBHFXznslWr3E6Fwqj5c9o4d1/96xTccPybILjp/0raJClIoqWMF7xXtdLj+7swwm3Mw3RHXFFzHw+yGq+u2pFppoFg0DO+sQarD8SYVt2iVGQ3/XVS596TEYectgGMGzRx/uGnSaGHQ/BpOol80/0J/8BePEy/OIJGPLrjAagkast0ru1Req5nUYjgFR7pl1xw0Hp6hU1Hfy6uVZuRPdF09814h5GjzyxRzBoNcl6Em3Dcd/jmohV341GNIUDBt1HKfis25XEDQePLy5jJWzsbIWelTHiBq+99l7NgDDDvmS7D3s1YZDxw8vxMkXWP/4G2R2ZEhvzmFnHaJTQoQTIVdVKFD5ebDsCpUS7yFyf8P+aFG1tJKvN8G2TAops8QA0KIqRkT31Sq8gm2ewWCmLX/FE/qqw3h/BwsAOcXcA61BJd4UJdZYgx4L4xQKCEe4iW6Ggt1tVw19KA+Bsqk8ad+VlD+oqz24gyt0eMnkxZUexVCwTTcXQHUUhN33gQn0MRqCCeZB17hXmE3VNRRNw0jEUA3djYVXVRRFQQgBjoPZk8HK5HFME7ugFI0HBVV3ej8TFVV38ytC8TBGLIQRC7vejGJ8fawnh5UrlCRJ2wXLjYsNSMnahV75QRUVwm7ORXC10sb9ezDKREPF+370pFayvVzetL9aDsH7G+hjVATxvBfuZKtvoUPoa3SXJ176nxdY5XygZcGQ1JG82iseXviix0A5UcEJ37vffpl7o/P8xYhKhSqrSU57VPqtajF1wIrbkvGBd7/cl5zv/1YUS1T0OgQJGqDlVNv+xOIlJX+7Y1IvXthM0JDwPBIvnHAUBz/8xECXM2hObn/NV2nyf4/F/20C0ttJB83UemXCTVEyRwh6LQf67e1K7LztLtLYwq3JUzQgNF2VxkIARVFQpRxrv+yVhsMjsxcRaQgTrY+iGSo929Lk2wr+SrfnSrVSdr/x+eXsSllDxxRosd6E5KBeNAQms4HQH8VyJyq26q5yq5pdskLiTYK8QbN8guCdr9IEwM46FNotspEcRrQbRVUJdXST3pF2vTjF/d2Y8cElmI+3SUZ5qIC3Oud5HHyjobjde9B4g7XvlbCF71HwchNUQ0VRRYmx4OmEezkK7gq/je70qiDp8SiqXpzkK6qboeUIhGmiaHlUXcXpFdsqSexTdQ0j5qqEqLpGpKGGULIGI1mDFo+hRiKgqNg93djpDFZ3GjOdw8q6hQ/VTL5oTLihaMFwJ88wVezeB7/jOL6EoxpIGtzZCWVwQuuF35QQ8HaUqyz55wiqSZXV1fDDmKoYvI5pl7TBqyYe/FuLqoQSRkWDMJ8quDlFxUUKGLrxECToMQF3Ajjl6GYW3bu84v7VxqtKhnIlg6u/qtpazM2f0JNaUZ2tdyFmpIQm9jaGk28A/SsmVZIyDU56g4Ib5UZAJY9Df/kNQY56cQVPLjkkMD56o6SL7deaKWv7EEJqh8LJ7a/1Mbx972Pxni20WxWLu/pNK74eS5WkaobaI7MXYeMaEF7RV0kpijLMUCVpOOyZBB+Q2U0FUtF0SXwzuJPv7JY8OaNAoW1wkoswtoOE1/byyYov11mW4BlceQ3ihY14NQn6DI66m8RZCccUFNos7GyGXEeB1KZujLhBriOPmbb8yZONq9YUrJw9XunPM+JNqoJhStBrvPkr7wFD1EML9dZLCCaiBZOYPReyp6rjH2uo6JEQesRAi4RQQ6HeZGrHRAg3RtgpmNjZHFY2j5UzsQsWdsEqhi7ZKKrqniOkY8TCGPEIsakT0SZMgMaJWIlG8uEaHM0gktpGqGs7ofYdWG1tFDq6UDu7UVS3irobE2r7qiQVw7A04SbqlUnM7iyVJuxVJ0jFxH0t5BW8c4sdaobqx/tCrwEkHIdcLO8mOxcXEfozINRiG6KTwr4GvVdMUVUV/7Ufflb8fvWwRq4zT54CBH6fw6Xc4HjxxHdVNRoAQo26P9YFw6cqVcGuVK/El54MbqPXE+lQDDP05C4p/k768eZISunP21P1mDLPWokKXljr79A+BCVOH5m9qOS9SkUIj3v9JR6Zvahiex9dsBjAlwo+csXzgFuA1LYFilZmiGoKouyxM1CC8s7giY70qwY3zp9d1ZAV5wdGUdx/wzlub2HUDYdNmzZx2WWXcd9995HNZpkzZw4333wzS5a4LkohBFdeeSU33XQTHR0dHHbYYVx//fUsWLBgxNpQaUXNWynsg9m3cnM1dsZYUIuroxMW1dE0fxKR+ho63tlK+5p2Mq05shsLffaH0lVVYQp/MhM0FoyE5j8Y7LyNE1BRCWpLV7vOStVsAbeAWHGF3S4L4fIGVzvjkM0U/PZ7XpGxrq0w0gS9D36F5uKkqLzfHMfBiLjynXpEJ1wT8vMS1ICqiKKqvduLRdm8fAYjHkXRtd7QoOLENr+j3c1psGxs08LOFTAzhRJDwTbdPAdP+9y2HDRdJVIXJZyIYMTC6PEo2qzZFJpn0FMzkXa1mY5CgqypM7N5GxNq1hMz3kGzTNR0BqVYME7VNVRboBU9GaqfLOggbNWXbvUSxUW+16tVkoS4E8nRwVV9PalhRPoOa95Kv5dQ7PW5ZzSEExF/Xy9HxLEF8Qk1pVKoPQWyHVm612VKlIlizRHqptVSO30CyXn7uN4ax8FOZ8i17iC9pZ3uLZ3+Z2uGxvy7HhrW9Q6VarHg277xSQD2PWUW6e3d9GxLk23L+3LH1Q1np+KEMLlvjLoZddS0JHEsh1xnmo61nXS9lR7SIsyexM7WxRiqwVBSVDCqEq0Loxqan5vkjS8L/vLwwCerQrXJ5wMtvc/sk7a96hqLRePQ81gEPX2eV8JbWOmv5kgwpMn9PTq+wTEaeN6W4X53e1tNhmeOWMphTz071s0YEdSip384x+0tjKrh0NHRwVFHHcW73/1u7rvvPpqbm3nnnXeoq6vz9/nRj37Etddey6233sqcOXP4wQ9+wIknnsiqVatIJBKj2bx+CVa6rIQ3IR4uiqEQbjGY/otr+eA387DR3f69mw5n6T8u4akrH66oouEqJfStY+Ap2PgxqYHks5J9K6xmlq/QBifBXlsrFR/TDMX1Qlii6grMnqoFX/69lHh59NK+11BxDIFquIOLFtLdIkdF4yDoFvVCiTylC++1Gi56Fiwbx3SNAmHbvgfBS4I2M3k//wDcBGavXoOXAG/lbFRNKVbltnz1pWhnGyEjRNK2MOI56ow4GJDo3kq4bSNs3Uhh23ZyOzpJt3aR68qUGCRW3vI9DEE5Xe+6hN1rcFbKcRjoN9ffd+CpW2mGhmqU/ja9hHQtsN1rV3mM9AsnHOUnjWuGihFNMOdP/wBc1TU9YmBEDayca5Cpqkq0MULjvhOonzON8MRm1IZG8Op2NNjo9fWE6rZh5d5i9u/+Pqhr2xW0/PC/af3Wuf49KJxe8YKBvoNKwgmqoRJrrKF+/30wGhtwcjnqVq3mrdxrpFZl+pwjuKiwJywmlDMUo6Fa/tRwPAxe5eVw0iDeFMeIhvwFCEVVmPnrvwz6nEOh3NNV8hvPFp8julufJnhdXmhgMLypPNTmqBdX+K/L8yJGE1kQcXDkU+bAO0n2GEbVcLjmmmuYNm0at9xyi79t5syZ/mshBD/72c/49re/zYc+9CEAbrvtNlpaWvjjH//I5z73udFsXr8MVIRNi6osm38goZgxrJUPYbrVnndEpgFv+9uv/sEL/M+cHr8mA7gJ0MHcgnKTxTMwvAq+mqERToZ6i3RFAx6HgOHgTerLE5G9/QZKIt3ZkIrxyECKPMGCdUCfUAAIJNhavX0erIngFeHxQo7UoifBsRysXKEYJmMHtpnYBdMPY/IMBV9aNWAAuAnLxc8q1mWw8q6Shm062Kbth+alrRyRCXnCySyFdJ7IhDWEtu9Ab2wkWVPjTn6FwOlsx+zoJN/WQa4tRba9h3x3jkJPgULGLKm14al3aGGtxHj1chz8fgzeU+UJ+BX6fTAIsxgWFTBcVE3xC0sFFUTMrFkxsTK9PYuwhV84STiCd849vSRkzC5Yfk6CnnSNQSMWxqirRUkkEaFI4IwGSn2IcDTK7Et+NuRrGgoPzzxgyFVzm6+6jTfPPoVsZ45cR2HAvINyJajgvZ5pzdG1sYPEtC70+jpEoUCuvcctXhhAi6nUzauhcd9GujZ10fVON4V2a48zHgYz4ay0ADEcyo2GSH2YSDJMvCnphyQqusakH/9hWOcfKuVS4eDWdhHeWGkpJd4H/zqKY9yjCxZzzKsv8uiCxShaaTx+0IjYFQzVeNjbvA3Qv7fI4x59LpnymLNxiKIow8pXkDkOI8Rf//pXTj75ZD7ykY+wfPlypkyZwhe/+EUuuOACANasWcPWrVs56aST/GPC4TDHHnssTz755JgaDv3hrfpbKRvN0Hw33T36XE63Vg1qoHGKYUbzZ0/hib9N4bf/FIQN+FDuNlZfv5G3lxxCIWO6hefKVJ36i7EGVxLSTLsrAMIWJTHIQRnMYHhIn3OabnE3b6UISt3MJZPl4rlK6hnshquIXvhYEC3atyiSF8blaeCX65H7oS2m409ig+9beQtV14qTf/cn6BkNZqbghyP58n5+MrTaR/e8PAwpWPjNK2hk5WzMnOXLhAZle3tSWQoNJnbBIZxYT7ShhnBrG6pRbJdpUejOUOjJuf/Secys6RsjVs72DYLSxHpXltabCJQnHJffU17/9lYFH1rirCetms3mCTXofi6DqrkGjFcx3bFsDrhnWdXzBCco/zr5mN6V+GLoV747R3pHBrOY62Nn3aqrjmVT84WrAcje92v/HNFTLxj0NewsXoG3geRcW791bvHesrEyeXpau0lvzfjSkZXCC6HUqwalRoOKWzCubVUHdv414q+uI9OeIbW5x5e5BPc3ltw3xoT9JhBvrvW390TT5FrNAT2Uo13vI9SoE20JU0iZJbU9RmM8G2wYUqWFm/JaA16IaihhEKkNE6mLEqmNEqmL+6prTT+4pc95RovTsm/0eQZ6ktvBPDr/vUBtB+j9HXoiC0GeXHKI/3o0w5WCVDIGKj3j90ajYbAYSY1T1j4HtbUD7zyGqMNUVRrOMbsro2o4rF69mhtvvJFLLrmEb33rWzz77LN8+ctfJhwO88lPfpKtW7cC0NLSUnJcS0sL69atq3jOfD5PPt9b5CiVSg3YjpF2N3pVaL1Y/3xU5eGZB5QMGt5rb+Wl0kDqPSQfnnkARx46ET0S4vmXtpDZmHM/p1httiQBlMqGgzdxt7MO+W0mecx+H0iqrhQToKs/FKsVqAoqB0Fx9T1KnxCdoU7+xgqv74LqL4qh+EYBUJqLUKZ85J9HVUpCdLz4/iCOabt1EbKmuxIeyvrKSnbB8sNk3BwB9xzu+XoLsHkoqoKVs3wpXVf6VPPbGvQCmN12qQhA4HsptFsU2nuINkSxcibZ9h6/hoNdsMil8th5i0LGxDEdzJxV0YMVxH8/UAzOM7aUQHK+N8F3640U1cyy7mcV2t1V/f6qjgN+mJy3lmVnHT/fIVIf8hOfheP0azR4rP/CmQA07NPk5ztYORMr7+Y4WDmbk7a9ykNTFlZc4d+VxkI5g6kB0XzVbWy48MOYmTz5VJaDH36CRxcsJtxSavhDQEUt8D17labLE2yjjREc0ybfXSDTnuNdL7/Afcn5JQpLrrpUyO9TLwzM477kfOyMUzKWeuOmNw56xkNwsWIgg6M8tLR8Mh6ceOsR9zdkRi3fkLVxRkzQYSh5C9US/SvJ+uoxnWhDhPiEGqINNRg1EfRoGFUbWiL0cPG+p2qT5+DzxK0u70q8BhdfytVsKnkXKhkTY8GuVFHcE5j/sfkD7zQOUFT333CO21sYVcPBcRwOOeQQrrrqKgAWL17Mq6++yo033sgnP/lJf79yF48Qoqrb5+qrr+bKK68cdptGcsXKSxQMtxhV5c+8GgvVBhdv++ptGwLnrPQ5DGg0eAaAHdgOVAwtAAKrwwOrHAVXHz0ZzaC72Uho/rlKJpXj3HDw+s6bDBlx3VfE0cN6MbFQ66Nu5OFNLIMyp9DrdRCOq5ldMvHudA1fVVWLyjuqbzxAbwXpYHGhIEFjxjMYymVfRdFgqFRxu/x79v5uf6uzTyVhr5BRyfH95Mn0WZVWVdegKYYu6YneftRCGpquooV1IskwesSNxXYsm1xXlp5t3WS259wwlgqJ+OWUPsjdiWRBN93+LX6Pr5/5nn6Tktu+/zmijclidW0bUQwJ8xSkNKPX6zOYSfp4Zdr1d5b8XSnU4InFS/z7K1jUTtUVf4LtGXuKqhCti/heMa+Pa/eL+57TSpKf5VTSvQ9ORINqN15bACjKvvaRhg3cl/0Zu0ZCI1wb8ielqqFioKOqDqpu+1Kyw1kMGWgcrtamIAMZGYqhoEc04hNqSEyu98UUlF1kNMDwV9tLi2S6r6sl23rFDoN/l9cx2dVIL0N1un/xddRwCCdfYPqNdw1qoXdv4eqrr+bPf/4zb7zxBtFolCOPPJJrrrmGuXMrzxU/97nPcdNNN/HTn/6Uiy++eNc2toxRNRwmTZrE/vvvX7Jt/vz53HXXXQBMnDgRgK1btzJp0iR/n9bW1j5eCI9vfvObXHLJJf7fqVSKadOmDaldkRaDaHMYgPTmXElSV/kEX4upGAmN+JQoNc1xrLyNHtYGXLkc6irEztQ18DwgVfcPTvqL/w+2uFqlGP+gXKPp5Ul4tSKCSkPjNDG6Upy213YvNjgUDxGqiRCqiaBHI6i66qsW9SoWueFF2c4ckWTYVScq5iwoquInKhfSBey86xkodJt+mIv32eWFwMoLCkHf/AlvW/BvYQpMy+oTYgGDu7+CSl6Dqb4c7EsbryK5uxIdbYwQrgkRTkT8fjTiEXelOZsvUX2ycqZbkyJiYMTCTLnujgHb2h/DeZBvvOgjCEe4ievRMGpIR1ND6LEodV//+U61Z3elfLX3/ob9/SR0d5Kn+oafETWon9XE5J/eTvt/fJ7OH12EaugsOPtIar/2XyPWpkqGxbNHHw6AETUo9OTJp0xyOwq+t8ALp4SAJ6V4rKq7IhWhmOHK9Ba9iF6Vdz2i4di679XzzzvIsS041lTzHlQLhVINxZd0DtYgKT+XNw7kuwt0ru/AyltE62O+Ia6oCoqusfXrn/CPmfij3w2q/SONYwoUQ/jFEDVDKy7UaH28Dc8dc4Qv8exRLiRhZS0eW3QwtmkPqXK1ZOR49YMn+IbfvP99kDfPPqUod+0m5M/41d1j3cQhsatyHJYvX86FF17IoYceimVZfPvb3+akk07itddeIx6Pl+z7l7/8hWeeeYbJkycPuV2jwagaDkcddRSrVpU+xN98801mzJgBwKxZs5g4cSIPPvggixcvBqBQKLB8+XKuueaaiucMh8OEw+Eht6W/ycS90XklRVuCk3474/iDtBE1iNbHaV/T5r/f/V9fwykU6HxrQ9UfSKVQqaEqyJQfu7Nek6Eo12hRlXCLQTgRIhQzsC2HTFuW7KZCb5hIxhm0jO1YEAxHKo+pB/fhbURVonUR4k0JInVxjEQMPRZFDRk4BZPCplY3ZCVnYuUKFNIFzIzpypomo4STMfRo2F2dNi0yO7pJ7+gh3+2Gt1gZq0Q+N4gTmNhUCg8J1oko9xr5BYoCErm76v4IIkzhF1vTwzqheIhwMkqkPkG4IYlRm8TOZsnv6EA4GaycqwKV7cyR2ZEhUhvepRVMu6692JWxzRfQIiG3qFRxkmXUxNETNegzZpJ59A6saJLkoafusraNRzyPwQMtC7CzDqGkQ6QuTCRqEK2PoagqWy49B4pJ+8BOG4GDYenjT7Ns/oEU2rv931ZQGSqoDhf87XthieFECD2il8gpOsUjhe0UPUzF2h9FGWwxhDE4WECsEv0tCAXrwUBfg6F8WyFtuUU3syZG1FUA8xYygmpto4WX5wfVQ4SD44RaJUTJI2g0+Mc7wpd4tnK271kdjjiAZOdxQ2519IjB2gs+6N9/iqoQSYZ5/cz3AOwy+emdZVfJsf7jH6VhmrfccgvNzc2sWLGCY445xt++adMmvvSlL3H//ffz3ve+d8jtGg1G1XD4yle+wpFHHslVV13FRz/6UZ599lluuukmbrrpJsC10C6++GKuuuoq9ttvP/bbbz+uuuoqYrEYH//4x0ezaT7BGFyoUvPBEuS7C3Rv6yFcEyLTlvVVHzKbW1HLrOryc9wbnefH90ZbwjTNbSTaUEP76h1seXx7SVExxVAINegY8WJyajFMIFRn+IWrAKycTaHTHFJl6+GgRVViUyPUTU9S01JLvKWOfFea1lc3u4bDboBn/Hhx71pRmtNLXgYw4jrR+igN+7YQrk9g1MTQYlGUUAhUFbsr5RdS8xSNtJC70pqc2ogedWsh6PEoVjqLle3CzBawTceX7hwoHKGSpyFIeRhQpTj0sUhK99tbXBl1nF55VrtgYWVzKJ2Km2id6qGQypBPuUpOhXSBfHdhlyulAKi6jtA0t+q242DnCyiqSnTKRPRJU7AbWuhqmIGthZg898CBTzgOuS85v+Iq/XDxxjZvPNOM3poAQaPB+43sKo57/SWWzT+QeFMMPaxT6MnTsyXrikuYwvccB3//kbowiqoSa4j596pX/M/JlypBqVrv6r9iKCiWMqgwzJEw4L1E4nL1tiBeTha4OULCdiikC+hhrWJRyVUfO9k3JsAVXhgNqeD+jAfHEn545mDwDAbHFr4HyDMavHMORhxAMrI0L56NkaxBKdauybY/RffmHhzHIdeZ7yPoMd4ZqwJwXV1dADQ0NPjbHMfhE5/4BJdeeumI1jbbWUbVcDj00EO5++67+eY3v8m///u/M2vWLH72s59xzjnn+Pt8/etfJ5vN8sUvftEvAPfAAw/skhoO9+hz3WqvgdWjSglPnnRqmgzp7RkK7ZYf3pRtS1XVxVaLRsCEhQ1Ei6vSEw7ZH232fIRu0LDyBbo23k9mbb5YkE4QSmpEG8OEEyG/krBwHF/3X1FVHMvGzJrkInky5Pw2jobqh2KUKgKpIXcFSzU0f/VtPCdAexMcI6Ghx9z8BT3i1lHwiqEBROsiJKfUk9x3GqpnMOA+UIVto0YiROoT5Dq6sQu9kwpV1/zqyQBmdwYr6ykQudKqesSNMxamQFSoslvNAxEs7OcZPkGjwavIO5ZGQ+nnFRO4DYVCxixeh0OuK+snKOe7c1h5CzNjkk+Z2Hl7l1cz3XHFZ9BjxRhwRQHHcWtjmJZrADY1Y7bMIBefQM5IIBSVtW+/yczZc3ZpO0eCU1Ovl6wCD5fgeOgZ4kZEL5G0VRQVoTq7xMtQieNef4m3zjmV2hnNaOEQufYUHWta2fxMK6EGneTkGmINMcLJGOFklPi0iQjLxspkyWzrIJ/KYOXMompYryBBMPfIo5pxP1Qq5T9U+h07lqBStkK5kIM3Vju2ANvGLrieH2+7F4qlh/WSCuYAr7z/3b6RsTMF4ga634JFBO2ojV1Q+whNeHjGp12w++R+lSu1SXY92TuvJXLo4ViJRhQzh9buCt4UOs2iN9/c7WTbgwb1UI+DvoI9g4mSEUJwySWXcPTRR7Nw4UJ/+zXXXIOu63z5y18ecntGk1GvHH366adz+umnV31fURSuuOIKrrjiitFuSvU2VEkO9h6QsakRbNPGStl+qIlHudFwb3SebzA07l/PtKPmEl9QVBMQDkokBqkOrA3r2fbc674CjO8c1xV/sFR1N6ET8Ad09zTCH0S9iaVD9eTp4eL4BlOOQrdJ95YeerZ1YeVtujf3DKpQ1FiiBrw3nnKPEXPd95HaqFswLVsorszpxJrq0Pebi2IWwLZBOKAbKLqOatvUAI65hkKPp3plk82aFNJ5EpPqiBhGyQpefEKNm+ibypO1s9hFeduSRGPok6dQyeugRVVfgcixBUIVgI01hkZDOd6EACAfdcOztO6CP6FxbIGZtkpUnkZyNXywbHzqzeIEMooeCeFYNh1rtrux4XVR9FiUSDSOHo7jRBoBUHcD/fFq7IzR8MjsRdhZByOp+TUeFEPpU+wLxi5uPsh+f7iPzPLbcYwI8fat1Lz5Bnr4VSJ1cRJTmwjV16IliqujgMjl0Lp7AFB1lXwqW/Q6uAIGfQQL+vEIDpVg+CT0JnA7uLLZ5ZTLQvvnKRoNXoHD8vopALZv9LgV3K2cVWJMBBG2w5NLDhmy1GnQuByM8WClis/SllKlOs+r4LW/klBEeU0YxxJ+/z3QsqDi/SkZeaIfdvNNc//3c7BtnO4U2c6sP08qX5DdGyjPub388ssHnN9+6Utf4uWXX+bxxx/3t61YsYLrrruOF154YdzViBh1w2G8U55Y7HkhjKTGrJOnU7/fZIya+KATJE/LvsETi5dgxA3qpjcQnTIRJRpHdHVgdXRQ6Ogi29pO14Z2ujZ0YcR1Ys0RtJCGXejV3Hdl9eIYsbC7CpbJk0vlKfTkXRet6fhFqIaijjSc/im0WRTaLLJGgZ6N2V438zg3GrSoSs2kKPGmOHpYL6kIHE7G/ARmI1pwpU2zeUTrFhzbRo1Goa4Ru64ZK1KDnutBrFuLHg0Tm5DAzBQwM3kK6TxGNES4Lk58+iQUTcPsSpFvTyEcBzNTKCaKqag5FSgNWRJe8iYElFv6Shc6lkALu6samqpQMN2VnPFiNHh4xkOh3ULV7T4rqV5i+FgYDB6t/2pDi3YQShp+yJongawnU+RSeSZ3dpM8sI2aA6I0LTx8zNo6Vjy19FAc00GP6SiG7ecHCFP0UUdae8EHR60a8XCIHXsWq995m9pEE3HHpqk7TWTKRJjv5tFhFcAyUVId4AiUcAGjJoawbH+BJtOewS70LtAA2AVnyGNff/VtgtuVgOdBpbLKkjcWqIH9HUugx0q9wuVKbMGQMccW0E+R32CByPsb9i8pCDjQ5C8YljQYqVJvrHDrIdluKJUmBjQWVFX11dok44PIBy6i54bL0JpbSExMYi2y6d6YptDuSnffG51XUtR2PKMq7r/hHAewYcMGksmkv30gb8NFF13EX//6Vx599FGmTp3qb3/sscdobW1l+vTp/jbbtvnqV7/Kz372M9auXTv0Ro4QihBifMw4hkkqlaK2tpaurq6SL2sw3BudR3RKiJrJcXb8q9MPB4nUh6ibUUeuM0shY3LEs8+VHPfI7EVoYY2aiTGa5k0iXBun+arbWP+FM7FyhZJKvo7tqnOEaiK+tn62I42ZtUhMTFI7q4XoxCa0ZJLchk3seGUNua4skdooDXOmEpkyEWHb5La00r5qIx1r28mnTBzH8X+UwRoEnpJIMPzFqyaqRzT0qJu0GkmGCdVE/KJWmfYsmTY3JthM7V6rq0FJVU9WVY/pxBoiNO7XTDgZA1XB7MmRbu0il8pT01zUOo9HXcnUvJuvoUfDGIkY0RnTyBx4HM/bh/C3f+Z48ZF/8YefTqL5sT+SXrOe7g3bSW/vJpfKY0QNEhOTJKc1EapLYKWzpLe2s/31LeS68r6Skh9WNMxJvhfWUKkmyO7KWKxE3d/Qq/RWrVKy19e18+JV8y/a/+PzADR8+5ds/875bHlhNYvuXT4KLR5dvMUSPam5xfOKtUC8635i8RKOenGFn9e1O/Gp72/nsrOzTH/+djKr3iI2fw7bDv4AtqIzaeOzqN2diK4O7FQKJ5fDMS2sTJatL7xD14YUhe7SApze64EqbIN7D8VmhjEieqk8c8Gh0GmS22ZWVLcrNzaAknG+XE2tEiWLExUMlXKCAgvBtgyGSjU3BotqKP4zOFoXIZyI4FiOL3PtFbjMdmSxC30NBc/A8M8XMKA8w8PLgxCmkPkPI0SwMrhfsbwoaQxuDqZXMb5mUpS66fVE6mK888J6Tnj+hWHN10Ybby552S93EI4OvW35bIprPj9h0NcmhOCiiy7i7rvvZtmyZey3334l77e1tbFly5aSbSeffDKf+MQnOP/886vKtu4K9mqPw2nZN3hyySFohsr04ydT05Jkx6ptZNpzpDan0EIawhY8tfRQXy7OMe3eolVFNQFF19hy6Tm+RKdX6dcr6qXFQ9TOmkh2eyepTR10b+1xK+6aNqGaCPmObhRVxczkEY7AiBpkOzJ0vL2ZaHsKNaRj9uT8omFKvbsqFk7YOKbj61+HYgYAtuWUxLZG66OuNJqhokdC6BEDPWKghdz9ow0mNS1u4a/uxh463+qm0GZV6LHxh5fDEJkQ8usvKJrqT+YT01sQxQq5XmKg91AK1yeITZ+CGongZLPYPWk/n0FJJElHGli7JsSLj7g64Tc8PI1/n9iI+fIbZNp66N7SQ7YtT7TRXVFwLBs90o6VK5DekSa9PesnsI+k0tGeZDQEr6XSBGQ0DIvopDCKppSEH5YLDDimGPCzG779S/910w9uoWnEWzq6eA9/b6LqhXcsm38g73q5V9rSMyB2N6MBYM3L7/DCu5fSNP9wGs/6Otl//oF3MtPQVUFzpAYlm4ZQCDUWdRW18m7lditvuzUsykKTtKiK0PsqN1VCMdwxWdGUEs9FkGrHBxd+/LHDFG69CkpDHIPJwcG/+xCow1HShqCi206OUUMttqpFVWJNEepnNBCbkEALuxNP4QiEKBaPtGxf2trMFPzq9bbp+H3q5W24yeCKG4aaMSlkTDc0K2NVVbWSDJ6K363pSq97UQleLp6qK8QmRqibXk/9vhMxkjXUd6Zh1xT7HjaKCqo68H6VjhsKF154IX/84x/5v//7PxKJhF8Quba2lmg0SmNjI42NjSXHGIbBxIkTx9RogL3UcHh45gEU2i1/wmnlbRr2SZCY3kLH2jZs0yYUd4tSOfFQscCXGx7kV+JNW9iFFPmeAtG6SMn5g/kIoXiImol1aJEwhZ4c+W43JEIzVHJdedKtXXRv6ylJWNMMFTNjksp30tPa7Rb6Mh2sotJHtC7iy+xBryva83B4houiusZNsLaAqmtoId09VlXAEW4uRQSiDTXu+7rKtmfax034C/SGHgXxVjpCSYPEpBpfNUQP6xixMLEJSYyamO9NUHUVLaQTTkZp2H8WxqRJUFsPoQhaNo2yfSvZjVsIRSKgakTzXbTU28w5ZB5vPv8Gnzi+i8z/vMqOVVtco6E1j511yJg5rJxNtiOLFnK/EzNt+gli4ymUaFcw2Boh5Q+hSlKOI5HYW07TvEZUXcPMFuje2kN6U7bEcNhT43GDq4QelcIH9iQ9/MXHHcD+LTvQu7IA5OtamBxrp9uKkYtPIJ7rQc10IxQFNRRyM3TSGfKpHI5TlOIuk0AVuoBs9TAZb6wKNehE6sII21Xl81bGHcepPrkPfE4lgjkQ1XIeBqL8s4dS62W4lCeBe5+pRVWi9VHqZ08mVF/rKpx5KKr7t6KgaBpOLo/Z6Yb6pja2ke3M4Zi2mx9RzAd0n6GuoIjv5bGFn18m8x9Gl/LxZNn8A0ltSWHlLWpakqMqBby7ceONNwJw3HHHlWy/5ZZbOO+883Z9g4bAXmE4dPzwQtY9stLXFjfiuh/Sk96QI7ejQHprBsVYQ6HdzRsotFsUWixCcVeBx7Ycch15Cp0mhXZ3Am9FXUnUlNGDFlVJtMTRwjqq1vtQMbMCK7+D9nda6drYjW3a1E2vpWGfJvSI4Sfj5btz5LpyJfGdobiOEQPH6o1b1QyVWGMNkbo4asj9+oRlu7KXOdM3Grxqt4qq+mpMnuEQNBoc/9gChZ4cuVSefHcBPamNWfJzefExrzJ1fErU11v3FKfA7ZN4U6KscrOKlSuQb+t0VxJVFSNZ44aFJWrILz4WC5Vwz3a0jlZETwor1Y1jmmjxGGbzdLZHptOg5DnnjFpypx/J7A3/Q2e7GwOfbc33ehKK1ZlzRqFkFXBvNBqgNz8Dhl5zZFd4U+bf9RDrPncGesTAytvk2vN92rCnGQ9e8bYgY5lnsqu49sI4219Z6QodAHUHv4en/1Vge5dBfsJCFtTmiXVuB9zQARyBUzDdxH5DQ6iij1qRjY3TPbiJf64z74cneQhz+AnWnjyr5/UIGgFeDkq5J6I/RmJ88n6zwd+81x6gRBXO89YrquKHzdbPaiI6azpqTcJdthVOcdlXAUVFGCF3cccsoHW2oYZDxcWydjLtGRTVlQXWDC1Qp0LtVf8LqWimhoi6Bp80Hkae4DO7XLLZzvaQ63Slt3us8R/JoDDMAnAM7ZjhZAmMZV5DkD3GcHjmmGOJa1pFJYiOVetJbeym0Gn6LmaA6JQQRkQn9U6mT2iOMAUZM0chqRVvfteYKA1p6K1Kamcd0mqWaGPEd5kCFFJ5Ot7J0LR/I7GGCOntWTeMZobrustu3U44GSXXmcbMFFxFgqxJJBlG1TWMqKvU41UgDiciJKc1oUXDKJoGovigy+ZR9bzrWdA0hHBwitV53ZV2Ay1soIVDKLqGsGzSW9sp9OQwM3nyPcWCZmnTf8gpxuC0ykeKYB0L7zvQkxpGRCeUCNGyYDKR+hqMRBzV0F0DyzRdj4LnFcqbvlvbyplk21J+NWAtHEIJh1Abm2hLzASgEYdoqg27o4P0+i3uOdIZVMv1UsxRV1G7ZSVKNk32lVdIt3b5Mo3Qm1y/e2WF7BrGs8HkWI7v3dOKv9XRNhb+dfIxHHT/o6P6GUGePfpwlj7+NI8tOhgtqnLyXhrf/YK1mO3ZEO/8weTycwxOOcgNh7n0lyozj5+Avno12W1uUU81pCMsGz2iucnQmihdJbWFv+jU3/3tCQHY2Zy/rST0qJ9JfSVvQ59K7paoqLzkGQ/QqzbUXxtH4jfq5ccEJ+MPzzzA9xBrhlZcBHMV7WpaaonUxQk3JAlNaEBvnohI1OLoRtnFFD3MioJQNRTdQHUsjEKeWL6AlSuQS7l1Aly5cg1V7/VKq0WlKdXQ0AwH26u/sZvJg44nKoWiaTGVmplRalpKqx3bGceXsvdyZ3oKu4HhoA497Mg7bm9hjzEcChmTsNF3+wMtbtEMO+v4k35voNMMjWhDhEJ3rxfBsdx4vaC0pBHX0Yor8N4E0Sso5MXzCdNdmfJW+kPxMHrEHSiTkxJMPnoRuW07KHRniDY3EGqsRzgOWjhEZlsHdsFyQ5pCOqnNncQaa/xqjHo0Qrg+QailCa2uHpHNIgp5hGUhLBunUECLFggVz4eqIooTaq+olRYOocWiGBMmQPMkEA7pu/9O99YUua4cjukMqRjPcOjz8CuuTAdrFYQbQ8SboiXehGh9jJrJDdQfeRh281Ty8UZMPYRqm+hmlkimE2XDapxMGqsrRb69CzOdw8q5DxfhOEQakoSaGlFr6xChCDErhaNoaGYOkeoiu3U76dYuMm09pDa2YTz3GvHI7xDJGF2KihAOPZvb6Wl181P6SzSUjG+jAcDMuHHSuVTeT+LbFfRnPLzy/nez8K+PDPpcXkVWX7qymLtzwD3LALeiMsC7Xn5hJ1q8+3PyQWGOep+btH75Ocf62088QqNp1XJS29txvBoesShaNMLkg6fTsWY76R0Z39srHEEhZbrPgQGKbjqWcBeUin+ruhsqE6R8PKxGRUOinxCloPEQZKRlZI2ERrQ5jB7ROOypZ/33XzjhKBr2q/MNcy90NFIXI1xbQ3y/WajJOkS8BhGK4KgaQtUQmoGjhxBqb7iSUlyVdYrbtGgSLV5LJOqGoOZTWUI1EVd8RNd8L7qZyWPlTBxboBmWLyQ1Un2wt1JuNBhFQYXaqQmi9TGg1MvsPePtrEN2W56cM/6X2FRFQR2Gx2E4x+yu7DGGg2ZotCxs9v++Nzqv6uRFCdzIwnZXhnzFioC8pZ7UUHWlWAdAw26xSya5WljrdWNHQDVUNF1FD2sYsRDhZIxYcy1GPIqWqCGqaYQLBZx8gfSaDZjpHNHmerLtPRTSBaINNcQn1mHEQuiREGpIJ9JQS3jKJJSJU7CSTeRi9ehmhlD7ZpS2VpxMGsV0y7vriSRqJIxiGL7LV5gmTtZ9YqnRKNbsA3gm+h62dYV537xXaXu7tY9830hTrlfe+z0IX40hlDDQIxqxxhjxpkQxiVmg6irRxiSJxYt4Ye75bOuJ4eQhJmxqQgUS0Sw19T20RBLo7VsIxVpRDAOlrcNPktMjIdRwyC3qpigo+QzRbDuKcDA6tpBfv4GOtzbTtamL9PZMSVG1yIQQkfowmq5SyJiYaQszbfVqkEsq4hnnwKBVaHYl6R1pHNN2PWxZZ5eEJvXnbfCMhlc/eIK/LViEyzMSPObf9RDz73po5Bu5h/LE3471jQePkw4M0/aXF11vrWGgFQ0HNRalYckCYs2bWf/4G3RtTPljQqHdqnof9xeWV2nlv5Jy0mDoz2joU01+BH9zXu6GFlWJNodJTklQO60RPWKw+StnMfmnt7Pl0nOYdPBMwC0IqOoqWjSCkaxBr6tFTdZhN0+lEIriaIZbbrdoHAhVoyMxjbyIYqOiIlCxUZWi2IhQURBoik14UobaWQuZtvBVyOcRtoUoFBCFAo5pYaZ6KKR6UPWUW9AvZ/sr34qhyArTI4RjiT4FPPsUL/S88hkHWx//ErpjVTl6d2KPMRzS67PMffV+Xv3gCbSv7uhz8xpJzXXvFqsd21kHo1lDj2jMPH6av7rfs83V3w/FwziWTWpLN5ruujvjTQrROptQTdgvIOXlEdgFi461O7BNh0K6APT4hcKEI2gsmEQnt6DFY2S3trF5xWpqp9YT+cyXmf6ujYhVKxGmiTZvEV2T5lH7wgPQMpnOqQeyRW+m4Bi05Wrozhvs37CJxlCcaChC4clHef3OZ+nZmOWwS0+gcMQpvB1ZhKYIpjhrSW57A23rRkQ2g5iziN91vJc//MCdwJx09UfYLxRi65Mvs+2Vra4hNcyCYqFG91Yqz4sIPmyCMa56RCPeFCfWWEO0IYEWNnwvQ76rh3wqi5nJF3M0NBK2zfqOOPGww6Lat6nvWoeStt3VKeGg2CYiVoOaTaNoHdg5k+7NHXSu7yCcjBDe2IYRW+uqYKkKRuxxQokYuYJFti1FIZ3HKSvy59WwSJHZmVtzr0OLqUw8bAJ10xsQjkNqc5ebTL4tP6BalzeBvy853w8RHEkeXbAYLaQSmxAj3hRnybInR/T8w8XzNFSr2CuNhJ3nib8d22dbems7iqoQrksQW7jAjanP57C2bKFn8w7aXusgt62fwgcBgqusFFdatahKuMVAM4pGdFEe1At3ggqT/AHGXRv3N1YeGTHaNV30pEbN1CjJKQkSk+qINibRohH0aBg1FKLnxm+SnLuPL0mjKIq7iBWJQk0tTjxJIZqkEEliaSFs1XD/KTqmEiJjx/i/p+tY+3Y7Zt4iFA1R11BLMhli8kSdkA5hQ5CM2dRHcqTrkkye4WCkdqBmusGy3MUyx0GLtYPjeok9g92THQ5FdWk0DJOdXWAZT4tHkuGzxxgOJ256nmXzD0QzNLLbepMdvZXPaIvrUlU1BStnk96cQzEUwokQU048DDWRRPR0E1m12i3yte9M2p75F7bpkJxSTygRo2dLO10bO2ic3UzN1CbM7gy5jm60kI5wHPLdBV/CNduZw0ybZNvcyXjLwbPRkgnM1u1k21IoqurWa3j6PsyuFB2r1mPlTJpNi6SqYHd1ok2aTjSzAz2UIxdKEI+naTPqmdT2Koptkm6cSc2s9YQT/6LQYBI6+DCeUA/j6Rd1uroKzJy+mI/MsEhsXIPd3YO66iU+vriWI3+yiAlsY8MXPke+u0CuPU+u1RzQ/d4fnhdG1RW/yBf0ygoqhlJiNBgxg1hjDbUzJxJunoCdTlPo7MYqup+zHWky7VmsrEXPtm5UfQWnT/8rSs5CfXs11o4d4DhosajrYdA0nEKBQleK7LY20ts6yHfnKKQt7EKGQrqAoqZRA/HKoZoQRtRAOAIrb5dci5Tu2zkyOzJFZROVbHsWK2MNyUMjTIGNM+JeHS/PybEFix98bETPLdk9UVQFx7YprF2LMN18se0vr2b7qjY/hHU4OKZAi+LXxQA3+FUxFJxuURJSNNQJlTBFnzFqtCZlwTo5niiFW0XbQbVtV3XQtl0jAUoSS4XjuCmjquKGIqkaAgWhaBS0KHki5EWYrBkmY4UwdIXO7Sla1232zzFp9jRq3z0TvUbB0AWxkEnCSBMhWxLW5CXAAzj5Ao2X/xpPzHJPkbAe75Qrt5UbGqlUCmprd2WThoz0OAzMHmM4LFt4OEanIDolRGJGjLSepdBu+QNe8/wmQjURVF0lVBOl7a0tJKc00HT8kZgz90ft3EZ65at0b2qjdpar/V/oydG0/1SiE5vo2bCFXFcW23RoPu0ERE+Kjn88jpnJUzuzGaVg+ZrdoXiIUDxMIZ3HytnkdhRIrd1Kvj1Ftr2bfCrrS8dtf/YVurd00vpKG3bWoWtDBxNeW+3Ky72zAceyUUM6dmeaZGOSqSccj736TZxcnvBRJ5Gdfzj7f6cFsWkda6cfx5ZNYRI1EAqFaWlwiKZ3kNuwiVx7F9kdKZxHnqcG2L41xeblO4DqLnYvBncwDySvwJkX++rheXnccK9eoyEUDxGqiYCqYmezFFI99GxpByDXlSXbmfNVrGzToXPdDmqeXoaiKGS7usm1deFYDkYs7CdKW9kchZ4c2Y4MmfYMhe4ChZS7WqhFTVRV9UPLnKJEohZyV8esXK9u+2DUSCTVsTMOqXcypN7J+AmaQzUAghXdR1LlSK40SoJMv/EuAN74yImY2dWYWRNhC1Ibe8huKozYZFw1PP+AQyHllHjShmMc76qV22CYqTCFW9gra2IXLITtLrYIx0EIgTBN1/sbjaKEwq4qkm6gRGI4oQhCD+GoBrZmYGph0tSQKtTQlQ+TKWioCkxoUJm6bwud29oo5NwFwC1vbyC9dDpfeb8OaEAMiNG14mWMdAcUcmBZRD50ccVrCE5mvX57eOYB/th0wtqVo9iDexf9VYd+dMFiDnpq/BfIVFWlZIFxKMftLewxhkOkLoS1PUcoZhCp9eoquLH9seaIn5glhIOdKzDjpENRDj6S1qZ5JDKthMw8ubYUqc2ddG9NEXl1PbPOPYPufZagv/QIncv/Ra4zS7gmxNb572HC9tcJJ93CSMKy3RCY4qpSrLGGutlT0KIRaqdtpGtDG2seWe0/LBRDIZQ0qJ2awMpb9LT2lmbPtOfo2tBO18ZuInVh6mc0kJw2AeEIuje1Yd/7D7rW70DVNaYlE1gHH8+GWccxzXqIhsJmFk4Kk5jaTV12K/Ftb+OseZOeja1ucbctKXJdecyc5StLQd+HkGoohFsMP6QLBo5PtzOO70LXGnRfUcPOOn5MrqIqqIYrB6sZbg6Dlc5CUUI2VBMhn8qQ73a9NXbRC2BlXK/Dtufe8BWmzKzpn1NRVRzLxsrbFHry5FO9NRScQNEjL1zKiy22TRvR5RoKVsoumeBKl+rO4XmvhpIKN9p5Bm+efQpz/vSPUf0Mye7JvP99kEdmL/LHgP5yGYaCYijoEY1wwvVuZtoyg0quHg+U56Y5lpscno24z8FIXdyX/8ZxUHQNLZmExmZEPIkdioGqYeshHM1NenYUjbwep5MG2rIJtnWF6Uor6BrU1TjMm5yhpT7G9BlLWfmvbbzz4puomsa0SRovvdXKrM4VGGtfw9y8GSebw6ktVuhVFdK//g7xC37Q5zr6xNxbwi+iJ0wh5VlHmXuj81AMhSlHN5O+9ftj3ZwBkR6HgdljDIfs9jyaKeh8rYfuaMZ3A2tRFVVTyHVmqJna7K7kv/tUzvzFFL5+zP4ccvelhGfNxNy2jZ6tnfRszaCF3PCKxIPLiDa/zPbNO7BNm3x3ge5taab86ScUijURjFgYK2ei6ipW3kbYjlsPYUcnRjyKHgmRmFRHpj3rV2RWDcWtE5EySU6vASDSbLjJuHVh4k0J4k0JWg4/AK2pieyqN0lMM4jNmMrGY87nxnvqOeMEnSmpB4hue5vp61bSet8/MTN3s8+Bs8FxyO3oZHtXmkJPjp7WbvKpHNnOfElc7UAoRl8lkMGg6gqqquI47sqaZQoUwyYyIeQbV6qmYGbyfmE6t002Zqbgaj5nzF7ZQ0vQY2WxctvdAnfFOGHFUPzYYdvsrangJcEFHxiiqHnuFU3y4ucHI60o2bWUV5MeqUJwU048bGebJtmD8ZI870vOH7HxwEq5dULy3QVUVcVMWwOOvVqsGPKZKjW7h1oTZbgE89KC8uVe+GCuPU82kSU2oUCoNu7moUUiaPX10DSJ7ISZdNVMpsupc8OSUFBxiGkZ4lYXKerYlqllY1uI9i6BaTrUxFUmNTjsq79Dgi28ezrk5tbjnF1DzkgQtl4isX0t2sa3yK1eS/e6reQ60/0uBNzfsH+fPgR3MUuUqVzdl5y/V9Q12RU80LIAI6H5z1bvPure0oN4Rnp39gT2GMPB7LDQUHFMgWPa/iDrWIKeLe4IkZzaSM2sqWiFDD+5fDL7PvkjnrzuEaYfM5X6/SYTm5CgfpblFoXqyvH2Q28SihlYOXfwsfM2uVaTlX98GiOio0c0FE31w45Sa3pwLEFme4721R1E6twk6lBNhBlHz6F+xna2v7Gd7jWuck92Y4FIvVsvQAtr6DHXRWYXLBJTG8nvaMfesBktGqHmwEVk9jmIXz/YxIqHngMWc+Cx9UQ3vYO5bRvRxiTvPLiCro0d2KbjrtibTkkyXjlaTO3jJneKyXX5baZvfA31YWV2967ee2okiqWQ21HAztuEEq5sZCjuJo+bmTyO5YaGZdoz5LsKfuiTMAVk3cG+xEsS8CQE/4bK+uRe4STLtH1VrdFOJpQMj3Kt8JHyRMQ/deWInEeyZ3Nq6vURi4l3TEF6bb5EerVcTancIBCmwBwjj0SkxSDcGEKPuAsyVq7ys8PMuOFKejRCePo0lGQtdqIBM15PPlJLmhq2ZVxvgK461ITy1KoF4ulWNsams60zxI4Oh0JBoOsKhg6aKqjf8grphx6k450txJtriUyoIzGpGW3yVLDc8CgtHMKoiWDlCv1eSzVhBTvjICoUqZOMDJ7HDvDDlzVDIb05R1vb+jFu3cCoivtvOMftLewxhoNjCoKF+zz9YFV3V0za27vpWv0S8BJa9D6mHPobxEmHceRVH2XboytQVFf2s2dbCpE1CSdChBMhsu1uZelQg06sKUKu1SSzNg/k3eS3WDEkJ+NgJDWik8I07FtH49zJhJI1dL69ibZ3dqCoKpG6OI2zHYy4QbYtR2pVhkhtmLoZDSiq4tYQ2NRN97YtTAvpWBk3xlPpzlB4/Gkiq1bx/f1X0vmjI0i0P4T10DLWP7eKtrfbKGRMph0xDSMWIlKfoHPNNna8uQPTdI0dwJc+DSblaQ0q0cYwsQkx8qkcPVuyvYXuhjGhtjNOHze8Wvw8G8cvpKdF88Vq3a53AsBxXOOgYphAlSJrQwmFCaqWjH816b2LoHEQnLTtjKchc8sVxM6/YmebJtkLqVToamcoUZoDavaLEK0Lk9meQwtr5HYUsFI2WlT1i7sl943RsnAiW17aQtdr6VFd4PCeXY37NaBqCqnNKXq2ZP0QzkizQfPCJlexyNComVjHhOOO4K2D/o2/vzgBJQ1Ta1T2i3XRZOyg1m5nor6WWNs6xJuvsOP5V+na0I42YwLK//sNHd3Q1WXR0Z5lx+YOcpk8kViYfS88kokT/0WDrmHUxNDicYRtk3vFzU0Sto1TMNHDIaINiZJreHLJIRy54nkeXbCYY159sWq8/T363L4KVrG9qHrXKHNy+2v+63v0ub4Uq2oo5HaLAnBKadHHIRy3t7DHGA6AP4kPriL7oTnFm9dIatTNT9A4dypa4wRENE77O9tpfW0LdsHxVZAUQyHaGEY1VGqmRklMqmHC3MlMXJQltamD1KZusq15EtNj1LQk0MM6ExbOxMkXCDc1oC05AoSgpfF5tNAqwskYiqYxobmexvmC7PZOOma4oTdGLFyM27fItuUptFu0vr6NxMQaYo01hJMxtLCBUV+LNWEKG9RZTGoKMWHuViJvbUDR2jEiOmYmT/fWFJrRTi6Vd2UGEyHyums4qLriT9RtbL8WQV4vuCtLVTwTO4v3XajF16K44u9/b4Eieo4lPQB7G6OR2/Da25uZFY8PvKNEsovx6ptkO/PEJ8awspabqFv0lnvkOgq+THZ8Zpj02ny1U+40iuHWK9r01FY/jNPLU/OeG6F4iFxXlnhzLXXz9yEz9zC2ZurYsL6bTHeOXK6RGY06UXoI57qIvvok6bfeYfvKtWx9qRU769CwbzOrttWxvc3ENB3CEZ1kQw2aoaNpKgoF9Pp6dxKmaaiRCNm1G7CyefR4FADHtnGsvks/R654nscWHYzjDO4ZFjQOZU2e0cEb2+/R56JFXXEUOse2TQMhcxwGZo8xHCJTQkRCOnpMR9iCQmegGnTRMzD1mBb2+dCxqIkk1rZtbH/4cXa8uY0dL3eWGBjgrsAY0w2mLJmBEY9i5Qtohk5NXcKtftnUSXRCktr998PJ5d3CazP2Q6x7iy3HfJLXOqbTUtPNgkUKzTU1UFSdUJNJnJ4eVENHj4VZ/dAbpDZ2o2gKhZRJvqgZfsSzz/Hs0Ydj5W2imQLJqY1o8TjpZAtt2TiR+ASmvu+LzHjfF5kBdPzwQlJrNrPjrXasjFUSWxhMynZXtdyid8EHlRZ1etUzdAWbyhO6nVmFK9E5L9luD0nBSbLn0J/RMNRV3+3fOZ9Cd4Yp193B/rMnw+xLR6KJEsmIYqVsv95NdlOhaj5Dod3yRTPsrLvoFdzPCzUdiTHTStl0r8uU1FkxkhrhFoNoXditwBzSqZ/VRN38fdBmz2VtdDb5Lo2m5hiZmhD1dTqKkqOgRTD0LHZPN1YmjxELUzerllA8RP3i/Vm90UJVYNrUCDNbbGbW9pBzaoioeSY//jus7h4UTUPbbwGZCTPIPPszwrVxVENHC4ew8wUsJ4Nj26w47kgy7Tk0Q+XIFc+jFdWr+kt4Do45u6Lwo8Tt52XzD8TMK+PecJChSgOzxxgONZNj1IQMonURjGgIRVUopPOkt6fpXNXDrJOnM/nLX+Bvzvs4qGUTTX/4d9Y/uYauN/q6gLWYmxhmRA23jD2Qae0ivb2bcMItb29mCkQsm/y27exYuRpFVamfvQk1ZBC2M3RlNN7eXMvkefOIPPQP4nNnozY2Y7duoX3Fq/Rs7STTliG9OVey+u6FWAEsffxpwFWDUQ0dJZEklO3k2NQdRA/6REmbI9OmsubBf9GztjfjK2g4QW9SmGOJks/0DQur984faaNhIKTBsPdR7aEdNBiG8mDPdXSPSLskEhj5cCWP4FjnqdF5eInJelLDiLuPZzvvhm8mZ8fJtOYIJQ3ybQX0pOYaFwMUVRxsm7zzBNvQsn8Tkbo4ZiaPcIRbpFPTUPI5JubXYiYN1jQ0EIloKAps7IjTHduHRDjPkhmvEctkiUyoY9KxdWgtkzCbp7NEh1jIJqLlmamtpn79y9jRBFq6k65X3yI+tQUlEoa2rcS2rCeVM6mb34IaDqFGo2g5r7CqQ7wpTjgZxsrbvHDCURhxAyVn+d4Syfhh5tGzaGvrhjWvDbyzZFyzxxgOE/ZrpkbXimE9IYxEDKMmhpnqYUvT28Sb3aIji1q2MvPlu3jurhV0v5XpDaMpS1hzLMFB9z/K6vPfR7YjQ+e6TgrdJvGJMaYeWu/KrUbCFLq6UVSVmkkNRKZNRo3FyTkWmiowTcEOWpjd0uRWJO1JYe5oxy5Y9GxP07Eq5btIRaAd5bGZ095/HPm5h9ARm4ClGojf/obUdb9l9nkfQNQ1Ida9RXrNejreSfnn0qIq6KUhQcIUOABluvpuHzi+4eCpS3jx5UN9eErvgWQgqhkEXnVXLaZyf8P+JfGy5bxwwlEoqooR1Vn410eYdv2do9VciaRfjKQ2Iups3lgcnRSm0Gn6Ag5myqZjZTdaVPXzDoLVp0cKI6kx5egWjGiIcDJKpD5B7SGLoKEZtm50q0ALQeqpZwi/9SbzlhzOP82Pks87aBps2KawxtIIh+IkF5zOlCnzQAjyehjVsdHsAkcozxBt30h3077UvvE01tYtqNEoZls7WsRAMQyyG7fQ8cjzhGoiNCyYhRaPocTjKEYYxbZRQ+6inhELo4V0NMN060uYbsK0rM0w/phw/nnE1r8Nd/9zrJvSLzJUaWD2GMMhObWJmrCBsGzsgoWTL5A3Tbo3bGfHW+2E4mEaVr/GTDNH5vU3yLf1FvdpODBBTUuc7i09ftEqb2K98dmNFDpNzG7bL2wWbqglMnM6wjQRtk3TgfsSOvgwlK42rK1bSD52Jx+Y8wbbFx1EJw3kjz6d2MbXcLZsRNg2esQgkgxTMzVK95qM724uN148omd/gx/+d4Etm7p59clXuPmnP2Ph7Gn++2sv+CDbV23zlZBCDTqhOgM9opHvKvixsZ6ykPc6iGMKTq+QTDZco0ExFD+nQSIJMlB40r3Reb7Kyb3ReRWTHF888V0AsvqzZNQYythXSfZzONTuH6dnbZb0hlzJ4o6vEmjaaDGVmplRCilzxD4XXKMhOTuOlbcJJ1TCdXFq9p2GM3kW6tpV0NiMVT8ROxwj0dCM0A16JuyD1gW1tRrJuIJlQzoDjoA32ybQmaghqhfoykfJmRoHJVZRv/x2cq07SM7ZRG7NWhRdw+zoQo9FiU2bjBqNEk8m0SJh8u0pwvPmg20jdAOhqCiWiZZOl7Rd1TUW3fvQiPWFZOR5vfFYkuGmsW7GgCgqqMNwWCl7kZNrjzEcYosPIp5MkntxBbmOVjrXdNGxrpPON3qwMw5vvrWGd/6+rkRfGHonMQ+0LPDjTr2huDxc4qmlhxJriOKYJtg2aqIWa816OldvIff4q3Su68TMuTGp8YkPUTetjuapjSh1CdpbO8inMqi65rt9ezZmSwb+/qouXvnJENAIHNvnvZm//gszi69fOOEohC1QNIV8d8G/TtVQ0JMadfslUFSF7c919JnUlyvYDNXbEDR8pMyppJzBhB09PPMAEvvFELYgt6MAWdd40JMakQkhIvVhlj7+NJkdGY56ccUuaLVkb8Yb00INOg3zatn2XPuoFm/rei094D52xhnUfv3h1YoItxgkJ9fQOLuZzI5uJiyYTmZbB1pIJ5SsQZuxL+m6KXDQFNaH5tCgttFqNbG9/hjqIznmF55n5kRBJq+ia4LamEVjNE2tnmJjphkhFDZ3J2iI5pgQ6aau7R20SVPJvfY2PRufxLFsVF2j+cR30TPnMOJb3wRFpVDXQv053yxpc8e/HnHbPqGA3txB0xfPYvxPQ/dcsg/dhhNNIFQNoajo6U7Sjy1nwhW/qbj/gqd/Tk8oUvG98YT0OAzMHmM4mBOmsG36QUT+uYyuDW2u6lFbqQqFnXHrAlSaoFeKE/UGV48jnn0OcBORlYYJmA2TCbduJWlaZNrWkOso+GXsQ/EQ0YYaaqZNQgmHsLN5typyKku+O4eVtzASGqruJsGVa3sPl4MffsJNqu52FZqizWFq902Q68xTNz3JrPcegZZM8sz22+l5Kzfg+YZiPEhDQTJc7m/YHz2poUVVYg0RChm3+je495WVsklnc2S3uL9paTRIdhVePaD2N7qqGg1aTN0tqkGDaww1LEgQb4oTb0oSTkaJT5tIKLmd2LTJ9GxqQzgmejSMveZt4prGv6Z+CMtUCYUTNOvbKUR0WsLb4a938tKUo3lj5SYcy2bOAZP5wJFQY3WypLAKy4ihqTnUB/6OMW9/Wme/iwZVo+GYI7FatwKQWbeJ9KuvY6xejRUKkfjyfxKt0O76g969aztKUpXsg7eidHeiqjpC01C72kA4hCc0sOK4I2nYt4nEtCaiUyaCopDduIWeTTvQZ08d66YPiKIoKMOwAoZzzO7KHmM4GJtXU69arHxslV+LYDCVIO+NziPUoPdRqFCLIT8AD01ZyHs2veIfI2wbHIGeSVE45DjumnkiZ5/xIPpVP8I2bRzLIZyIEJ88AVQVs72TzPZOeralUFSFmpakG7u5j0ntvlOo/8b1I9oXXlI1wMrTjyNSG6Xm0Hra39mGGo+RW3A4TXMfouetjYM632glCUr2DgbjafA8Y4V2CyvlFunzlL+geiidRDKaePffQAnIRkLbJYZDpedU+YJNtQrTRlLz6xFF66M07jcJPR6h0JXGSmepP+JQ8qtXM+n976F730NxrP/P3nmHx1GdffuetlW76l225F5wNzaYZjqYHgIppADphPCFkDcEwpvgBAippJCENxXSSEijhm4wphhwwwX3Isvq0kraXqZ9f6x2LVnFWhVbkue+rr2knZ05c2bLmfM7T4sixkJszTkDEYO4buNQMJ9F9lrcch7FzVsJ+jqYdKpM7UEnoUCU0mIbihBAMEykd1/F8AeItrTjr2kh+ux6bO6/I5bnoic0CpfOQVt0Flmz2jF2bKZhzSam/fW5EX8PLYZOoPwkNMmOosXwNO6i8emX8O1pJh5MEKqNEvPHcdW0IYi7ibRGSERURFHEVus73l23GAbGjXDY+8en8dgVOnaF0gFlA8EzzcXC//sWWaddBcDqWfM7C7yRriugR41uvtZ5d/1f+vg9e5rIjppIiSjlZ8xF8mRhJhLEmn2IikKssYVgXStaTMXmtiHZZERZQnE7yZpQknR7ypCjBY12Ze4zq9lw9mnp57v+/CLesndo3tbS6/59FdyyxIPF0RhsasPU9yqVGnhFYAfPOmemJz9WykSL0U6iTUtn40tVvBcUYdjFhB4xkvWK+kht3de2rGkOJp89FTUSx9B0AnV+OqqbyZ1Sii3bjaO8hMCM03CVTuJQ0Xwqql8HQ0eIBJklStTnzaFUaqCDPFy+RopzbdQVLqT0ww4ul9cw5epFNAXzOMOzHm/1Vgx3Dlo0meHPVVqAu6KYWEsbWjSOqCg4cmWMaAzbgW3g9mDGE8SDMVpXfqZPVxeL0YN3y6sE5p1DQnGBmqB5RyPNb7cDSeEaleOosaTYjjclY3Ekl0h729G9HI43IoNMxzrsPRm9HLNrvf/++xEEgVtvvTW9zTRNVq5cSVlZGU6nk7PPPpv33+899/LRaHi7hdo1TagBHT0y8OwWuVXZadEAcPaOzVwS3ZmMdYgmKxmn2ntGnsGzzpndjp83rZiPniFS//OHkJacjv/MaxBPWogajLD9sbW8/++N7H/xAIlwHEEUad3TSv3GWhLBCHK2B+eSpURf/EOvfWvcsZH2914l9p+fcujma3h93iKe885KC5mBTuTjwQR5MyfiLvTQ8EYLu/6xt99iQpZAsMiEy7RdQ5rcp44VFSHtU35JdKclGCzGDEZnJrusCifOcluy0GUf9yB3lZ3s2YMvTpiJGBEVAXeVnfwpubiKkyv9isvO7G98hpKTp5MIRnBc8gHEqul4GnYQyqmgIVaI5slHiEUwI2GMNc+jCAk2+aexelcRjYVz+cPGk9jeVs5+7yIkPY5XibAkbzfeLa8ihEOIwXYktwtT1/Hvq8NQNVwVJeQuXYDy8c/juPyDxM69htjUhdDhI9Hux5HtomNfA/uuv2zQ743FsWHHb5/Eu+VVmswy/JULyK3MxZafXIe2Fyt4J2WRMzEbm0vB0DrTwUcM4s2ZL5Qea1IxDoN5nCgcE4vDunXr+M1vfsO8efO6bf/BD37AAw88wCOPPML06dO59957ueCCC9i1axcej6eP1npHjxjonZ9cJhMOb3ke0VV/xnle97oIfa2wpwSE5BK7uUL59vkoF0Q87TVQvZtEKErcnyBal0ByiqjRpPqWbBLuAjc5M6pg7lK25J2NR45w6L04gahCnjtOjj3KBG0vzlgHSrAVvc2HaZjYvTYSeYeLxMHhSf6RKVBFJVntU3KK5M/KJtLoo21/y5DiELpWgbSwGE5SueOPjPWxxIPFWEEL6EQaYz2KiR6JzaMgKiO7Zqd4pXTMUPHsQlwFHrIWL8JVmfQxr558ERXeQgr3bUNoqsb05EFTPW1VF1BT70LLPYfcGWE8UpD8YDV1sRIe+sX7LLtgNiYCudkSLX5w2rLJ95TjEGPIWgKzpAJiUZBl4ssuwe8uoXTTUxjtbYjZ2SCIuHa9g+B0I6oxxFgYtbEJ385DhJqDqBGVeEBlyoi+OxZDpXBmKeTkE1AduB1FTDh7MYlwgoZ1TRTOziN3UiGyw0ZHdTOJiEqkOj5mYiCt4OijM+LCIRQK8bGPfYzf/va33Hvvventpmny05/+lLvuuourr74agD/+8Y8UFxfz6KOP8vnPfz7jc2U6ydhw9mnYvXbif3iUaUcIh67tPeedhSgL6SrMeiT5SOWcvyS6k0hzjPjqF5HsNhLRZLXM0oXFhCvCaHENm9uGpzSHojlZZE2bhD77ZPw5E5l36Emc51+Pbd8B9pjluJUEeZIP7/ZkfutwQxOhOh/hlmSNBsUtk1CSmZu6igNI3rgOp+0zoXPVq6M6SLBpD9G6xIDfm74KcFmiwWIkOdIt0MJirGCoJrEuizp9xRr0VnS0K6k4BrmzNgSAe4KD8KHYgKwNKRGeVerElmUnFogjyhLBdesJHGymYP5UikN7eUVewVknZSHHQjQUzmNC/V/IT9TR3FbCtKI4FYm9HJBnsCGyHH9YYPaSqbT7YrxePRFFAVWFOp/CxKxcHERwhVtQPQUIbh05GsBdsw2XYx9mOASzF6HanKgOL86Nq6h94mVyp5UTbvDRuquJxavfGsQ7bnG8KDhtMabTzSltTyM01aLFE+RUFqAnNLKKvYiyRKixnWBTCHEwuU0tRjUjLhxuvvlmLr30Us4///xuwuHAgQM0NjZy4YUXprfZ7XaWL1/OW2+91adwiMfjxOOH3WwCgeSE+uL2jUDvE9u+BIVhmAQbQ1Q/W8+0v/Z9DV0tC6/PW0RwTyQ9sUm5Lp1XvZW1S5fgLfPiKc3Bnu2mcE4V+bpOvD1IxYP/BKD5G9fjunEl0Rf/QJ6/mY6XVhF9Zy3lpyyjKLsIZes2Ot7ZxOa39hIPHM4sY8tRkGzJH6AoCyAnbw6pVVqzM/NMb/UZorWHBUPqpiI5xW43uYG+Zxbji8FakYb7+5HKUZ+ir1gbC4tjxVDjugRFQOolziFVs6cv8ZDaP5UkQHKKRBviRxUNilfCVZFMd1m2sAzFZSceiOApL8A0Dey52eh76tHCUXj6Uc4vf4XWMz9KltiK51d3Iiw/nez9G7jJsYUOFvNGZAk//d7byHYbsVAkfZ5dm3Ipn1LK3PkFlOer2IUYxfWbEOsOoPs7CO07hB5PkLfiQmhrRiibiK44sNXuwdizh50vbGTRqjcBKAAqB/sGWxw3Qjt243E6kwVoi8qRdR1bcyuFJ1WghmLEOsJoMRVTN1DDQ69sfiwRB1nHIdNj7r//fv7zn/+wc+dOnE4np512Gt///veZMePwmPOf//yHX//612zYsAGfz8emTZtYsGBB5p0bZkZUOPz9739n48aNrFu3rsdrjY3JVGzFxcXdthcXF3Pw4ME+27z//vv59re/3etrR1Y6PtrEIxFMEGsf+Co8QLQpnnZXukzb1W1l1FOShSs/C0EUUMNREsEIekJDjRwWOkXf/SOHbr4GZ2EOgiDgnTUVQZaJrX+X9l01tB/wEW6JEmtNpIOzIVnJWnKK6W2ptK9EDYjSrWqp2MUKYWhmtxuOoZoIiokRHL7CQRZjk75+H5aVycJi6OgRA2eFjWik93tMX+LBli93y+KkR430eN4VySXiKFLS7rBZlU5KF5Rh97oQZQlXaQHtu2rwTK9CdLupf/4NSpbOItrkI9YeJNrcRuHkjawruIpFlWUgyxhZOXxr22XMlF00tuhoqoamdp/4TZlbydUX2Jgtb0TSVd7pWExWvg/PgZ1IU2chHKglUOsjTxSIzEom5nDtfJvovv20bt1PrKPv+DqL7rw6dR7n7N1yvLvRK2p9PYqsEK+YgZFThifLi1ZXQ/3qjXQc6iAeSKCr+rBUVD+WHCtXpddee42bb76ZJUuWoGkad911FxdeeCHbt2/H7U7GQIXDYU4//XSuvfZaPvvZz2beqRFixITDoUOH+PKXv8yLL76Iw9F30Y8jc9+aptlvPtw777yT2267Lf08EAgwYcKEbvsMdKUy2hxHjxoZrWz2l5ZvzlOvUnPTBzENk0QohhqJo0ZVEqEEz3lnpWtI1G+swZbVhKHqTL5IQXLY8b1fTfUrB0m0ad2qSKd+cCmLQsoH3NBM0JLF6o4stiY5RZyldmSHhGmYPUzjYyXfuMXIMFDB0B/DbRE4chJlWRssxgNalwKfXQtk9pdxKXWPkZwitjwZNainXVOPHMf1qEHZWUUoTiV5jE3G0JLnDByoR3HZQRQxy6rIm3UI27QZ2KboGK+/hXTDl3kltpA9+yVmn3sNZsyPsmsjl5wpouoJGlukbv3Kys1m1slTyC9wckrgKTB0xFiY85pWYSQSmIDQ1oz37OVo0ReJbViPq6oZwe2h/e0N+GtaaN7eylnvbxqW9/ZE4EjR8Jx3FpD0OhhoZsWRwJaXTehALUJNAzmnG4QnL0LLK0H0NdNxqIPAgdDhWB9t7IgGSGZUGlRWpQyPef7557s9f/jhhykqKmLDhg2cddZZAHziE0kX+urq6sw7NIKMmHDYsGEDzc3NLF68OL1N13XWrFnDL37xC3btSk4MGhsbKS0tTe/T3NzcwwrRFbvdjt1u7/W1TCcbXWsz9EZ/K629nevAp6/E0HS0mEo8GCMeSqCGVeL+RLebRMeuEIISxlRNXPm7sWU5aD/YlhYNqcJzhmb2SLvXmzUs9ZrkSt5oHLk2nHlJsRYPJpJiY5gUv5WWdezT26S/r99Of5/1UMXDO8uWEu2Idwv2t7AYTRxtvHNX2ZFdcp+VnNUuwqHbqmsf43HXQnJHWhmOHMcdxQp5M7PJn1qEd0oF9W9uwzRMFLcT0zTImlBMvM1PYMdeclxuOq65FcfGJxDsDjyTKogAsmRy7qxW4mYWe8STeKTmZObnOmjr0Fm7qnucUWFFIZtWb+Gk005CNHdBXgFGXQ3B3dU4CnKwLV0GsShCIka0LUS42Y+rvgVBFGnZ2YBvV7v1Wx8iqe/EhU2Dyz45XAT21RKoa0dPaGjRGN7J+4n5g7TvqaNjTzAtmFNu1GOJoVocUu7zKfqbs3bF7/cDkJeXl/nJjzEjJhzOO+88tm7d2m3bjTfeyMyZM/n617/O5MmTKSkp4aWXXmLhwoUAJBIJXnvtNb7//e+PVLcGTKaiAWDS75/knWVLSYQ1EgE1nc87pbyBdOBnKjaiaXsLikNOu0ylsmFAMjd4iq7uR2pnEHQKyZXcnj3NjeJWkO3Jj1WNqsSDiTH3w7UYeY5060vRm6AYKaFYtXwm/oPNNG5pIrQ/ml5RtawNFqOJ/n4DsWYVyTl8bp9dx+qUdVmPGigeCeEIt1MAm9uGGomjR2OoURW9yY8oS0g2GUGSEGSJWFMHidpaSt0vYeo6ptMNC5bhePkxlue/RPWpN3D9t6LMXmpy2ql5/PaBNb327ZZPunl7z2lcO30LiacbUCZMJlJdiy3bjR6NoW3egCBJyNNnkjOllIb1ewk2BBAVCZvbll4Ysxg8vQmGPR9bAXBMi+fVrjuIoRoYukm0PUr9pkPEAwkSATVdw8TsTM5yon3mR3rA3H333axcubLfY0zT5LbbbuOMM85gzpw5w9qfP/7xjxntf/311x91nxETDh6Pp8cb4Ha7yc/PT2+/9dZb+e53v8u0adOYNm0a3/3ud3G5XFx33XUj0qeug39/QaGpvPSZBFqnOGXtu/22+4w8o9ukLVIdR/YeNk1D95tHSjCkUutBUjh0jWcAcBQpeMs9SIqEFteIBeJEfFGidYlB/XAHGidiMXbp7TvanzViOARE+A93Y4TCyDNnk/jU1ylb9Rd8+14+4W4uFmOLvu4HqQx7w0XK4qxHjHRSi9TCUFe3J8mVLDQXbgkTaYty4NVqtICOvVghd1IRWixB9Usb0eIado8DTyhCZM2btO6oo2TRZKo/9mMmXlCOlojwy6eyiIUi3HCJhlNq4NFsD2F/sEffHn/dTvWeQ3xOfhcWLIZEDC2eQLTbADBVFVPXMQ7uJ9zgI9QcRovpyTTioTiiLLDCup8MO8ej2nZgbxhBERBlgbgvkYxj6EXYHsnF7RshO/sY9XJwDNXicOjQIbxeb3r7QKwNX/rSl9iyZQtvvPFG5ic+Cp/61Kd6hAD0FRJgmubxFQ4D4fbbbycajfLFL36R9vZ2TjnlFF588cWMazgAPJ+7CJcgHX3HTvqaBHWdNA21qFVvQuXI9p+RZ5Dwad32VwN6er8X8mZjy5ORXTKiJPRoO5V2NVqXoAVft8DpRJvW7w+5v8weKSy3pBODo33X+/oe9OWu9GLxSb2ujhmhMLv/8xa+Hc/1mgXMEqoWo5Vj6aaZKqaVVeFEi+mE9kfxTHPhynNg99oJNoaQbBJaVEOyQVapE7lKRlQkYh1hql87iBbQKVyYS8HMcmI+P/nLl5E9dyb1p38cm6HyYuPJXBv8NT+cX0Pz5Uvwo3LrysZeRQOAphpMO6mEHVOuZmbDS6gb3iYRiJCzZAFqXT27Hn+bcEskbWFPWcz9kd7duCzGLr3FV+z+6MVE2iIseKF3ixX0dOMZjQw1xsHr9XYTDkfjlltu4amnnmLNmjVUVFRkfuKjcGRyop07d/Lxj3+ct99+G0k6PGd+//33ByQa4BgLh9WrV3d7LggCK1euPKoZ51jS20RosKvvXffvzx+8N1GR4sgf6Kqqub22YXSKh94Cq3vjsOvT2Mp4YDH8jMRk3VmcXGV5a/HJCJKAt8xL5YUnU/f6Zjqqg72KBguLE4X+xmhTNcGZDICNNMbInuIhtD9KIqBi99por/YjKSKKU0GSRURFItQUJh5QUcMaDW+0pNtSnApaNI67rJDIjl3UrNlO/rJr+ONb5SxfGEfbfhCpajJRwc2P/mT0KRoA1j63nk9/5SyKzTqE5jqMeIJYR4TmhZej/fd/CNQkA2LTwd2d9SgUr5SO9bDSLI9fpv/teQI/+2qfrz8jzyBijv5sjscqq5Jpmtxyyy08/vjjrF69mkmTJmV+0gGwaNGiPrd3FQ6aNvC0ucfV4jBWGK6Brjd/8oGu9HaNaYBkLISgCN2yPKVuQgOZkKXSslqc2Az1u93b8atnzcfmUni5fA6CIqAFdIIHI4SaXqVjV6hbwOhw9sXCYqQZLquD5BS7xb4pXomcGVn43gsgeyWKFuQTbAhRefokCpbOZUPHU0iKiCSLaBGNeNRAi+lINhFDN4n7EqhBPWlt7nR3yqpyYvc4aD/QTFZlKfbyfApntlGtVvDh031M3fE4lJWBafDLp7PZt6n/bEcTZk3iuvBDtP3fGiKfugWXJ4e8aIzAvf+TtnDoUSNtyTZVE3uxko7zs+KXxjcdP7gFUZF594xTad3QYS0MHYWbb76ZRx99lCeffBKPx5MuUZCdnY3T6QSgra2Nmpoa6uvrAdJJhUpKSigpKRnUeYPB5OJALBZLp31NPe8qJPrDKul3jDjSRWkwA6jRJdAoVRjoSEGRCXrEsjZYDC/PyDOI1iUIHogQa1KJ1iZQAzoJn0bLOr8lGiws6B6nliIR1g4L7YYQWkSjZUcDDavX4ynNQlcNdM0gd0oO2VM8OHLteMs9hKqj2PNtTLqoggWfOzl9T7B7bfj2+XAXerHNnsuh065n/Sf/xu8eCzOp8U202kO8VH4TF/zmJDa+0r9ouOlrZ/FLz33s+fU/yD1tCbZIO/Et7+EsL+HAy8n4Cskppq8pb76H/AVe8qblAFii4QSgetVmal59j2Dt2HZNEwRz0I9MeOihh/D7/Zx99tmUlpamH4899lh6n6eeeoqFCxdy6aWXAvCRj3yEhQsX8n//93+Dvr5U+0fGU7z55psUFhYOqA3L4tCFkR7YBtN+X8ckfNqAYhQsLPpjMK4Dve3fdRVWjxj0Z5C2JhAWY5nhjnVwFCvkz86lZUsbesRA6cyq5yp04NvhR5AECqaXEKgN4i31INlk2vb7EBUJQRSYvGIivr0+PGV52LKz0vUf8qcUcODlaoT5AqbDSWn7+3R4vESCUZ6TP4B/+gf5w7f79kcH8OTn4M7Ooiw3RvN7++ioCXDoPy9ROG8fbTtrqN9UT6JNQ3KKSYuHIuAst1E0u5iIL8S8Z18btvfJYvTyQt5sJKeIoAjEm9QxPS8RBhnjMBhXpaNxww03cMMNN2TemV7o6Ojg9ttv53e/+x2zZ8/mxhtv5K677mLy5MmsX7+e733ve1xxxRUDassSDl0YK5mEugVGW1gMkYGIh9RkaahVpUf7b8vCIhOGmnFMVAScRXYcXns6m553qps5H1+OMmEib3zpN8Q64vj2NqOGNSJtEZw5STcG2S6jRjWKF0yi9p16tv15K85SO5JTRLInU7LOuuYkArc8wE7DwZNve/jKnDV87Lqz+cG3+8/ekldWxD1fLSCoOil2+NgflIgF4sz56Kkk/CEESWL34/vSyTcMVUdyidiLFdSgzv4Xq7HlWdOL8U63BaOogTAOFjOPVYzDsSIej/Pggw9y//3309HRwYoVK/jb3/7GVVddxf/7f/8vnWGpqKiIe+65Z0BtCuZAZM8oJhAIkJ2dzWPilIyyKmXKQCc8A8nWNFSsTEejm1TguaEdzmOdch9I5WY3M4hHGcl+du3TisCOjI4fTK0TC4vxRl81UQZL19+lLU/GVeQgq8hN7ZombHkypmqSO82L4lJo3NCKHjXIqnJSOCOfxm3NaAEdW46C4paZ8/NvodTvY/3MT/P1r28c0PkfemAmRVodhiiRu3UVoZmnof3xQTxXf4itX74Xu8dGuCXao+hdatw7nhWNLTJjsIulg/2uR0ydDxv78Pv9GWUeOhak5pK/f7EDlzvzvkXCAT59Yc6ou7ZJkyZx8OBBZs+ezXe+8x2uvvpqAAzD4KmnnmL37t0UFxdz1VVXkT3AVLnWksAAGcgP7GhVdo92vMXYR1QEhM6HpAjoGEidEwFR7sykoh17sdA1FiYlZCSnmDYvdw3UHCh9rbZa33GLE4nh/r6nFhOcxQpTL5qKZ2IxNWu2Y6pmuvJy88Z28k7yMP/GxWz980bivgQNm5rIrvTgWeTF0AzyZ03gBS7hJw+/wZILYPL8aezfvKffc//3Oxr26ueonnQBRX/7DsFoDHdHO+8+vpXFZUWE66IEouFuY1jXDFGXRC3RMJawxurxj91u5y9/+UuP+miiKHLVVVcNqk1LOGTIUNPJ9Vbbob/9huoaYnFsMVQTEdAx0kJBlIV0sZxUNfHUviNNSsh0o/O8klPEnm9DUkS02ODT5GXPdhOpjXWrP2JhcaIx3LEPpmqSM20CtjnzKWj0Ub+m+XDhT8DQTYJ1PvSogR41yF/gZdIFCxBEES0SxX3WOUzK9QOQX+Ckoaatz3PNOmU2N10rsQ9ozD+LWcJBjHiCnU9uIdGxAYC197zQa3IDe7GC5BQ5e8fmYbt2i9HLeJ+DiIKJmGGgc+q40ciOHTt6LfY2FCzhMAiGy3rQ20rtkdvG+490PJIqymemVuLovNGTtDYMVTB0dWUYTNXaVCpfe74Nd6ETm9tGIpwYdH8mLqukbv0h/HvGdjYNC4vhZihiwtBMDq3Zim3DbuLBGCWn5aPFdVx5Tqqfrce3MYBvYwDJlQyGzq7IJlzXTP6pi5D9HbRMWMT9v+oA4Pm/vdnrOX70g4UkdJmlzY+j+XO57HvZaKrG738ymUhLB2pYI9ak4ihWeogGURGYfs0UatfXWqLBYtww3mIcBEHgkUce4ZlnnsE0TT72sY+l3ZUCgQB2u31A1a27YqVjHQLPyDOGdWJviYTxRSp9rqmaGJrZzdpwJKIipAVB1//7ImXBSO3b2yOF2dkHAMUjYS9WcBbbsXttuPJc5FQWUDJvwqCvs/LXjxP3J/q8NguLE4XeFpMGu8CkRw3q3mhi338P0rzNR6wjjhbViAfi6X3EznEAQI2qyUJv+6tBEHHFO5gxt5zckoIebZdOncAL3+hgwq8+zeLX7yGWV0bC4WXemXO5/e7TKQrtx3PTrZz226/ineFKV4FOZXwC0sHP0brBLzpYWIw2UsJhMI/RyA9/+EM+/elPs337djZv3sw111zDP//5TwC+8pWvcNddd2XcpiUchoHhFhAW44uUeOirbkbKnUhyiiheCbnzoXilfgUBkI6nEHpxSTpyX1EWkL0Sdo8Nm1tGcSrIDhvOghyyqsqpveXaQV3fxvNOx9BMLonuHNTxFhbjncGIBz1ioAZ09IhBtDZBx/YQ/j1hmt457HJkqCaSUyR3mpeiORM58MF72Hft94iffikv+08hHtNob2xN7z/3jLlkF+Xzl7P/S/S5J0mEYrRt2Y0hKiRsWVx1nsJ5G76Fq2Yb333rZH7a/glmfWBBcqGic4xKkWjTOPh6zaCsnhYWoxWRZDrWjB/Hu+N98H//93984QtfYPv27ezdu5cPf/jD/OxnPwPg/PPPZ9WqVRm3abkqWfTKcPvrnugczT0pFQeRClgWRRE9rqdX+gRFOBwboZmIcue+nc/Tr0GPlf+uWZ0AREnA7nXgLnDjKvAg2hQEQUCyKYO6tkWreneDsLA4Eek6dg7nGJpygTyS6VfMQP/q91DCDeSJPtb5prI1cjqTimK0+SIUTCih9VAj516zjII8hXsv3cXaq36bDnCuOKUMye5lZ3wa581zwrzvAvCj1Ak+9DAr7k1eS6wzODvVn2itZW04kbDmBGOPhoYGrrnmmvTzj370o3zsYx8DoKysjAMHDmTcpiUcLHqQWh2zxMOxISkqDARNwF3mwOaxoTgVTMMkURhHTxiYhomeMNDjOpJdQnHLOHOT+dyj7VHCddF0ZqSuKV9TosGWJ2PPtyE7JARJxJXnIruyCMWbRehQE45cD6U/fvR4vQUWFuOKodZ36IuuCwCyV0LxSMgOBe2+2zAnl1GQn8Mlc0/GcDsgIrBs1m5C6jYKf/WHLq0s45y9W3q0XX6Uc/eXqOPF4pO4sOn9wVySxXGir0QvvcVwnkjzAAETgczdbgdzzLFg8uTJ1NTUpJ+XlJQQDocxDINEIoEkZV7GwBIOFj3oOqBY4uHYkMrGpMY0ROWw0dPQTUzDRHZIKG4l6V5klxBlCVd+FpC0IBiqQbQ5DlGjR6pEySliy1HIKnbjLnATaYugJzR8u+qwZTlwFWXjWbJoUP3edMGZLHzp9SFdu4XFeKS3cXOo42lXy6UW0JNxEBsOEuuI0/BePVVnTUWqrsc9sZT2i25k4imX4bymnwaHAVER8FS6RvYkFiPC0VJpn4j3/vEWHH3bbbdx7733ctFFF1FSUoIsJ6f9pmny8ssvM2NG5p+xJRwsLEYJhmqSaNPQo0Y3X2IAxa3gzHHgLvTgmVCIPT8XgFhTK1osQSwQJ6YkMIJmt3SvoiIkA7PjyYwotiwHkbYIWlwjEUoQ8UWwZTlwXHlLxv19fd4iztwysKJSFhYWw1ssLrXY0LbNj+yVkJwizdvrUZwyjoIcCuo2wbRZQ+90H4hdqgRrMZ3qz15F1W+fGLHzWQwfR1oVeksTfyKKBjgcszCY40Yjhw4dQpIkpk+fzhVXXIHD4QDgC1/4Ao888gj//ve/M27TEg5jjGP1oz7S6tB1u8XIkcrJnophSGVPMnUDUZZwFnhxlpcgl1Vgygqm/j4Ofxi5MdCtna4rk2anIOnAj6Hq2LJs6KpBIqKixXQCde2D6qslGiws+qY/gTCc4gEMZK+EM8dOqClMIqBiaFuYd/uDQ25/oH1IBFS0mHr0nS1GBUdaFqz6O+OX73znO+n///a3vwHgdDrZtGkTDz/8MFdccUXGbY7WQHCLPjiWE3dLJBx7TNVMB0qnRIOgCCTCGolwAlPTQddB08DmQLTZEGUJxamguOV0asaupGIe9KhBuCVKIpQMaJQdMqZuctITmWVVeLH4JF7Imz30i7WwGOcM1Id8KKTGiWhHnEQgOXlv2d53sbfhomsWNT1q4Nvbkn7+YvFJVrbBMcyJ/LkJgjnox2hE1/Uej3A4zPr16/n4xz8+qDYti8MY5VjFHhx5kxtItWuLwdM1s1IqCFp2yKhhFcWZ/LnqsThSJIxgGmihMIamYxomgtS7rdRUTQxAAvS4TrglimQTMXSTs97flHEfTdXkorbtQ7hKC4sTh96sxCmL7nCM43rEINasIjlFHAXJBAh2j21IbQ6UVP/1qIF//+ECkKlAaeueMPY40T+z8RbjMBJYwmEMcyx9EQeSgcFyaRocKV9hURGSBdrybUiKiGQTyZucjzMvi/YDLdjcdrSYSvBAHea+WvSERqCunWh7NLna2BkfkXJTSlWIFmUBNZhM7drVhalrhpZ3zziVpW+8PaD+WqLBwiJz+hIJoiKQMzuLqrOmknvyfDY98G86tocGVGFecom4JzhIdKgk2jQCvgiikqzXcizRI0aPeg6rqubirLDxnHcWesSw3GHGANZ9G0RMxEFkSBrMMWMVSziMQfqaxPeF5BJHpEhPbytoKQZ7kziRBi7J1VmzQRbSmZAERUBSROweG3avHcVlR09oOLKdiLJErCOMGlUxNB0trqd9mlOxEV0xNBNJOdx214lI189nVdVcskqdPfp36OZrmPDLf43EpVtYnPCkxsyUy0/L/95Ix3vbCNVGB9yGqZpEG+LdFgwM1TymqVH7Guv1qNHN8pDpfcvi2HIi3Xv7Y7xZHCZPnoxp9i1qTNOkurqazZs3c9VVVw2oroMlHMYoRxuEUxWIRVnAXeJCDav4d4YHtIrV3zmH0qeBcKKkf5VcIo4iBUeeHVESutVqkGwitiwbWcXZuItzO9M1tJMIxYj5o4RbI2ixZJakaFMcAMWTXGHUVD19DlM1uz1PcaRlSFSEHqLj3TNOJWdCzjBftYXFic2R41vXMbPw3od5c+FiEj5twO0ZqonRy298NND1OlLXPdzxHRbDw4lwzz1ROeecc/oVDim8Xi/nnHPOgNq0hMM44EiXJVu+TFaFk+I5JWSV5mHLzkJUZGpWb6F2TdOIWB9S9JbWzaI7qYJs7hIX2eXZiLJIIpxAjaqEm8OIioQj24m7OBdbXjZGPIFpmGgxlXgogRrWUMMapmqiRw0Uj5QOgO7KQEWioZo9JisDdVuysLDIjCPH667i4fRNG8b9JM66L1iMagYb6DxKg6N///vfD2i/SZMm8Yc//OHoO2IJh3GH4pUomJPDxDNn4awoRcovxIzH0P0dVJ63EF3dQO2qpmPSl8FaIMa71SGVc12SRexeJ3avi3ggQiIUSwoHUUBx2ZGzXIiyTKLNT6wjTMQXQQ0ns6akRAMkXZLiTWo3d4W+sG7aFhYWw0HXMVpUhG5ZlqD3lJ/jeVy3GB+MtzoOI4ElHMYwR07MHcUKthyFotllZC1aSGTiHKLOXPLqtiJJEkakFjU6NnJtj8ebjORKxjN4Kl3YXAqSXcbudSE77QAYmo7iVhAVCT2hEfN1YDb5CDV2EG4JE/Mn3ZJS2ZO6Vog2NLNf0XA0waAc42BKC4sTndQYN5wT7FSl+JGiv369kDc7WWyy06Ld25jT9dqsRQyL0YiAiTCIQOfBHHMseO211466z/LlyzNqc0SFw/33389//vMfdu7cidPp5LTTTuP73/9+txLXpmny7W9/m9/85je0t7dzyimn8Mtf/pKTTjppJLs2buh64zm/bhuvTp2H7HQQmryILeYCHLpGnrkZraGB1i17MVR9xIKlh5vRKh4Gk81K8Uq4Khx4SrOYevUZSJVTINCG7mtDC4YAkB1xFKeCoer4a9tpO+Aj1hEn7kuQO81L/tQ8XAVe9IRG655m/PuCxJrUbp9lpjfjy7RdPOedZWVKsuiT6N++R3juctz1O3Be+ClenTqPc/ZuOd7dGhf0lakuk7HPli8z/YppFNx4A6ZsQ969idaVn6Fg5e8y7k/rys/QuHEfjRtaiDWp3frYdcLf2+S/a39t+TINX72OnU9u6/FdOfKaX8ibTdlpRcx9ZnXG/bUYOqPxHmsxfJx77rlHjXEwjMzmgyMqHF577TVuvvlmlixZgqZp3HXXXVx44YVs374dt9sNwA9+8AMeeOABHnnkEaZPn869997LBRdcwK5du/B4PCPZvXFDV/GQVebGlu1G0GLkusK4pTDGwb20bNpF654WQg1RzCEESB9rjrd4GM4iTZIiIikiRiSK1NqY3C5LCJ22UcmW/DnGgwkkm4ieMNBVHcmZDJae+c+XANh3/WXAYYvDUPu4IrBjSMdbjG+cH70DJ8CcZQBE6xLWqvEI0tUSMZCxT3KK2L0uGovnUxDYj1Zbn/E53z3jVARRQItpBA9Geg3QPtpn3fX19y46C0dBDrlTcnghbzaSU8TQDmd7emfZUgBOWfuutWhxHLFEQ0/GW1alf/7znz22+Xw+nn76ad5//33uu+++jNscUeHw/PPPd3v+8MMPU1RUxIYNGzjrrLMwTZOf/vSn3HXXXVx99dUA/PGPf6S4uJhHH32Uz3/+8yPZvXFJzoQcFE8WYrCVUvtB3B1NtG14n8YtDYRqo2gBfUiZlTJhuCYVR95Aj5WYGMiNcqD9MFUTLaaTCCUIVtfjCEWQ3U4EQUCPJ8AwMTtVfypjkmmYSIoECt1W46b88RmaFp+MqZrWxM3imHNJdGevgb0Ww0cm72miTWPvSzuZrN1BRySOb08z5UunZHS+9u2B9ELEQKzRR+vfghfW0LryM7jyXEw8p4yy0+dgnzad2LO/xnFJ8r5u6GNnAcvixGGwVaAzPWbNmjX88Ic/ZMOGDTQ0NPD4449z1VVXpV8PhULccccdPPHEE/h8Pqqqqvh//+//cdNNN2V0ntTc+kg++9nP8slPfpJt27Zl1B7AyDlD9oLf7wcgLy8PgAMHDtDY2MiFF16Y3sdut7N8+XLeeuutXtuIx+MEAoFuD4vDTPvrc5imiRjqwNO6H3n/Nuo31uDfEybh046ZaBhuUgXmRtskZaD9UQM6sdYE4ZYovj2NtO+uxb/nEMHqemKtHUR9AcLNAQxVR5AETCP5OYlS0lJxJHaPbUR9mS0s+qPr77Frmk2L4WOg76keMQjuibDv5d0Yms7Mj5+H54or2b534JYHQzOTCReG0YW1fU8dvn0+FJcd8YwLeb7kczzm+hw1N32QU9a+y7J317H3E5cO2/ksMmc03lOPN6kCcIN5ZEI4HGb+/Pn84he/6PX1r3zlKzz//PP85S9/YceOHXzlK1/hlltu4cknnxyOywTguuuu4+GHH874uGMWHG2aJrfddhtnnHEGc+bMAaCxMemuUVxc3G3f4uJiDh482Gs7999/P9/+9rdHtrNjHO+XfwxA9B8/pGPde3TsCh3TmIbxMBCNxDVoAZ2oGkeQgsQCyXgG2Z4MSlajKvFgAkM1kB0SonTY7nnK2nfT/79/1XnkTSuh8uzZeEprh72PFhaZYAmGkSMTi6bRWQiudU8LWaU1ePMLmVT9MEy966jHpmq5CIoARywsDWUcbN7eTOhglLxJGrpso8MvUd+sM/GhfwNJd6XiOWX4trzB482n8867PravTboyvfl0ZsGaFhbDxbFyVVqxYgUrVqzo8/W1a9dy/fXXc/bZZwPwuc99jl//+tesX7+eK6+8MvMO9kIgECAUCmV83DETDl/60pfYsmULb7zxRo/XhCPecdM0e2xLceedd3LbbbelnwcCASZMmDC8nR0n+F5/l0PvVKMGRmeBoNHISKaPTVp7DCK1MRJeNVk1WhQxDINEW9Kn2FFgQ3ZIKC4FQRRZ+NLr3drQExpZE0oxT7uAsuLVGfe1L6yAV4vBcLxjkCwOowZ0Wjd0EG7cRO6GA0Tboyz7eP/CIfXZGarZQzQMlMjDK3HduLLH9tM3bej2/Aag65TjlLXvsvWys/E8+WeuO6uWS6+eyeZLllHi8hNY9xy2Q7twXH3roPpkYXG8ONILxm63Y7fbM27njDPO4KmnnuJTn/oUZWVlrF69mt27d/Ozn/0so3Z6W4SPx+Ns2bKF22+/naVLl2bct2MiHG655Raeeuop1qxZQ0VFRXp7SUkJkLQ8lJaWprc3Nzf3sEKkGOyHMN7pzde44sF/stU765ic35pADIxUpVc9anQr2payCImygGQTke0yNnfPn6euGsSafWTt30K0rX1Y+vSMPAN3lfWbshg848HKOBrJNIOboZpE6xJE65oxVJNnnTPTr3Wts/DOsqV07Op/pXGgn2lvoqE/Qm89gbrmJapXbSHaFmXXExvwrttNVnE2Z52xCAwDU9PQDIPQQ3eSddP9GbVvYTEUhhrjcORC9t13383KlSszbu/nP/85n/3sZ6moqECWZURR5He/+x1nnHFGRu1Mnjy516xKgiAwbdo0fvnLX2bctxEVDqZpcsstt/D444+zevVqJk2a1O31SZMmUVJSwksvvcTChQsBSCQSvPbaa3z/+98fya6NS3oTDysCO47ZhP5YTh6GW6gMte+Z9qevFb5Yk0qiTSPsjeEstrPh7NOQ7DILXlgD0M0C4RxSj5M8I89A8Uq4S1x0/OAWcm5/cBhatTiRsETDyNNX2tPeMFQTURHImubAle8kcCCEoZm8OnUei754Lp/cexO/WT6TbQ2bRtQavXrWfAqm5VE8rwrPKUtwXP5FALJOuwpOu4rcOw7vm7ymei777RO9trX/xssRZQnZoVDx4D+p+/KHKf/ZY932af/ezeTekfkkyMKiK0Ot43Do0CG8Xm96+2AXun/+85/z9ttv89RTT1FZWcmaNWv44he/SGlpKeeff/6A2+kthsHpdFJZWcmSJUv69O7pjxEVDjfffDOPPvooTz75JB6PJx3TkJ2djdOZzChz66238t3vfpdp06Yxbdo0vvvd7+JyubjuuutGsmvjluOR5WQsTxxGY98N1UzGQ5As+CY7RrY4m+yVyC7PRjn9nBE9j4WFxdAZiBXCUE0SbRqu/GTgsx41mHn1TGylJXzhnEnU334g7R45Upy9Y/OA9z3aODz54ae7Pe8qGiJ//A6u67+FIJ64ySKs7GbDx1ArR3u93m7CYTBEo1G+8Y1v8Pjjj3PppckEAvPmzeO9997jRz/6UUbC4ZOf/OSQ+tIbI/pLe+ihh/D7/Zx99tmUlpamH489dvhHf/vtt3PrrbfyxS9+kZNPPpm6ujpefPFFq4bDKCc1SI3lwWo09z0tHprixIMJNl1w5oidS5QFPGW5PFg/PAFXFhYWI8/RMuJoAZ1YexxRTs5o9jy3m20PPcnEb6+g4Y2WfhNmjOax8Uhc13+L2H9+esJbS7tmN7PchgdPyuIwmMdwoaoqqqoiHiGGJUnKuFhbf2zevLmHJ9BAGHFXpaMhCAIrV64clA+YxcAYTreerjeUsXRzOR4M9X1PiQc9alB5Wl63HOjDQapvajDprvD0n97gjmutbCYWFmOJviwQhmoiSALOIjuCkiDepNLS1I6htg247bFS6M9x9a3EHv85RqAD1/XfOt7dOeYM5fOxRMbxIRQKsXfv3vTzAwcO8N5775GXl8fEiRNZvnw5X/va19JuRa+99hp/+tOfeOCBBzI6T39ZSGtrazl48CD33Xcfc+fO5YorrhhQm4I5kNn9KCYQCJCdnc1j4hRcwsi6dIw1MvGLHUybo4HBXtdIXMeRfck0sLEvREXg3H/8P9qnnUaTWM6C6YVDai9Fql+KV2LB506m+Ht/GpZ2LSwsjh+p37WoCOTMzgLgtA3ru702VEbbfQDg0M3X0LKzgUWr3jzeXRlTHEvhEDF1Pmzsw+/3D9mdZ7hJzSVffLcWd1bmfQuHAly4tGLA17Z69WrOOaene/D111/PI488QmNjI3feeScvvvgibW1tVFZW8rnPfY6vfOUrGcUlSNLA5sWmafKNb3yDe++996j7HrN0rBZjn9F4s8iUkbyGkWo7a7KT6IRZ7DOmsKsuiwXTh7d9ySninljKR26v4e8/mDi8jQ8zli+vhUX/9Pf7GC7r82j8HU745b/YLM9g0fHuyHEkUwuRZW3oyVCDowfK2Wef3a9XTklJyaCKsx1JS0tLn69t3LiRCy+8kObmZh588EEeeeSRAQmHEzea6ARgKBVdu1aGHc3VJUdrv4YLySWSVeJCifgpsbcyuTjKI68Oj5Ew9d6pQZ3AnoPMWVjGD/6tc9En3wPg9MtfG5bzDCfj/fO2sBhpxvtv6ESeDI/me/VYIZWOdTCP0UheXl6fD6/XiyAIFBQUsGLFCurrB1Zt3hIOJwCZDKRjceA53v092vs7lP4pHglXngu5sZrSxk3MUPYwt2x46jekEGWBUGMHKxYFKMgVCbX7R51oeCFv9vHugoXFuGEsjvMWw4/1HTixqaio4O677wbAZrMNOCmR5apkAVgDyGhGi2uo9fXIiQS5wXa82dXA8GVAEhSBUHOQ2fv/jTTlKn4/bC0PH12L5VlYWAwPR477A11kGs33i67uWKO5nxajE4HBraiP5jtUW1sbb731FqZpcu655+J2uwEoKyvjW99KJhNYtGgRbW0DS5xgCYcTmMEMql1vLNagnGQk34dYk0rTllbchbuwe2sQZAlRkshaNjzC4TJtF6tnzUeUJZAVFkwvpGBCCa2HkjVXTr/8Nd58+vhnWrqw6f3j3QULi3HPcCV0GCxDnfCPhzThFseXoVaOHm288847XHLJJXR0dADJ2Ik33niDSZMmcd999zFt2jQ+9KEPZdSmJRxOMKy0bceevrIt9fX6kWgBncat9Ug2CVM30GI6xd8ber9WVc3FVeTAXejC4bVjOLPo2LSKe79yElsap/OHX60nFooM/UQWFhZjiv6CqMVhtv71dp7BLFCNxoBti7HHsQqOPlZ89atfpbKykueee45EIsGNN97IXXfdxaOPPorH4+H3v/+9JRwsho8jB++xPigfr/4PNZOJGtAJHowgygKGNnyDU/6MXOxZNmb9+2UA2t57DVf9TiZ72yn3FHLqvRMwGJ7UrxYWFmOLvsYt2Tt8ac/7GxczHa/H+v3peDGcdZ7GA+PN4rB582b+/Oc/s3TpUgC+8Y1v8I1vfAOA6dOn873vZb4KaQmHE4yupuDxNFgcr+vJdJWrt9W6gbgHJHxat32Hys5rL8Bd4GbaX59Lb6tzz0CaPo3S0C6kl/+Ns64ZR0EO9a0dlP3k78NyXgsLi7HDkWOTqAhIzsHnVMlkjD5y39y5WZy+aQN7P3EpU//832EVHSc6420+YHEYt9uNoijp59OmTaO5uTn9WsqFKROsrEonKONxkDgeN4uBnlNUBERFwF6s9LnP0fKvD9f1vX/VeZhGz9WRXLOVHL0FR8tBIg2thBo7ECQJz0c/SfS53w7LuS0sLMY+7yxbmvExQ73nxNoTvH/VebQfbOM576w+97NEw+Cw3rckAofdlTJ7jE6uuuoq/vrXv6afu1wuTNNE13V27txJVVVVxm1awsHiqIyXAeV4iiVDNbEXK+TPyGXdWcv63O9YvNd1axuZ9e+Xu1kbACKSh9y6bYRee41QYzuCKKBFouzNWUrb5FNGvF8WFhZjA0M3ex3HhlI76Ggk2jQa32um9b0O9IjR6z6iIvCsc+aInP9EYDy4JA+V8VbH4aabbmLjxo1ce+21rFq1ipqaGgDeeustvv/973PllZknWrFclSxOKI5XAJ0tXyZ/Ri5liycRburI6Njh7G9/N/XpUyo5+INbqd9Ui2STWPrG2+z68EVMCWxA0FVg3rD1w8LCYuyQGoNSk3JDNTAknXfPOJWlb7zdY1w5MjvScIgJPWIQjSR6bJdcYjr+y1RNDHV0TuDGEiey69J4C45etChZS33Pnj38+9//BkAQBJYvX865557LN7/5zYzbtISDRb+MtdWHIwe8rjcuyZU0sD3rnMkl0Z3HtF+maqJGVbRoHHdxzoCOGe73/jnvLBzFCufXbetzn8pfP87BkxYSDyZYVTUXgKKXnsQxqQpOuWxY+2NhYTG2uCS6Mz0uGLoJut6v29BITz5TMRdmp1hIiQYrw5KFRZKHH364xzan08msWbOYM2fOoNq0hIPFCYN7goOJp1XiyB1YdcSBMpDc43rUIFQfpjWrgcJZ5f22NxI3vHVnLaNoUS6LV7/V5z5rly5BDWvocR1DM9ECyb9NG/dQDDiHvVcWFhZjDVM1MXQTQTQxDbOH21Bq8caWL6N4JARFQAvo6FEDPWoMm0VAVARcVXb0qEE8oPZod1XVXM6r3jos57I4cRAxEQdhPRjMMceCT37yk8PepiUcLPpkrK7Y9NZvW75M5RlVyLd9m/WhWQz32vnR3itDNUm0aXQcDJA9IW+Yz350imaVHHWf9q1BACSniLPUjjPfjmmYtO1vR41uJ3TzNUz45b8yPre1+mdhMX440mLZm4X3Mm0Xez62AsVlB8DQdPy1HTS+0wrDIBwUr0RWpZMZVy7k4OrtNNT6ur1uy5cpW1yM757Pk//NXw/5fCciJ6q7ksAg07GOUuEwEljCwaJXxttET3KK5EybwHajinKPHygYtrZTA+zRsiKlWLt0Ce0XnYU9y4YoS8x47IVh60tfFCyZg1RWQfiNf+E+45pe9zFUM93PbVecQ9kpyZtG285DxPyRQYkGGH/fJQsLi8P09ftOhBPIDhuKywYks8mZwyAaREXAM8lF4cxC3DOm4tlVi35q0uoh2yVEWaJkfiV1n/4Za/zZuDfHqcpqZPqUyiGf+0TjRBQP4y3G4dvf/vaA9zVNk5UrVx51P0s4WJwQnFe9lUM3X8Osp+/Cv68Wfv34sLafyeQ4XBdFDWu4C50oLoVNF5zJwpdeH9b+dKXtvi/gnDaF1qmn8+zBk/jcEa+vnjWf0J5Yt21znnqV0K++jqAoFCgK0SYfFhYWFgPlpCdWsfPaCzA0HT2h0XHAP2xuSnF/gvaD7UT//BxtBzqQFInsCg+STUaNqpimgW4K7Dhg0tFhcNbJZXh2vkfpzAXDcv4TieEMcB8LjDfhcM8992CaA+vbQIXDuEvHmkon1vVhYQHQsrOB6lWbqRxm0XAkR0tJGGtSiTbEibTFUCMqADs+eP6I9KXpjk8i2W2Qk0+TWcb2HSE+dmdtt33chS4kl9jjt5L1xe8jyDJylovSHz86Iv2zsLAYn7y5cDHhljBaTCV/5gTKFpfi6KeOzUBJuX0Ga8PUvdFMtC6B7JBQnAqGphNuDuPbVc9Jb/2UU2erFBbacSoagmmwY28dp1/+Gtd8ZT979x3g8s/v4PTLX+P0y18bhise31hzqbGJpmnouj6gh2H0nub4SMaNxeHi9o14vd5eXzsRzW0WPVm06s1jer7efH8hmT7Qlidj99qwZdnInpBPwdK5BN9+Gs+plw/b+Q9+/gPYvC4klxPdk09UV3Bn2fA7FO7/h861i2sofeX3LFmzts82XDeuHLb+jFUiD68EUcR1/beOd1csLMYMp2/awOpZ8xEViWBtC20H2jC04VmV1aNGOv1q5UXlTP78RwitXcvupzcjKiLBxhA7//QSy+wOsk/+PC4pipDQiRnJmIuGvYeoiSzlrIvsvPSfKNdcv5DTL3+NN59ePiz9G6+cCHOp8WZxGAnGjXCwGD6slYXhp2sMRN5JHpy5TmxuG64CL4XLT6F2yYc4FCnm3GE4l+/bn6Vtdy2CKGLLcmJqOqZswzBFHA4Jt8fBnR+SgEkw5d4Btxv61dfJ+uL3h6GHYwtLPFlYDA49atC2p4OWLW3JLG3D5KpkqCaoJrZ8mdIl09g2+RrmAJOjcWxZLt798RvJ7E/GU8wKBZGmzkJ3eSn3mnzkC2dRmGMyn7UsnJzg7G8uYEp0DRvPmEvkj9+xFgiOQn/iobe5Q9esg4FAALKzR7R/Q2WwxdxGawG4keCEEQ6pIjGQHMxSefzHu3rOFEs0DJ2jrcqcsvZd9l1/GYIoIDsUBKeToO7BF7L3227T9nUUz15y1PM7JpSRFQijRuIgCpi6jqgl0E0BwzQxjEEOcMK482y0sLAYIQ4Xixu5CZWjwIYWjjLTvxYhEcPmzaJh3e50itioL0aitQ1nbiOSaeDWEnysPIou21ElJy2OKcRVmbgjm+9etJXEiy0Ebv8EJT/484j1eTxwZNzDQBODjAXGm8XhnHPOGfC+pmmyevXqo+53wgiHFYEdPba9WHwSoiJYlSY7GWs/8NFMbwFlz8gzEBWBS6I7mfLHZ9h57QUkQjHiT73MzI52ypZeBixK7x978kEcV96Sfn400XD65a/xtW+dzpQzb6JsyT48rz+F6g+CKCL5W3HkaPg7TH71PzkZXUv0Xw/gvOY2sm66P6PjLCwsTlwGc1+VXMlibrY8GckpklXmxpnjINoRI1QfJlqXwFDN9H3bMAwOvLoDXl1JpCVGrFlFjxiIioAtT04moPBkYQQCEAigdfgxo3Fc5SUYs0/GTR1Kax2oCbb8+FEkWSSr2MPRk1dbwPicM4w34SCK4oCDowVBGNB+J4xw6I0Lm94HkisjJ7p4GI8DwPGkv/SsG84+jcWr3yIWiJMIJ4jv8hFs6GBCfSPRg4txXvxpAMxotMexN/2gnYduz00/PzKo74ffeRNPfg7XfuI0rpu6C/btwYjFwNeMY3ICWXZnfC3Oa27r9frA+t5YWFgMD5JLpHRZIQ6vHVeBFyXLgXf6JMTcPDB0gu9tY+8L79O2OYjkFDFUnUh1HC1PB8DQTCRn0rNAUATUoI6uGajBEHprG9EWP769zahRFW/pfkrb2rGVl5FobKJ9ZzW+LX6c5TYku8yOD57PrH+/fJzfEQuLobNq1aphb/OEFg4p7MVKurLliSggrMnf8NPfe6rFNd4941TUsEqsPUG8SSXuSyDZdlEGaeHg/MjtPY5NiYb+AvmCvg7+8NM1XPjjUygwTCRZJlQyg4Qh84lz/Qy1BvQLebOHdLyFhcX4JlMXYEexQsGcPMoWT0Ky21C8Wch5uZhT5xDNKkCJBfAYJoUHmwkeiCSFg5a0TChuGcMwcObYsWUl3T1j/hiiJGBz2wjWNBHriBBqCtK6pQNDMwkcCBHtiJE/tY5AXRst230oHgk9apAIJwB476KzWPDCmmF/byxGN+PN4jASjAqn5V/96ldMmjQJh8PB4sWLef31kctpD1D92au6Pc+fkUvxkgLyF3jJmubAXWXHlj/+NZWVrnbkSb3HoiIguUQkp0ioIUqwNky4PkaiTcNQO1fKJIGEP3TUNlNWhqOlEHxq72x2T7mcA1UXUKNMxy6qlEd2Z9T/yJrHemxTA3pGbViMP6zYMIv+kFwiojIwtwfFK1FxWinFcyqQ7DZkjxsp24s5ZTa7C89it20+ui252CHKEnlzsnEWHY4HMwwDLaAjKhIOrx1PiZfik0oonlNGdkUu/kNtNO9ooX1PADWgY6omgiLQ+E4rte8epHVPG4k2LWmhiBoEa8MEaoOEm8O8tfjkEXl/LEYvKeEwmEcmrFmzhssvv5yysjIEQeCJJ57o9voNN9yAIAjdHqeeeuowXungOe7C4bHHHuPWW2/lrrvuYtOmTZx55pmsWLGCmpqaETtn1W+f6PbcW5ZN8bwJlJ9cSf6UXLwVWTiL+w9UHetYguHYkKrpcEl0Zzo4XwvoaJ03sFQlVckuITsU9HiCQzf3XtkZ4Is/6iArd2BZKd57z8f+9nxqw8lUrA4xhmDq+O75fLf9nvPOYvWs+bSu/Ey37ZHX/g5Gd5GQCni0OLGxxg+Lvmhd+Rny52Uje6UB7e+qcOApy8NRkIPsdiYnSbJMS8k8Hn3FxZNv2sE0Ce/cTevuZgAEUUByiuhRAz16OBA6Fogj2WSceR5sWQ5EWUSLayQCKmrw8Fh2+Jh4cvFGM9EjSQESb1IJH4oRro8RaYz17LDFOMdAGMQDBlYDIUU4HGb+/Pn84he/6HOfiy++mIaGhvTj2WefHeK1DQ/HfVn9gQce4NOf/jSf+Uxy0vLTn/6UF154gYceeoj77z82wZj/veYpPly1Du9bTxHriCCIAlpcOybnPh5YN/3jQyqHudmLO1yiQyXcGk7+32kq7w1RFHBkOQm1+496PlmW0A1IaCJ2KXkTNwUpWRCuk5fL5wDJG2m8PUj4t/+LOGESpisLBIEjF1Euie5MrzYPdEXRwsJi/BP543dQ55yKcvmHKPP5CRzYkR4j+nIBVrwSORO9CKIAgkC4rhlHQQ62Sg+rD03jrf8mXYX+d0Y7h9bvxfdeANkrUTgvD8Wt0LbND06QnCKx1gSyI4qnREOQJLRYgkBdO4H6EDZv0h3Z7AyqTvg0JJdIok1Lpm3t7F+6n51/LduqxUixYsUKVqxY0e8+drudkpLRF6p/XIVDIpFgw4YN3HHHHd22X3jhhbz11lu9HhOPx4nH4+nngUBgyP34jP1PBP/6Crve2YuuGkw4dSpTPj4PIxQitPsAbXvqOfRGQ3J1I5KZqhxNWILh2NNb2roj3TzEzkC++jXNSM6kEfCkPtr7xW3Z3POom1cebycRi/exV5LZJ+WgaiaCICIICpKYgy2rjMm3PwgkRUOiTUunJn7/qvMo/1lP16SutHzrU8z//FzUSJzJDz/NO8uW4t8fJuHTul2f9V2zsBjd9FWgcrBs++2zTDxtD/ZcD3XrD2JoJq6qpOXeVM20K1Aq69HkyyYw8UufpulPf2P7P7bhLndi6iaTzp1B7KRz+NO31gGQXZRPzU/vIdoRo+KcYkoXTcZZVoQWirDF9wbOfAdlCyeSNaEYye1GnlCJ6fIQePEFGta1pMemIznavTz1upUI4sRiqHUcjpyT2u127PbBebCsXr2aoqIicnJyWL58Offddx9FRUWDams4Oa7CobW1FV3XKS4u7ra9uLiYxsbGXo+5//77+fa3vz1sfXh16jzyp+fi291OrFklq8qJaRrgzUNMJFDDUdSoiigLaGM4cNoa9EYvhmqmfQZTJvT+OGNegrpD09n6xtZ+93N2jlWGIRBTRUTBTlA5XF1d9kpp8/2zzplMOK+Elv+9Ec/Sk3FccXOvbXoWzMPla0XzJwfHU9a+y9qlSwjLURJtWvom25dQGm/fw+AvbsfzpR8c725YWGRM19/mUCfHz8gzsOXLBGvfAyDRpmHLOzy9EBQBxSMhOUUmXl5BxVXnE5u2iOqsGUw6Zx/N2xtoez8IwH5jJ1OlH/O3u2/hN++dTjisUjH3ywCIugqmgWDoOFobUNxvY8+ykT1zMsK8JRiKg6ArD1MQcU96H1ve5j6Fw2CusSvjbSyzSCKYJsIA05ceeRzAhAkTum2/++67WblyZcbtrVixgmuvvZbKykoOHDjAN7/5Tc4991w2bNgwaCEyXBx3VyXomTvWNM0+88neeeed3Hbb4fSQgUCgxweVCeHqOGqwNV3VMu5L0LanEVfpVhrf2UHzjhZMPRlMJSgCIv3npxZT+3WmhIPO1ZbjGFBqDXDHn9RNuq+g0q7fqaN9XgsTb9F85rnU7M7H3+zrdZ+zP3AqdiXpbQRgmqDpIvOnJVcram76IO5CF3rU4MXik7AXKyhOBUQBNJW2914jb0HPrE2JibNQPA1kX3ADAI23f4Jl765j43mnE6gPEW9Su2Un60tAjIRVYs1JCznr/U3D2ubRsESDxVhnuKyEqdit9FiW1/112SXjyLHj+d/7eFefiWqIuBIqkXnLmXpJDe81vEW0NoF/Z5h94nZOKvorF6yYzl+egzcdF+FWEtglFa8cwk6M7OwGciY8Q+6UUqQp04h4inAEm7HFAzTlzMA9eyElc9axv/rQiGRLtCwR45OhZlU6dOgQXu/hBbrBTvI//OEPp/+fM2cOJ598MpWVlfz3v//l6quvHlSbw8VxFQ4FBQVIktTDutDc3NzDCpFiKGaf3rhM28Vz3lnp54k2Dd+eNmArdWsb0QI6tjwZW44CQLxJ7bMtxSshKEK3XNKiKGIYxgmb6tWiJ0erLH1kxdWuN6ZNF5zJwpde5+zt62j6wMk89uvu6QK9BbmcfuFsigokxC6pDyQRLj/58M9dyXLgynOhxTS0mI7NLePMy0JUFMx4jLwFy6nbtYWwnE1Yd2MisGh6PkFPKW5JxnjjX7jPuAbPtEra7vsCi1a9CSQteIk2DTC69f/Ilc2u/w/mxpsqStcVZ74j43YsLE5kUr+94Zj8pn7vXWOfUhmMRFFEdkhMPG0aW9XZqLqIIEBMl6lzTmPKORdQubuWnX/bi+yVUNwKRkIl39ZOYXE5NS0ykLwHTy1x4JITxN0OPGW5ZFWVgSjhatyNtnM7tsICzCUzieROwF2Ujb24kWht33FjFhZdSVocMndJT1kcvF5vN+EwXJSWllJZWcmePXsyOm7y5Mn9FoAzTZPq6uqM2jyuwsFms7F48WJeeuklPvCBD6S3v/TSS1x55ZXHrB9H+jrqcZ1YR5SET0NUhM6BTEayiZ0rKt2tB2KnWLDlyUh2CUESkBQRQTo8gMadao/jLE4sBnpz7k9gLnwpmaq4ePYSVtirCX/iDOw2AbdLwGUHpz35XTZNE8NMWhoAZLF7m4IgIttl7B4bssPA4bVT+evHu+1TPmMeABt3+1g0Pb/bthTuz96L+Jf70s/P2buFl8vn9HC56q2SdorBuDIJ9p4iYcmatbyzbCmnrH13QG1YWFgMP6nKzlpAR3KKSIgILoG8SXlkXXYFcS2ZqEHERNVFfHEPcslpTP5wK4H6P5M3uZCcaRNwTJ1CoX8vHz1V4I+vlbD68bcBOOXik5k328uUIglbKEa0sQWnsBMjkSDW1IrkD1Kw9z4MVcU0TPJn5FLf1NznuCq5kissXYOkMyFlrbFiuyxGEp/Px6FDhygtLc3ouLlz5/YQDm1tbbz33nvk5eWxYMGCjPty3F2VbrvtNj7xiU9w8skns2zZMn7zm99QU1PDF77whePWJz1qEKhN5tMXFAFJkZBsycFO9krdrAeKV0oLC8UtI0oCgiQiycnBKCUebHnxjKwOildKF7kB0qk81aCeUYC2NZCNPrreaPqiq8vbqqq5SE6Rs3ds7rZPWf06zp+fjYiJKBiYCOimSFyXiWkKHREF3RAQBLObtSH48//BUJOWM1GWUJwKzlw3rSs/Q8HK3/XoS0o0dKV+12ZkLY4z3Irn43elt7+zbClCZ+aSTK43xQt5s6k4q5STnui/2qXj8i/2ul22y7xYfFK6KryFhcWxx1BNBMWEqIGhJa0OjhwXTaULkIJmekHDMAUSmoQv7sU58zxm3enEsLswbE5UwN5Wx8RDO2hu/Gi67XeeX8+BHWXc8vkKDrxajeKuxZFrx5njoGBGGfaCXHb+8y0qlk4iZ/pElCwH0fYoHTtD6BEjWWOiiyux4pGweRT8O8ODvt7eLKpdse7DY4djVQAuFAqxd+/e9PMDBw6kJ/N5eXmsXLmSD37wg5SWllJdXc03vvENCgoKui2yD4Qnn3yy1+2NjY1cdNFFfP7zn+/19f447sLhwx/+MD6fj+985zs0NDQwZ84cnn32WSorK49ZH7pOagzV7HS1SCI5kyZWPaGjhjW0zlgFURFwltuwZ9uQnTKSLCIqEoIoIHaKBUHsjHEwTGwehZiiptO8HQ1XhYOCaXm4CjwoLjuCKKLFEoSb/ex9fGA1LqzBanTTV4Yl2SvhLLZjc8soLgXZLiPZZLZcspx5zx4u+uY+81qcexsQMZOZpE0RERFRSgZbR2WZhA6y1P07F6lvJtIaJB6MYRomopysISEqfQ8H2/Y2AKCgIgsakuREE21Ihkr0lb+ibd+M50s/4JS17/Jicc+cUJkUDHNkO4k99Uu0gnJMScZzymUDPnbx6rd4uXwOz3lnpdPeprJGWVhYjAyXabt41jkTQRG6LWwZmgla8p4abQtRGG7EJpWT0CV0Q0Dskr0mgZ1I0RQMUUaXFGQ9gRQLgapycHv3e17zwXpsUgkdtQniiopRZRAPJMiekI9SkE92RTaiTUbKcuMqzidnQjaR5hjRSAJRFrDlyRTMzMNbnoue0AjU+wkdjCJ7hbS1dCgZFG35cregbCseYuwgYAzOVSnDOg7r16/nnHPOST9Pxe5ef/31PPTQQ2zdupU//elPdHR0UFpayjnnnMNjjz2Gx+PJuG+9UVJSwv/+7//yzW9+k0svvTSjYwWzP+enMUAgECA7Oxu/3z8sfmVdJzi2fJmsCieKWyHqixHaH02bYbNnusmpzMHmtiHKSWuEoemYholpHH5LBVHA0HQCDUGCteGj+lqKioCrys6p991IcPqphB15GIKIYJooRhybGqH+tv+hfk3fplewBqixxLPOmdiLFfKm5TDxrNnYsj0IdhuCJOH+zD1Dbn/b3gbmTO1p3lxVNRebV+HMLRsBaLvvC4iKgiBLZN/20yGds7/0s/2RPdvNolsvRyytAMWGaXOg21wgJn9jnqWXDKidrsIBLPFgYTFSPCPPQHKJKJ7kbzTWpKYtpilM1URyilRdMAHzvt9RGylE1ZNWeUk0yXVEKJRa8ERbADAECUlPYA+1IoY72Fb5AR5bZWPtc+sB+NY9p7LwH59j/U/ewZYn452UhbfUQ8FJldhXXIWuOJDjYWRfA+2vvU7tO/vx7wum+waQNdlJ0ewCFJeduvV1FM0uoPKDF9C+8CJyazbR8p+nqV6zn9D+aPo6BCUpOrJKnWgxnfatoV7fE7GL1dVRrDDl4ins/Odu9IhxQt+bh3u+Npyk+vb+xnfwZGVlfHwwFOKkRaeMymvrixdeeIEPfOADRCKRjI477haH0UbXiY6pmsT9CRIRtYcVQnErSIqIKEtp4QCkRYNpJNWn0BmhKskiilsm4dL6XMmQXCLOchuFMwpQK6YTdBYQMjzohoSAiUuK4Iz7UaPqqAm0ThUQO79u23HuydglNalt/97NOKdPA8UGkoQpDE9h995EAySzoKRc4AAMVUt/X4dK15tj1/+PJiKiTXFa1m4mf24YuawMIScfQXFgmgIIIoF1zyGYZr8CYs1JCxHl5PpPb8X2LCwshhc9YvT4rUlOMRk30Oluq0cN6jc0sLRpHcGCcwipdlRdQhRMZEHHrkUQOivV2xMBbLV7iO/bC6LIbKeHL104nw+es5ByuY6CN+6nsaENSE7mHV47jhw3kt2GavcQc+aQZeiQiBGoacVQkzUkREWgcEkuDq+dghlleGdORqyoxFW0Gj2WIDznTDZHZlFaWcaM89po2dFAaH80LYJseTJ61MDudTD5gqm8s/XNXt+PrvfnWJOaFg1gWR8sjj+qqrJjxw5WrlxJVVVVxsdbwqEXUuJBjxrdBEMK2Ssh2yUEUUQQhbRLkihLmIaBaZgI4mExIYgCoiIh2ZK+lUeGSKeCq+3FCtkVXgpmlhP2FBMx3aiGgoGAImgoZgJ7sIVEcPRkiLAEw9Bpv/+L5N75K3Lv+CWR1/6OKckgiJhdvkPDzQt5s7utCAKYmo6pGCAI+B+4dUhWh66Bgl3/P5oFQgvoNGyuQ7LJ5CoKssMFruxklHdnd7uKhujLf8R5/vVA0mISafShuGVUb9Kt8KLAjkFfg4WFxcDpOllOZRfUVD0ddCy5RCS7RNujjzL7owaRnAoaXJNwiRHsegSvbz+CGgNBRDi0j8bX1hFs6MCVn0VpQT7FoQ5KNBW9qYHGN9+jZWdT0jUqahBujaCrBmokTkXVWhxlVYi+RuL79xPtiBLtiKcFzNRLFrHp0h/xh9d03n1qA1MWTud7n1lKXuMOahwV6HEBXywLvXwKjhxn0l3ZK5Fo04g3qUhOkawiD56FC5h44T58u9sJV/dfjLO3xcLxXN9mLCOYg3RVGsQxxwJJkvrMqqQoCv/5z38ybtMSDv1gqCaGqvcwuypuGVGWusUwpP4Huv2ffC52igexx2RNconpjEzuQhfZFTm4J5bSLjnQTQlBMLEJGm4xTFbUh+yrR431X9DGGoTGFrl3/ir9v+70YnapYRJY9xzeJf2XpU+xY28ds6aWD2jf1M3Q5lJ476KzWPDCGgrvfRjfPZ8n765fZnYBvZByB+hNJPSXYclQTTp2hpAdddg8LrxeL0JuESZJESWYJoF1zyX/1zVEu4voc7+FtlZklxPZ6cDusaHFdM6r7lkgz8p8YmExsoidSR1S1syUoNAjBtGGOLv/u4uSuofwlOZQNX0iUpYbwWaj+Y2NGJqOuziXqC9A845G4oEEalQla/sebNkNdOytI9wSoGW7Dz1q4Cy3oUcNIs0xIs0x/LUB4sEXyJ9RhihJ6PEEkpK0ooqygK6aSE4Hk5y17FifdM/Yt2k3ay89gxnlRZimQLnHjyKqCEEdURIwNBNTNdPHqwGd5u1NFMzdw9Sv34Tx3V8Rrm46Pm+2xbBzrIKjjxVf+tKXes2qtHr1aj7zmc9kHN8AlnAYEIZqQmdsA5C0HEhHrNZ2uigd6ephGgaCmEzPKkqdNR46/R+7pnF15tjxFGfhKS9AyktmsXEIMUTRwKGHcYXbcfgb0Bvrj1pd2JocjV26rqanJsiBdc+BIIJp9BARXYXFQEUDHLYU7frwRdiyDqc2zf/mrwfd964MJaZAjxi0bfPj8NZgy/Fgr5iEIEppd6U0ooT7zGuBZF0H0eFAcijpmhJ9Yf0+LCxGjnRGJUiv8qdQA0mXocb3mjuTMxhkVRQhO+0EGzqI+CLEA1G0uEbEFyXepGLqJrVv78WWZSPYECLuT6BHDXKnefGUevHt8xFpjmGqJomoRv07zQiiSFaxF0EUk3GHnfUkBE0gUtdM4Ut/4Bff/BwPvzaTHZsOkeeOYxMSyIKKosexx8NI/haCTaFkAdegjnuCA8kmEtgXIXggQvOmPYhb99O0rhVILgIOJaDaYnQw1MrRo42f/exnvW6Px+NccMEFVFVVccMNN2TUpiUc+qA3l4rUyokgCoiy2MOy0BtJa0PSjUlUpMNp4DoHMlteMpe+K9+Fq8CLLccDskxWpBk3rchaDCkWRAz5MZvrCR04dFS/bWtSNPaJrH4USVJAlDDFZLyDKckE330WQVeTvsCmgSSIhF//J+4zryX6rwcwC0pomHAqTfFCFEnDNGHpzNw+zzPjsRdG9Dr6u5n257akBnSaNrVic+9l4oJFCLKtX9etVDG4gYa0WX7GFhbDQ28WRPOI7IRHokcNTN1EdthQslyYpolsl9ETBq17krELqToQhmHQUR3EU+FG6LQAeCa6mHrZydjKy3C+sZ7adQeRHTKSIuIuyKL83MWYqkbHjv1E26NE6xLpxbq6d/dRZhqU1b7D/zqr4XQRY20AsaISLb8cQ5KR4hH0ukN07AkmjwPKTy6n7IJlbP/dfwnUhkiE42QVZ6NHkyle3RMcxFoT2PJkQntiI/mWW4wg481VqS/sdjv/8z//wx133GEJh2NB3J9AqjocFJ0KhO6NdHC0kiy4JdklQE0HQudMzMaV58KZl4Uj3wuiiN7chNL8PKamY2ga8WgMNRghEYyQCMXIn51LrDxpmk20aT0K11grqmMf19nXdXse+dM9iNk5GDmFyRgI00yKB0FA0DRij/8cvaUFKR4n31uE5NWomjp92Prjf+BWjIRKtMlH2U/+3us+7fd/EdMwyLvr/9LbVvQRYzCQTEuxJpU9/67GO/EVcs84FfJLMRQHAiKmIHRz6RooRwZqH1ljwvrdWFgMjiPTmvdV8NTodPuxe+24y4uQc7KJNzZj6Cah2mQGo5QrZf6UXHIqCzj0dnUywYhTQQ1rGLpJoiNIIrCb2nUHCddFmf/ppfy06qFkobhn4LJPnMGtuT9g7wu70/dH2Svh2+Gn6Z0NSL/fhOyV0AI6giKk6zk48xzY3DbUqEbCpzHlygk487Io/ui1HKo8g6mNTTSu28XED5zH9v97goVfXMR7v91EoiNZGyfepDLvs3PY8tujx/+lXJUtLI4XNTUDS+/fFUs4DIJYs0rHIT+eEh3ZLvcIkobDgkEQD8c/CKKQDpAGEMXkQCg7FCSbDIaJFo6iR2Po8WQAtKnpaNE4WkzF0PRk0GhVPqZhokbihJqDhBojBHYdTqdlTX7GH65PfrPHtsjqRxF0E0wD0+lGLq/AdDgRdRVXvIN9+/YTNtxENAeqIWGTNFxSjEKtHgDB1JG1OLZoB4qvjvj29zE0HdGmIAgCpmliaodv/kY8QawjzLqzliXN/7qRrtJcc9MHyaoo7CYajkbXlIX9UfrDv6b/D619ElMS02bh4DvP9Kjz8O4Zp7L0jbcH3I+uIsaqAmthMXgGkn45FTMoiCKGqmLE4mjhKGo0GXjc1RVXtstkT52A4nZyYPVO1HAUySYi2SSat9WgOBVibXGcRXZcE8qIRNT0sc8+upb/99Wp2DwKUSWBs9yWLuiacKrYvArBPZH0GJTwaUSVBGqVhqRIxH3Je7CrwEPhaQupmXgmteFCJlRVUe5y8u+yr7G09BUQk6Ij1qSmr6/hvUMDer9M1UTKs4TDaGK8xTgcPHiwx7ZEIsGOHTu4/fbbOemknnWXjoYlHAaBHjEI7A0TDyawuRRkp4xsT1bgTQqIZDxD6v/UX0k57N6UTOkqoziVzmxMJlo8gdhZC8JQ1c6aEAaGZmB0TuAkm4yzMAfJYUe0KeSHowRrmqg2Dljm0ROMI60SKbR3n026uJlachAUTCTBRDckotgJ2JIxNKYpINl1nHYvXtNEtO0BUUOQOl2CdJ2c2x+k7b5kFXc9niDcEmTJmrU9zjnxoX9n1PcjJ+V9TTbEI5IJZC27kuA7zySfCCKYJtFVf8Z53ifS+8TaD2c46U8A9GZp6E1EWFhYDJyjiQdBEZJxA1E1mclN14n7Q+hxDVEW0FQTrTN9aqgljKkn94k0xxBlAXehEy2u0XGwA5vHhs2jULqgDD0S5erz4d0XwJOfw8+/mUPsL3/EU5p1ePFOEsiblId3YgGK20nN6ztofMuH7JXImeZBi2rIThktqqVrPhSdtRRt6lwq33+SiS5P0rLr9XJBwXps86dwS+Ab/Ob+P/D6rX9Li56Wdf4BvVe5cz0UTCsY+ptuMWyMN1elyZMn95pVSRAEiouL+etf/9rLUf1jCYdBkgryijtVZK+UFAFuGdkhI6bSryqHLRGyXU67NqVS1aUCrE3DRE9o6AmtW6am5N9UPQghWeHXZcdekIfkdiHY7NhMA3t+DrYsB1ubtqAG9IwmPNbkaPyRCrDO63OPXLbsaUI3JUwEps6YBMyDUy9P7xH8xe2Yuo7vns9jqCqF3/kDAEUj1Oe+Jhuyt2dcg+eUy5KWBxFEXUWIhgn96utkffH7vH/VeZz1/qaMzpsidf5MCtZZWFhkRsriHm2PkghFkD1u1Ehydd/QzHQWI6IQqg/TtGE3kbYIoiyQOyWH3Kp8Dr5RTfhQDFtegqkXTaXgEx9Dt7upaXMD8Nmb5lD2wjfw1beSN6WIghkSiVCM9mofkk3GO2My0VMvYdbM11Gcz2L3OMj+5j04ou0Ia56j7o2tOHLs5FYVgGnAujUEm1tRrroORyxCvGwq2bvW0rCnlt9d+QT1j7+LHjUyrq/kyHbQcahjWN9fi6Ex3oKjf/SjH/UQDg6Hg8rKSs4//3zsdnvGbVrCYQik/Dj1qEFC0bDlJcWDZBPTbkmCJCLJIoYrKQASETUZTOUU0WJ6Z2YJE8kmdwZcHxYbyf/FtGiQ7DYUtwPJk4XgcqdXhiVBxFkU7JHqdSBYouHEY+NuHwIShiliILB5TzPzp3WXBKnvliAKadEw0mTyXcxadiWhtU8iRoMYLY2EquupvfYCAvWBHnUjMjm/JRosLIbO0X5LhmYSDybwVzcjKTJqJI6uJYvIpZJ/CIqAGtSpWVOLPT/pZiTbJRSXnawSF4kOFS2go8VUpLYm1IoZ1DQk77PL3e9S/fy7RDtilMwtxzt9EgChprdp3t6EGllLUV0j7R1B1KhK5QWLuWfNSagJnU9ccjKed6+jdEElzuJ8ml9fTyIUY8JHLue8uxXmnvER7qvaQdM/nuXACzXdirulCsw1vdU2oPep4Y0Wq6r9KEPAIFk+NPPjRiNf+cpXhr1NSzgMA6l0rQm0dCYIyZms2SCKIoIkYLZEMYxkQblUMFQiqBLxRdDiOopTRnHa0gJCsiU/GlHurE6tKMguO5LTgWB3IMhK8uSmAZKEaLd1C7KyLAkWfbFoen76/027W5GE7kGM0b//AEEeueJzA+E576w+A6tTyC21oKmEDtTQsv0Qgbog4fqhuev1FTxtYWExPOhRA0ET0AI6waYQdm8HMX80WbMhmByLUvdUAClPJmeil+wJ+SguO/FABNkuY2gmetSg5s0aou3/ourSZXxpQYy8Wy7F/d538R8KkFOZg6skH6mwEMHhYsJZYTY//Dqte9qI+CIoLgVTN1FKS3jrz+uYv3w+0/1v0yRL7Hl+B56yLAqmF+MpL0DLLyO/vJi2Jj+uHW+xc2cLpacW4q8N4t8eTl9fbmUeLevaB2R9sESDxVjEEg79kOkKpB4xMDsrWQqdRXBS/pwpM2aqdoOOgSkLRDviJMIaNreM4kqgOBVsbntSLMidVgdZSlojJCk5oTMNTL0z1Z2hg94Z/9ClRgRY4sHi6Cyc3t2/NrL6UUSbDfdn7z1OPUoy89rphB66k6yb7u9zH8cVNyf/Xg2FwLPOmRiq2WPyP9jfQH+/fysLk4XF4JC9UjoNuTMnWUNGsskkAmqP1M2iLODItVFx+mxshfkYsTjGnoNE26MoHglTNYnWJTjU3IggvkNFMMQn5zQR2LYLR7YdZ64L2WlPJisxDZT8PErmFRPzR5M1IYIJsidkE5t+Mp78HK6/DAIP/ZH2g20kOlSaG3zkVuWTe1IZ8awC/vqp/YQ9JTT8YA2BfRGK55TQcTCQ7q+hmuz774EBiQZr7BilmMBg3I5Gp6cSN954Y7+vm6bJI488klGbgtlXLeoxQiAQIDs7G7/fj9frHfb2R9p1QfFKaXFhaGZy8i8LeCdl4S5w48rPQnYoyA4boiIj2mRkpyMtIgRBAFFEDYRY/5PXUQOHV4+PHJgGsoprYZEp7yxbSv7UQjzl+RR/709AchIveyXyZ2WzePVbALxcPodYk3rUG+bpl78GQOnUCXzg6kl87MzMXfC68px3FnrEGNCNOlNBYIlzC4u+6Xr/FBUBe7FCTpUHUZFQnDJ2jwNRltBiKv46P4EDoXR2Ilu+jLPYTlaxm5mfuwoAvc1HYOd+atdVE/FFEUURNayhuGWySlxUnDIVz1lnkdi2mY49hwg2dGAaJqIs4SnNoejSC4hUzCLsKqBgw9PUPvMagTo/dq+d4gWTqF27B4CZn76c2Mwl2De/zvu/f44pF83HOWM6ZOdBewuBjVvZ8eRmFIeMIAoobgVvqZfW3a20bw0d9X05UceMkZ6vDYVU3/avfQlPljvj44OhMJOXXTDqri07O7tHjEMkEsE0TRRFQVEUgsFgRm1aFofjjBrQkVxJFyNRTgqImE9DjwaIVyQwNB1HthPZoSLZ5OTKjD+MKEsIUtISYRomUV+gm2jojRWBHelVWVER+jSTbr3sbA4+33DCDm4WmXHK2neJPf5zTE82wV/cTuhALbK302ImCdTc9EESoVjGMTh2h43FpbXAhCH1LxOxnOl33vqNWFgMjFRSEKEz46CkSJ2uucmsgopTSbryupKLZ9mT3SguhUhrBK2hAf+eg7TubqJ9XwexZhVTNbHlybhKHDhy7FScMpWsmVMR4pF0QHUinEANq9g8NspPm03HlCW4nv8LBXMX0Pb2pk5B4SXUHKR5y0Fi/hhaTCdWfRCHKNDy9maivhj17+yCd3Yh22XsXhexjjCmajL5khmIiky4qZ3cGRNJhOM48xzUv9aavm5nhY2iOfn49rUT2hOzxoxRznhLx+r398zwlUgkeO6557jrrrv4978zy4gIlnDol2MVKJkyz6am/ak814mASqg5jCAKGJqRjncwDTMdMC2IAnpCI+IL9ciL39tq6EB8KktPnkrrzoEFd1lYvDp1HvZsG3aPjeK55XgmlZNV4USyJYsearEEaiSezqYyEBS7jY9/qIiq3Q/D1M+PYO8tLCxGiv7c/ZIJRGRsWcmFsWh7OB3bYCoCkZYYhbPdTL3iVOTSUg4+/CqJoIrNk4zvMzSTeJOK5ExQOLMQV2U5gigS37ePpvebkR0SjmwHk8+fg+uc8/EXzyQmu8meNQdam3AU5JAzfyaix0vi4EHe/9tbRH1xEm0aO//zLnmT9tKwpZFIdZxEh4qrxMGEU6twlxXgX7Mdd4mLnU9uQ3bJxH0JXFsaCNVGcRZ3z1ITb1KJlEaIN6m9vQ0WFsccm83GlVdeyaFDh/jyl7/M888/n9HxlnAYhRidMREA8WACyRbF4TWSqzPd6kMk4xzUqEosEO+vyQET/dv3cFaU4i5x8axzphW8ZXFUEm0aalDHLDPxTq4gcOmnWTRlClpdLS0bdtJe3Uq4JZoOfDwa516zjBVL4ixY9z12P7aKeZdYwsHCYqySEg+maqIFdMxiE2SS6cUdNmS3A9lpx+457C5hL1YoX1JGxYrTaT/lShzxAKULVrPnyX0k2jQM7XAl6MLZ+eROK0dQFLQOP4F9tYiSgKcki4nnLWLdOffy5KsqiZjGVRdl8Yz+Kez5cOHJe5CCh1AifmyCQCLyWjq5SfBghFhbvFOkxNGjBopbQXE7UbK9FM+pIFDro/ntdiCOqAiowTB6xCDh07pdv6GadOwKYWimZW0YCwyyjgOjtI5Df8yePZs77rgj4+Ms4dAHxzstY8oKoQV0IkTREzp2jw3ZLncKiKTVwTSShXQSwWQe7IFW4+2NyMMrEdzuZMxEWB10Oxbjj0M3X8PWP2xDUIRurj8bzj4NZ2lyha14TgnBS25kvzqJjpPyKZ5yEMeBBwmvO0SoOppOs9gfqfiGU+eeRrT6EDmVo784khUobWFxdFILYomIikNJWstFm4woSRjo6UyCildi4ukVlJ23lPi8M6gxqnA4Esy6/Dxa97Tg2+LHlifjzLfjKc2iaM5E7AV5YBgYsRjRthDuIjfuQi/KjNls3Gundm8d7Y2tFH1gGraJLr75jXfZveJk7pm+Fm3n+wRrGki0aehRA1exHbvHhiPbQaQ1grPcRlaZG2eOg2BdK7ZsN6HGdtoOtHW7NvoY3xzFCt5JWXTsycyP3OI4YZqDDI4eW/MlXdd59NFHBxWPYQmHUYweMdLuHVogipqjYfcqOHOdYJMRAV3VSYQTxNoTaR9yEQY16Y8crMVRWoTa1jHktJYW44fAuufIWzgLW95ODM1k57UXMPOfLwHJSqzlJ5dTMHcy+6/4Fr943s79J/2Hfysf5/zCBmJtIbSINiDRAPDm08s5/fLX+O7db2F3fZZENIbZKSbefHr5iF2jhYXFyJOq3yBKAkaeC0FIxveZWtIamQqgdhdlI2ZlIWkJdJtATSAH7/wrmPdVEa2hDjErCzORINHahuLNQnA4wDDSNZHsWbbkwprDiRk2cWY5aIrFRYvBIQAATXxJREFUueWr25gwK1nTobbaR8z/Dr7tB1EjSYu9oAjYXApFs5KZl2L+GK5CBw6vHTWq0bK9jrb9PhJhjbgvcdTrTWVRVJwKjgLbCL2rFsPJeKscfc455/TYlkgk2Lt3Ly0tLdx/f9+ZC/vCEg4jiNglGHSwq/dqQE8HUOtRg0SHSiKspV2WEhGVeJOaTgE7GJ51ziR3roecCdmIOw7RtK25h7nV4sRj9az5eMuymP3VT6IDFaeV0rLLR/P2VqSPrSD/9jtRnAoRX4jAgXpK9Rquv3giRrOT85/6JKGGNuo31lO+pIyyry5ELi7GcfWtAz5/PBLt9vz0y18bdeIhZW0QFYEX8mZzUdv249wjC4vRR8oa94w8g9CeGBElTrAmQsOWRkRRRI/rSRekzvSqDZtqUDwuskSJGTOzWRVfyu5ABfG51+CaGyIh2JHQKd/+PEa7D0wT0zA6H0krvN7kJ2/TOj51wSTc3l3EPzSBS78lo8ZVHv5pFRPe/iuhXTFEWaRxczOnrbwCqWoy8a1b2PfsBk76n0+yfvLH6Dh1KVnnephy3kIQRfY+9TYdu0J9JiNxVtjwTsyi9b0OHEUKjjw73rJsShdWHcN33GKwjLfK0W1tbT2yKrW1tdHa2sqdd97J17/+9YzbtIRDLwyHm1IqwDn9nMGLBzhcIyLp25m0LmgBPe3rCQx4VTfFi8UnITlFik/Jo2xxFVmVZQCEmt4isCsy6L5ajA9yJmZTec5c/GvepH1fA/5aP1pEI1wdJ9Zag2l8l6ZNyewhgihQuervzKqajCkrZFWV4SjIwbe3BXdRNvHTL6XRXc7Oo7j1RFf9mef/N5eL7/Ucs+scCqnf+YrADlZVzT3e3bGwGNWk4h0M1STWpCK2HV6gSt0fTTVplQjV+RClHbiDAaafPo2wasdAQBdkTFPAEETMaBgznrQWmJqOFokmq1CrBrpqUPfGVsS3t7N7r4/KR/8AtPOhD0/CMOsILDwf+6wlFIfbCTX9AqmgALOxDsnlJBFRCb79DosjQfadXULZKTNo236AcEuQtp3+fjMYJto02gJ+3BMc5E/LS6dUb9/XQMmIvrsWFj3ZvHlzr9u3bNnChz/8YS6//HJOPfXUjNq0hMMI0bUAHICO0acP5EA50o/SVM10atWuoiRl6ehrcpYSRpMuq6Bk4WRcs2dilFaiunKQYyGy3tyKqLRZgdEnIKnvhrvKzrzrl7HzyvvJ/dYHadzWTKLtsMtRwqex94lqJKeI7E1Wma59dSPZE2vIO+s0pGmzkOMx8rfuJ9oWwpMIky02oXglDM3kxeKTuLDpfQD2XX8ZU/74DAANf/kHpdd9EBgbwuGS6E5eLp/Dq1PndavcPhSsmAmL8UzXTEtHLqalXXvcCoamE2luJxGKMHPSCwSKZ2DoMibJ+5vXX0t0zz5MwwTDINYWoH5TDeGWCO5CF/YsW2cAtkLhzELc4Wac3lwukZ7F9/3fYf/iLWy2ncY37l7H525fjXbPGYRbosgOCTWsEfeHCD63hrLvrERe83Q6BiPR1r81Xo8YiF4JxS3Ttr8dxalQvPxkCsqrhv29tBgBTGNwgc6j1FWpL+bNm8cdd9zB1772NV5//fWMjh2eO51FN8RO0SA5xfRDlIVurktDQY8Y6BEjPegeOfgeWT23rz4WzavEfsGlNC28nAMlp1PvnY3qykayyYN2e7IYu3S1tAmKgOx2Uh9w07Y/mX884dNQA3ry+9250u6d6kaUBVq2+6h+qY69L+6ibc1bdDz/Igf//DhN2xrx7W1B/e+/MP7yK2x5crJyetTg5fI5vLX4ZBKhw/E0aiSB/6VVvHzzXn77k2ncfW/3lZBU8PRoQui0BKYyoQ0XxztBw3AxGj8zi+PLZdquXu9RXe87pmGixVTiHWE4uBe3vx6bGsGuhnGHm5FrdqJH42jhKPGOIMH6Nvz7gkSq44RbIkTbowQaArQd8OHMy8IUJR6+28EvDq6g4FM38ljLufx7VVIE/OnX6/GUeInUxgjsDSNIAp5J5RiagbLmaUKHGsieOgE1evSkIaIi4JnkItYWJ1QdpXFLEy1vbsR53ieG9020GBFSMQ6DeWTCmjVruPzyyykrK0MQBJ544on0a6qq8vWvf525c+fidrspKyvjk5/8JPX19cN6reXl5WzatCnj4yyLwwggdE6qJKeIZE+uxqYqQw/V6nA0jiYYuk5GnCWF+PMn02HkEtNtKKKeDEZLaOmsThYnJvEmlYMvb+Ksjs+yubF7oHxKDKtBHS2mU7a4lFBTEDXoJ9aaYMfj7yPKAmpQR5QFZK/EwTXbMfXk5FqPJoVv8jcRJe5PMItkZWk9amDLa2BiUzuhfb9l+qwSnrv7Jh4PXchvfrwGGH2xDudVbx2WdsarpWE0fVYWo4sj6zyYqomumoTqw8mAYq8dXTWI1zdirwojuPMQDB0pEcUMJys0pwSGGlUxNPNw9iZFw9RV9LhOq7MJ87e/pGVnA4V3voG0fztT5l6E2+FhwoQzeeLh1yk+dya179Rh8ygUzS6i7f0DuIuyOfjyBrIn5JPwB+mo6VlMqyuOYgXPRBfxgEqsWUWPGAR2Rdgb3kvliL6TFsPFsSoAFw6HmT9/PjfeeCMf/OAHu70WiUTYuHEj3/zmN5k/fz7t7e3ceuutXHHFFaxfvz7jvvVGe3s7P//5zykvL8/42BETDtXV1dxzzz288sorNDY2UlZWxsc//nHuuusubLbD2QVqamq4+eabeeWVV3A6nVx33XX86Ec/6rbPWCQlGmRHUjgYXgNDM9PuRSNBphMOPRbHFfWR67bRIeehmxK6bCOrJGfcTV4sMkMN6NS+2kTdG82Yne5wKfRo8rusRwzchU4qLliKEYtT/fy71L/VjI5BolMcSC4Re76NaFuM0MFksHNKlBqded21gJ6uaJ469+7mfckqs6KA819/5dqLffyGzAe4Y8lQJv5dJ0/jVUD84RUTuwIfO9OyZlocpmvgdGoMiNYlgA4ceXZM3URx7qeirASHKKE7shDVGFpbO4lgBEPTk4tdanJcERUBR64NURERJYGciUXYvU46Dibjsa7Z+P9o3lfL5JevZemC6ajnfID1M6oI1TRQMr8IW5YDQRRor25Fizcx84PL0CJRGtbtIVLdd70kySXiLLKjJ5JiIWWZNVSTaO3RMzBZnFisWLGCFStW9PpadnY2L730UrdtDz74IEuXLqWmpoaJEycO+DyTJ0/uERydSCRobm7GMAwefvjhjPs+YsJh586dGIbBr3/9a6ZOncq2bdv47Gc/Szgc5kc/+hGQzCN76aWXUlhYyBtvvIHP5+P666/HNE0efPDBkeraUemv2uXRULwStjw5XUlXsieLtsVDCRRHgoTn8ErEcPU10/2fdc7Eliez/uerKF69GW95HtPPOJmdSz5LyFVE4blnDEvfLMY2qZiaVIpER66NaHOcWJMKqonkEtHiOoEd+7DleMipLCDiixCsiZBIVUOPGAT3RA6319s5oIcbnx4xUDwSsY44W/+8Eelf7/HoeVPYedPf+dNjLSN85YNjKBP9rpOn4RYMI9HmYPjUuZZgsOibI++70boEajBZkC0RjtO2fitZTS2IdhvNW/bSXt2KqZuInTUhIq0RTNXElpec1mgxnYolEyj61PUcLD6VbNNPx5e/QMvmvZSePo9Ys489j6/Fvmojf/jaF7nwBzclT5wqz+CCFz/6Mjv/sgp3oZvaNQ2UnJaPtyyH2vW16FGDkgVF5FQWsPk3m9EjBu1bk1YQURGw5cnoUQPZK6TjuSzGAKM0xsHv9yMIAjk5ORkdN3fu3B7CweFwUFlZyXXXXcfChQsz7suICYeLL76Yiy++OP188uTJ7Nq1i4ceeigtHF588UW2b9/OoUOHKCtLZvT58Y9/zA033MB99903qMIUw8VgxIPkSgaK2jxKssqkS0GURQRRRHEe/uD0qDEslofBTgZSGS0ADrU1IspN+PY2M9M0oKAEMxo9SgsW442jfddN1cTQD0/yDTVpPQscCFGd2IPNpaDFNaId3VfkUrEQgxHKqYrUikci1qyy85+7KNp/PvdV5fPeRW0seGFNxm2OZsZLTIOFxVBJ3Rv1aLKWUSKcINoWQhCbk7EMtX5CDdF0oLIoJ+OMUn/VmEaiTSPiCyHGwojo5Lbtw3nyFPzXf5P/NlWyqLiG3IO3ULehjqw//RX4Src+PPpAMS0/2Mrsb97EvsrzKb/tOpy5blxF2RRMi+DMddO0rRH/IX+Pe7lnmosp503n0Nv7aXvfKvw2lhhqOtZAINBtu91ux263D6lPsViMO+64g+uuuy7jefGTTz45pHP3xjGNcfD7/eTl5aWfr127ljlz5qRFA8BFF11EPB5nw4YNvRauiMfjxOOHJydHfkjHE1uejM2bFA2yXUYQBQQxaS6V7RKmYWIaJnpO0s/bUPtO6XY0hmsFUY8Y6EDLljaUf7yMtzwPLZZg8kduH5b2LUYnmU5S9ahB3Jfo/N52F8EdO0PpBADdUhB3WipEWSBal+hXKPdpjejcrngk1KBOxwE/LVva0AI69Z3uTaNhNX04GKnrGO52V8+az9k7ek/xZ2ExnJiqiRrUEUQRT3kB2UsXktPeRu6+Guo3HKDu1WYAdJILd4ZmgmYS2hND8UrYPQ7iuaXsaCvjf34XYOKMB9h862Ye/qlI0eMP8P6WBoJ7ImjzVZ7/ZphntYtpDwp8pOgVDnzxswC4SmZgmgKFMyswVJXG92qItEaItEVp29y7KAjuiXDIvZ9gTcSKFxxrmOYgLQ7Je9WECRO6bb777rtZuXLloLujqiof+chHMAyDX/3qVxkde+mll3L11VfzgQ98oNvce6gcM+Gwb98+HnzwQX784x+ntzU2NlJcXNxtv9zcXGw2G42Njb22c//99/Ptb397RPs6WGxeBZtbRpI7q2EayaI0BkmrQ1I8GChumYRT7TcXdH+MxATDVE38hwJE2qLEAwkmD6KN8eqbPd4YzMq2oZkYQb1brRBDNTHUZJYlUzZRO+MauqIN8jvelVSANUDRnELa9rfj94UBsOXLvLX4ZE7bMDwBY0fjWedMgHSq4t7cgJ51zhzXqYwt0WBxrDBUE8UpklWUhT3Xg2CzI06egXfSNBwFG2jZsipdrLTr2JNyFSqYO5k97sW8uSpGe2Mri8+chic/h4K/38+2f63D0E0EReDg6zW0H7yHBaU/o2D2RA68sZNgfYhYa4KCX/0Ae1uIlmAsWZlaEZEdEu3bk4uW7io74SNiHwRFIFgTQQ3q1v1wrGGaaRGQ8XHAoUOHulkFhmJtUFWVD33oQxw4cIBXXnklY2uD2+3m1ltv5aabbmL58uVcffXVXH311T3m3ZmScTrWlStXIghCv48jo77r6+u5+OKLufbaa/nMZz7T7TVB6On3appmr9sB7rzzTvx+f/px6NChTC9hREj5aAtSSjQYGLqJoSWrWXbFUI2j5oLuj6G4NPR1rB41CNfHCBwIEfcNPJDrGXlGN8FgDZKjh9TnkvqMun5WmWJ2uib1hqGaqAG9h2hIbVcD+pDc8tSATqQ6GVtR80p9OmZCVAQK5uQw65qlvH/VeYNuf6g8553V7fl4Fg0WFscLNRjGaPehOz34y+cinnEBlWdX4J3hQnJ1n8q4quyULylDPPcy6oMerjlH46WvNXLjadUEfR1c/vZHyanMQYtoOMttVJ45kYolk/DX+bFdfCUzv3YjC3//HeZdv4hQYwctO1twF3rwlOYw+bJTmf+165h25RQkl0iiTetxfsUjDdpF02Js4/V6uz0GKxxSomHPnj28/PLL5OfnZ9zGP/7xD1paWvjHP/5BcXExd955J+Xl5Sxfvpyf/exn1NXVDapvGVscvvSlL/GRj3yk332qqqrS/9fX13POOeewbNkyfvOb33Tbr6SkhHfeeafbtvb2dlRV7VMRDYe/2EDJJM7BUE10VUdP6AiigCQJGJqOaSQHFEE00eI6sY444frYiGVW6o/+rsVQzfTKjTX5Hx/09v1NFVjKxNp1PL6rffUhdSNOxU7kVhXgnDOHyVOnHJN+XBLdybPOmd3E8pHPjxXHMuh5tARYW5x4CIpAzB9FbupAkKvx5OYTL5yJkTuRnEnFGJqOILURqY2lx7UJSyfAt37Od14oRjdiTKryEq26nP/9yjoAPPk5RPZHMDQTb5mbkjPmc+Dpt/CWepB2bgS7gzUFn2D5VTrhX/+OaHOc9gM+8qcVoS27ECHUhmSTUTwSFaeVUn7mfN5a+Wz6/KkYQus3M/YQyLwmQ+q4TAiFQuzduzf9/MCBA7z33nvk5eVRVlbGNddcw8aNG3nmmWfQdT3thZOXl5dR1lGHw8FVV13FVVddhaqqvPzyy/zrX//innvu4bbbbmPp0qVcffXVXHvttd3m7v2RsXAoKCigoKBgQPvW1dVxzjnnsHjxYh5++GFEsbsqX7ZsGffddx8NDQ2UlpYCyYBpu93O4sWLM+3acUePGpiuzjiGVGo4MenOIUgCsY44wQORHpO2rqsVqYmR5BLTgV6jedXCGhhHH72JBUERMFWTwiW5TL5gHrue2IB/T3hUf7eOhh4x2PPMXuo31lIyr5Qp1371mJz3kujObtacoWRhGwrH8rdn/c4tjgdi57gVbAgR7YjRXt1KsT9MkcMJokRbNI4jx03ORC25cNdZhLH41Lnc+jcPO95ZjyPLxcZXEjymHrbyf/xT8wh9Kky0NoHkjGCqGlNvvREMnaZ/PoVvTzOLFr+HWphLoN5P0fx8sifkUXjaQrTVz+DbXYOe0PBOyiJ3SinK1GkUzMuh6Z027MWKlX51LDNEV6WBsn79+m5xvLfddhsA119/PStXruSpp54CYMGCBd2Oe/XVVzn77LMz7x+gKEo6Dexvf/tbVq9ezb/+9S8eeOABvv71r7NgwQI2btx41HYE88g8TcNEfX09y5cvZ+LEifzpT39CkqT0ayUlJUAyHeuCBQsoLi7mhz/8IW1tbdxwww1cddVVA07HGggEyM7Oxu/3j1gWpoFOClJ+lZKzu0AyNBPFLSNIAlokme2hq3gQFYH8BV7KFk3E0HT2r9qHoAjYPTZkRyq1nEbHzlC3iV6mN/OBXIc1QRj7pD5nd5WdilPKqbjxI5iyQuzNNZiGievUZez/5Z+peaV+TAuHrqRcBbMmOznr/cwrYQ4FK7bHwmJ46OselXYFVgQUj4Q934apm8gOCckmoicMQrXRtNV8zo2z0O94gJ88mU8skkCxyWR57bS3htnxznbmnjGX+1Zsx/zPI+x/eRuFM4r5ePNtXPPZM7ngd+dRNGcixie+zKbYHJZv/T7rv/8fYq0J8mdlo2sGk86dTaSpneKLlhPdvQfRpiC5XbSu307zjkaWvvH2MXvPxhLHYr42WFJ9q3/pr3jdrsyPD0cou+Bjo/LaBsKbb77Jv/71L37yk58cdd8RC45+8cUX2bt3L3v/f3t3Ht9UmfiL/3POydK0paUbLUvZsWwim2LFZXAULoL7OjJccRx+ct1GGfWn4/erjIqMgnN1vMo4znwddUblzvBVZ0A2VwRREVGQvQhSoC3QlqZLmpyc89w/0pMmado0aZM0yef9euVFc3JO8pyQtM/nPFtZGQYMGOD3mJFVFEXB6tWrcccdd2Dq1Kl+C8AlIl0VcNW4/WaWATyDO215VthybdBVDc5sF5oqm+GqccOUpcBWaEXxuUORfc21cOQMwLgBf8UPG3Z4Z2bSnG6oje52+5h3VryujFLsyWYJmf0ykJ6fheqBk5B3cAtq9x/F8e3HYfr3N7CXJXZrQyDvwlEVTtj/933Iui/0L7/uwsBAFH2SWfK2wjuqnHDbNe/f2sDpzSu+O4bx21Zi2PBf48B+O9yqhuqTjVCdKkxmE+ZfBVg2/AuVB45hwNmDkTVyKLAKOHVKxeBZpTD1G4BvMQw/njDDPWoyzv7f/VH97zUo//Iw0rLTYEq3oWrXbmQvOBNpuo4dz76NKVu+QubtwOD4vD1EHTp9+jS++OILVFdXIy8vD6WlpcjOzvY+PnXqVEydOrVTzxW14DBv3jzMmzcv5H4DBw7EqlWrolWMmPOdQtIgzBLMGWakZVkhyRLSetuQnp8O1aEiPTcdtpx0pOX3Rn3+UKytnIirL6tH+rYyCF2H0AWcdjeaT3U8nSUR0HrFTlcF6g7WQ208iGL3IhxvaEbNoWrU7W5sM5CvJ5DNnpmTLLkmuO2at49wuFS7hsMbvsG4+0LvS0SJQ6jC04vcLVqDQjt/E+1ljahYsxFz7r8Ia7LOxs7dTdiypnXSlsOns9F7624UlZ6J98Y9jaLeTmDVl8jMNAG1gFZ5HOP11zFekrE3+wbo2TJGX9KIY1//CEuGBZVb96F2tx29J/wUmPBTTLluYWzeBIq+HroAXFc8+uijWLZsGZqbm70TD1mtVjz44IMRTRUb03UcUpksS1AsJs+AKgBp2Tbobg2mNM8gl5M7DqFf9gpceb4dll3bYLK2dFFyuuFubu27aYjGVU5eOU0ueaNz0FDViN1v7YZik72fIWO9EUeV09u0H2+KTYat0Ir03DTUoxFyjTvioFxz6DS2X3oBmuuaUfrV1m4uKSWT08/cjd4Pdq5bLMWP93dBGL8Tjn51FIP/z9O4cebFmHjptdi1NQf2U7UAgN8/uQkf3HsjqgZNwfL7NuLBx6bird/3QbWohXJ0DHDqOITLhYbvvkdJcxMkkxmnv9gGXRNoPNWIjPwMzKjZHY1TpTjr6gJwPc0zzzyDxYsX4+qrr8acOXNQVFSEyspKvPnmm3j88ceRnp6OBx8Mb90uBodO6I4uPnrL4m/GonAAIMkSGk/a0XiyEe5mDbr7G/TadwjlB08gszALpjRLy2qZnibars+IT6nE1jsNjhqHd0pUg6vGDc2hd8saC91Fc+hwVDnhrHZBre/a9K2aQ0dDVSNMaZ5xVae/+QC9J17SXUWlJMLQkJwyB9ngOOHED5+Uoa68GgMvPoD/fOAJPPD/13r3+a7fFeivH8V/P52OrG+ehn3idDSIYmi2TCh5RVB3fIOGihqkD6qDOuknyGqoR9b+4xjz7odxPDOKOl333CI5rgd66aWX8Itf/AKvvPKK3/arr74at99+O1566aWwg0PP67OQhHRVQG1U4Xb6X90VukDjyUY4TjuhuXQ4Tjtw+sdTcDa40Ht4f5jSzBC6DsUiewZdp8tdXiuhvWPZ2pAcfP8fD607iroDjW320Zp0uKojv6IfDcZ0wM1VapfHXjirVDQdbUbTiWZsHDMBDa++3E2lJKJEULe3EbY+VmQUpKOpugn73/0SE/f+BWdddBYAIC0zHXsrs6AIN7L3bgYsFpg0F0aK76E02QHVBUdVNU7uq4KcmYm042VQT5xkaEgFxqxKkdx6oKqqKlx//fVBH7v22mtRVVUV9nOyxSFG6g40oqmyGdY8CxSzDE3V4W5yw3HMBVOWgrxR2cjq1xuWzDRkF0v4/s0v4TqtwpSlwJxmwrSyHd1WFoaE5OXbMpZMg58BzxTFgYMgg/E8rqPPpDxIsoS68hoM6PAIIkomuipQu7MBAGDOUpA1PAP7//wOllz8A5y/+znS647BkaVhtzoOv3n1NABgwzUbAEXBgbc/gNqkomCUZ4r4x+y/wjM/syFtdrzOhihyI0eOxJEjR4I+Vl5ejjFjxoT9nAwOndQd3ZWaq1So9Z7uIcYMSboq4LZrsB9tgObWYbaZoasa7Ps8q+Mq9Rq03OSqAFJ8KekyFJvcY8Y3dFZaH7NnRpVOzJGeNz4L+WcU4tAnB+GocCL8X41ElAw0h476H5tQ/2MTGqo+R9GuQ0gbfwbqZt8FOIBrb7sAmg7Uj0yH3VqAwdU1+P5vn+GHT8qQ1S8Tv834PYBH4n0aFCtJNjh68eLFuP322zF69Gicd9553u1btmzBokWL2nRh6gx2VYqRwKu/xjRySroMXRVwHHPh9IF6nNxRg1M7Tvsd54xwhhlKPZ1pTTr/yVm44Pc/hyUvMa4bZAy2YuD0Ilh6meGqCR12LHkmNFQ4cPizH2Df51lwcU3WqBiUlCh8e67l+JtIyWbJe2uPrnpmYbLkmuBu1uBuVmEZOgwnXXnoZzuB/5XxOm4p+RomzYW8hiPQpl2BUdedAwBoPOnAwf/7AacxTyHG4OhIbj3RsmXLoOs6zj//fAwZMgSlpaUYMmQIpk6dCk3T8PTTT2PatGmYNm1apxeWS4yaQxJp031EFd6Vfd321kGhslny/tyT+qJTzxeqdcxZcxr1h452eV2QWJHMnhnJNJfeqe5XQhVwOdzewC2bJcy074l2MYkiMmrlB/EuQo8QSeXcd80kGcH/Vhp/XxWzgvwRuRj4s8uh5RZhgFKOvKM70fTFFthyduOTc5/CBR/dh7SSM1BdWQ3NoSOrXyayi/NgyTvRlVOjRJJkLQ6SJKGkpAQlJa3fryFDhmDIkCFB9+0MBocwRGsBtWDzUTMsULR8+4pnVVO1B82q1JGmw04cq6ns9CxQgeelqwLv20biMsfeaBSPiGJMNktQbJ4ul5JZgubQoUFvPzyYJAhNoKm6Ce5jR3HinbXIKMyBdOmlSB8xDGpFBS7evgjf/G0zhLYJ5gwTzlk4A9WX/X8o2LUOxS/+M/YnSfEhRITBoWfW2T78sPsH9DM4hCkeqy9zMDOFq6PPqVqvQbElTi9FY8alSBhXG5NtoDhRqvENC5beZigWGbrmqay5oLZZ68igq8I7tlBtdOO7P61Hw48O2Ppakbf3GFSHisw+vVD1fSUcVU70GZ+HYbPOgWn0majVc5Fz8CDSYnaWRD0fg0MEYhUeGBioOynpMmz9LWg40AytSfdWqgHPFblEaYHoiCXP5A0Z3u5+quB3iSiBZQy2wtLLjIKRBSj+xU34vPBGZKY1YeSWF1H3/T4c2XQA1VV26KpAWqEZ1jwLZEWCq15F8wnPFM/GxQNjcgXV3uSdhASoQuaINBSf3xdpvTNQu+cQGj/9Fv1GfIjs370ep7OmeEi2BeAA4K9//StWrVoFIQTmzJmDa665BgBgt9thtVphtVrDej4Ghx6KFR3qTkq6jPMWzcAXFz8N5cLxsPW3oFdhBprrnGj40QHd3XN/6YXDVe2GJc8EoQqodi1hBoATpTLfC3G+4/sMar2G3kOyUXztdLym34I3HtkIAJj189/gmtsrMLLvs/i++TO46lXknZGDovGDIZkUHPuyDKccNZ2axtnW24qBM0txYssO7FmxB4pN5viTVJRkC8AtXboUDz30EEpKSuByufDOO+9gxYoVuP7663HfffchJycHy5YtC+s5E6e/AhGFzZhtRGvSsfvtzRj3xq0w91KQnmeDOd3sbepPpK5Lobh9VsrWHHq7XRiIqGdpb3YkzaEjPTcd6uAx+H6X3bt99d824+m/W1B5xUIUnzsYGUXpsPZKg61fIWxFBegzuh/Si9L8BlG3/9oKmo4cgyXTs38zZzNMTUm2ANwf//hHLFiwALt370ZZWRluvPFGPP/88wCASy65JKIxEMlTW4gxtghQIvC9ylb9jR3bnt8GzaGjsbIJJ3fXoOloc9JVro1zTis0w9xL4fgGogSh2OR2Bzen9U5HU0YBGuoc3u0XXHEOCvtlwSy5IMkSnHYX7BV2mHpnA5IMW2EerL0sIV9XNktIz03HgdU7cHhjGQS7N1KSqKiowHXXXee9/7Of/QzfffcdAKBfv344dOhQ2M/JdvwuiNZYB/7Cou5gfD5lswRTluIJCE06MgfZoLl0NJ9obm3CT8JZvGx9rFCb3Zh97Pt4F4WIQjDGXMlmCemDrUjPs8GSYYHJqqDP2IHInD4DR8wFuOX6LNRcdj4++bwReXlWnDVMRd/9H+OEW0NGgQ3puenQGhtxfON21B2rg6veBXMvpd3uSsbrmm1mpPW2oqGyCTNqdsfhHaAeIcmmYx06dKjfytFFRUVobGyErutwuVxQFCXs52Rw6GEYGqi7GbMSWfJMyChOg64JaE6tU/1+O9LeZzVWs44Z3RraO4fanQ0xKQcRdZ3v7GmKWcHwmeORftZ4iOYm3PrVdSh/9hBy+zXg4V/1xjTrJpw/Ix1V5oEYdmIz3AcPwJKVjoKRfWFKt6K+7EdUH6yGvawRpqyOK0ZSy2xNtYdrUDCyEBM/3ByL06WeKtJuRz20q9LChQvx5JNPYsaMGSgqKoLJ5Kn2CyHwwQcf+K3v0FkMDl3Q3RUkhgaKJrddQzNcsBV6ZihpVJ2dOi7cz6Wxf7QDhLffcjtXEa2FZvz08M6oloGIupc5S0FBSR7S+hVBrzkJMWQkyvd4ulPUHD+Btzf0xy8vG4mhJ7dguOsAcGg/dJcLJqsFLnsTTv9QBU3VIDQBxSbDbdegOfR2LzAIVcCtamg62YyhW/4dy1OlnkhEODi6h7Y4lJeXQ1EUnHHGGbjiiiuQluaZXHjBggX461//ipUrV4b9nAwOXdAdXZUYFihaAj+bxhU9t10LeRUO6PpnM9oBItjYBWNGFi72RpR4zFkKVLuGQ+uOwl6xFsWlw5DlcsGSNguuZiemXXMu7jhvL3pX7IVUdRSnPtkC2aTAZLPC3CsdmQP6IC2nF04fqoKrSYVar4Uc42QEimllO2JxitTTJVlXpccff9z781tvvQUAsNls2L59O1599VVcccUVYT8ng0OcMDBQvPh2CfD9HK4ylUTlc+kbsKO5Boq5JQzpas9cjyJa7y9RIvP9fSCZJZizFPSZlIc+o/vBVpALteY0XnsqG9vrRuCM3lXIObQdqD4Bvd4OW0FvmNJtMGX3gmyxQG92wpqnQ+gCJ/achOhkV0x+LylZaVr3/z1kcOiiwKuq/AVEPUVHlfRgn9NE/+waU7D25PNgeCDqmGKToZhlKFYLZLMJmtMFyytP4YLsDACAmpkBy+DBQPFw2EYDzow8NJssyDi+B/qeXVBP2+Gotnf8Ij74fSQ/STbGIRoYHLoJf/lQT2R8Lt+3jfQ2ycfjsxqrcQ+JgOGBKDhXtRuyWULNodNQLJ7QAAAH1u+FUAXyR+ai35QSmK3psOcNRb05B5XN+TDLGiY4t8NRcRKNVbVw1DZBaMIzDsqn1YHfOwopCRaA+/HHH9G3b19YLO1PRSyEwKpVq/D888/jgw/CW+iQ6zgQpYDLHHsx272Pfzh7CAYoouDfA10VcBxzofpADY5vP4KjXx1Cw4FmNJ9QIXQBxWoBhA6XkobK5nxoQsIZ6g4c/+81OPzpXlTuqED1gRq4Tqud7qpE5BXDBeDq6+tx7733YtCgQbDZbDjvvPOwdevWLp/CkCFD8M033wR9zG6347nnnsOIESNw1VVX4dixY2E/P4MDEcWFEWRSJcwEnucqUwkDBFEQWpOOhh8cOPXtaVR/6+l2pNhkZBT0gqWwAHqvHCjCjRP1afjxpA1mVyPSenu6MjnrXGj4wQFXjbvNTEr8vlFP8stf/hIbNmzAG2+8gZ07d2L69Om45JJLIqrM+8rOzsaXX37pt+3AgQO4++67MWDAADz44IMYN24cNmzYgD179oT9/OyqREQxE+2Q0NNDCLtsEXXu8++7MKVtgAXjbz0XzpvuwkbHKPxQacbur+zY/vEmz/MNH4EHb1+OUXO+grLjc+z+63qc+vZ0Ui5sSVEmRISzKoX3WXM4HFi5ciXee+89XHjhhQCARYsW4d1338Xy5cvx5JNPhl+GFnPmzMHChQuxceNGXHnllVixYgXWrl2LgoIC3HPPPViwYAEGDBgQ8fPHJDg4nU5MmTIF3333HbZv347x48d7Hzty5AjuvPNOfPTRR7DZbLj55puxbNmyDvtmEREBoReBSwTBKlE9PQARxVJajgVp/QqxTxuKylozGpsEmhpd3sfNFjNqmjPgTMuGtb4BJqsJaX3Mnu5NPgtd8ntFIenCc4vkOHi6AvmyWq2wWq1tdne73dA0zbuugsFms2HTpk3hv76PF154ASUlJXjmmWfw7rvvQgiBadOm4Z///CdycnK69NxAjLoqPfjgg+jXr1+b7ZqmYdasWWhsbMSmTZvw9ttvY+XKlfj1r38di2IRUQ8R6R/0yxx7k278RrKcB1F7wv2+Nte6ULe7DGfo36OkqB5nDnXj0ml5GDh6KIacORznTO0PIQCXOR3QdTSdaoLuFtCadIYGCo+xjkMkNwDFxcXIzs723pYsWRL0ZXr16oXS0lI88cQTOH78ODRNw9/+9jd8+eWXqKio6NIpSJKEu+++G4cPH8aKFStw4YUX4pNPPsGwYcOwcOFCHDx4sEvPH/UWhzVr1mD9+vVYuXIl1qxZ4/fY+vXrsXv3bpSXl3uDxbPPPot58+Zh8eLFyMrKinbxiKiHCDYGwHd74JX5RK0IsJsSkUdn13WRTRKcdgdyj+zAoGHpaOjVG65MCwb8zxy4hQxFcsAk6XDLFpiLCqG5dGiO1u4mifq7guKgi7MqlZeX+9Vdg7U2GN544w384he/QP/+/aEoCiZOnIibb7653YHN4VIUBddddx2uu+467Ny5Ey+++CJeeeUVPP/885gxYwbuuusuXHbZZWE/b1SDQ1VVFebPn493330X6enpbR7fsmULxo4d69caMWPGDDidTmzbtg3Tpk2LZvGIqAcL/GPvGyAStSIQqpKUqOdFFK5wAnRarhWySYaoOYXsXvuRnpkLXTZjoOqA5HYBsoLm9FwUjDgXGPEQLvzZQ1EsOVH7srKyOn3Re9iwYfj000/R2NgIu92Ovn374sYbb8SQIUO6vVxnnnkm/vjHP+KZZ57Bq6++ihdffBGXX345hgwZgrKysrCeK2pdlYQQmDdvHhYsWIDJkycH3aeyshKFhYV+23JycmCxWFBZWRn0GKfTCbvd7ncjouTVXktDss1KxNBAqSKc761slmDLscGSlQ69uRly5RGkHd4F24Gvoa7+JxpWvg3XmndQMPbcKJaYUkYMp2M1ZGRkoG/fvqitrcW6detw5ZVXduMJ+cvKysKvfvUr7N+/H++//z5GjRoV9nOE3eKwaNEi/Pa3v+1wn61bt+Lzzz+H3W7Hww8/3OG+kiS12SaECLodAJYsWRLy9Ykoecx278MH/cd6p1c0KtiWPBNc1e44l65zOqooMTAQtc+UpaBwXDEyBhRBqG5oNdUQThecNafx/YqtaDjQDACY/VicC0rJwWe8QtjHhWndunUQQqCkpARlZWV44IEHUFJSgltvvTX814/AjBkzMGPGjLCPCzs43HXXXbjppps63Gfw4MF48skn8cUXX7Tp3zV58mTMmTMHr732GoqKitrMNVtbWwtVVdu0RBgefvhhLFy40HvfbrejuLg43NMgogTi2185mVoZiKhjQhVormkA9AqYMtJgsqUh5+GXcPrO67y/Fxi+qdt0cValcNTV1eHhhx/G0aNHkZubi2uvvRaLFy+G2WwO//VjKOzgkJ+fj/z8/JD7/eEPf/Cbh/b48eOYMWMGVqxYgSlTpgAASktLsXjxYlRUVKBv374APAOmrVYrJk2aFPR525vaioiSl+bQIZklmG0yVLsW7+J0WnshxxgUygoPpZpwg7/uFqg5eBKKtRaKWYZsUpADoPjFf6L4xeiUkVKXEDpEBK0HkRxzww034IYbbgj7uHiL2uDogQMH+t3PzMwE4BkMYiw8MX36dIwePRpz587F0qVLUVNTg/vvvx/z58/njEpE5HWZYy8+Hj4OmkNPqOAQjBEWGBqIOmas09JU0wzFLENSPPe3nHM2hCZw3rav41k8opQUk3Uc2qMoClavXo20tDRMnToVN9xwA6666iosW7YsnsUioh5IsSqQzBKU9Lj+2uo0LuxG1DW6KiBUAU3VIHQBXdUhNOG5RdKdhCgUIVq7K4Vz68Lg6EQTk5WjAc+4BxHkjR04cCBWrVoVq2IQUYK6cNd2fH/FNLgaXajZW4fmKrVHVsQ5BoOo+xjhQTcLyIrEwEDRFcPB0YkqMS7dEREBGPuvj5EzOB/Zw3qlbGhgMKFUozk8LQ2Gqdu3Yer2bXEsESUroesR31JFzFociIi6w5C/vIfuXx4ncrFe1K0nBiaizog09DZXqWiuUqGky1BsvN5JFE/8BhIRRYhX/4k6rztC7/SqXd1QEqJ2xGEBuETDFgciogh0JjSwdYCoVaRBm98jihldAJF0O0qhsTdscaBO2TxhEjZPCL62BlEqClWZYWWHqGtks4SMwVy3iWKILQ4hMTgkiW0/OS+qz8/BaERtzXbvCxoQGBqI/IXb2iCbJWQOtWHAlP6o+/290SkUUQAOjg6NXZWSxKRPPo93EYhSHgMDUXDGd6OjAGEs+AYAtv4WFJ87EH1Kx0EeNAyOD16D5GhE2uV3RL2sRNQ+Bgcioi5iYCDqWGdaHHRVQDZLMGUpsPQyo6GqDpad+5GbkQHkFEBkZMegpJTSjAXdIjkuRTA4UI/l+4eGFTMiotQgmyRIsmext6ZTdph37kGfpx6Kd7EoBQihQ0SwmFskxyQqjnGghMBpL4mIUoPuFnA3a1CbVLgaXejz1GvxLhKlCqPFIZJbimBwICLqQRiSKZXpqoDbrqGxvBm1B+yoK6+Ld5GIyAe7KlGPxe5JlIr4uadkNNu9r9OhWFcFoAoIVeCSY19HuWREPoTuuUVyXIpgcCAiCtP2Sy8AAEzY8FmcS0KUODozs1LgvkSxJHQBEUG3o0iOSVQMDkREYWJgIIqcki5DNrVOvSq1TMOqOXQIVUBXBVaZSsIODxUPzIEkyUEHqvZd+veuFZpSg9AjWzmaLQ5ERERE3c/cSwHQGhgMskmC5tAhmQW0Jj3s8NB36d9R8eubAVny20bUWUIIiAhWgY7kmETF4EBEREQxo9ha52XxDQ/CJCCZPeEBALSm8K/i9n32za4XkIjaxeBAREREMRPY0kDUY+gRdlWK5JgExelYiYiIKGZkuW3VQ6gCuru1u4dskiCbJU5PTDFlDI6O5JYqkrbFYX3hGEyv2hXvYhAREZGPC3dtxyejzvLeF6p/pUuxyRAmAcUmQ3cLrMsdDd0tMNO+J9ZF7VbGORvnO61sRzyLQ8EIEeF0rKkTHJK2xYGhgYg669sZF8a7CEQp5Sd7vvPeAskmCYpNhmKTYe6leH9eXzgG63JHe2+JxjjfaWU7oLsFPug/Nt5FogCxbHE4duwYfv7znyMvLw/p6ekYP348tm3bFoWz6l5J2+JARNRZ49dtjHcRiFJWe1fePx4+DgBwybHvY1mcmPjp4Z3xLgLFUW1tLaZOnYpp06ZhzZo16NOnDw4ePIjevXvHu2ghMTgQERFRj8OuPBRrQtchIhjoHO4xTz/9NIqLi/Hqq696tw0ePDjs142HpO2qRERERETUabqI/AbAbrf73ZxOZ9CX+de//oXJkyfj+uuvR58+fTBhwgS88sorsTzTiDE4EBEREVHKE0KP+AYAxcXFyM7O9t6WLFkS9HV++OEHLF++HCNGjMC6deuwYMEC3HPPPXj99ddjeboRiXpwWL16NaZMmQKbzYb8/Hxcc801fo8fOXIEl19+OTIyMpCfn4977rkHLpcr2sUiIiIiIuo25eXlqKur894efvjhoPvpuo6JEyfiqaeewoQJE3D77bdj/vz5WL58eYxLHL6ojnFYuXIl5s+fj6eeegoXX3wxhBDYubN1QJCmaZg1axYKCgqwadMmVFdX45ZbboEQAi+88EI0i0ZERESUsFaZSjDbvS/exUguka7J0HJMVlYWsrKyQu7et29fjB7tPzPYqFGjsHLlyvBfO8aiFhzcbjd+9atfYenSpbjtttu820tKWhdzWb9+PXbv3o3y8nL069cPAPDss89i3rx5WLx4cafefCIiIqJUw9AQBSLClaPDXPth6tSp2LfP//9v//79GDRoUPivHWNR66r0zTff4NixY5BlGRMmTEDfvn0xc+ZM7NrVur7Cli1bMHbsWG9oAIAZM2bA6XS2O5et0+lsM/iEiIiIiKgrYrWOw3333YcvvvgCTz31FMrKyvDmm2/iT3/6E+68884onVn3iVpw+OGHHwAAixYtwn/8x39g1apVyMnJwUUXXYSamhoAQGVlJQoLC/2Oy8nJgcViQWVlZdDnXbJkid/Ak+Li4midAhERERGlCGM61khu4Tj77LPxzjvv4K233sLYsWPxxBNP4LnnnsOcOXOidGbdJ+zgsGjRIkiS1OHt66+/ht7yJj7yyCO49tprMWnSJLz66quQJAn/+Mc/vM8nSVKb1xBCBN0OAA8//LDfwJPy8vJwT4GIiIgoYqtMJd4bUSRmz56NnTt3orm5GXv27MH8+fPjXaROCXuMw1133YWbbrqpw30GDx6M+vp6APAb/GG1WjF06FAcOXIEAFBUVIQvv/zS79ja2lqoqtqmJcL3OaxWa7jFJiIiIsIqUwlks+fi5GWOvRE9B8cXJCchBIQIf3B0JMckqrCDQ35+PvLz80PuN2nSJFitVuzbtw/nn38+AEBVVRw+fNg7+KO0tBSLFy9GRUUF+vbtC8AzYNpqtWLSpEnhFo2IiIjIz5qsUZhp3+O9z0o/tUuPcHB0JMckqKjNqpSVlYUFCxbgscceQ3FxMQYNGoSlS5cCAK6//noAwPTp0zF69GjMnTsXS5cuRU1NDe6//37Mnz+fMyoRERFRWL6/Yhqaahw4Z9MX3m2+oYGoI5EMdDaOSxVRXcdh6dKlMJlMmDt3LhwOB6ZMmYKPPvoIOTk5AABFUbB69WrccccdmDp1Kmw2G26++WYsW7YsmsUiIiKiJOH422I4fixH7iN/xNh/fezd/kH/sVDrNWhNba8Gs9WBKDJRDQ5msxnLli3rMAgMHDgQq1atimYxiIiIKEnZfv4IxOtPAAC2/eQ82I82QHcL6G4Boba9EszQQO0RemStB2Eu45DQohociIiIiKLhqRVu9MpUUDLAhYkTL4H+8m+QUZCBik3VsA2wAAAkswQZgN4SIBgaqCORTK1qHJcqGByIiIgooUy9/FO/+zNvnorrf9ofg7J749jWN/DTwzvjVDJKZBzjEBqDAxERESWkjOxeGHrmYBQVKHAJC2w3PYihGzbHu1iUoNjiEBqDA3VaewvdsOk3coHvabjvJf9PiCgVXHN3GYQQ0HUdiqJgQMlgFBbnoKAgHf2LFAwuaEaa3AwAGPKX9+JcWqLkxeBAfoyK6Gz3vk6viOm7X6JXWOO9Cmh3vX60z8P4f47m6xifwXh/pracczac9S78ZM93cS0HUSr504bWrh+KDMy+ehgUGTApgEkRsJp1XHW2CVv31eLskhwANgCD41VcShJCRNhViQvAUapor9IfaYWwo+PiXQEMJt5BIVHF4n0zXuN920hILau8ArGfk730q61+9z8ZdRZDBFEUrf/OieFFOhRJQJZ0mGQdEjwVM0kSkCXREhbg/ZeoWwjhuUVyXIpgcEhB7VX6ol0Z7MrzdzV0MCAkB9kkYV3uaADAjJrdcS4NEUVD3/RamCUViqRBgRsmXYXUMt+lESAABgbqfhzjEBqDQwpI5UpzKp97MpDNkl9rg0EyS1hfOAbTq3YB8Cz0ZGwH0GZGlY+Hj8O0sh3dUia2NhBF15kjivzuV+/Y5AkOQkCC3hIixqL+y1WQNDcyz7sqLuWk5MNZlUJjcEgQ4YwjYGXZg+9DcpFNbQOEERgA+AWMDwef2Wb/j4ePA4BuCxBEyaDm20+RO/6iuJah7OAhyNBg0Zox4IyxbR5X3M2QdQ2SrgFCh6RraNz831DcLqRfdFMcSkyUuhgcEoTvYOVkGozc3RgWkp8REIIFic4wAkRgSwZbEigVxTs0HDmwB2lCgyw0KJoLp77fgvyxpaj59lPIwg1J16C4XZCM4NDyr6RpgNsJx5pXILlVwO1G2tX3xPVcKPGxq1JoSRkcfGcG6ujxQN0xOLi954xWhTbZK8qB/4fJfr7USg7SRak7iZaVZI0A8cmos9rd9yd7vuOgaKIuqtyzDYqmomDsud5tA0eMwuntHwJCQNZUSLqGhi3vwerTuiCpLqDlPrSW0KBrEC6n51/VDaG5AQCNf/5PZPzyiXidYsoKVu8KVRfridhVKbSkCw6+FctwK5nRqJSyots1gdNxhjNNLCUnoQpIZgm6W0Tc6hAuI1S0Fy5kWcaFu7bHpCxEiajmu42wCAFZuFG3bT2yJ00HANR/9T4UXYMkdEgtwQFCtIQDt+dn1QnowhMeNM0TEoQAXC7Pz5oGoWloePk3gKbF+UyTV2AQMP4+h/qb3BOm1e4sBofQkiY4rM2ZiHRJiXcxqJtFoxWIkpMRKAydDRaBx4VLlmUAwMYxE9o8xjBB5GF2NnhbECAEGjf/N6BrUIxBz0ZQ0DVAF5B0d2tYcKueriAtwQG6gNDcEC4XhPe+5r1R92hvXSffIBD4d7mjWRubBP9vkkHSBAdKLoGBIVGuVlD30VXh110pWBAI3BZpeIiUERqIYqlp44qg24UkA5IESDKEJPeo2YZ6nXMZmj592xMQhO65tYQEiJaZktzulu3C26pgu/7XcPx9ife+0FpaHXQdwunyLNilaRDuluCQQn3NYyVYGEjWC3kc4xAagwP1SJ29ikGpKZxWgmiFh45CA1saKBoca/8CyBL8Ps1Sy+dQ6JB8ggMkGU2fvIn0n9wcj6IGlX7RTWj+90sti2zp3tAgdN2z8m5LKDC2GYtqaQ31rfu6NW9Y0F1qS1jwCQ8pVIGj7seuSqExOBBRj6WrAjJaBzC31+oAtM6yFCxUBO4TqKvdlQJtHDOB4YG6VfM7f4Akez6jaVfe3br9Xy/672gEBwC22QvQ/P7L3oeEsX3mfDjWvNKyf9sAbPsft3WtrO+94K3op11zLwDA8Y9nPQ9qGmw3PejZ9rfFrQFB1z2tCUJAuDVk/q8lqP8/D6L+D/dDd7sBXYfu9jyuuzXPfdUN3e0THFr2+fH2qzHo5Xe6dA6pKtUv0gldQNcYHDoiCZHY62Tb7XZkZ2djhTyMYxyIkpTRZcm3cu8bAtrbHvhYe/sECidEGAOjfcc4MDQknn03zvBWzGWT52+J0HVIsgxJliCbFMgmGbJJgSRL3u2SSUHfpX8HAJz8j1sBAAVPvgoAqP7tfECWkfefLwd5xfA1/vk/gY66x/lebZdlSJLk/dmP1InPd2DVIOBKvrfqYGxvue8Zi2C0JLTuI4xwYPyrC29oEMZ9o6uR7rNNF9BV1bu/0IU3LGgut3e77ta9j49a+UHo8yMAsQ0KTULDjfpB1NXVISsrK2av2xlGXXLbtT9Fpjn8a+oNqhuTVn7Y6XNbvnw5li9fjsOHDwMAxowZg0cffRQzZ84M+7VjjcGBiBKC73iH9tZy6ChABD7e0X4d7e+L07P2fDtn/wQAvJX9Me9+6Pf4/p/9DwDAGW+t9W774dbLAQCay40Rf1+DvddfCkmWIZvk1sDQ8nxBw0RLRV1SFO9rF/7udQAt4aJln/xFf47onOr/cL/3547+hAcLDkY4ak+7V05bAoLf6xlBwPfxluONQcpGZd7YR28ZzOz7mNAFhNENKSA0GKFAD/KY7tagqVrrfU1g/LqNHZ5fKunMmk8MDh6xDg7//ve/oSgKhg8fDgB47bXXsHTpUmzfvh1jxowJ+/VjicGBiBJKOK0PgY8FezzYPoG4WFzP9tX557a2FrT8KymtFXkAkJWW7XLrv0YFX1Ykn+2y3z6ayw3VofodY+zv2xrhGyaC/dzmuVtaNYzWikjULF7gd984H6Ofv9QdLQ0+z+cXKgKChHdsgU/l3jhGGOMZgJYA0Pp8wVoSggUEXQvYprXsrwnoLdvO2fRF6PNLMR2tpRDrbkmJEBy+vvriiIPD5Hc+6tK55ebmYunSpbjttq51FYw2jnEgooSityzcZlSJjDUdAE8ACFzYzXgs8PH29jH28yVUgWllO7rvJKhD7Y0R+WzcRO/PsiJBNrdW/I1PhKYLT+VcF5Dlls+CIkF3t1akW8OEpwKry4GhovV5NVWD2+k/jaRvGPFrfQgSKIz9fbcDrd2hyu+8zmcf//J5K/6y5Bn4jPZbDEK1JIQjsNXB974QrQHB81hAS4NP5d73vrFPYGuC72O+AaF1fwFNbemG5BMShKZD1wRKv9rabeedjHpCYEgk8RgcrWka/vGPf6CxsRGlpaURP0+sMDgQUUIypmv1DQrBAoTxGBB8ILXv497nDjGYmrrH5gmT2mzTXJ5KY7B1MXzpAKSWYKBpApLS8n+mSDCmixdKS2Vbl7xH+bZI6J7Fhv2uzEuy5A0UvnHBt9XBlyxLkBT/FoVQgQJAm1Dhe7xvWVp/Dt7dqDsDA9B+aPCdrci3su/7WLCAELif0VrQJjRoPmGiJSAYj2mulm5PWmtrg9AExxJ1gOEgMl0NDna73W+71WqF1WoNeszOnTtRWlqK5uZmZGZm4p133sHo0aPDL3SMMTgQUcLytj60EyCA8Fshgu3308M7Q5bl4+Hj2CoRgrHytizL3sq2L0+FsXPTacqQIZS2f+A1rbWVwVhFWPZ5LR2ApMiANzRILVtbnleWoBnHB3A73K3P7VsWn/uS0toyoJhlv1aEYIHCeMx3v8Aw0KbLkXd74H6dCxEdVYzaBoe23ZT8f24NAMZsNMFCg/GY7m4NAb7hwGhBEJp/mACAC3Z806nzSiUMBj1TcXGx3/3HHnsMixYtCrpvSUkJvv32W5w+fRorV67ELbfcgk8//bTHhwcGByJKeLpPxd+3itUmRAQcF/g4EDxIdAZDQ/s+Hj7O+7MRyoRvBb/lvubs3MqyxnNoLr21Eq+1tjgAAZVbLbBCrQcNBrIieSOEEQB8aarnaniwY1tf23MOkizBrbSEBZ8wYbRQtDf+ok03JQQEH5+pIuUg5egoPIS6kho4DWVHrQy++7dpefAJBWdv3AIA+LL0HO8xQmsbKnxDI8cQ+WNIiJ2uLgBXXl7uN8ahvdYGALBYLN7B0ZMnT8bWrVvx/PPP4+WXu2cWtmiJanDYv38/HnjgAWzevBkulwtnnnkmnnzySUybNs27z5EjR3DnnXfio48+gs1mw80334xly5bBYrFEs2hElKR8QwR8A4VZghbYfSmg5QGA3z7GfusL/We5mF61C+sLxwTtynTJse+7VP6e7oP+Yzu9rzck+L7vbgnC1LpuhuwT5ySzBM2hhwxuxnN05rU7I9QK4IHhRnN0rmIROIDfe84+LS5tBm23hA3Pz6FnQ4q0b7XQ2p5Dm+Dgcz/wdbyhwWcf39YioQroboEPB58JwNNq90H/sd6gbvwfz6jZHVH5Yy2w8t7eLEXd8dwUP13tqpSVlRXx4GghBJxOZ0THxlJUg8OsWbNwxhlneEPBc889h9mzZ+PgwYMoKiqCpmmYNWsWCgoKsGnTJlRXV+OWW26BEAIvvPBCNItGRClGD6iMBlYVtXYWgQtWpVyX62lK9q16Ta/a1bUCJpDAVpp2BdvPLSBMEiS3BMUmt+maZFQ4OyLD/73v9Gu3Q2t5tnDGtKj1WuhjHK0/+k8hrLWZUjhYqADaBotAna3khFrUSgR5PDAI+D3m8/4aXfmMUGk85vudWJM1CjPtezpVVkNHMwLFQkcV+q6WjWGhZ9I1AV0OPziEu2jcb37zG8ycORPFxcWor6/H22+/jU8++QRr164NfXCcRS04nDp1CmVlZfiv//ovjBvnaab+3e9+h5deegm7du1CUVER1q9fj927d6O8vBz9+vUDADz77LOYN28eFi9e3OOm6yKi5BEYJIDgIaG9QAEAaFnJOlGumoYSrGUlUGCLihGiggm20jfgqfTLgLfVQGoZo6K7PbdQLQ6aKiC5u29QcHutTaEIVXT+mJYQ0V5gMLZJZt3vvqEzLSgdvW+dDXvtPUfg8dOrdnn/79fljobuFh0Gg86Ehp5SmQ6nHKtMJXELNtT9YjWrUlVVFebOnYuKigpkZ2dj3LhxWLt2LS699NKwXzvWohYc8vLyMGrUKLz++uuYOHEirFYrXn75ZRQWFmLSJM9MGlu2bMHYsWO9oQEAZsyYAafTiW3btvl1aSIiirbAMJFKFYJgASBwW7CAZGxbkzXKb7tRAQ1sGTAqw4pNbrOv266F1ZrRXbNehRsYAM95qE3h94U2us8ZozlCLWwYTperQKECWKff6yDP+b5tZOvztGzrzIJj4UiU718krQ+++/aUwESx85e//CXeRYhY1IKDJEnYsGEDrrzySvTq1QuyLKOwsBBr165F7969AQCVlZUoLCz0Oy4nJwcWiwWVlZVBn9fpdPr1AQuc+oqIqDskSqWlu7QXADor1BVlo6Ip2WRPF6UgldZQrQ26KqCky377dySSQe7hkM1S0JarcAQbk+MXKhxtj+ny68RAJFfi4/2di1cFvqPzZqiILSEiHBwtIriIkKDCDg6LFi3Cb3/72w732bp1KyZNmoQ77rgDffr0wWeffQabzYY///nPmD17NrZu3Yq+ffsC8ASMQEKIoNsBYMmSJSFfn4iIIhNuP/TOusyxN+j2YFeuO6JFcpU/QcW6st/dglV6IwkH4VaeO/sa3VUpj1bgYWiIvXgsAJdoJCGCrC/fgVOnTuHUqVMd7jN48GBs3rwZ06dPR21trd9YhREjRuC2227DQw89hEcffRTvvfcevvuudeq12tpa5Obm4qOPPgraVSlYi0NxcTFWyMOQLinhnAoRUUjxvgqaKFjJoWhJpO8gvwftaxIabtQPoq6urseNYbXb7cjOzsanF05Bpin8zjgNbjcu2vhljzy37hb2u5Ofn4/8/PyQ+zU1NQFoO82dLLfOolFaWorFixejoqLC2wKxfv16WK1W7ziIQB2twkdE1N3iPbMLUaroKd8xVv5TF1scQovaGIfS0lLk5OTglltuwaOPPgqbzYZXXnkFhw4dwqxZswAA06dPx+jRozF37lwsXboUNTU1uP/++zF//vykT2xElFi6e+Bnspnt3scKF3VJd39+gn1P+Rkl6pqoBYf8/HysXbsWjzzyCC6++GKoqooxY8bgvffew1lnnQUAUBQFq1evxh133IGpU6f6LQBHRNRTdVff7WRjvAesnFFPYAzQ5ueROqurK0engqguADd58mSsW7euw30GDhyIVatWRbMYRERRxzDhwUoa9ST8PFI4hCYgpAi6KoW5AFwii2pwICJKZZ2ptCRbuOAVXiJKVEID9IiCQxQK00MxOBARxVE8K9nRCi3sW05ElJwYHIiIUhQr80RErYSIcFal8FY2SGgMDkRERESU8nRNQEf4IUDnGAciIiIiotQhNB0CUkTHpQoGByIiIiJKeUKPcFalFFoATg69CxERERERpTq2OBARERFRyuMYh9AYHIiIiIgo5QlNQEQQHLgAHBERERFRCtE1AT2CqVX1FBrjkPDBwZg7t0mkzoh2IiIiokRi1NNSac2DZJTwwaG6uhoAcKs4hAhal4iIiIgoRurr65GdnR3vYgQlVAEhc1aljiR8cMjNzQUAHDlypMd+EBOR3W5HcXExysvLkZWVFe/iJA2+r9HB9zV6+N5GB9/X6OD7Gh3d8b4KIVBfX49+/fp1c+m6j+4W0CMIDuyqlEBk2TOjbHZ2Nn9JREFWVhbf1yjg+xodfF+jh+9tdPB9jQ6+r9HR1fe1p1/gZYtDaAkfHIiIiIiIukrXREStB5EMqE5UXACOiIiIiCjGXnrpJQwZMgRpaWmYNGkSPvvss3gXKaSEDw5WqxWPPfYYrFZrvIuSVPi+Rgff1+jg+xo9fG+jg+9rdPB9jY5UeV+Fqkd8C9eKFStw77334pFHHsH27dtxwQUXYObMmThy5EgUzqz7SILzYhERERFRirLb7cjOzsY/0oYjXVLCPr5JaLi+uQx1dXWdHgMyZcoUTJw4EcuXL/duGzVqFK666iosWbIk7DLESsK3OBARERERdZVQRcS3cLhcLmzbtg3Tp0/32z59+nR8/vnn3XlK3Y6Do4mIiIgo5TVBj2hNsCZ4uirZ7Xa/7VarNWj3rlOnTkHTNBQWFvptLywsRGVlZfgFiCEGByIiIiJKWRaLBUVFRZhXeSji58jMzERxcbHftsceewyLFi1q9xhJkvzuCyHabOtpGByIiIiIKGWlpaXh0KFDcLlcET9HsEp/e4PJ8/PzoShKm9aFEydOtGmF6GkYHIiIiIgopaWlpSEtLS0mr2WxWDBp0iRs2LABV199tXf7hg0bcOWVV8akDJFicCAiIiIiiqGFCxdi7ty5mDx5MkpLS/GnP/0JR44cwYIFC+JdtA4xOBARERERxdCNN96I6upqPP7446ioqMDYsWPx/vvvY9CgQfEuWoe4jgMREREREYXEdRyIiIiIiCgkBgciIiIiIgqJwYGIiIiIiEJicCAiIiIiopAYHIiIiIiIKCQGByIiIiIiConBgYiIiIiIQmJwICIiIiKikBgciIiIiIgoJAYHIiIiIiIKicGBiIiIiIhCYnAgIiIiIqKQ/h8haWESLmfnOQAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 5 - }, - { - "cell_type": "markdown", - "source": [ - "## use the `convert_longitude` to convert the longitude values to range between -180 and 180." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "new_dataset = dataset.convert_longitude()" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:33.893050Z", - "start_time": "2024-07-01T22:08:33.863738Z" - } - }, - "outputs": [], - "execution_count": 6 - }, - { - "cell_type": "code", - "source": [ - "new_dataset.plot(\n", - " band=0, figsize=(10, 5), title=\"NOAH daily Precipitation 1979-01-01\", cbar_label=\"RainFall mm/day\", vmax=30,\n", - " cbar_length=0.85\n", - ")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:35.906370Z", - "start_time": "2024-07-01T22:08:35.422026Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(
,\n", - " )" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wU1d3/P9N2d7be3rhU6VVEQFARRUUUjSUW4s+gSSyJJUZjNNFENIklxZLEEo1BU4w+j0ZjjATUh6JiRZQqgnS4vW2fen5/zM7c2b279+69d/cWOO/Xixd3p+2ZM7Mz53O+jSGEEFAoFAqFQqFQKBRKJ7D93QAKhUKhUCgUCoUy8KHCgUKhUCgUCoVCoXQJFQ4UCoVCoVAoFAqlS6hwoFAoFAqFQqFQKF1ChQOFQqFQKBQKhULpEiocKBQKhUKhUCgUSpdQ4UChUCgUCoVCoVC6hAoHCoVCoVAoFAqF0iVUOFAoFAqFQqFQKJQuocKBMihgGAYMw6CwsBCtra1pt1m2bBkYhsEDDzyQ8ThvvPEGvv71r2PIkCFwOp0oLS3F/Pnz8fjjj0NRlKzaMnHiRDAMg3HjxnW63bPPPguGYXDllVd2ut2IESPAMAz27t2b1fd3hXm83mK2f9myZUnLzX5+9tlne/0dmbjyyiuta27+E0UR48ePxw9+8APU1tbm7bt7wpo1a7K61tmwd+9eMAyD+fPn9/pYvSWX55VrduzYgYcffhiXXXYZRo0aZd0nXd0bzc3NuO222zB69Gg4nU6UlZXh61//Oj7//PO026e7F9P9279/f4d9V6xYgTPOOAMFBQVwu92YMmUKfv3rX0NV1R6f9/bt23HxxRejtLQUoihiypQpePjhh6Hretrt165di3vuuQfnnHMOSktLwTAMxo8f3+PvH2jtoFAofQvf3w2gULpDa2srHn74Ydxzzz3d2i8ej+OKK67ASy+9BIZhMHv2bMybNw/Nzc145513sHbtWjz22GN44403MHz48IzH+eSTT7B9+3YAwJdffomPPvoIs2bN6tU5UTJz4oknYvTo0QCA+vp6fPDBB3jkkUfwwgsv4P3338eIESP6t4F9yLPPPourrroKd999dwcx11OWLVuGe+65B8uXLx+Q4qAznnjiCTz66KPd2qempgYnnXQSdu/ejcrKSpx99tk4fPgw/vnPf+Lf//43/vOf/+D0009P2uekk07KeLwdO3bggw8+wPDhwzF06NCkdQ8++CDuuOMOsCyL2bNno7S0FB988AF+9KMf4a233sJ//vMf8Hz3XsEffPABFixYgGg0ilmzZmHEiBFYt24dbrnlFrz33nv43//93w6TBt///vcziqKeMlDaQaFQ+gFCoQwCABCWZYnD4SB+v580Nzd32Obuu+8mAMj999/fYd0FF1xAAJCpU6eSbdu2Ja1raWkhl156KQFARowYQVpbWzO246abbiIASGVlJQFAbrzxxozbLl++nAAgS5cu7fTchg8fTgCQPXv2dLpdtpjH6y2tra1k+/btpKGhIWm52c/Lly/v9XdkYunSpWm/o76+nhx//PEEALnooovy9v3dJRKJkO3bt5PDhw/3+liyLJPt27eTffv2JS0376e77767199h0tW1zOV55Zo//elP5Pbbbycvv/wy2b9/v3Xf19TUZNxn8eLFBABZtGgRCYfD1vKXXnqJMAxDSktLSSgUyroNl1xyCQFA7rzzzqTlH330EWEYhgiCQFauXGktb21tJfPmzSMAyAMPPNCNsyVEURRyzDHHEADkoYcespaHQiEyZ84cAoD8+c9/7rDfbbfdRn75y1+SVatWkU8//ZQAIOPGjevWdw/EdlAolP6BCgfKoAAAcTqd5Hvf+x4BQO66664O22QSDv/4xz8IAFJRUdFhEGyiaRo544wzCABy3XXXpd1GURRSVlZGAJA333yTACClpaVEUZS02w924ZCJ/hQOhBCydu1aAoC4XC4iy3Le2jDQ6A/hMJjoSjjs37+fACA8z5O9e/d2WP/1r3+dACCPPvpoVt/X1tZGRFEkAMj27duT1n37298mAMjVV1/dYb8tW7ZYzw5VVbP6LkII+Z//+R8CgEybNq3DOnMgPnny5E6PsWfPnl4P2AdKOygUSv9AYxwog4qf/OQncDqdePTRR9Hc3JzVPg899BAA4Gc/+xlKSkrSbsOyrOX28Oyzz6Y99sqVK1FfX48TTzwRp59+OubOnYuGhgasXLmyh2fTc1RVxf33348xY8bA5XJh1KhR+OlPfwpZltNuTwjBP/7xD1x22WUYO3YsPB4PfD4fZs2ahccffzytX3KmGId0TJ48GQzD4Msvv0y7fu/evWBZFmPGjAEhpFvnmsr06dMBGO5njY2NANr90NesWYOVK1fi1FNPRUFBARiGSYqJ+fe//42FCxeiuLgYLpcLY8eOxU9/+lOEw+G036UoCh5//HGceOKJlp/62LFjcfXVV2PLli3WdpliAezxIB9++CEWLlyIgoIC+P1+nHHGGfjggw/S9lVqjMP8+fNx1VVXAQDuueeeJN96M9aku9d4xIgRlsvfVVddlXTMNWvWdHpegHEP/v73v8eMGTPg9Xrh9Xoxa9YsPPHEE9A0rcP28+fPt2J5Xn31VZxwwgnweDwoKirCkiVLcPDgwbTXIFd8+umnAICRI0emdUc0+/tf//pXVsd7+eWXEYvFMHPmzA6++hs2bEg6pp1JkyahpKQEDQ0NWL9+fdbtf/311wEAX//61zusmz59OkaNGoUtW7bkLFZqoLeDQqH0D1Q4UAYVQ4YMwdVXX41QKITf/va3XW7f2NiIjz/+GAzD4LLLLut02wkTJuDYY49FPB7H6tWrO6z/61//CgD4f//v/yX9by7vS5YsWYKf/OQnqK2txVlnnYUpU6bgoYcewoUXXph2YC5JEr7xjW9g1apVKCsrw7nnnovZs2dj69atuP766/Gtb32rV+259tprAQB/+tOf0q5/5plnQAjBd77znV4HbodCIetvp9OZtO7555/HokWLEIlEsGjRIsycOdP6vltvvRXnnXce1q1bh8mTJ+Occ86BLMv4xS9+gfnz5yMSiSQdKxKJYMGCBbj++uuxadMmzJ07F+eeey4KCgrw7LPP4qWXXsq6zevXr8e8efNw8OBBLFq0COPGjcNbb72FU045BW+++WaX+5911lk48cQTAQDTpk3D0qVLrX9mDEh3r/HXv/51TJs2DYARS2I/ZkVFRaft0TQNX/va13DTTTdh165dOP3003H66afjiy++wPe+9z1cfPHFGYNkH3/8cVx00UUghOCss86C1+vFCy+8gNNOOw2xWKzLvugp5vUtLCxMu76oqAgAsvbD/9vf/gag/TmQz++yb3vcccelXW8uz3ccwUBpB4VC6Sf609xBoWQLEq5KhBBy6NAh4nK5iM/nI42NjdY26VyVTJeiY445JqvvMV0MUl2hTLcEh8NBmpqaCCGENDU1EUEQiCiKpK2trcOx8uWq9PzzzxMAZNSoUeTgwYPW8t27d5Pq6moCoIOrkqIo5OWXXyaSJCUtt8cMrF27Nm37U11j0rm3tLa2ErfbTcrKyjq4D6mqSoYMGUJ4nie1tbVZnWNnrkpPPvkkAUCGDBnSYXsA5IUXXuiwz4svvkgAkOnTpyf1syzL5JprriEAyA9/+MOkfcx74dRTT026zwgh5ODBg+STTz6xPq9evTrttTb7CgD5yU9+QnRdt9Y9/vjjBACpqqoisVjMWm66cZxyyilJx+rKVakn17grV6VM5/Wb3/yGACBTpkwhdXV11vLDhw+TcePGEQDkscceS9rnlFNOIQCIx+Mhb7/9trU8EomQuXPnEgDkmWeeSduObOjKVWnVqlUEACkvL0+7/v7777euVVdxDgcPHiQsyxKe55PO38Q8nyeeeKLDOk3TLBenW2+9NYszMygsLCQAyOeff552/c0330wAkN/97ncZj5ELF6GB0g4KhdI/UIsDZdBRVVWFa665BqFQCL/5zW863bapqQkAUFZWltWxS0tLAcBygTF56aWXEIvFsGjRImu2sKioCIsWLUIsFsPLL7+c8ZjPPfdcp2kc9+3bl1XbTJ544gkAwM9//nMMGTLEWj5y5Ej89Kc/TbsPz/O48MIL4XA4Opzv/fffDyB7F410BAIBXHrppaivr8drr72WtG7FihU4dOgQzjvvPJSXl/f4OxoaGrB8+XL86Ec/AgB897vf7bDNOeecg0svvbTD8vvuuw8A8I9//CMpE5MgCHj00UdRUVGBP/3pT9YseU1NDZ599lmIooi//OUvKC4uTjrekCFDMGPGjKzbPnz4cMvFyOS73/0uZs+ejcOHD+OVV17J+liZyPc1tvO73/0OAPDII48k/bYqKyvx61//OmmbVH7wgx/gtNNOsz673W7ceuutAIB169blpH3pmD17NlwuF+rq6vDf//43aZ2u6/jLX/5ifbZbtdLx97//HbquY+HChWmfLaeccgoA47efyosvvmhZVrr6HjumO53b7U673uPxJG2XLwZKOygUSv9A07FSBiV33HEHnnrqKfzhD3/ArbfemjF2gSTcdkiWfvXmdqnuNKY70hVXXJG0/IorrsBrr72Gv/3tb5YPeirHHHNMpykdX3rppQ5uMplQFAUffvghWJZN62O8ZMkSy20oHZ999hlWrVqFffv2IRqNghBiDV527tyZVRsycd1112H58uV4+umncdFFF1nLn376aQDA1Vdf3e1jXnXVVWn7denSpbjjjjs6LD/vvPM6LKuvr8fnn3+OCRMmpK294XK5cPzxx+P111/Hzp07MW7cOKxevRqapuHss89GdXV1t9udykUXXZQ29eaSJUvw4Ycf4t1338WSJUt6/T1Afq8xAOzfvx/79+9HRUVFkgAwWbx4MQoKCrBjxw40NDRYYtzkzDPP7LDP2LFjARiCLV/4/X5cf/31+O1vf4ulS5fij3/8I0477TTU1NTgzjvvxI4dO8CyLHRdB8t2PqdmuimlPg9Mrr/+ejz++OP44IMPcOWVV+Kuu+5CSUkJVq5cieuvvx48z0NV1S6/Jx2ZXP2yfcblioHSDgqF0rdQ4UAZlFRWVuK6667DI488gl//+td48MEH025nCor6+vqsjtvQ0AAASTPMBw4cwNq1a1FQUIDFixcnbX/uueciEAhgzZo1OHjwYNpB5kknndRpsbQ1a9ZkLRyampogyzIqKys7zCwDgM/nQ0FBQYciebIs48orr8Q//vGPjMfuzuxnOmbNmoXp06fjzTffxL59+zB8+HDU1NTgjTfewLBhw9IOGLvCXsfB5XJh+PDhWLRoEY499ti02w8bNqzDMtOis3379i7jKxobGzFu3DgcOHAAgCH6ckGm2iCm9ePw4cO9/o6+uMZAe1sz1dBgGAbDhw9Ha2srDh8+3EE4pPuNeL1eAEacRj657777cPDgQbz44ou44IILrOU8z+O3v/0tbrnlFgBAQUFBxmNs3rwZmzdvht/vTytUAcMi9corr+DrX/86nnvuuSTLw9SpU3HCCSfgqaeeSoqB+OEPf9jB0nnSSSfhO9/5DgCjj1paWjI+K6LRqLVdbxgo7aBQKAMTKhwog5bbb78df/zjH/HYY4/hhz/8YdptzODPPXv2oKWlJWOwoomZDcU+MP3b3/4GYqQuxoIFC9Lup+s6nn/+ecuNJl9ksoh0xUMPPYR//OMfmDx5Mn7961/juOOOQ2FhIQRBwJdffolx48blZKbw2muvxXXXXYc///nPVmExVVXx7W9/u0ezq9/5zne6VZjM5XJ1WGZm+KmsrOxSvKS6JOWiAndn5HJ2tq+usUk2fZNum3z3aWc4HA688MILuPHGG7FixQrU19ejqqoKl1xyCRiGASHEqiidCdP6eNFFF0EUxYzbnXrqqfjqq6/w4osvYtOmTVYhuIsvvhjf/OY3ARgZlkxeeumltG6L5oB92LBhaGlpwcGDBzF16tQO25lZqdKJ5+4wUNpBoVAGJlQ4UAYtFRUV+O53v4uHHnoIv/rVryzfWjulpaWYMWMGNmzYgBdeeCGtX7zJtm3b8Pnnn8PpdCalUTTdEtra2vDee+9l3P+vf/1r3oVDSUkJHA4HamtrIctyB6tDKBTqYG0AYPnQmwNLO7t3785Z+y6//HLcdttt+POf/4yf/vSneOaZZ8CybK+zNvUGc4a7oqKiU8uPHbMK8K5du3LShkxxLPv37wdgxO30lr66xmZb9+zZk3Eb87wqKytz9r255MQTT7SyVJn8/ve/B5A+haqJruuWRSeTm5KdgoKCDq6Dqqpi7dq1YFkW8+bNs5Z3lb502rRp+Pzzz/Hpp5/i7LPP7rDeTDebbjDfHQZKOygUysCEBkdTBjW333473G43Hn/8cdTV1aXdxnQ/uPfeezuY4E10XccPfvADAIb/vDnzvGHDBmzbtg3l5eVQVdWyPNj/6bqO6upqbNmyJe8pCAVBwKxZs6DretqA7BdeeCHtfi0tLQDaB8R2/ud//idn7fN6vfjGN76BgwcP4rbbbsPu3buxaNGinMQJ9JTq6mqMGzcOmzZt6nSwa2f+/PngOA5vvPEGDh061Os2vPzyy2lrG5jXK3UQmw5TJKqqmnZ9T65xV8dMx7BhwzBs2DDU1tbi//7v/zqs/89//oOWlhaMGzeug5vSQEWWZTz22GMAOo/FMV0Shw4dagVAd5e///3vqKurw1lnnZX2WmXinHPOAYC0aYA3btyI3bt3Y+LEiRg5cmSP2jXY2kGhUPoHKhwog5qysjJ873vfQzQaTZvBBAC+8Y1v4LzzzkNtbS1OP/10bN++PWl9a2srLr/8cqxatQrDhg1Lipcw3RIuvfRScByX9vgMw+CSSy5J2j6fmDOYP/vZz5KCSfft24ef//znafcxg0+ffPLJpOUvvfRSUjaZXHDdddcBMDLuAD0Lis41d911FzRNw0UXXZRUuM3kq6++wp///Gfrc1VVFb75zW8iFovhyiuv7FAQ8PDhw9bMajbs27fPKrZm8tRTT+H9999HRUVFkr99JsyZ/h07dqRd35Nr3NUxM3HjjTcCMDIkmXFBAFBbW4vbbrstaZuBxP79+5PaCxhWuv/3//4fduzYgSuvvBKzZs3KuL9pfbz88su7dL3bsGFDB9ewN998EzfeeCNcLpdVmDJbLrjgAowcORKff/45Hn74YWt5JBLB9ddfD6B9kiSfDJR2UCiUfqJvs79SKD0DtjoOqdTX1xOPx2PlYLfXcTCJRqPk/PPPJwAIy7Jkzpw5ZMmSJWThwoXE7XYTAGT8+PFk9+7d1j6KopDy8nICgLz//vudtu+jjz6ycvJrmkYIyV8dB13XyQUXXEAAEJ/PR84//3zyta99jXg8HnL22WeTYcOGdajjsHbtWsJxHAFAZsyYQZYsWWLl9v/hD3/YrboBXeX+J4SQWbNmEQCksrKSKIqS1XnZ6ayOQ2fbr169OuM2P/rRjwgAwnEcOf7448nFF19MFi5cSMaPH08AkGnTpiVtHwwGyZw5c6x+Pvvss8kll1xCZs2aRXieT+qXruo4XH311UQQBDJp0iSyZMkSMnPmTAKACIJAVqxYkbRPpjoOsViMlJWVWeuuuuoq8u1vf5u89957hJCeXWOzJgrHceSss84i3/rWt8i3v/1t8sUXX3R6XqqqkkWLFhEAJBAIkAsuuICcf/75xOfzEQDk/PPPt34HJmYdh3T3eaZz7owNGzaQ2bNnW/8cDgcBQI477jhr2dNPP520z/LlywnP8+SEE04gl1xyCVm8eDEJBAIEAFm4cGFSPY1UYrEY8fv9BADZsmVLl+0bPnw4qa6uJosWLSKXXXYZmT59OgFARFEkr7/+etbnaee9996zakDMnj2bXHLJJaSysjJjnxNCyNNPP231x7HHHksAEJfLldR3GzZsGJTtoFAofQ8VDpRBQWfCgZD2QWEm4WDy73//m1xwwQWksrKSCIJAioqKyMknn0x+//vfdyic9Z///IcAICNGjMiqjaNHjyYAyKpVqwgh+RMOhBiFy375y1+SUaNGEYfDQYYPH07uuOMOEo/HreOl8v7775PTTjuNFBYWEp/PR+bOnUtefvnlbhccy0Y4/PjHP7aKnvWEfAgHQgh5++23yQUXXEAqKiqIIAikrKyMHHfcceS2225LO2iJx+Pk4YcfJscffzzxeDzE7XaTsWPHkmuuuSZp8NiVcFi+fDlZv349WbBgAfH5fMTr9ZIFCxZYg347nQ2iP/74Y3LGGWeQQCBAGIbp0EfdvcaEELJy5Upy4oknEq/Xa/2GzH7MdF6EGML60UcfJdOnTydut5u43W5y/PHHk8cee4yoqtph+1wLB7Ntnf1LvXc3bdpELrvsMjJixAjicrlIIBAgJ510EnnmmWeSivOlw15EMBvuv/9+Mnv2bFJUVGT9Rq+55hry1VdfZX2O6diyZQu56KKLSHFxMXE6nWTixInkN7/5Tdo+JyS5CGGmf139bgZyOygUSt/CEEKTLlMolNxBCMH48eOxc+dO7Nq1C6NGjervJvUby5Yts7JLdSc7FIVCoVAoAxEa40ChUHLKSy+9hC+//BJnn332US0aKBQKhUI50qDpWCkUSk74zne+g9bWVrz++uvgOA733ntvfzeJQqFQKBRKDqHCgUKh5IRnnnkGPM9j7Nix+PnPf47jjjuuv5tEoVAoFAolh9AYBwqFQqFQKBQKhdIlNMaBQqFQKBQKhUKhdAkVDhQKhUKhUCgUCqVLqHCgUCgUCoVCoVAoXUKFA4VCoVAoFAqFQukSKhz6iV/+8peYO3cu3G43CgoK0m7DMEyHf08++WTSNps3b8Ypp5wCURQxZMgQ3HvvvTia492z6df9+/fj3HPPhcfjQUlJCW666SbIspy0De3XrhkxYkSH+/OOO+5I2iabvqZ05PHHH8fIkSPhcrkwY8YMvPPOO/3dpEHDsmXLOtyXFRUV1npCCJYtW4aqqiqIooj58+dj69at/djigcu6detw7rnnoqqqCgzD4NVXX01an01fSpKEG2+8ESUlJfB4PDjvvPNw8ODBPjyLgUdX/XrllVd2uIdPOOGEpG1ov1L6Cyoc+glZlnHxxRfju9/9bqfbLV++HDU1Nda/pUuXWuuCwSDOOOMMVFVV4eOPP8bvf/97/OY3v8FDDz2U7+YPWLrqV03TcM455yASieDdd9/FCy+8gJdffhm33nqrtQ3t1+y59957k+7Pu+66y1qXTV9TOvLiiy/i5ptvxp133omNGzfi5JNPxqJFi7B///7+btqgYdKkSUn35ebNm611v/rVr/DQQw/hD3/4Az7++GNUVFTgjDPOQCgU6scWD0wikQimTZuGP/zhD2nXZ9OXN998M1555RW88MILePfddxEOh7F48WJomtZXpzHg6KpfAeCss85KuoffeOONpPW0Xyn9BqH0K8uXLyeBQCDtOgDklVdeybjv448/TgKBAInH49ay+++/n1RVVRFd13Pc0sFFpn594403CMuy5NChQ9ayf/zjH8TpdJK2tjZCCO3XbBk+fDh5+OGHM67Ppq8pHZk1axa57rrrkpaNHz+e3HHHHf3UosHF3XffTaZNm5Z2na7rpKKigjzwwAPWsng8TgKBAHnyySf7qIWDk9T3UTZ92draSgRBIC+88IK1zaFDhwjLsuS///1vn7V9IJPuPb906VLyta99LeM+tF8p/Qm1OAxwbrjhBpSUlGDmzJl48sknoeu6te7999/HKaecAqfTaS1buHAhDh8+jL179/ZDawc+77//PiZPnoyqqipr2cKFCyFJEjZs2GBtQ/s1Ox588EEUFxfj2GOPxS9/+cskN6Rs+pqSjCzL2LBhA84888yk5WeeeSbWr1/fT60afOzcuRNVVVUYOXIkLrvsMuzevRsAsGfPHtTW1ib1r9PpxCmnnEL7t5tk05cbNmyAoihJ21RVVWHy5Mm0v7tgzZo1KCsrw9ixY3H11Vejvr7eWkf7ldKf0MrRA5if//znWLBgAURRxNtvv41bb70VjY2NljtIbW0tRowYkbRPeXm5tW7kyJF93eQBT21trdVHJoWFhXA4HKitrbW2of3aNd///vdx3HHHobCwEB999BF+/OMfY8+ePfjTn/4EILu+piTT2NgITdM69Ft5eTntsyyZPXs2/vKXv2Ds2LGoq6vDL37xC8ydOxdbt261+jBd/+7bt68/mjtoyaYva2tr4XA4UFhY2GEbej9nZtGiRbj44osxfPhw7NmzBz/96U9x2mmnYcOGDXA6nbRfKf0KtTjkkHRBean/Pvnkk6yPd9ddd2HOnDk49thjceutt+Lee+/Fr3/966RtGIZJ+kwSAbypywczue7XdH1DCElafjT0azq609c/+MEPcMopp2Dq1Kn4zne+gyeffBLPPPMMmpqarONl09eUjqS7/2ifZceiRYtw0UUXYcqUKTj99NPxn//8BwDw3HPPWdvQ/s0dPelL2t+dc+mll+Kcc87B5MmTce6552LFihX48ssvrXs5E7RfKX0BtTjkkBtuuAGXXXZZp9ukzmR3hxNOOAHBYBB1dXUoLy9HRUVFh9kF05yZOgs0mMllv1ZUVODDDz9MWtbS0gJFUaw+O1r6NR296Wsz68euXbtQXFycVV9TkikpKQHHcWnvP9pnPcPj8WDKlCnYuXMnzj//fADGTHhlZaW1De3f7mNmquqsLysqKiDLMlpaWpJmx+vr6zF37ty+bfAgprKyEsOHD8fOnTsB0H6l9C/U4pBDSkpKMH78+E7/uVyuHh9/48aNcLlcVprROXPmYN26dUl+5atWrUJVVVWvBMpAI5f9OmfOHGzZsgU1NTXWslWrVsHpdGLGjBnWNkdDv6ajN329ceNGALAGEdn0NSUZh8OBGTNm4M0330xa/uabb9IBQQ+RJAnbt29HZWUlRo4ciYqKiqT+lWUZa9eupf3bTbLpyxkzZkAQhKRtampqsGXLFtrf3aCpqQkHDhywnq20Xyn9Sr+FZR/l7Nu3j2zcuJHcc889xOv1ko0bN5KNGzeSUChECCHktddeI0899RTZvHkz2bVrF3n66aeJ3+8nN910k3WM1tZWUl5eTpYsWUI2b95M/vnPfxK/309+85vf9Ndp9Ttd9auqqmTy5MlkwYIF5NNPPyVvvfUWqa6uJjfccIN1DNqvXbN+/Xry0EMPkY0bN5Ldu3eTF198kVRVVZHzzjvP2iabvqZ05IUXXiCCIJBnnnmGbNu2jdx8883E4/GQvXv39nfTBgW33norWbNmDdm9ezf54IMPyOLFi4nP57P674EHHiCBQID885//JJs3byZLliwhlZWVJBgM9nPLBx6hUMh6hgKwfvP79u0jhGTXl9dddx2prq4mb731Fvn000/JaaedRqZNm0ZUVe2v0+p3OuvXUChEbr31VrJ+/XqyZ88esnr1ajJnzhwyZMgQ2q+UAQEVDv3E0qVLCYAO/1avXk0IIWTFihXk2GOPJV6vl7jdbjJ58mTyyCOPEEVRko6zadMmcvLJJxOn00kqKirIsmXLjuqUoV31KyGGuDjnnHOIKIqkqKiI3HDDDUmpVwmh/doVGzZsILNnzyaBQIC4XC4ybtw4cvfdd5NIJJK0XTZ9TenIY489RoYPH04cDgc57rjjyNq1a/u7SYOGSy+9lFRWVhJBEEhVVRW58MILydatW631uq6Tu+++m1RUVBCn00nmzZtHNm/e3I8tHrisXr067fN06dKlhJDs+jIWi5EbbriBFBUVEVEUyeLFi8n+/fv74WwGDp31azQaJWeeeSYpLS0lgiCQYcOGkaVLl3boM9qvlP6CIYSWw6VQKBQKhUKhUPqCJ554Ak888YSV4n3SpEn42c9+hkWLFgEwAt3vuecePPXUU2hpacHs2bPx2GOPYdKkSf3YagMa40ChUCgUCoVCofQR1dXVeOCBB/DJJ5/gk08+wWmnnYavfe1r2Lp1K4CBXeGeWhwoFAqFQqFQKJR+pKioCL/+9a/xrW99C1VVVbj55ptx++23AzCSPJSXl+PBBx/Etdde26/tpOlYKRQKhUKhUChHNfF4PCmbYnchaepoOJ1OOJ3OTvfTNA3/+7//i0gkgjlz5nRZlZ0KBwqFQqFQKBQKpZ+Ix+PwFwyBIjX3+BherxfhcDhp2d13341ly5al3X7z5s2YM2cO4vE4vF4vXnnlFUycOBHr168HMHAr3FPhQKFQKBQKhUI5apFlGYrUjOMX/A843tPt/TU1gk/evgQHDhyA3++3lndmbRg3bhw+++wztLa24uWXX8bSpUuxdu1aa/1ArXBPhQOFQqFQKBQK5aiHd/jAC90XDgxr5Bry+/1JwqEzHA4HRo8eDQA4/vjj8fHHH+PRRx+14hoGaoV7mlWJQqFQKBQKhXLUw7BMj//1FkIIJEka8BXuqXAYYEiShGXLlkGSpP5uyhEF7df8QPs1P9B+zQ+0X/MD7df8QPu172EYtsf/usNPfvITvPPOO9i7dy82b96MO++8E2vWrMHll18OhmFw880347777sMrr7yCLVu24Morr4Tb7cY3vvGNPJ159tB0rAOMYDCIQCCAtra2rM1dlK6h/ZofaL/mB9qv+YH2a36g/ZofaL/2HWZfn3jemz1yVVKVCN577Yysr9W3v/1tvP3226ipqUEgEMDUqVNx++2344wzzgDQXgDuj3/8Y1IBuMmTJ3e7bbmGxjhQKBQKhUKhUCh9xDPPPNPpeoZhsGzZsowZmfoTKhwoFAqFQqFQKEc9DMtagc7d3e9oYdALB13XcfjwYfh8vgGRpqq3BIPBpP8puYH2a36g/ZofaL/mB9qv+YH2a3440vqVEIJQKISqqiqwA3SgzbIA24NA5wF6Onlh0AuHw4cPY+jQof3djJxzJJ7TQID2a36g/ZofaL/mB9qv+YH2a3440vr1wIEDqK6u7u9mpKUngc7mfkcLg144+Hw+AOhQdINCoVAoFAqFMjAIBoMYOnSoNW4biPQ0tWou0rEOFga9cDDdk7pTdINCoVAoFAqF0vccCW7lRzODXjhQKBQKhUKhUCi9hWF6GBxNXZUoFAqFQqFQKJSjB+qq1DVUOFAoFAqFQqFQjnpYhgXbA+tBT/YZrBw9Z0qhUCgUCoVCoVB6DLU4UCgUCoVCoVAoPXRVAnVVolAoFAqFQqFQjh5ojEPXUOFAoVAGLKvKJ3V7nzPrtuahJRQKhUI50qEF4LqGCgcKZQDwztTjcPKmT7Fu0nRrma7rmL/9c6yZMA1EIUnb66rxecHezX3azmzpyYC/O6T2h52VRRMzrlvYvC0fzaFQKBTKEQC1OHQNFQ4USp75cM4s629dMwa8REse+LIcg/emzwDDtT98WLBYN2k6WJaFLujGfokBM8sz0FWCt0dMSVpufY+aeWCdrxn5t4ZMzvkxOxMIPcEUFan9syi4PaffQ6FQKBTKkQgVDhRKD/h0wYlpl6cKAl0nYAXO+sxwpnDQ27fRCBiOAdEIOJYB0RPH4BhLaLCJBGimgDCWJfZXCRihXXAQhYDl2z+nDpJXlU9KEg/ZWAfsx8sGU9j0hFyIhZ589wr/BBCF4OzYF3hDHI+zY1/0uh0UCoVCGTywLAu2BwXgerLPYCWvwkFVVSxbtgx///vfUVtbi8rKSlx55ZW46667rE4mhOCee+7BU089hZaWFsyePRuPPfYYJk3Kr6sDhZItny2c12EZy3NptoT1izIH/+ajhOjtA36iEYBnoSe2McWEsU5PskpwCfMn4Qh0jYDjuPZjOA13Jk5gkgfbKYN2+/rTD23BW0MmJ1kHuisK8kFPxEJPxEFn32Oue0Mcn/S/nmXbFqs7ut0eyuDgdX5c0ufUa93VegqFMjhgGAYM0wNXpR7sM1jJq3B48MEH8eSTT+K5557DpEmT8Mknn+Cqq65CIBDA97//fQDAr371Kzz00EN49tlnMXbsWPziF7/AGWecgR07dsDn8+WzeRRKBzadfUrSZ4ZlwAkspry+BpsXz+/WsSzLAQCAbRcEbEIwpIoJADrLZLZKJPYjOgESLk2MxiQdE2gXE4BtoJwQB6tHT02yTmRse45dhHr7Pd0RCT1pe+rAr7vQgeLg4nV+XMZrls29kK2QGEz3hf2cuhJG6bahUI4EaIxD1zCEkLyNEBYvXozy8nI888wz1rKLLroIbrcbf/3rX0EIQVVVFW6++WbcfvvtAABJklBeXo4HH3wQ1157bZffEQwGEQgE0NbWBr/fn69ToRwBbDzjZADGD/zYleus5XaxYP/xpz4ImBRTJMt1/qDQU9yWTKuDXVCYf1uiQifJ25qCQicd99V0zH7/I+vz+hnHpz1m+/bJ4sJanmag3dlAvbOBeU/362rfbPa3jpNH0XMkD5ZSB7u9FVP2Y/UH2bR/sbpj0J9nLulNXxwpfUDJHwN5vGa27ZyrP4Xg8HZ7f0UO4z9PHzcgzy3X5NXicNJJJ+HJJ5/El19+ibFjx+Lzzz/Hu+++i0ceeQQAsGfPHtTW1uLMM8+09nE6nTjllFOwfv36tMJBkiRIkmR9DgaD+TwFyhHCpwtOtAb+9sF3qhuSKQ0Ye6yB9VlPEg9W/EEXAqL9GGziGO3HNsWJFa+Q0hKGNUQEl4iBAMtA1wlmrnu/w/Hnbvgk6fN702cktdUMvCYasVwFdV23LBBdDczzIRiysSSY++dTEHTGkTAgMt2uTDrry1wMpIH+77fOvr+z2fXO6Ol+uaA/vzsbBqOVhUJJhWF7Zj04irKx5lc43H777Whra8P48ePBcRw0TcMvf/lLLFmyBABQW1sLACgvL0/ar7y8HPv27Ut7zPvvvx/33HNPPptNGWRsmD8347oZa9YDAI57+720603Lg2mNsAbuKaKA6CQx4NcAJD9YbB5FPcYUE5YIsQVGT38zfdsB4ON5c6z2Ae3uTYZrU3vbWdvxuiJ1MN9di0SmfbLZ175ffwkFk1zNRg9EWIHJS/8OlkFjT9vZn+fXF9/dW2tTV/sPlvuDcvTCggXbAxXA4uhRDnkVDi+++CL+9re/4fnnn8ekSZPw2Wef4eabb0ZVVRWWLl1qbZcaVEIIyRho8uMf/xi33HKL9TkYDGLo0KH5OQFKv/DRSSekXT7r3Q/SLp+xZn3GfVKXm8cwB9wAwLKMJTA2zJ+blBKV6O0Pg3SzEOmsDT31dUzdj2MZTHl9DYB2dyr74J/oBJzAJlkiTEsFCx06DOuCXZToadyVrBl924A+aQDfC/ej7hyjv4VCKp35wR/tdBUfkDqApP04uOjqemUSBl0JDvqbogx0aIxD1+RVONx222244447cNlllwEApkyZgn379uH+++/H0qVLUVFRAQBWxiWT+vr6DlYIE6fTCafTmc9mU/oY0zd/7oZPrL+7ixpTkz4zGdyH3p81E3M++hi6olnLdLTXWmA4FrPW2MWFzXkoNeaBY3Dsyves1KypMRC9ERqmYEjdhrNZEcAx0BTzDAzJoAMpQdnJMQ9EI0mCwRzQpxMP9uWp5DLV6kATDEci6QLizQB6Ldq5ySyd5SWTIOjqM2XwkW6wn03wdFfH7Ox4FEp/QYVD1+RVOESj0Q65bTmOswYuI0eOREVFBd58801Mn25UzJVlGWvXrsWDDz6Yz6ZR+pnVo6fi1F2bsGbCNGuZ/e/usG7SdMzbujFp2TtTj+t0n9nvf5QUAwCYP3w9SciYvD9rpjXoNwOSPzrpBMuiYe5rYhcZXVowNJIkKKa+sbZDe+1uR+kwBAEB0YmV0lVXklO76rpuiYVsREOH78jhAH+wiIUjZYY0XYG7Ff4JAAy3JaDjNbGft108sDYRYsZOMAJDi+gdIaTe8929/+3bpxMUR8pvikLpDffffz/++c9/4osvvoAoipg7dy4efPBBjBvX/pvJ5Hnzq1/9CrfddltfNbUDec2qdOWVV+Ktt97CH//4R0yaNAkbN27ENddcg29961uWMHjwwQdx//33Y/ny5RgzZgzuu+8+rFmzJut0rAM5Sv9oJtsZqMXqjg6Bm+kKb5mDHCD9IMisCAwAC5u3WX9nKm52Zt3WpHXpahmkztKa29iX24VxqpXDLgaYDELCZM5HH6dtZyp2iwzRiWVFAJBWGNj/Nxksg/aBwNEywMnmN0jpPl8uOQtyRIIckaFEFahxDUpcBVEITt21qb+blzXpLASZrE75iAs6Wn6HqRxpImsgj9fMtl1ww2YIzu6XAlCkEF75w5Ssz+2ss87CZZddhpkzZ0JVVdx5553YvHkztm3bBo/HA6A9DthkxYoV+Pa3v41du3Zh1KhR3W5jrsircAiFQvjpT3+KV155BfX19aiqqsKSJUvws5/9DA6HA0B7Abg//vGPSQXgJk+e3MXRDQbyjXi0kcsXRmezVqzAWNV9gfZBTurgpyvM/eyiJBW7oEgSDBmWd7UO6FhhMtVakg2rR09NEgTprAcDNXZgMHEkvbQpuaV+60fg1Tg4NQ4+2gZWioKR4yCRMPRQEGpzC6I1jZDDMShRGWpchhJToMQUaIqeNjPaQGMgJQcYTL/FdKLqSBMBPWEgj9fMtl1005YeC4eXfze5x+fW0NCAsrIyrF27FvPmdSw6CwDnn38+QqEQ3n777W4fP5fkVTj0BQP5RjzasD8s+/qFk6/c8+nESKoYWBTcblk8OhMR6Tj90JaeNjMtpgjK1m1kIA0MBiJH+4ue0s6hHZtAbNlWHErUEg5CpAWMFAMTjxrCIRyCGgxBamyBGpNQ9fALfdLGnsYODJbnwED8PebivdeZBedIYiCP18y2ff3mbT0WDi89MhEHDhxIOrds43J37dqFMWPGYPPmzWknzuvq6lBdXY3nnnsO3/jGN7rdvlyS1xgHytFFNn6x+XpBdbfqaTbHWqzuSD9br5CMft6wxQmwPAMtzf6muDizbmu32pUN3fUzz6XgOhI5Gl7mlPSEPnwdmuCCxrugcQ5wLA+Vc4CAAQMCTlfAajJYRQITj0A881v93WSLbGtYUHpHPibLOjsOfQ7lH4ZhMsYWdLUfgA5ZPu+++24sW7as030JIbjllltw0kknZfS2ee655+Dz+XDhhRd2u225hgoHSs7pbLDVVeBcd8nmQWofHKdLE9mTdtgFBWsroGa3OOgqSWtxSN1uIEAFRGboy/oo5eN1cPh9YH0BEF8AmjsAyVsClXeCMCyEeBCcHIPnxP57kWcbyDzYf9cD9TeYru+709e93Z8y8EhnceiKG264AZs2bcK7776bcZs///nPuPzyy+FyuXLSzt5AhQOlV3T2kOvqAdiVZSDXL4tMueUzPbBTrRjpBFFqnEU6TDcme9A2ZeAzUAcrfUV33d6OJD6cMwuCW4AgCnD6XHAVeOAMeOAbNwpsoACuC2/u7yYCSH+PHokDz3TxAQMhZiCdpbuz91p3Jroo/UNv07H6/f5uuWHdeOONeO2117Bu3TpUV1en3eadd97Bjh078OKLL3a7XfmAxjhQek1vX1TdeVB2ZinoyUu0u7M8qRYT09rQWdyDSVdWhny4LvWEI3Hg0R3oi/voxe52aM+ixoksOJHF/O2f90u7OhskH82/VzbNM7WzSZzOEmjoCunxb78n1+dofM4M5PGa2bZLb9sBRw9iHGQphBd/PS7rcyOE4MYbb8Qrr7yCNWvWYMyYMRm3vfLKK7FlyxZ88sknGbfpS6hwoPSYfL2wWIHpdiagfKcETCcwWIFJGmCY5MINqb9FxNE2GDkaX+IUg+5aRvP9nZkmMzK5VfZHMoq+wHy+dkZnxQvtosI8TjrX0Q4Z6RL/5/K6Z3N9joZn0EAer5ltu+xHX/ZYOLzwq7FZn9v3vvc9PP/88/jXv/6VVLshEAhAFMWkdlVWVuK3v/0trrvuum63Kx9QVyVKjxhoL6pMvr7dsSR016RsJ9cxC2aNif4SEEfqYIRCsdMfoiFbUn+Dmdo6WH+nqdaC1MF9V89UohCwfi5jtXv78TIJB10l4ATGqHdjtivxf29doXpbTdvO0SAqjjaeeOIJAMD8+fOTli9fvhxXXnml9fmFF14AIQRLlizpw9Z1zhEjHFaPmw0Py+U8vSWld3R3AJrO9Jwt6R702QiIdG3M5FObjt6Khs4qMtvdnXSVDHh/83TXj9aRoAxEunou9eZZ1J3vTP2eN8Txaat4D1aBkEqqJcAuFNIN8u3P19Rnpb3IpbUN31E4pH6Xub0pGsAzYMxjJb4nm1iFvromAyGe42ihtzEO2ZKts88111yDa665ptvtySdHjKvSqxXj4WE5a/lAERCZTMtHGtn4cXbnRd3TwWZXfZsa4NybAG7TlM6JbNqZrEx0JhQy7Ze6T19U9u3uSzGbgdZAFRH5/E0eySld9159vlHBXNUQa4lAjsg47u33sGbCNMjNRoXkgZ4UwLw+6VxbTHor2NOJgUy/l4H6G+ns951Nm1PjwVJFgvUsZVkwXGI5l34QR3Tj+zRZh67raQthpi2+mY2rkk2MEIXg7NgXA060ZRPPZxZKHSisKp+EiK7hwsYdA9pV6fI7dsHh6oGrUjyEvz8wekCeW6454oRDfwqG3jxcBvqgIleDn0x9lAvRkEqmLErZtCfdcez72P1v0wkHIL0ISDdjlm5db2M8cokZUJiuTZkGWyzPZHQhMOmPAVJnfuK5pjeubwOZPd/+mvU30XVosgo1riDcEIEaV6HGNahRFVrMcP7gRBaeCjdcfiecPhfGvbiyv5reKSuLJnYq+IGeC4jU6vTpJg/svvUDYaDamZDKhtTBe6oFIa1wEDiwCdHAsAwYjmn/zLUX3yOaDl0jIBoxhGvibwBJQsLEvK5dFeRMtWDYBQQwcEVdOjJNbJ1+aAveGjK5z8dKK4smIsrpA144/L+ffNVj4fC3+44ZkOeWa44YV6VTd3zY5xcrlw/37uZ+znfq0myEQk8GRn35UsxlQZ7U+AlzMN3Ziyjd4NlO6kwX0PMXUz5ntR1FfNq22kk3sOBs9S0AALb+6Mzqkk/6ckA22MVCzW2XQwnHIYfjILoOlufA8hw0WYUmq1BiMpSYCiWmQArKkIMKAOPamqIBMO4NJaL02AWgr8jGMtLT5+6i4HasKp/UPgBNLO+v30FnZBtU3KWYEDsuSicezM8s2y4MUu8ThmOtZUQnYDgWLHToABiOAcMSEC7hoqQxICyBrrffg5zAQIvpGWvrpJ4Xi86txoMJ0/2K5RlLLPRGNPR0QmRh8zYEg0EgEOjxd/cFfeWqNJg5YiwOfanyBsJsUHfJdeG13rYjnXsAMHhmdDKZgVePngoAybNUtheQGexsn91cFNye1pWhp+R6wPrhnFkAkmf8Zr37Ad6fNTNpxi8VkmaZORuoxXTIzWq/Xe/BPqjPNe/PmgnexcNd5Ian1Aex2A+xvBiEEKihCOLNQYRrWxFpDKNtX8gahKW6d2SC93NwlTggFrsgiAJ0VYMSVSC4BXhKvIg2RxFtjELwCCgdV46Rz/wrp+f38bw5SZ91RcPs9z/q9nHeGjIZWkzHwuZtWOGf0KWl0Vy/sHkbVpVPwpl1W63EB6kz2yb96Rpjt6SmWgQ4ke1s17xgfX+K+5K13jZYS11vig02sY2ecG8iOgHRDFGhawS6okOTdcitStrnNlHIoHgvZXIlS3c9U9Fielbn2ZPYDtZmmR8MFocr7trdY4vDX38xakCeW645YoRDvlyVBqNIGEzkw0XJTmrhtlxeTzZhBjZnKtdMmGats5u4OxMOdteHvqyH0RNSB19EJ9BkLat97S97XSNQIirkVgVKSOvTFzMVDMmsmzQdvIuD0+eAq0CEWOiGw+sC53JAi8uINYcRaYwg1hKzrpndmmBHi+kZ/fg5kQXv5ywfdhPOwYJ3cVDjGpS4CsHFw1PmASewCNdHoCs6WIHFnI8+7vQ83hDHwz3CCYdbAOcwjm8XBh+ddAIAY6BJdIJZ735grTPdiFxlAng3D5ZjwLu4pFluwLjflYgCTdahSVqH2et0vvJWP6TZzjpuyvadpRjNN6kppjmRtQabgqfdQcE+m98dOnPVTF2f2n+pA2BTTJhxEAzHgHNw4HgWglvIOHOsqwk3J50YrnaKDl3REK6JJT23zft8IIiGzuJLOrP8pMswZX5OJ5BMcnHO9pgW85oNhhiHb/50T4+Fw19+PnJAnluuOWJclUzeHjHF+nGcumtTP7eGkg2pvr25GOCnS81q/45023d3FsV8GJv3nP0BzggMoBLL7A3kP2A/3777SkSxZvVMTKtCutk+E/vLW1c0EI0YL3mRNV7SPEG780ZuX9RUKKTnwzmzoGskMUBmrOunySrkcBwIx9GypwmhuogV5Gxlokkz82z6s7NIvn66NXAhUIOaNRjLdDwZKmL1krUd7+cgFjux8YyT4fA4MOnVt9Oez9mxL7D/uxdBVzXI4TiizVG8P2sm1LiGkzd9miQUPp43Bxvmz4XD6wDv5DH2gmPgLvHD4fcYfSDJiDa0QQ7HIUckKDEVuqIBLAN4BPAuHZrMWQG61rkmfgvpLG1A8mDbLr7MLEAcsouLso6XhwGtrhDjGsI2QE99tnEMWKS3PnQlKLocsGawXGkKAaMmXJV4BozKgPAEnJODDoBLsTxwDh6cwILluQ7iwQzm1xQdRNehq4Z4cJcZ1gclrkJuVoHYwBINnQmEdJmj7NivoymKtAwWr3Tf2Z34tFTBYP+b1Qe+Ow/LwrJSdXe/o4UjRjjoKoHOEsuvmhEYawaYKKTHIqKv064dbdgfQGYf56Kvc5lDOxX7rJz5YNVV0uFVasY4mA9re0Baqj/1G+L4HhW+S3UtsM+C6irJWezDW0Mmp53xAxKiQUm0JzH7xzmS/ZJZlrFcBexwIgsNevugQCHd6gcqDLrPxjNOhrvYjSmvrwEAbL/odGiKBiWmINoctQKcw3tjSQOG1IFLqjXN3MYe22JeRy2qI51tylHMG/eA6SqhEmhInnVXPcaeroCI0B9+BKUtiFh9C4Y8+mLSsXiXAE1mjFiMhBAiGsH6GceDc7Bghfase7pOwLAMxCIvAqOq4BoxDIyvACA6SCwCYfdexOqaEKlvA9FjUGEEgnNgAZ4FKxDoipbkoscKCdEgJJ+jXWyb7dLcOtS4Zgy0RdvMsErAiSwW7N3cHhORkkLU3LYnz4tssQ8ydSRqGzjRHqycYkG09rM9BTsTEZmsM5ksDki0gREY61mrWWKVBeFIh0kNhk24KiXEg/lZVzXoKgfOYYgGXdXAsCocbgFyVAGncRB8xnO0P90pge6lBDYDoYvHFcJdZFgOBbcTrIMHJxhDPU1SEG0MIlQbRKQ+gniLDDWoIdOVskRIisWM66Jd6UTnQIznSQfDMGCYHsQ49GCfwcoRIxyAxI0ptv9tdxUx8+GbN3F3C2sNlBgBSv+S7kFuzramC7xLFQ+ZMNebg4FMaWDtmTI4kYVY7LRcM0x/XfNvNaoaA7GYnlQPoifpMeVm1Wqn6e/MCHraqtmcwFlt6gzTKsPyDEgXgeTpoKKhZ0x/8x3r7z3f/hpYnoMUlhFtjCLWJLVbGFLv18T9qSrGQN6+PptZ0XRoMd0SDXY4d+KeVgliNRLkVgWte9pQu6nGEqNDUo5lDPKN2WQAlnvT+hnHG+5Fsm7F42iKhvDhCCINEcjhOPwtIbhKCsC5nAAANRqDEpUgR2QoMQVa4neVaSYynZUhNSOQ6W/PcAx4JwHDKZZ/vS6098GCvZvx1pDJVn/2x4DLHJxbosH2O0+NK2DY9tgBcIwlJNJZJexiojuiwVqWeF6YokGLGcKL0RiwAiyBwHIMWL7d4mC3PBh/s9Z9Ygb+m65OuqKDEQyrBu/njIF1P1yD1HdNqttRKpzIwl3mwvD5k+EaMxqkbAhU0Q9NcIEwHFhdASdFUdBaD/3gXoS+3IuWr2oQPBxEaH80owtih3alCNl06+3vCc5p9C3RCCQFQG2WHUAZsBwxwqFonB9uloOuaMZLQtEhBxVr4GRizlqYD2ZOZLO2RuTLV54yuMhkDs6EKR46c1XqLM2jaY3gRBaOIh4OnwDexYF38uCcvDU4Mf12TVRJTfo9EM3INPL2iClYsHdz1u0Hkn1kTb/ndAWaOIEzXARss7vpBlssx4BoLAifqNgaa1+XbYBeX7Nu0nTM27qxX74713w8bw7cRW7wTh7huhAiDTHEaqS0cQp2Mq0zl7NZbGvHblkwRbHg4yw3NtO9SQkag7yYIANov+dWj54Kh0/AiRs3INYSBcMy0BQdmqTiwzmzoMaN+x8wBq2mSDHfCVosCimooGVvMwS3AEEUwPIclJgCOSJDjantooFjwArGoNQU6fY0oCbWzLcCa1vexcEVcMHhcYATWMOvXidQoRoDbb3dTccu8oH0A+ts+zeXmELItN6YzxozNao5ODTdhswsR3aLBMdx0KABncQ22N07TeyDVPsEDcsblk820TbWFtegq8Z1Y0zLKGuKUc2KbzC3ITZBw7DG5AdgCNu07enH2XO7gLDXv3CXuVB8TDFc02dAKh+BmFgMhXNCZzgQMOCICt4tw+kpgqOgDAUVQ+AdsQehrw5gP3Yh1ioZIimLCRyiZJedinNyEDw8HG4BrMCBUVVgZ066IW/QrEpdc8QIh9IJlfA5jIAoTVYhBWNGUF9zDHK0PaAvNV80wzJ4f9bMpOC7t0dMASeykOqUpPzPgp8DIzBYVT4Jgq3UfX8Gs1HSk4+qr5nozK90/vbPe3xc09XOPcIJwcVbYoEVErNoKcWROJax3E82L54P3mm83E1fXsCYGZ2xZn2327IouB0fz5uTlKHEFCV2zMEFSbiC2GFZBhCMoNPkoOr2v9O9kHMtFNZMmJYUoAsATr/xYjP9os0ZS4ZlrQGGr8qLTxecmBBgRjtnrns/p23LJ/uuvSDhty9DEAVEm6OQQzLC+2JdCoZs6azWR2fH59yGBa0rS/DbI6YAgOX6x4nGTP7H8+ZAEAUQRYcSU6wgZqD9nmS0hJtQwjVOi+nQQxqUkIYI4tZxgfa4i3R+2oAxeDUtM52dtxUULpj3UcJaoyY7bhGlPSA308xvb69PtokodCXZFYUxXTMTzxtDCGiWFYVhObA29ywza5EpGEyLhLmO5XhwgiG4NEkDo7Z7CojFzqRtTWGWWpvBdJU0RAwLzpF4Jibe66qkgtUISExPiATSYWKl/XuMSRVN1a1sS8ZkDAdHETrE5RgW5nYxly8R0eVxFQKSsIywPANd0SFHJKi7dsDZ0gCn4AB0DSQWgxYKI7hzH+LBKMJxpUOMh64RCC7eGheZApl3Jg8RNVWHGlMRa5KSLIUdxEain4hiXGM1riFQ7YPb585lF+UFljH+9WS/o4UjRjhIbVFM/J83cfDGizH8j68AMAZPgkcwZkLcyYViNEXDyZvSD+pMU7E9QC9ToBhRCJSQ1m/mTEpH+kI0pHNL6kmRJCA5G1MqVhxB4qmkqe2DIaInrwOATWefgqlvrMWU19dg09mnGDOBLAOATXJR6Q120WDOxgKwBAPRGPAim7R9qtXBsDgYbhvmwGRRH1YY1nUd87d/bvW9HFHBCTqIyIMHwHK85fIArt16oikAoGcIDR3Y2F00zMF1vEW2ZvOzpaeFFDtDi+rWBIy9WJpZudfEV20EMBPNcPFR4xqkNhmxJgkOv2GJ4xwcBI8AwWNsZwbqm2KVKEYcRecz+HqSeACMySNnwAEAkKMKBB8HJaRlnDjSEwNMohBj8krRwQmSZZGw3JR0I7Wt9S+PA9Fsno1swj2KSRQOyzSzbAyy2Q4TBObzhkWyJcJcZ4gHxghqdnJwBtrdhMQCl7WN3dJjZj4yBbv5PDEtm1adEc5ucdCSUkVbrklWoTibi5V1Puaz1fwe1opBMd22dBh1IYhCoHXRp/keE+gKARQCLapDCWmI1UtQpQ/g8idc7iQVckSGFJIR2he19ksdx9gnVnk/BwcrgHW1T1IR65lviAB7TFKqeLL6I2Fp10PG9s1KKxTnwH9yUotD1xwxwuGYP70MAKj+/f9ay6a8vgYfz5sDzpF4uCReNrKiWD7bmTj90BasKp9k+ZKnzlBaONHuDkWFw4Ag2xdkr78n4Qe8oG6zYaVK8512UZDO+pCVaEgJ+tN143uJpiVecsZyhmWh6QQbzzgZDMvg2JXrAACfLZyXE9Fgzq6vmTAtKTDWPrBoj3FIHlSk5lA3X+a8y5iN7Y1lpruYgsGePEFVVBAnZ7i5uDiokgZB1K0XsBFY2S7CiNa9wXZ/s/PyRVDjCuJBCXJYghRUoERUqN0UDenoSjR0d/CUOqA36yWYGZY4BwuGYy1xqkTU9tn/YkdixpQzBpc8C11PP9PcFWYQqBnDxAgMfJVeODxOSKE4mve0Jr1HMgUrtxce0zpYJ+1xeH0Ry9DVtUiNVbEPLnWtPQGElhAELNKLBzvmQD31Gpgij+MN1yeHx2G4cjl4y60o6TiJ2XGi6x2OZboetVsW2mfSU7cV3AI0RQejmy6ciUFzQoQwnCFsNFk33K1kGIHhgg7CEzDmtcogqOyuZdlY23KFFjUG8007WpKD21PSywJISlRgH/izibgRzZ/cx7piCAYrmLqTGhf29689/k8NaohxSp7OPndQ4dA1R4xwyIQ52PnopBMM0yqX3l80HXaz+bpJ061ZytWjp0JXieUnbq8ISul/8i0a7D6m9gco4UmnVgdzoGofJNtnve2kEw3Gi9t4UeswZt3s/tWmkAAAohvZc6a/+Y4lIHKFVGc8/E2ri/2cWZ6BJujgBBacAyBae9vtxeJM9wMAWQfl5RLzGtj7XpOMgR3RCNS4BjVmDAo5gbVm3cwBSk/cvfqLLeediuChULLFVcq/YOjNMe3V2c2ZXQCQeBm8m7cGnQzHWPUFOJE1rlXCwmCKVTWuWrP7mtQ+W5r6W02tdG5YJnRAZMElBHHpxKHwjqwG0TSI729Gc0ETog1xy+qcitX2WOdVmPu6ZkBnbkv2LDhmDBILQIMGotnSLJtxBYIx0DZdl8wBZ+pv3vruhFXAXn+BdxoTCILbCaffnTg+Z7kLArCEgTH7bbjbqHElKV5BVzUwqgZVSo5ZML7LqHzOO3kQXYcqqVAlzUwIB6fXsCaZ1g0zc5Z5LixY6IJuiEm+Y6CyOUg3q1TnOrA922KpWkwH4ZmkuDHA+H2kFmxMN+jXFc2aDNXLE+7YimbFG3Ulcu2Z/uycfmjLoKgcTemaI144mNjzeJvYTeKdBacCSAqKPHXXJrwhjscb4nicHfsiyU2ps+wiXQW3mT+4wVKpciDSl7EN5j2zsmhiIgsHsYLve0qmmff1M45P+kx0YqXQs7sBJQdq6vh0wYk47u33etyedCxs3mYFcJqZTkw0GAMjWVTAKVySQEgqqpSmON5AwBgstguIWHMMvMiD441iU7nuy3zQ8sD10CUZwf31aN3fjGhjFMGvohCHOOD0Odp9xhODgO7QF4khWIHByqKJ7XU+bIMdY+CiQA4qHXzeBReflM3LLFCoRFQoEbXDzH5qdhjrM9pnUlkYdRa4IhaeUhG82wldlqHF4obLjWDEvWVyVU1alvhbQ3ZxH31Fp642KdmVNNtcNSMw0BRAAJ9wOyRJhR4BpBUNpv+8vdaLua2R3YgD5xLACgJYgbeWEUIAXYeuqNAkGWpUsrJokZT6AIyig+WN+ApTLAhuBwS3E7zbsCKShPBQ47JlydBk1RAULAMm4drEyLqtDxJtdhrujkmphwFLNOQSexHFVKECJMcXdOZaxvJM+zsDsMR4OkzrRQxS2ixKyQkxkgVxOqsaYEywnrBz4MeEMQwDlqZj7ZSjRjikw67AV/gnQBziQNHIAkx9Y23a7dO9MF/nx3V48KYLlk33gjZN25yb7ZCtxqyom6ugxaORngzgO8sUkSmNqbncDNw0SRUBqZaFztyU0kE0YrM3AGYOG01v9x9OogfuGdmysHlbB190E00hiO6VOhXP9nu6P9OqZhJqq0dPhQZt0GVRen/WTIiFIjiBhRyWEW2OQ2qSrewzAAxrSlDr1D8/lb6sZ6MrBJxoy65jS9VrDWRtwpNNFATTPIZrSlKWsYR1JVWkJlnJEsdLNwtr/K1DblYRc8UROtAAR0sISlRCpDECJWIIGCMeIvtn9UB7pmdyLzEHzFCJUXjNNki0trO5MOlAknhgBdYKjm63UHBWWlog4WKp6GDYxECdZcA5HeBEF1ieB8NzRpyRTkAU09qpgeWTRaK5LwA4fS4rDSvn4CF4XXD4vRD8XgjFRQDDgmgq9FgMWiQKNRRBrLEVSlQGG5XAsAo0mQGgQrXFPCSl2NUYS4RbxQ/NdLHITeC0Pf12qnXXnnoeaL+n7QUV7S7WqQUIzXS2mdqpK8Syotmve7p0q5yDTareDcCKh1CjqmWpePuYWb3qj76AYXroqkSFw9GB3RXJdOvIxDtTj4OjmIfcpCaZ4tJZEVLzXgPJaj+JROYBIyVlohBW4iGRmqaS0jl2AZetaEidJemQRaUb5SBTU5yuHj016XNq2l/T7S1de9dNmm79PW/rRszd8AmARE56q1pz8kweSfGUSJ3RyzWLgtstdxIgzWBogA2OusNgqzpvr/MRFCMd/JsZgUGsRkJckA0f5m4Khv7A/my1p9+0BmlAUlyRElGTtjUx66hYv4bUBBc8ATqxvugKgdykQotFARyE4DFSCMVbJCgR1WoTo3asnD1QyTRQzCQegHarg71mjf35aA4azUEX72Ss5UB7OlTeabgMpcIJLHiXAM7lAOd0gHU42l0EFQlE06DLCnRJNiwOMQlqXIEmq0kpVhnWOI7gdkLwuCD4PBACPnAlJUBxBWIlw6FzAjg1DiHaBkdbAxzNjQB2g20NWT7uasKVysyiZvf5N+O0dEU3YiAA6ILeIc1sb2AzDNY7YCvIyTlY8C6uQ4Y4oD1dt+GmZbhiylEFalDLWOjOvCdMkeAoMBIQmL8BUwAytiQe5vcSXYcckRFvlSBBhh4aHHFhDGP868l+Rwt5Fw6HDh3C7bffjhUrViAWi2Hs2LF45plnMGPGDAAAIQT33HMPnnrqKbS0tGD27Nl47LHHMGnSpHw3LYlMoqHujm8CAEadOgbx1ggiDSE0bGu20uZlNk8nMjSkDAgFHwexzImC4QXwlvsRbQyhZW8r2nZGup3d5Eiity4QmfwqM2EGvXMia6U6ZQUOTq/D8qtlOQYTXn6rx23KNPhcVW7c22fWbW03aycE4tsjpnSoj2BPH9rVDPh702dYfzOsbgmOfHF27IseX7ejrYDbh3NmYfb7H+XseOn63fRR7oBC0lZuzkRPr409BWnBCB9KJ1TCVejFV29tQ7Q+bqS4TpOBxT5byomsFeycWq3cUWAMWDRJswb7psAw69+qaeIX7MdIN3Nrd4uyp0S1t1WL6mjZHLY+m0XqOkvJOthIFQ9Ae4XmdMkfdF2H0+MA7+KNujICaz0/OaG9foI5GDcH9ZyDN/45HYYrUmKgicTAVglHgXDUiGtQNcihKJSonCQSzOxg9oxLRCfgeNawMrid4D0iHOWlYCurIZcNR9hbga/UYxBTeHgcMkq9LSjx7odb+Ars/gNgeM6yUuiqDlYjRq0cu2jQdRCNTaRvNYLENUWz0o8muQ710iWNEewpfbkOrmDmLL/d9cscvPNO3qpLYrU74TomFiQXxYs2RxFriUEKyUlphv2jPSgYGkBgWAnclaXgAz6wLhe0UBjx+kZEapoRb41AiSnWd09+bXXG8xkMMQ5solBjT/Y7WsircGhpacGJJ56IU089FStWrEBZWRm++uorFBQUWNv86le/wkMPPYRnn30WY8eOxS9+8QucccYZ2LFjB3w+Xz6blxXlD/wF9T9Zaij3xA9Ni+lZp19NV+2RFVi4i70onDgKJR43Cnbsxs74NgR3RDvsb76czGMdCS8nO91xgejMF7c7osGcPRE8PJx+AYJbgMPjgCA64PAaJu4RT7+a9fG6i93SdfqhLUkFnxiVsVwC7PESppk51b0p1dXmxI0brL/tIiKf9KUby2BGCvZ/RpFscvnbnzndhREYOMsFDDthGHy33onzfywBB4GfPXUCZv33Fnz65DpLPNjbYoqE1DoGHcSDPVlASnHPpNneNBm/NIW0W3SRuSozIzDgwLa76mQKQj0C6/eke8aaYit1tluL6eAS9giz8BrnMAQEmxi8m9hdiewiguU5sM6EZUHVoMTjIJrWPshVNeiqBikYs+IPrO9P1OzQFS2pIB/LMRDcYSv9KisIcIoiHIIDfk3FyAIOEABBi8MVaoWz6SBQexDxxlZE6tsQb4taQdiaokMOS0mF/qwEFOYMvtYuODvckyn9mu37O9V6bhbWtN//ptuXkbyBTarVky4W6+N5cwAYlh0ze9XYf/wXgJF1zaztwgkSNEUDy7Ion1SBwrFD4awoA+PzgxEEgOXAFhSCLyyEo6AOkQO1iDaGMPqv/8nq3CiDn7wKhwcffBBDhw7F8uXLrWUjRoyw/iaE4JFHHsGdd96JCy+8EADw3HPPoby8HM8//zyuvfbanLfJ9EPvTuXcsvuew8EbL4YSlRBrjXcZd5Bu9tusHqyENETr42g72ALf0Da4BB7x5rBh8hba0/lxbhYF470oPqYYRCcI1gTR9lUoo0lxsJLtYLMnbkhpj5MYlAseHq5CJ1x+J5w+FxxeF3iXAN7tROWv/97j43cHu5uPiSUcbP93yFyU4j61btJ0MByDkzd9mrTcLiL6gu5YjY42awPQtbUIMO4J8/edjz7q6tlhFmJbM2Faj1LkkoRftCaraHQNBbALAHD/Lz7F/4wNQ25Wk+oyrPBPaJ8QSRETprjQorpR6Epg4PQ7rPSZqRWV06WItAciAwBixoDXnDxIB8sznQaODla6Eo2mtQjomAEqtfiddRwz9kQn4ACrcCLvMiZhzGxHmqxaYsCwGuhQ4wqUqJSUOUmNy0nZy8x95YiUJD40xcigpEQMi4M5429ZjWQdTn/MKIgWl+GVZDgaGsEXF6PUvxcgBCQeBYnHobS0QmpqQehwM6RQHHJYhiqpllhQ45qVhcx0CbKLB7MOh9WPpsBKF+fYg/uKKAlxwiULF97Jg0tYeUzLAdGJVQQ0lVhT3HJlOu7t97Dj0oX4auliyyKhySqUiGLFJPB+GO5eBQFDNLjcIFZNGwFMoQNOUUTglke6fU4DGYZhehSvQGMccsRrr72GhQsX4uKLL8batWsxZMgQfO9738PVV18NANizZw9qa2tx5plnWvs4nU6ccsopWL9+fV6Ew4K9m7GqfBLeGjIZpx/a0um2dXd8E7qmQY1KiLdGEK4PIVJrWAVSLQEmqT7yQLtoMIOn5GYVTTtaoEnbwHAMgofDHUz4/mPcKBlTAk9ZIKkKb1iMILJX6rTd+c7Y4SjmIZY7QTQCJaJas4T5soh0lqnK2qaLnNr2ayL4OHhKRbgKRLgCYkI0OMAKPMof+EuOW58ZcwBlH2yb2S7sM6PmCyhTXQd7Jhk7ZiamfLsr2Ukd7KYTEkejaMiWgolehPZEMwbi5xszBaka1CzXqhX+CdCiOharO7oUh7piTI6M+fsKAMB7/x6CP/8fwRLtOex+7CCGzq/A+hnHQ44qkOqUtDFiqZ/tA14lYlhtiGb42JOUTDH2eAbzWOlib4jApH02mJ8ZgWm3WqTEtA22iRuz/fZnJCemL2LJ+zmrbpH5nLGCgW2DU3NQbX8WEZ0YFZt5zlYhW4caly2xkFprwcQqtmhDUzRDOChG6lS7K4hZhNL00U/N0iY3q5CLjOrhqqRBDschFnnhrG8CK/DQFRWqJEOXVaOaejiOSGPY8v036ju0V6y27hUkYhl043lsDzi2ziXFHc7s456+I7WYjlhManevNYOROSYpjkGV1IyiAWifuPhs4TxsPX+BUWk9IeRiLVFEGqOQ2mQoiVgEw4Kiwfvd+61jxFY8DQAQF13drXMYTLA9zKrUk30GK3kVDrt378YTTzyBW265BT/5yU/w0Ucf4aabboLT6cQ3v/lN1NbWAgDKy8uT9isvL8e+ffvSHlOSJEhS+8A5GAx2u112V5HOMPwqJUjBmOXrvm7SdIhDOgZGpzNRmpkQOGd7IJgZWKQrGqSQjLkbPsEK/4SkhwnnZuHwOYwHcVwBwzKWSRFA0ovcTmqGJ3vWJiA707pdEKUbjDuKeDh8RoCUrhFwDhaKaBRg0hIVdXPxYs2lhcF+HJZnwLt5eMt9EIu8ELwucIKRuYPlOgbs5YPX+XEZB8+pPsY6AEYlEJxcckYP20s0k2XBFBS59q3vDvbzpK5MXTN3wyfY/92Lsto2H6lRzZl/ohCEEMXbI6Z0SFVtr7GgK6RDO+zPmbdHTMHcmRX4ZEcTogfj4P2cNdDTonr7oBaZZ8EBWG5M4X2x7CYQeMaq2pwx6BPJtVhgZsQxffpF1spcYx/8dSd7Un9jZuxLzczDJYqdpT5PzOJ6qVllzCBYe6CwafkBjAJhsqJBlTgoMQW8k4ccjkPXEhYGWyE2XdGgqaZbjU082Hz07e5Hmqy3+/HbxIsmG9muzAF5e1ts4qE5DGmIbL1LY81GjIqVdlXSoElGkLAUktOmOLWTFCwutNcDYXnGuOcS+wkeIzVwaurZqD+W1OZM95G13BabpAS1pBgiVyCRVlbXoenoVDQAsJ4rRaNKrf3MfpHCMtS48bs8s24r3hoyOa1XxpEsGEwY1vjXk/2OFvIqHHRdx/HHH4/77rsPADB9+nRs3boVTzzxBL75zW9a26WaeAghGc0+999/P+655578NdrG0Mde6rAs1d3A9CPXZB1EUTqYLM1BtvkwNgKW+KQZlsAYD+SoYgUldTXbmKnmhH2QZroAmO0AACReIkDH3M8m9mws6XAGHNaA1Gg/a+Tx9iVeujG90xd2Z6RaFrJJaWsnG4HBCAx4FwdfVSEEjwiG54x7rRvZk3pLTwbT9hdn6kxgOsyCh/bP6WqZ9CXU0pCe0B9+BNbpgC7J8N3wKwx74uUeHSdT5eKeoCsEvJ/L6K5kBhOzyJym2mR33QGrXakJIMwBfCbRkDrTn+p6lFp8EEiTb76TPkm1eJguShzaU2Onuu/01OWkr2FtYsGcqTYK57FweJ0ZsxsB7YNK4+92i7ddUJgxALGWmDXA13VjUo9ljRgylmOS6jgQjViz+ekwn3P2IpFEIeCcnFFfQ04UjZTarQwm6axVABCvV9CstlqWFABJloSuxEK6bHvmOcKZyCblTo4/cLgFcE4evNOoIcG7jJiCaFMY4boQog3x9gQrGYqxmdhjyOyJV+SoAlbgrOu4/aLTO03mIRb7jZgRTbOC0M1ryyUEjikWuvLGoPSe+++/H//85z/xxRdfQBRFzJ07Fw8++CDGjUs/Jrj22mvx1FNP4eGHH8bNN9/ct41NIa/CobKyEhMnTkxaNmHCBLz8svFirKioAADU1taisrLS2qa+vr6DFcLkxz/+MW655RbrczAYxNChQ3Pd9KxJne01i4GdWbcVayZMSwz02ETwrQBXQIRY5EXVwy+g+ZfXIfjwDzBpyVwEfvi7nLYrVVx8dNIJAACOZ8EKHOSwhLbdkaRgRLt53koRm4DljaDH1Bkps+gPK7DWy8PuvpRtAKF9kJDJ7SjTw5UVjNmedNVg07khSCEZLXsaIBa6DRelhI8twzKo/dEVSftX/OqvWbU/l1iDKRjpJlmeaa+UmzIT+PG8OWBZxqqSa5I8M6eBaATvTD0OmqL1yHed0nu2X3Q6GJbB+P99EzsuXWgFiTq8Lgz/4ys9OmbqbH/hFC8AIHI4nmRZTTe459wsBB+H8uklUCUjIFUQhS5nLrtr5ehKzHQ665oxa10Ce9YjZF9dN906+zPILnDss/ZEIQM2KDpTbB0jGFZvM6bL4XHAW1EAXnRZtRA0RYUWlw0rQcK9KB404gpcficEt9NKHKGrRgyLEXsgI1IfgRxSrEGwiZmqFkiOP0m1zHcWT2E/ljVLnyaWpTO0qI5YVE7qJztdWbqsyuEJ4SV4BDi9Djh9LngrCiB4XGB4DrqsQo1JRqxAVEpUtdaNAnSJ9LAjn/lXl+3NRE8mXg7/4DIrC5Uz4AHr4MGxDqPIntOBgh/9HgAwvMetOvLoqxiHtWvX4vrrr8fMmTOhqiruvPNOnHnmmdi2bRs8Hk/Stq+++io+/PBDVFVVdbtd+SCvwuHEE0/Ejh3JN/uXX36J4cON23TkyJGoqKjAm2++ienTpwMAZFnG2rVr8eCDD6Y9ptPphNPpzGeze4XdWmCaJB1+HZ4SD8RCd+Lhy6LmtssBnSBW34Ihj76Y93bNevcDrJkwLckfNDXI25yftsz0tr9ZnoHT5wDvTL5l9MSebCLLd/vAVk34S2ePPf1fOjobYDBCsr9uqmCwLwNgFG+KKRBEod1PlOeSRERPisBkg91VKVNGIqseiOkqwWVuT6poaD+GZljCEmZ9c5aO0j8Ibid4l4C9V58PhmWse1AscGH7RacDgCUsukNnAwoz2DqdW5MWNYKEBVGAWOiBFIoj0hix1rf95ia07jyQUdSku3d7E1+Vi9is7uwr+Dk4ywXjuebiwbIMNFVHtCmG8M64tZ0W1bv1HOtr7MImKYtUYiAviEZArFjggqfUB1eBB2J5MViHAF1WILeGoMVlqHHF8PePyFCiChiOgdPngtMvwul3Q/C4oCkq5KCRGjXSGDbSd4YUq2ApkPzMTRfAnmrtttaho9XIXGcePxcWte4egyjEeg4znOE14PA44PSLcFeWQAj4wQg81GAIUmMLiB61EqnE2+LQFR2ugBMz1qzvdduzoe2hm0FUDZokQ/CIUCUZ0AkYnoPg9YD3ecEVBMAEChFd9yJU0Q//zEV90rbBQF+lY/3vf/+b9Hn58uUoKyvDhg0bMG/ePGv5oUOHcMMNN2DlypU455xzut2ufJBX4fCDH/wAc+fOxX333YdLLrkEH330EZ566ik89dRTAAyFdvPNN+O+++7DmDFjMGbMGNx3331wu934xje+kc+mJbHCPyGj+09PsL9IzSwlk159GwBQc+s3AJYBEqnmNFnNdJicY840r5kwDZ5SN3RFQ7gmZgVmm/EQgo+Ds9gBTjAKyghuAQzLwl3khhSKJxWSsVcnZjkjUJHh0uRK74LevhCIQtqDiDsRDWZWDDWmgmhGgRqOZ60iNmaGCjPgzD4zzLBs3lLOZfJX78xtLBOm/7Ea1xLuA8kzddkkBqDknoo5k8G4XICuQ21tw+H3tyF0OAwpKKeNXekNSdmKkNlKoKsEobownF4HlKiCaFMM6yZNx7ytGyEHwx1Eg/04b4jjcXbsC+sZN2xeFcQiL5p3N6JhU3NSymrOzcJRxHdwFzGLVpkueGYWm8iBeN5n9t3VLhQM88NbHoCrwAPOKUBqi6B+6+Ek4TCQYRPJHsw8/2btBNMdSPDwEAtFeEo8cJf44Sz0QfC6wRcEAJaF1hY0EoAkCqkRnRg1EEQBDq8LrgIPeNGohwAAaqzNyIYUk42g5XjXkxF20ZAu/S2QHFCcGjto1UfoQ/cwM9bMfK8QJeE2pRlB2aqUsLi0hqArKqDrkMNRyMEopGAM0eYopJARN5Ca7S7fsDwPwhm1MXSBByvw0CQZ4pAK8JVDoBWVI+4thuzwQuMcqBo3rU/bN9DprwJwbW1tAICioiJrma7ruOKKK3Dbbbf1eW2zzsircJg5cyZeeeUV/PjHP8a9996LkSNH4pFHHsHll19ubfOjH/0IsVgM3/ve96wCcKtWrerTGg6Lgts7DVjNltSXs+ljKrhs3cwyYBgWhNX7xNKQjvnbP8fOyxehaGw14s1BtOypR+POZsjNKhxFPPxVXhSOKIHTL0LwueEo8IOoGtRoDC07DyVeHApUqT3AzfRjzeS72ltSzfDpii7pKklbpChVNJi+qLpGAE2DJrfPJ5qBbExi1oEVDPcgc8Z/y3mnWqkDAViCsLtkc7+Z/qyMwCQCBDsGLQLtOdLN62DmF7eLBkr/EnvpIZDjTwGjxME110KLGNnZ5NZkF49cTGCYSRLsQceZLFtEIYg0RBFpiFrWSNPFqfTeP6c9PiswcBTxKJlchJ2XL8KoRcPg9Isov+wiEF5A0eZP4S76HDWbahHdKxkTEiILsdgJwSMkVZu1FwwDYBX1klsVq335ytRmjxFiOA6swyiWxQpcTuNF8oUp2JzFDvAuzirCBrQHIIsFLviHFMJbVQJHYQCsWwTjcBh5/zUNrMsFV1EADMMi3hKyjm1P0Wk+c5RIzMpAJEeMgGPexUGNqknZrUzSuY7al9utJJzItsfXoX3CxPy/P65F+3e2u/KqrAaGM+5NM6UsAEtIqJJqCPCGeL9Un29c9h0Ifq/hNqPrACHQFRWaooIvLYNSPhxxTwlkwQ2VdYAwLPbu+hIjRo/t87YOVHrqbWDuk5qwJxsvGUIIbrnlFpx00kmYPHmytfzBBx8Ez/O46aabut2efJL3ytGLFy/G4sWLM65nGAbLli3DsmXL8t2UTumtaFg9eioEP5fk/mPGOqTSH37zqYz5+wqE178KT3MtvF9+AbFwF5SoBFeBB77qUojDhhizoxwHaBpIPA4uFIZY1AYpGDOyZSg6iN4+6LYXxOlsdqm72NMJMrZZoHRCwXzxpPrI2kVDaiEds+0AoGmJwbq1XmmfDbZl/TBn9dfPOL7H6U6zFQ9q0Eg7mFohNFUopIq31FSBZlpgwKhenW12MUrvEb9+C+L/+j2gadBDQSitQcRaY1BCmjWzno/gcVM8pGJOarirXZCaZKsdnRVZfEMcD1ZgUHlSKYaeOA6eSRPAuESQeAwgOphgC9QD+1H38Xa0HWozCoSJRrQOyzNWfn4kLHq8k0sS4WawJtHaB5aGA6RBLgePukIQORyHHFIQqgnDVdAIQRSgShpCh8MDWjSYz0NHEQ/Bw8Ph4SG4BQii8c+seqzEZHACB3dpAdyjRwFFJWAUGdA0gOPA8DxYTQNXXAShqRm6sgexZqNwWiymQFfDEEQBvsoCuASjYrdZ+dlTYqRcjQclSCEZiBltS3rm257BqelSrXOxBW5zDhYaqwPQoCkkSTz0J/aAZMB4rqpxDVxINgLDbdmfNEmDEtL67dl68P0vUTiiGLzLYRXOizaFoUoqXMUFcIke8E4PZMENnUlk1iID2RFv8JEac3v33Xd3Ob694YYbsGnTJrz77rvWsg0bNuDRRx/Fp59+OuBqRORdOBzJvD9rpjVo4928lUM8XWakvVefjxFPv9pnxcWyob58MgK+Unh0DSUA1FAEriEVwITpgCoDqgLIcTDxmOEj6ZThDHiTZgeNmRbjwQnAenh218UmU650+3L7/0QhSQNhE6teBpCUbpETmKR0puksI1a6QI0AnRT5NbN9mMF6PS3alW12JVM8cIKWcB+DJRjSZSgxBYOZZzxThVwqHvoW19duRPjx28GVlcNZUQpfhR/qVA1Nm9qs+whAUoG0npIaWGxaIQQ/h4JxXhSOKELhmCoIXo8VINkVZ8e+wHvTZ6BgWBHEIRVgRA+ga4AsQ21pQduOPWg70Iy2A22Q2mQIHh7uMhc4BwcpKEOJG2k5PaWG64zgdiLWHEY8KCVV59UUPckKYwXPIrfiQW5SITepiAkyODHaZUa5gYA9Hae3UoSn1GM9jzmBNQp2uZ1gWMYK0FVjEtSmJnCqAl3TwIoitBEToLq84ONh8PX7QTQNvOiEq8ADJSoZhdMAODxOOAs88AyrhBqOQGoOQg5FocZlKFE5YZllAXR85uuJegDmc9r+DLKnmmZUAs6ZSMOaKKZm/hsodTPs4sEoIKglv69s6dhz6fbcXeo/a0KoJgxOYI2q10GjzgUAMOwmVLWG4J/WBGHEBMR85SidfEK/tXWgwjLGv57sBwAHDhyA3++3lndlbbjxxhvx2muvYd26daiurraWv/POO6ivr8ewYcOsZZqm4dZbb8UjjzyCvXv3dr+ROYIhhPT/r7IXBINBBAIBtLW1JV2sfGC+fN0jnOAEwwc+NauS6R88mPjWzxswYVIxzpt6EMM+eQHRHTsRuvw2aAyPwtABuNpqwIZaQdpaoNTXG8VzojHEm9rQuq8RbQeCiLfISS8G86Gfmn4xFdPtgfdzEFy8NZuvyTrkVsWqlJ0aOJmuKJw9OC9dsGAqqQOETKb11OMnpfDL8qXW23oGnhFOeKs8EAtcEEQjE5SuGgV6zEJJpplckzv6htstEqlpXM0BmxIxAtpp/EPusFcH5/2cET+USGmsycbMpRJR4a0UUTCsEJ4yPzRZRe2mQz2uvfGGOB7iEAcCw33QFB2Nn7XCUcTDVehAwfACOH0utB1ogRxVMOejj5P2XT16KjgnB2+FG9WzR6Psvudw6PuXGm4YcdmYyY4ag3yWY8A5eHAO43cbbQpDianwVfjhKnDDWeiDWFEKzu/HwRXvIt4WA8MaAbdFY6vhGlKB2MEaNO84iJa9zZAjqiXKpTqlgxuLFjMK09l/o5xopP3kXRzcJW4rAxDDMtBkFVIojsadzZDqlC6fRQMN+zOOE43YM97Nw13kgqfUA1eBB06/G0pUQqS+DfGgBE5gIRa6jRo1HhFqLJEelefACjwEnxvi8KFYN/mH+Pf/xbFx9WcoGVqBR29hUPbO86hdtwGRhpCVUcnhccBX4Yd/aClYgUekthmR+jZEm6KIt0mQQwri9Uq3n4eZznUgiIRc0F+pp1cWGVksUxOfmJj9zPs5eKpcGWsANf/yusRxJNR8uhtT31ibk/b15Xitu5htu/3JRjjF7rdNigXx4HUlWZ8bIQQ33ngjXnnlFaxZswZjxoxJWt/U1ISampqkZQsXLsQVV1yBq666KmPa1r6AWhy6wF7oyJz9nr/9c6yZMA0nb+qY1nKwiQYA2LPpK8TCcVSXVaN0wgkovuxH+GxTDDxL4HDHIEghMLEI4HAYPrKSDKLrYFjWKKAjd/Sj50QWhO+YuSkVRmDA+zk43IIVHJmOTBVlzcF+0syUQoyaFUAHcznQRcBxSjXZpO/sgWBIR08Kd7lLXSgcXgR3iQ+sIFj+lLpmDIaIqiWlSTSznhjuZO1tZVgGLr+z3d1KJ1CiCuSoAk3SMma0omRPpmubPMPdnrXMW22IhsJjKuAsKYQuK1Bs6SO7y9mxL7B+xvGJGAJg2GlViLfGEG2OI3g4CKcvDk01LFXvz5oJ3sUbBbwiquUywjuNoog1t11uFJiyVf41i3pxHgd81cUQPCJiDa0Iba01gmUVDfG2KPyqDqklZPjT6yThCmRUqW3ZdRhic9C4VxMFw+x1R8xJBIZjwDk4cIm0oXLUMAWyiew2gttwzeEE1gjkdRlxCuYsvFikgBM4hIrDaN0ZgtzUd8koeoMZvyD4OCsNKC8aQcu+Cj+8lUUQfG4QTYMal8HyHIiuQ4lqcAUInIU+uIcNAQiBFo5AV4xYBdblAuPzY2+9AxtXG3VdGg/U4vG3Z+HeimJEm8II1YQRa5LA8gzUgNFfZiXoSGMEsZYYlIgKuVVJcrXrDUeKYDBJfQakxhjlS1iIlU7DlSqopb029ninzii680nr79Kct3Jgw7A9K+vU3QJw119/PZ5//nn861//gs/nswoiBwIBiKKI4uJiFBcXJ+0jCAIqKir6VTQAVDikxT5LCKR3HTiScuFPnz8FE8e5MbG8AXyb4axa5W5GSHUjwvrh8pTAEw+DjYbAOhyGwTYSRbw1AikYh67r1kAIaLcCEL7zl4Hg5+Ao4uH0OeD0OUA0AikkGz6jup6Vy0AmC4HdFJ7Opakr0m3fF2bzTEHgYqGIwtFVcBQGwNiLNjGs8ZlhwCQqX+txCUprG+o+3YlYaxy6kjBVc4ZvuSAK1sDKEIDG95m+yqvKjewN1I0pP6Q+T9ZMmIZgTRCqpMLpa4TgdoBhmR7Fz6zwTwAnsnCVOBBtjELwCCga5YMSU6ApGhweI4CWd/LQPYnq9JJqiH+NGD7aERWaHATL7+lwfPO+MWsBuCtLjZSeYSMLESewiLdJ0FQdnNCGUF0YDMtYaY81RYcmqQhKrQjXh6zvBwDeyVl++sZAOCH0E7EPukbg9DsNP3snD5ZvT6PMsAwEt9MI6jV9BnQClucgFnnB8ob4aNkZtKyYAwF7/JaJaWFw+AW4CpxW3wmiUQvAXeKHI+AB7xahSTKcAQ84B2+lTfVUl0OorAQChWA0DUxDLZSmZqgxCQ6XC2A5lBdqGHv8eHz5yRcoGVqBK05rQ/R/tqLtQBCxeslyu9FihlUs1hID5+CgRBSrZkNqxeYjne7UCEnFjGczJ41ykYwlHaXji6EpGkK1YUQOxZLeWbQA58DiiSeeAADMnz8/afny5ctx5ZVX9n2DugEVDimYBdxM+tNfsa946HoPvth1AMXxQwAxXhj7wqVoaBMAFGBESSEmBSS4WxtACDFSycoKIg0hI0hM4AAh2QVG1wi0LrKfm/2sxjUQTbJclABYKfgy0VkQJ5BcByFVBNgDRrMVFL0VDam57tNVv2V5w22Lc3JJlaJ5kUfhyFKII4eB9frapzaIbgSvMyyI4AB4AWA5cIoMrrUJvtomAM2IByXoqmZLN2vPzsRamWQ4gQMRCZDwL6cxELkl9Z417wlHMQ8tFka8VYLTbxSKzIaWB65H5FA9Gr+ss2aEOZGFFtMRORBPuOvFEamNGrOPMR1ys4pYkQRO4CwREWuKW9mdzAGjKmqoizQaA1i3UeuAc/JgOWO9EiNQpUZE6oOQQnG0HQzBV+lF0ahS8C7BSu+pawRSKI5oY9T6fTMckwjobY814gSjSKZYaLjgsA7eyEWfsKCZ6Z/NSrf2Wivm36miwbTAxVsjVhCvGR9gTxXbV6RefyaRStVRICTcrXgrk5u9T0zXK8AQbmpcBtMWgRaTAJaB4PcaLmE+L5ghwxAvGwkVLJzhBrAHdkENhqCEoyC6Ds7jhlI2DEVuCZdfEEB88VyUuKMYfeB1tDYbosFek8H03Y8LclKswkCKP+gr7C6zQPcrtffERbW7THj5LXy1dDFUSUO8Werw/VQ8dA2DHhaAQ/f26UmUQH/GNdihwiHBO1OPgxpVwYksFh6FPt7jRw/Fys/K0BBz4Ku/K7j7cgcA4OTz38UJZx2HEaeVgN+9G7G6JuulDgC8i0vrUw+tazclohAoIcOkmjrjlk0avg5VUrtRN8LaJwtrRC5ekHbfUnMw/vaIKUn1LjiBg6dUtGZdnX634cdc5Id74kQQXwA6nzKoNEUEw4CwxoCD4QWwugp3RTHUuJFvXYm1u3eY1WKttiUyTXECC01gwKiJNJ4DOEh0IJPJFc03xg1vuafDcjWoQQ0aA3uiEUhB2cgsxBlWB5NU60PLjv2INoURPBiC3KpYvxtxiAOCi4cSVxE7JCe555iFH1megeznwIksYofkNO4muhVXIDerUEs0iMWuhLWCgxyU0PJVFM6AA/4hPriLXIYbzfAKCH4vtGgMcjAMp19EvDWCIN8GJWa4Gbn8Tsvypasa5IhsVeF1+NzgRMOqoMtGYK8mGak/TWGgJ8QEALA8C84hgHMK4D0iiKpBicQhR6OQw3EoUQmhujCUSHLsDyMwaatS5wPTqsCJrGWZJQqBWOaEw+eAr9wLd4kfrkIvBJ8HDMdBVxRoicJdgGF1ibeEE7EmSvtEgIMHL7rAOB1gi0sRKxuJJt8IAEAxdAgtHyOyvwbx1gicfhFaJApWlTGW3YFAzWYwsQhIOIj43v2I1LdZbba7fQ6uyJD8YoqHgSyYGDbxPHdy1n2eT8Hw2UKjWNmxK9fl7Tv6EobtvtuRud/RwhEtHLZfdDomvPwWtl90enuqSr3d53vK62usbfu6SMtAZOGxTpx4rhEEdfflpwAA3nn1JKz6XELpjrUINjQbaRTdIjjRhaHzvAgfqEPLngaE64yKs6ZLgT2bQyZ0lVgxBeaWLM9Yqf2A7MVAd4rNmdubs2p28ZBL07tZTE8sc4IVWLAcYwW8frrgRBSNKbBmEjnBcL/wVRXCGfDCURSAUFwE1l8A4vFCd3lAWA6EE4z/E/8AgEnMXOhsuwsTJ/rhGh2GJhkVYc2CTmblct0WE6HGFev3YfYBFQ09J51oEPwcAtU+iIVua5k5ADEHI6alwBxcsrwR/8OyLJz+ZMFoupMBhjuJOfB3FPPgBA5ikQsOxXAlkZtVY+Y4qlvZlkji9yJ4eLA8kzQ4NO9b3s+1JxzgGGu2313shSAK8Ff6UD5jLDjRhXhdIzjRBUdxoeH+xnHgnA5E61qgySq8ZT4ED7dCEAW4i73GgNclwFNVCkd5KbiCQhDNyNBEZAl6XIIuy+BEGbqiWMcjmlERV7NVw+WcDnBuEcLEKQDRoe/bjaZPtyNUG0S8LQ41nv+hbzo3FtYmFpzFDjj9jqQUtN4yL7xVRfAOrYQwdBi0smpInmIQhgGvxOCKtoINtoC0tUCPRgAcgBKJW0HqRFdBdB2O0mKwgQIQhwucEodbDUJnOHBKHLHaBkTq2xBriSBU04rgwSYIH2+DuyyANoYFITrUqIR4awTh+nC3n6NHIwNZNABArCWKeFCCEumbeJ5jV67DZwvn4bOF8zKKhy3nnYrJr63uk/b0FpZhwPbA4tCTfQYrR5xw2H7R6R2WTXj5rX5oyeDkvX+fYokHkzOnOdH06kaoMQmukgLwbhGsW4RQXARHWQncZYex+YWPLJ9X0+Uh0wO2sxmbdG5FdrozsO8so1JqjvBcvgzMAYN3uAj/EB8CQ4shuJ0guo7DP7gMDM+h8rgRAACGMQeJLDjRBXHYEEMseP3Q3X7IDhE61z5oJCwHyelH1BGAREQQMGChgWV0MCAgYKATFgwI3AXDERg5GVXNh4BgKyBJIJoKPRyGrqggijGjKwfDYPkgmnY2WzPfgNH3tMp0btBVkpSZxJ7CF0hOn2rWU2AEBs5iB8omlGLciysz7mtHi+mI1UlWdiIlZGQh4mwJBNhEQgKWZyB4eOjlepK7nD2vPlzGcVmBBcez4J0cXAUeuMsCEDwihIAfjNMBkeOghsKI7DEGt85CH1iBR6w5DDkio3RSNQS3I5GBiQXr4OEqCsA143io/lLE3YXQWR4OKQhH82EwB/aAURTDVc8tgnW5wLqcYBxOgOggigJdTtQkAMCKIt4rvwx1bU7MOe0rlESfQNOu+rwVpDRJF6MAAIxgFL3zVLmMjE/FbrgCIjgHb8VveMoL4Js+FaGJJ2MzMwF1YTd0CSjzxuATY/AWhuEtbYYnVAe+uQauaAxMUwsYlknElLDgXQ4wDocR4yRFwceCEAUXGKJDaKlB7c7DaDvUBjlkpMM1n9GOAgGuQic4noWuE6hxFUpEhRrUjqq4hZ5g/n4A9IvLW1fEW2OGhS1xrfvCPakza4MpGraevwBhZeAnJ+ivytGDiSNOOFCR0Hve+/cpHZZFapuN2cbJkwyfeikOSHHo4QjChxsR3hnP+vh6ygBJVwgEPwdnuWD42SeCNM1c7uaLrIMY6eKBrcGY6e3w/YnZ13xgvlS81SKGHD8UYrEfnOgCKxgDBjaRmcqetoFhGDCCALhE6OVDIYt+qLwLOu+AyjmgsQJkToTCOBDV3NjTWoRNO3Xs3dUMhmVRUBSA3+9AIMDBIzJw8IBTIBheFEGkwI+AtxyeUA2EYKMR4O71geg6oMjgw2FA1xE+3Ix5WzdaKYc5kQXLM1Q09IBsXtRdiWpTSIT3xnDyppXYvHg+WJ5D8+6WpH05N2tZzDiRhRrUIJQZWXicPhG+Y/3gHDzibTFjdtrjtOIFgjUhQwy4eIgFGhjOCMB1F7nh9ItgeQ6arCLaFIYUiht54SMyQoebARjWRX7nIQSGl0GsKofUEsLhDbsRqC5E0ZwZiE46EcNOPgiyYzPYYyagrXI83OF6CF9+BpRXobV6GvaxQ9AU9yIkCSgUZVQWNKDY4QH7yUfY/tJHCB+MoWRyAY5ZNAPynLOwR5yCIfpe+Ou+ABeLAG0tILEoyNipuPvODwEAH59xHO5ccDHGOByoXb8Ju1ftTbKidcf10MxuBHQcJNotCo4CwchG5eLAO3k4/U64i73wVhYlV8WOxCAFY1CiEniXAJ+moc1Vhv21HnicOqYGdqGoZbdhTSQ6GF0Do2sgbi8YjoMWVxA63IJgTRC6osHpdyHWHLZS4hKdGJZFnxtxWYUckYwq0nJ7ph2iEMTrFAQRzaoPKAacmzXSHFf7UTCsCETXcWjDIcTqpKyydS1Wd1jJC7SYjjfE8Tmp2WKybtJ0cA4WxaOLMGPN+pwdt7eYloZJr75tVFUOBPq5RZTecsQJB0r+YFgG8t69STPVbXvr0bCjqcfHTBoEJWpj6EgUbgu112XoaZyBffY8H9YFE/vMIyeylmuHrupgNQ1IzDKSxAxpavAV0XUwAAgnQGc5EI4HAQPCcJA5EUESQExxIqoasScCz6C1IYj6fYcBAJWjh2LkuApUVbnAexkIPIFPiMCFGBiiW25NqeiSjOK7n0Yxkl1sdJUg/R6U3pKata0robFmwjQILh66RhCrS+TlTwhUM7c/7zJ+O227I4alwudA8ZgylM6ZBtbnR3DD5+BFJ9zHjABRFDR/uhWaosM/pBByOI62gy3gnTwKhpfAW10KJRSFGpNAdB1SKG4EFjsMUd+8uwWxJglEIQgc40PxxOHg/D7EmnaAYVnE22Jo3fA5/KEglLYgWnbsR1E0Bj/LgGmogdbWCq5yGMRoI4q9AjyeCJqEQhQKbahs2gpGU8CNHAGn7zPIRQpKx1fCcdxsvMfOxsrVOkYMm46Lh6vwHdgMqAq0UBjsjs/x2G9vQAnq4P/Pz7Dr+x9BCsmIN2c3qMsEUQhYX7uQVhJFzew1YxiBsUSD4Bbg9LkgFroRGFEB3iNCbg1BlWRocRlSMIZYSwTR5hgiDRGw/AZUswwqq8eAiatgd+2GWl8Pzi0akwkMk4j3kBE9WItIXQukUNxKn6vJUSgxBWzC5VFTdXA8C4fXYVXCtsPyDE253Au0mJ4I9E+kI4+q3bLQEIVAg56XwHIzzmn8/76Z0+MebVCLQ9dQ4UDJimFPvAwA2Lx4PpSYAqIZaRSjDXHEDvU85zyAlEwVRt1nOdie4aU3JNV2yBOp7gpEIVDjRvyAKRSIrhsBzISAyDIYUTTcLgAjEwwvgHG5QXgHdFYAYVhonACFcyICLw6HCxCVObAMwDAEJUUcqo8pt4RDza4D4AUegUAVfnAeD4ADUIG2DZvAaiq4eAiQ44CqwnXhzZ2ej64YlbYBI4AbABbs3ZzzfjtaOTv2RcYMJ6/z4+Af58a8rRutvpebVUi8Ame5AN9wNyJ8DEpIM9zhqjzwV/rh8LrA8iw8pa3wDylC6WlzgYJiKAXlYFvrEDrUhMDIchBNg9LSCjkcR+nEaogVpdj/fxuhKTrKJ1eg+PRTQMJBtPz3XbjLAmBkFYIoWMHaDo8DTr8TalxDvFGGrmgI7q2F1BxEvDUC3mnMuMebw5A+2oJQTSvqtzShaWc9SrbtNgKcAfBfHTBibKIS/MV+VC84DUphJZiN70KPS5Dnfw0T7yoHObQPbGk59gybj5pDTpSW6igv0iFGGkHqDkE6XIt4cxtijUF4V1+Jhtogtm1qtsRCphip7gS4mhmpzCxIJqaVxyxAJ7gFODwO45/XBbAs5GAY4RrDQmMWpIu1xhFvkcBwDFr3NYJ1fAb3wUNgGAaxthCidS1GalnBsCLoqg41FkfbgWZEm6NJbkeAkZXOzMJmxioZQo9NPId0KBHVqsZM6RlaVIekGEVJg19FDRHWzXdUuoruuXAloi6luYNlGUuId3e/owUqHCjdovGL5qSUfLny8WQEJuFe4YASNQKr8+VOlGtSfZx11QgOl8NxuAo8hmiwVurg/H6guAzE44fOOw1rAMtB4x3QBBE6w0FnOUi8B60oQlPMh331AngOKPDqKHQrKKqSUF7oRlvLWHy18UuwHIeSigCGVnL4fGc9RrZuANa/BT0WByO6oDsMSwWyfLiZ19d0qKKpWXNL6mDhDXE8GIGBWO1AwXA/Ik/fhSEzK9C0y6h6rANwuAW4AkbQQeRQDO4yF9xFbqNKc8ALQnQMnzIGzHFzUV86Hr5IHcAwcCgSgodbEaoNwrV1PwpGlaPqgrMQGjUD/OerEW+Nwel1wDeqGrUTTkdJw3Y4/RtAVA2cg4crIFoZkdzFXhRPOQaBoQfRdqAJkYYI9qzebQ2sHX4BgWofAECVVITrI5CbVUT9xsBXCsuIt0pwFThROLwInINH6FATtDf+C8EjonH7AbA8h9L5X8OBkfMxVH0Lev1hFI04jMmVTiwq3glP3S7oe75EZO9BxFtCiDWHEaoJIlQXgRrUkiwMqa5FfCKTlBU03sWzyxzoaTBcVRxDjN8RUYhVI8Y4tlFPghM4q+CdGomBdfBweF2QglEoUQlSKG74nycsAeG6EHRVg/Ngk1XtWokpVppZwHBxUiUNocNhK22usbzd9cqsrm2iKRpIW3tgvLldap9QukdSLFI39stnnMGXS86Cf6Q3b8c/2qAWh66hwoHSLU7dtQmAUWgqV+ZWXTEESLzZyLVuxjZ0henfraRkb+qrdHmmj7OZF97ENEfHWmNwl8hwBDyJXPMsWJcLqKhGrGQE2rxViMALVU+4JYGBlwvDo7aBAUEQBaiLBnCwyYGWNh1eD4vKIh3FrjBKSQ18qMGcSwuhL/EiLvgQRxABdQ98DXvBHdyJhi/2It4awdh//LfT81hZNLFDHwKGWZ7YBNEK/4Sjoq5JX7GqfBIEHwe5WbUGflpMR6gmjLr1n6PtYBti9ZJVk6R1WxghMWoJVZZjEnUKovBWl4HlOVz0wWX40byJOP6V28C5nOArK6HU1SFcGwXnYBFrjkEKy9DiayCWbULD4UZIIRmhugiw8hMMCYYhJ2oiqHHFSt2rShqIpkMOxyE3t4F3OeCrLIAgOsBwbWjdGYLarEJuViEHFbgKHXD4jEG2q8woZOYp9cEVUFE0kkf5CVPAlZYismUb3MOrcXDeVfj9a4Vg5gEXLOAx7PALGLZvM+pX/B9qPjuAkrEfYtS00YjXN6OhLQI5HDcG4TEFUjCOWKtkPTey+f33NHsQy7JWcUotpkNVCBhBg+AxXqVsosiiEpWMlLMsY8Q2RGXEgxLirZJRpT3R1rAagxRUwDlC0DViBbVziVoO5mdT6GRKOqEnRIx5b5gJKtL9rin9j72SdG+tDkPOmI2x37onV02jULqECgdKjzAHkLkqaqMrBJG9kuVa0NWLnXMbs4ZKP1glWMEo1OYsdoB3cYY7QBqTtRI1imDxostImej1gfEHEC8aAskVQARetEg+RBUjaxLP6ih0N8MTqQdDdBzwDEddqwONLToYBhB4gGMJ3FwUhQe2IPLWm1BCUbhKCuCrLANXVgHwPKAaLlKC1wU13rUbWbq229N22jPuUMtD7rAPBs3MRwAQORzHnpa9kOoUa1vdmi3WLNe4cE0MsVYJYoET/upieEdW47d3V+GY9b/C+kdXw1EgoGJqOQrHVKFwZMAoCtUWR6gmjNb9bXC4BePelTTE6xXU1DWgeU8rBFe76w3v5BFpjCJyKAZdJYg2xBFtjsJd5IbD60JgeBkKRpajcHgDdq/YZ2R1OmiIf1QZbeecHNjEbLrD64KzwAOpsRnagcPwz5yB6Khj8fSbpfj0/z5OnO10nFDVAqWuDmKxH06/C/vf24+2gy2It0rQFD1pQJ16/9qzSNn7T1cI5CbV6r+eTC4oEdX6TtPyyqgM4s0SHL72CtemlVEKGvUkos1RxFslSG2y5fpkHic1bbVus2TYJ1AyTdQQhUBVtCTLpz2pBGXgkgtLhIeKhpzCMlkb5jvsd7RAhQOlV2QqdtVTzBcjC8A7xoWSMUWINEQQbYhDCRmFsjiRhbNcQOyQDE5g4D/GDV0jaNsWSTpGrhH8HMRKJzylIlwFIliOQfBwENGDcegqgatMQGC4D06fC0TXERhajJL5c7Dz2P+HD/aWoalFBxMBTnWHUCo0IqA1o0BogouE4G7aB/LlFnz1yjvghpeg9IJzwHhmoiUEtLWp2LnlMOJRCS63ExOnV+PyuXNRUfEZHAVxcB4PiKZB2rXTKsxHNA280wGxyJf2XNZNmo55WzcCQNrMHuY1TfLJdbMQxKOoyk2eWdi8DUCir5X2TF+swHQa0KsrBEIig5LcbBR5a9v9OYDPMWztRpAzZ2PufZdAaWhE8/Z9hqWL50BiCpw+B0rG+BGqDSLWHEe8UUZglAfxekOkRPdKAAwrB+dmrTaZ937RMQWonDkWrbsOoemrRrTub0bhiBK4CjwomhxArCmO4I4otJgOV8CJguFFYFgGtZtqEKqrga/cg4LhRVCjRpB3y7sfwLVjB34+cTNC98+Axjnga34L+3+3Ck27miBHFfirvBg6ZygEtwPx1igav2yEomhWliDAqJjtKOKNYGYzy1QRC7HYCc7BIlwTg9ystg++e5JoIaojFpWta2SmtiUKQbxeSViOJGsAzwiMZaEw0xynywyXzibQHTsBLdY2cMkkDHprZYguXwb3Vct6vD8lM2ZF+p7sd7RAhQNlQGLmyW7Y1gRGYOCpcCMYCydmDrUkE3y8xZjh9IxwQglpvcqi0hmMwFguCYfer7XS6gGwBgpmcGS8LYaCCaMQHTcbtdECNLfqOLA/hGgojhMneiEiDGe8Da5gLZgDuxHZ+RUaNu9F/edNKDqmDOGqidhRV4CGJgWKosNf5AUn8OA4Y+DOgIAvLIQWDoF1uRDbewByMAJW4MF7RACGbzQA7Lv2Agz/4yvWebwz9Tjout7tgLp0s7uU3mN3WzDd7zgR1j1uT7lqDnwtP3dbamPBz6F4XDW44hIQ0QN17wE0f9WA+m01CNfEjNlxgTGqU4dksAILb7WIYXNHo2JqDHI4jnhbDMFDIcTqJVTOLE+kFhXhG1YOXZLhLC0Cd9wJKC/+BJxjB5SoBFeBUe145GmTEGtoRcvwBsSDEjgnD8HthCariDVJ1sBdjirwVXjhLvbCGfBAKAxALRmCWucIxHUnKksdcBW4wXDNEFw8xALRqABdG7T8/50+BwA56ffHsiw0tA/QiUIg8cZAP7W/eku7Bah90E6EjsGyZhE9+7WjHB10JQx6Kh627TqMkZ6OFegpuYHGOHQNFQ6UAYka1JICr2OH5LTB0qzAWAMSLaYbWU78XNKgK1cvbDWoIbTPyKZhFyfeMS6IBU7oGoESU+Eu5lE4shT82PHYK46G1MahpJBFLOZG1OsAw2iQORcEPgboGrRwCGpUguB2onJmOQqnT8Tn7CTsPqiCZYCh1S5ccVob4roXLlbC8Lb/A//uh1BDYfATpyFaMhzRjx6BEpXgrSwCK/DgnA7okgxd06CrOjbMn4tocxycwIITDPGhCXpG16O+KBpESWaxugOrR0+1UgebcQ8sz4BzckaKX41AblWSAns5N4vqeeUYdeEp0KMxNLz9Lhq/rEPocBixGilpllvwcwjVReApdWPIjOEQPCKIrsNb4DPSLbdF4ClthVjih2/UMLAuJ9TJsyGEmkH27UTNvG+iSSnEpKkMyrxeowAby4IoCsCyhnB1OxHc34jGLxsRPBgCwzGW25UW0zHno4/x0UknQJU0iEU+cB4PIv5yNEp+SCoPl6cEU/74CoYDaHngenCiCy3bdqNxZzOkJtnqF9PNCzBEvSZplhuQOcEAwCp2R3gGJGEpSL2/c2E1TfeMMd2QqGA4uujs+dldK33DXVdBDkUx5NEXAQATR1cBo2/rdRsp6aGuSl1DhQOl1+TaXQno+KK1iwYzKBkwBgWCh4cmGW4bYrkTvItDtD4Oh1+AphjLc2GFMH2kU9tRPrEUrgIPlKhkFWFiWBaMFEeFtBeKX4COAKJxAS4Xh4MtDELuUfA5JQwbUoDSeAzuaAyukgK4JkyAUjYMRY5WzBhfAbdDg4uTMHr/m9BEH7hIK5QtnyNY0whPdTnQVAt3zX4E4wpKpo4GIwhgnQ6woghNkkF0PZGm02Ok0ZQ0Y9Y2riaq6g78Sp5HE6fu2oS9V58PKRhD26E2AIYJnHfyEETeCEZmGbTsbUbrjjA4kcWwedWouum7+Ld+Ls5461rsX78HbV9EOvyGzGJmLGsUemMSqVFrP9tr1B4o8hpZfaIyXKqGmnc/A8OyqIhLiNY3gnUIcGpRvPflCFSNHw/XW/+FGpUQmD4JbHEZGla8hXBtK6JNUUQaYog3ykkz/azQXlBw1rsfAADq7vgmGJ8fjlgrpnPr4WypgXjsFVabXUOrIR06jKZd9QjvjQEw0tOaxzQxvyfVFciMHzHpzC0vH1DBQElHdyZm4i2hPLaEQuk+VDhQ+hTBz2XMDJItxr7GQEGsdFopCpWghrZtEWtAb8725cO9RvBzGHJSOQTRgcDwMgSOnwoUlQG1B40NXCKC738I584vMX7GCagPXAhZYSFJOg7UcdijcnA6PDhYOg4TjynCkCHjAUIQYnlwmoyK4A6UCvsgNh9EqPQYaLu2gxVFKE3NiByuBy86wQgCDr76FhxeF4omjQTrcoF1OcF4PGAEJ1iHMThkeQ6C2wnOwYMTFCu1phnjQBlYlFx1JfjGQ2h5Zz3izWEQXQfvchjXz+mA4HOjePxQ1JTughSU4CkzKrFOLa/Ftpc3ILQz2iENqYkZbHvsynXYfdW5iLVE0fRlCzwVbhBdh7+6GAWjh4BzORFtDBmVj3kOrqFVYN0exHUVikLQiHKMLi+F0hY0KsmHg9BkFeGGCFp2BK1YJCBRRE1g0g7anZd8Ey3uEqisAG+0Hg0vvYrgo3/GMTd/B2TfTkT27EfT9gNo+SponAvPAGny59sLa9mxu3XZM4L1VCz0VcY2yuCls7gGzs1iZdFEK74pE58uOBEMy0IQeavyMqVvoK5KXUOFA6XXdOclnIv0gIGJHhSNKsT+/zuMyIG4NVgwB0immwLnNgImc5mSUPBzcJYLcPocUCUNTh8L7zFDoVeNBLt3B8CwQFEJ1MIK+ApLQXgB4ZJRkGIsOA4IBDi4XQwiUUAnQGuYwZdcCVp9Xoi8jLqwF8f6dqD4sxXQ29oQr2+Ef+whyJEolJY28G4RnqoycF4PWFFEyZRRkJqDcI6fAOLygom0gfBGATnOZRSYI7ptEMlzmLnu/Zz1ByX3bC8+BUOK98O3dw8c3jYQksjDrxpFBXVJRuhQIxp3NoMoBL7KNhTt3oYRShyHm+QkF6bAGA+85R4cerfecNdRCOKNht//wY8OQm5tz9zE8hycRQG4RgwDURSUTjsGjuNmQxcc4BproNbWwP/OS7h0vgutKIJ00mKITfuAWAR6zUHwLgEuvxPeahHR2rgVZ2BaG9Lx8JZ5qDkUwtb1W+AvKcbDdz6CyaOHAgD2Xn0+GnbUIbg/DKnOqIorVhoWRalNRuyQnBRrwCL9DH+uUghbhR4Tn6mAoKTSlYvSyqKJAIy6LemE9MYzTrb+nv7mO7lvIKVLGBZge5ADhDmK8oYwxHwrDVKCwSACgQDa2trg9/v7uzlHJa/z46wUpUXjA9AUHY2ftea1gJs944udXM8ImoGpznIBI+eNQrQxZASLDi1FtK4FnINH8TlnIVJtvBAcsVbsCsxCEduErcGRKHTFMUH+BLLDi/Xh4xCVWBT7FBSLEQT4IFoVP8KKCxxD0Bp3YLi/BaOb1kPyFMOzfwua314DNW4M7srOOBnhsbPBqXG4GvcDDAtxwRUd2tzymTFD5Wyrg/uUy3LWF5SeEXvrOeiiDzongI+0IvLOWmz43fqMs47R5+4FW1BoKEvBAcILQGsT4nv2InywHpH6NuxZeTDp/ufcrFUTItWHf1X5pIyueovVHXh/1kz4KrzwlgfgqSyCd+wxYDw+HHp1FeJtMYTrQlDjGpS4EUs0ZGYVfNXFcBb4wDkdCB+ogxSMGkHQLVHUbmjs8H25iJn5dMGJAIyqyJFDMetczcJuheP8aPi4Je3vP1OV7mxJstpQwUCxke29/faIKRA8POKNshW/Z967BWN8mPXuB3hv+gycuHFDnlvcfwzk8ZrZtl/9bytEd/fbFosG8aOLCwbkueUaanGg5AQ9kTmk+Yu2jBVZOXciKDcHgiLTMXL1UmcFBt5RIpx+AZ5SDzylfhSMGw6HvwGCR4Q4pALhQ00gugJtzy54OA6fVV+IsqJGROJOOJw+BFxxlDsbgNdegn/WXHx+6Fh8sfkQRk8ox9fmAl61FV6mFR65DqrgBsfG4fxqD+pHn4yyjf+GMnwCiubNhVpfi+i+Q4hs3Q5h924AgOpwwHfTb9K2vfDYU3PSB5TeEXn3JbCxMJhQK1iWBxeuAYgOZ0kRCif6sWH+XBQdU4qyE6YADIPYwRpE61qgqxqKJh8Dx5ixUIqHoKl4LMr3fQjp0834/+ydd5wcdf3/n9O2797d3l2up/dKEkIgtERq6CJYQAVUvhbwK/JVFPmpQUGUr2JBRURFLAh+lS6hE0InlfSeS3I9d3u3vUz7/bG3m+std5fLZZ6Pxz7udnbmM5+ZnZ35vD7vFjzURKi6s8+zHkvP7nc1i9mVaMgIYoDTPkjXTzh001XILieCvwDVX4qvopBY037CB48UnTM0E6ffg6eiBMFuQ3K7sbWESYZixJtjaEkNxZuOnRDldADzQIutdWTBq2/zzsKTiTclcY6xkz8zDy2pkWhJkjvWx+RPXcD7hx8jVpkc9MG9JRYsBsqL/pnZiuWKW25n5csUP23elnbFG82i4XhBEASEAfgdDWSb4xVLOFgMGr0FIEvO9GBlKC0R2X21yabU1oUpQ3eWCcUnYfPLuAodOPPSaU3zp5Qgux1o0Th5py0iWVmJFgxRctm5hCctwowcZnPuGYgYBLQ8krrMoXA+xe4QRQ2bCTe14KipZEKFTNUBJyVFNhQhhGCY5G5+Fb2xESMYIn64mf2bDmFzP0bCLuMqeB89pVF4ymw8F16Esf1DaldvwFPqp+R//z7k59Di6DAlhVDZLDTJjqIliP3jRzTtbiAZThGpSgf6JoJJglXNxBpjpGJqOpuSXSJSH6QsFsc5Lc6YeIj4e29z4M2d2XoEvbnfPO+cns0m1NY6l5nhzMQftE3JW/GbfxG4+0tgmMixEP8+80986qMvk/un3xOpa0FX0xm63KUFIIqogRZiB6qJN4WI1IfwFPnS8TYTVdxFecgeF3nf/s2gntMl69YCsPmSpThy0r9Pz6I8AnvrScw6lcJpr1BVX5vNqNQTQ5HUweLEoi8pVzPPn1RAQ/cbqGG93bPHUE0uivcc82BhMZKwhIPFsJGp2prJ7qKF9GzqycGe0dNjRtrC0U3b3e1vxidmoMaSGJqO7LAR2HuYlsoG8iaV4BpfQWjaEry+PHR3LofGzKO88k2ESAszRIka/2yKwrsJeUppwU+BUUd14XxKPuGAUCOX5q5m0pULmMJafJWbMdy5GOEQejw9iHSVFFBmV9DiyXRWJknCkSdjxBPI0RBmMkUynECvbEBZ8QUKVvxhUM+ZxeDiOe1ypMfuJTR3GSnFRcP2Ohrea85+LioCcTmJmtBI1qvtUginWg4TC8RxvLkVQRRo2ttMsl7tc0Vg7xQX8244G3Hx2XiWXMGqGfNai7ulA4lNOW0h7Bhk7L/jd9n/c94ykFJxvONKyJlcgeT1YKZSaJEYibrDhKsbCdUE01Wk3bZ0EL7biaeiGMnlTAdO94OM/3dvgaMAc55bxdvzF+LIsWeXBX7+Mxq2HO4ypqm7nPmWeLDojYG62bUtopkRsklVzT57rJTXIxORAaZjHfSejFyG7VjvueceBEHglltuyS4zTZMVK1ZQWlqK0+lk6dKlbN3aOae8xejBaM1P7yl3YqjdF0Vyj7eTM/Poitz01bIhKgKiIuAeb8dVlIee0lBcdoqvuoSZ3/kCxSdPJRWOIY6fird2O4bdRSS3nNpEIZo3HzMWxVj9AoqQYp/7JDYEp7Bq5xj+tH4W2wJl7PMtYE/FOUh6Ep8Sw7fpdYRoBDHcjCAISG4Xpq4T3FuNq7yYvFNOIu+MU1E+/UUcl36MxEeugpYmUs1BHDkuBFGkZW8te6+75KjOj8XQs/2hp/Ftep16s5S8cXnY8o/M1diLFHwTPNhcSjbbEaSv20S9StOmINVvNVC1up5YZRI1pKPH+paRLG98Dsq8k/EsuQKApds/5KL4jmyWIT3eWs04ZvCcPI3nndNZ6ZvRro1PnSFS86sHSAaCSItOJ3jmVYiz5rPt8XfZ+u/17HtpP817W0hF00K3Zn0VqXAMOceLMm48zkWnEH/pT132r277epo3vs6hm67izbkLWOmbkRUyzzun9+ncJppTJMMp/NPH4i70svOfe4i2iqOusASCRX85msH9JdrO7PaZZ8xF8R2WYBjhZLIqDeR1ojAsFoc1a9bw+9//nrlz57Zbfu+993Lffffx5z//malTp3LXXXdx3nnnsXPnTrxe73B0zeIYoIV0YnUJoPuZf5tXQVT6r2v7Exyt+CRkn4QW0rEXKRTNLMSzcAGuceXpfuYVU1WwgHJfIYV7Wyss19dALEpg2ekcrHGh5S1j7CkzyA9XUp0oRjUkHvj1Vk47byYFeTKHg+C05WCTdHK9ZTjEBGZxOSTiIMsI5eNJFk0m6C6mZMMzYOggiBjhIK6d7yM43YhqArWunqYdh4g0hBFEkVQkSTKkMqnfZ8hiOCmcXgK5+YRUB9OXLiQVTVG7pj792Uw/eRMKidS1kIqpnXzzuxK+fR10+Mr8mIf2En/1r+0C6DMz7B1deQzVBNXMpozMuEI17W0if+Y4EES8zQehclc2o5HkFJF9Emo87aKYU5FD7rTxMOcUqorm0aTm4ZVjHNqYRBYNcu1x8uQAnkQAZ6IFJdxI2DCx+2yk/Gq2PgMcGeRnBlvPO6dn3Q6F1nTLklPE7rURq2sisO9wn373XVkeMufEsj5YDAWZ9OBtY30s8TBysdKx9s6QC4dIJMK1117LQw89xF133ZVdbpomv/jFL7jjjju48sorAXjkkUcoKiri0Ucf5Ytf/OJQd83iGGGoJonWSrJdxR8AXRaw6kgmjkFurQ3hrnAgOySCu6O9WhsyN3NPiRP/6flEGiIkQknCa9YSOtBAwbzJSOvfomiJj9fk5Zw1y8Nh70Qqav6GmOcnP1VNQ6CYKWOSBNRc1sXOJhgVEAWYuWgyzU0JSsZ4UFWoblLI94mEnXk4iKF6CxDcOnI8hCmIuA9uweXYixmNoM1chOrwIeop7B++SdVTr5A3pYwDq7axcNU7R3HWLY4FBUsWYjrdLA48i55MkTuuAD2lIYgC7kIvoiwRro8g9pD/r7+DjHVLl2D32Um88A6C+C5TOmTeatveSt8MJKeYtkK0/mYyVohLtJ3EGhIEdhwkX3wJyW4jFU9SMr+IaHkULakhSCI2tw1vSS4Fp8xBn3kywdyxeJONlNWsxnnuddj27qcx5ccvNVFweAdK7X60ulqitfWEqgMA6SKOcSNbiyHjzgjprFDQZlKg1VKpxw1aCBOu3028OtXn85MRB0NRPdrCoi1tYxyGop6QhcWxYMiFw0033cTFF1/Mueee20447N+/n7q6Os4///zsMrvdztlnn80777zTrXBIJpMkk0fM0aFQ//xoLQafo5mpy2RrERSz3WA/M7soOcVu6zBk1tdCOrJPIl6b7FNxOcUn4Sp3UDq/FMVlx1NeCBzAW1aAPS8HfXcNWjSediF69lHOLXuNxjM/hfe3tyOcfTrNU08nb897fNmxiRYW8snvRJHtNhKRGA6Pi0QkBkAkNJM58wooy1dxKSp2IUFRzQbMbRuI7D2EnkzhmzIOcfI0CDQglI7FVrUbY/du6tftItoYYcGrbwNQMKCza3EsWbd0CWPPmIbX6cTMLUQuKMDW0EjhrHIEQSQVjpFoiWLqBmq0c2KB3ga23QkKwzAJ10UIH2gg1aQxpYc4+oxl4c25C0g2pUgFtHaZmc6p3MyqGfNo3N2Ir9SHtySXwtnjydd1ks1hYo1hpv7jhez68Zf+hD/YgL5/Dy17DhB//13KFp9GWaCBlvc3sHdLFclQgmRIJdWiYstVkGxpgSDKAmZrgTebX87GP6nh9O+/Y0Apqkk8dkQwKK1B32pY73HiwJrtHf1kvuP+PpeG4tpoG+PQXayNxchBHGAdh/5uc8899/DEE0+wY8cOnE4nS5Ys4Sc/+QnTph25Zp944gkefPBB1q1bR1NTExs2bOCkk07qf+cGmSEVDo899hjr169nzZo1nT6rq6sDoKioqN3yoqIiDhw40G2b99xzD3feeefgdtTimKHHDGgt1NZ2EJAhMxvaUQxkZiQzmZz0uJGeoYzTaT3HGCU7Iyk5RTzjnIw/azKiLOEqKcDQdBSXHe/U8dS9uYHiU2YQr2+i5Z1NyA6FeEOAwonr0ceVgizjaTmE4cvje1suYbrsQlNXo6npfmREA8A1l3uYKa9H0lWidj9bWibgyW/CNzmBsL+KUFUTruJ8ZFEgNmMJAOJ/HqVx8z5igRiJlu79tS2O8PrkuSzbs+lYd6MTnqK0u6VaU4MiK8RmnIrX40OrPki8uo7EoSgth1qIt/QseNvOkHc3W96WVDhFojnVrxnOeH0ym1u+4+DGXejCmevAle9BEAViDc3oKQ01liTScCQ17KGbrsJZmIsgCIh2G74ZkxFkmcTaD9j3wgaih+PZ4nNma/pmQ0vHPGUsCIZmpjOvxQ2Ik43HyJwbxZdO9ZoJEm8nJjQToxfRYHFi0/a6tixMFl0xXK5Kb7zxBjfddBOLFi1C0zTuuOMOzj//fLZt24bbnY7vjEajnH766Vx99dXceOON/e/UEDFkwuHQoUN87Wtf46WXXsLhcHS7Xsfct6Zp9pgP9/bbb+fWW2/Nvg+FQlRUVBx9hy2OGWZrLusMGdOuoAjdDqj02BHXioz/aNsK0plt9Fh64JE704OrwIXiVAAwtPT+QvtriAciuMfkgCjinzEO25Rp2CbpyB9uIhWKIF3/NV5LzGfxRyZiJoJU585m/Pt/4aIzRVS9s9jx5OUw4+RJLA6tBENHTESxbd7IOWMKMVIp8PrwLT0bLf4SkaoGYC2u8Q0Ibi+V63bRsK2RRGOK8+utRAF9oaNoyAT5ZuoODFbl4P5ScupMTNMksr8K4WAtyoST0PzFiE0NpIJp0RDaH8kOmDvSnT9+b8Qb0kKkP8fdUyrlTKXxg1/+GKZhEmsMocZVUpEU4fooK30zMFWT/JN82Dz1GKqO3Wen7LQZSA47TVsrqX8/kP1NtnVPzPz22/p/ZwRAV4kTMpWjTcNMB0fXq+1+6wPFim84/umtanNfGGyLQEdXXMvaMPIRhQFmVernNi+88EK79w8//DBjxoxh3bp1nHXWWQB85jNpN9PKysr+d2gIGTLhsG7dOhoaGli4cGF2ma7rrF69ml//+tfs3Jn+AdXV1VFSUpJdp6GhoZMVoi12ux273d7t5xYjD/d4O7JLJrgt2uXnbU25mfcAqCZdOSl1rBotOcXswCsT70BrG44iBf/0HGS7TN6EQnyTyql5ewuK24lpGngqihDlehS3g9D2PSS+uALH+qcQ7A6iNY3450wmBsiSSdLmYbc4iwIhwNcO/hfz8hwEWjr3sLC8kA2rNiHm7wR/AUb1QUSbjeCmHTgKcrGXjkVIJYgHIpiGQTywD1fNYQRRpHpNHcl6tctCXhZ9I+Mbf6yFV7KphURzmFB1eoZ+/Cv/IhEM07y7msbdjYQPxNqlJO5IZpDR38FGpi5Dd/Q2QO5qf/s/fzmGpqMlVML1EdSoSjKYItGgZn+LLTsjCEoUUzWx+WUkZRc2j4PmA2nR0LbonKGZ7VIld2XlbysapFarpKfYBaSrR6ddHIXsb70v9Da4tMTD8UtX1rjuvu+evufBEA+rZswjWa/2vqLFiONoLQ4d3ef7OmYNBoMA+P3+/u+8Bx555JF+rX/dddf1us6QCYdzzjmHzZs3t1t2ww03MH36dL71rW8xceJEiouLefnll5k/fz4AqVSKN954g5/85CdD1S2LIaKnh26iQUVy9l6Qqa90HGQJioAe1lG8Unbmsq2wsLltOPPcqLEkejyRni0Nx5BsMoIkIdltCLJEor6Fku0vY+o6ptNN5H/ux9/wAY5XHufs/Je55D/nM/MUkxXnVrHk1CU8dN/qTn2zOex89bNu3tu9hNTOx1EqJhKrrEK027DluNHjCbQ9O5GnTid3Ugnxwy20HGgkXBtCVKRuq25b9J3uBMPua5cz5e8rh60fhXc9zLunLMJQDQzdZMe/3yUZSpEKqejxdBDwUNUx6Y6BiAaACX98mvdPO4VUVCNenzziWtSm3xcEtmVTqaYCGvXbDqM4ZBLNqWwGs4wVKJNBKRPHBGkxoceM7CxtptK8Y4yCPceG4lYQRBE1rpIMp+Mx+lLTouPxW7O+o5uuYoE6fu+9icSjvU5KTyqhblM90UMJzNZ4Peu+fmLQ0QPm+9//PitWrOhxG9M0ufXWWznjjDOYPXv2oPbnc5/7XCdPnu48e0zTPLbCwev1djoBbreb/Pz87PJbbrmFH/3oR0yZMoUpU6bwox/9CJfLxTXXXDNU3bIYQrq7Gbd1KxoMMjfgjOUhXpXKDjI6Dib0uEH0cBRnnpvG3YfZ/3olWkgnf0oxWiJF5cvrEWWRVDSF3eugefXbNG6vpnjBRMSJ57E9/2zGnleGloqReDzG9RdpBH/8Y06540EezfESDYbb9U2UJZ58007l7kP81/kLIZVAS6Zo3Lif0sWtBYFSKYwD+4jWNpEMxYk0RNESOnafDVEWWG4NbIaE4RQNGUJ7otkEALGqRHZw3Bv9HbR0nG3t6nfYNq98XwOt27L43Q86bdsxlemRe4BBrDKJ7DviAmWqJga0cym0FylZ4ZAKaNk6FRnx4Bij4Cl148x1ICkSkcNRYk1x4tWpAQuuvsSJWIweMt93V+Kh4zpHQ/RP38eIRJGnz6T0rPk07X0F6D7luMXI5GgtDocOHcLn82WX98XacPPNN7Np0ybeeuut/u+4FzrGGO/YsYNPf/rTvPfee0iSlF2+devWPokGOMaVo2+77Tbi8Thf+cpXaG5uZvHixbz00ktWDYfjmOE292cKajkKbET2xfFMdCJIAi6/A7vPTiwQR4tr1G2qRXZIeEqcyONlEi1RKt84kC6CFTcoXpJPwfQyfCefRM6c6dSc/mlKm7exP2c+L9WdzNXhB3n0vqUEUTnwP49zz4odnUQDwL0rJvGPVw2mzCrGVOyo694jFYox7pz5KGWlqNU1rP/9a9nAVS2kZ92sgrGuXbksjl86VkHe9akLiQViNG4JHLVLUX+2GUisRF/p6FLVVpykmrTsPUEN6e32+6J/Jjafgiiln7hL6z/MbpfNmlSdDvKOOKPZ30lGYHRHdymeO2K5JY1++nKdd3cddGd1eKloVierZvzVv2JEoux64h2atq/sMmbIEqrHB0cb4+Dz+doJh9746le/yjPPPMPq1aspLy/v/457YcGCBd0ubyscNK37OLeODKtwWLVqVbv3giCwYsWKXs04FscXgyUeREXIFmjrahBgqiY400GwznwHkX1xIvvi2IsU7D4bzZVBPEVuJFlES2rYPHYi9VGSIZX69/dk2xEUAcWpoMWTxLbv5ODqbeSfdhUrU+ex5R2Ns+cn0bYdID7dzU//YrB3Q+csYRn++xtp97zPf/0shIZqjGSKREsM8dSlNBRMQ/vPN0gFtHYPlkw9CsUnoYZ0y51iFDP1Hy8Q+uX/4BnTfQzLUAxou7umBnKtdTVT213q2J7iNNqKqlfHz+lyQJap+ZJx9ejN5SNTIC4dS9G3KtsWo5Ohuoc6i9IzyO8sPJmcihzGnX8yUl4e1W9+SEtluF2iD4vjj+HKqmSaJl/96ld58sknWbVqFRMmTOj/TgdAOJye8EwkEtnsTZn3bYVETxxTi4PF6GUwxIPkPBJMCelUjLnTPDRtDGG0Fn4bc1I+4doIs264gHUtzxCrSuDMt6fFQkwjXBNBsokIopAWDU0p1LCeDdb0jHdSOC0fUZZo3t/AxIWzKZweoFItZ8PWJJ9e1sLk7U9CaSm/eTaHvRs29NrvihkTuCb6ANHpp+Ly5uKPJwg+9ihaGytH2wGQqZrYi5R0zvoOs7IWo4uWe7+KqMjYPA4+OONUGte1HNPB7WBdax3dl/rSdtviWEA2IUBGQLclc456O1eGaiICVkLWE5vBuK47trFqxjxc+U4kReSVstkIikCkqo5I/etAOjlAdzWHrHu6RUduuukmHn30UZ5++mm8Xm+2REFOTg5OpxOAQCDAwYMHqampAcgmFSouLqa4uHhA+3388ccBeOutt7jggguyy99++20KCwv71IYlHCxGLGpI73QjTkW1bCYVLaQTro2gxTRqV63FW+IBQFcNdM0gb1IuqWgKZ66DmncaMDQTz3gn5Uvy2ffcIQDsPhvRw1FSMZXiOaUcWnId22eU8tTjjZx3bhET6t5GqzrE64t+yPo/vN1jf7/8zbNYUraXnEfvZveDOxn/3bEkN23EWVZM9ftv0bglkA0oFRUB/zwvjlw7akzF5rHTtK3ZesCMcipf/RDZLhFvSRCuOv5d09q6JfUlm01XdBQDgiIcVTBpxs3JwmKweE6ehuQSs5mS2j6XDjcFe9zWuqcfXwiCiSD0//7R320eeOABAJYuXdpu+cMPP8z1118PwDPPPMMNN9yQ/eyTn/wk0LeA6460tLRw22238Yc//IGZM2dyww03cMcddzBx4kTWrl3Lj3/8Yy677LI+tWUJB4shY7DjHcYszOfwpkC7+g0ArkIHwapmCqYWYxom4ZoIvhIvkk1GjasIokDeTB85ZTk07WnCW+pHclZj88vkTyqgfksdsboEwjyBkuattHh9xMJxahtNVpZ8lODUj/GnOztnUMrgzc/FneOhNC9BTrSOho17aTkYQnvteQI7DlKzoYZUSCUV0NJWFEXAWWZjzMwiYk0RZLvM3OffGLTzZDEyedE/M1tzRI8b3brgDQVDPXgZSPvdbdNTTQkLi74wWC54bf/XY0aX6cG7a8Pi+EQYYIzDQFyVeuP666/PioiBkkwmuf/++7nnnntoaWlh+fLl/OMf/+CKK67gv//7v7MZlsaMGcMPf/jDPrVpCQeLIaenTC99RVQEHD57u4xJvsluZn/6bJSKsay/6y807WkgsLsFgFgghjPXiWyXUeMa486YimiTqXq/hi1/3YzkFJHsEpJNZu4XziO4Yx+hr97Hz94p5OuzV3PtNUu59843e+2Xv3QMt/13BUWOJvaFJXj6ERKhJLM/dSqCJLHryb3tAjkNVcdZbkMN6+x7qTLrpmQxuskOPuLGsKdgzez/eBjUWAHLFoNFX6/5ria4BjLpdTz8vix6Z7hiHIaL6dOnc+DAAWbOnMlDDz3ElVdeCcArr7zCM888w65duygqKuKKK64gJyenT20KZl9kzwgmFAqRk5NDMBjsVyS7xfDSNlhyMAYHmYBiSLs25E734BnjpmFLE6mAhs0vY6omY+blU7euEe84Fy07ItmYhqp3arHlKihumZkfPw3xjPNQavZyzsPz+9yHB+6bzhitmpytq4hMX4L2yP0kW6IUfO4GNn/tLrSE3mXRO8Undcq2YzFyGWj6zuNlENyfqroD3Xag7VuMHDrW3MiI30xAegazj/EoQ0nbPvW3cvxAa51Y9M5IHq9l+vbHl1pwufvft1g0xOfPzx1xxzZ9+nS+973vDWqZA8viYDEsDPbNtu2MrbNIYdrlCzm4ehuuMQ6S9eGsL2q8Oc68GxZSv+kAUW+cZFOK2g31jFtagaEZ5M+oQL3wU6yKnMLPH36LifOmsO/D3T3u+zM3n8Unx7yGvXIllRPOQ1z/Ie6WZj54cjNjZhfif28V0eo4ari9YTsTCGqJhuOL0T5Q6MvMbE8pKzOM9vN0oiO0yVglaCY6BlI2gxXZdLnDSdvg+mwVckXA5pezLoErfTP6JR66c1myrm+L45Ht27d3WeztaLCEg8WwMxhWh7azWaZq4ly4iIK6Juo3V7f73NBNwtVNJCPpfPB63CD/JB+F8yajxeK4z1qGFm1iQl46wC2VULvd54zFM/ny1RLTmp5mp+ss6vLPYoZwgB1PbyLVsg6Auo0NVK1+sVNQd8diVxajm+Nt9rwn8dDXY+mLZaa7gdjxdr5OREw1LRbMNpnuRDlthchUQs8wHNaGjpYOsc1+7fk2JEVES+ikWrq/p/dGzkw3wW1RSzScQIiCiTiA4OiBbDMcCILAn//8Z5577jlM0+Taa6/NuiuFQiHsdnufitS1xRIOFiOCoxEThmZy6JH/IxlO4CnyIiwR0JI6Lr+TyudraFofwpYvY2gmNr9MTnkO9rJS5GALhysW0GiO4Z4HWgCo2lnZ5T5+eu98Tqp9Fi2Yx6u2S7jv9vfRVI0//nwialQjUa/iKFI6FacSFYGpV03CVeBl1wvbWbr9wwEdo4XFUNPdoL6/v83+Cg2L44NMtiqz7Sw/IGhm1tpwtIIhIwYGEgOUrseTTj7gLnRic9tIRVMkHMkB92fsaePYVtl9zRWL0cdoi3H43//9X7797W8zbdo0UqkUTz75JI8//jhXX301X//618nLy+OnP/1pv9q0pj8tjgldzeAMdFZHjxvs/c8BGrY0EaoNkWhJosU1kqH0A0NUBBwFtqxJXY2rxPZVgiDiSrYQVe1Mm1NGXnFBp7ZLJlfw4ndaqPjt50n4S0k5fPzqZxuYe+Ycbvv+6YyJ7GPJQ/+Db5qrnWhQfOlCKjZ/WpvHAxHi1akBHZ+FxXDTVVYZCwtIi4PMy1TNrLWhq4G+2Jpat+37nsi6QrVu19WrLRkrh+KVcIxRsBcpOIvsuPwucscVUDy3gjEziwZ8rOMefLKdJcVi9JMRDgN5jUR+97vf8aUvfYlt27axZ88ePvGJT/DLX/4SgHPPPZdXX321321aFgeLEcVALA+ZwXo8liJZ3wzQOmsVAdIPuuihBIpXIm+KjzGzx7L36h8zKbWVV4KLefWNADm5As11jQDMOWMOB3fVcNNN0zjn0O8Ir9xAKpLAKSqkbB6u+cI8xhcmWPzu95BLyvh54kt84aNvsPZX70FrsKDkFFFDOqmAxoE3DyLKQjtLhIXFSMcSDBa90VPNjLZVvKV0PausNUGP93wvFGWhXRG/toP3juJBlAVkn4TNpSBIAqIkIDtsOAtyUXJ9OMfEqfrq1ZTf/3/9Pr7155yeLUxocWIgMrB0rCN1Fr62tparrroq+/5Tn/oU1157LQClpaXs37+/321awsFiRDBYg5TsrFeHh1nOFDflp4xD/58fo0RrOdCcw+bY6UwYk2DSlDx27QhQUFHM3MUTKPAr3HXxTvbeeDrvHk5kzfDTv+1jR3IKU4ujnDnLA3N/BMDtAB9/mOV3pY/DUE0SrcHZhmoSr7IsDScS1oB75DIYqaEt+k7WetD6V3Kms+GlAulaHZkYhbbCIBMHJtEme1OHdbrCNEwkm4jd58BV4EW0KdmgUMk2sJTXC17tueinhcVIZ+LEiRw8eDD7vri4mGg0imEYpFIpJEnqd5uWcLAYNrqrLjsUD/HMrJTsk1C8Eq4CF7JDQbv7VsyJpVy0tB7D7YCYwMKJNmzCFiLqFgqv+1NrC6dR8O4HndotA2q+/kn4+WNd7reju1XHY3upaBbn12896uOzGB7aXrMd/4fev2+LkcPRxG1Y9J/0JI6BoAmIXglHng2b14Zsl0kVJtFTaZuCaZjoKQM9qePw23HmOZEUEV01iDfHiVbHMcJ6p5SvhmriKFKw59uQHenBjyCJuPwunEX5RA7V48jz4iwdQ97tvz0Wp8DiOETARGAAlaMHsM1wcOutt3LXXXdxwQUXUFxcjCynh/2mafLKK68wbVr/74OWcLAYNrqKYcgMxjoGZg5W1iUtpKPHDVqUIGpcJdGSpHZjDZPCMdxjS2i+4AbsaoScq27FeVUvjbZS2o1o6A1REfCOcw1oW4tjR1/8/a1B6MjneCmCN5owVBORdByamtAQldY6ELqJaZgIooDskFDcCopTwea24cr3pCd5EiqiJGCoBno8nrX8ZiwPoiJgy1XwFLlxF7hJhhPoqoGe0ghsP4BrTA7eRQvQ/cX97veG884EYP7LvRcBtRhdjLbg6EOHDiFJElOnTuWyyy7D4XAA8KUvfYk///nP/Pvf/+53m5ZwsDjmdBx0dSUmBkrmwZUKaCTrg8g+Cckp0rijCkdBLgXVG3AtHbzCKB0RFaFd0KCW0HtY22Ik0lXaUMvlZfAZDiuAJR6GH0M1EZS0e5IeN9qlpJYUCdkp48x14C70UnDSVABMXSfZ2IyWSJEIJTG0WKd0r6IioCfT91Obx4FpmMRb4mhJjVhTAJvHgePyr/a7v2/OXYCkiCxZt/Yoj9zieEQUBhjjMEKFww9+8IPs///4xz8AcDqdbNiwgYcffpjLLrus321awsHimNLTYGEwxUOqSUNU0kF0zlw79ZsaMbRNzL3t/qNuv1/9CA08p7jF8NNxkGkNOoeGzHkdTvFg1ZEYPjKJIfS4geKVsnEPpmhi6gaiLOEs8GGbOAlTViAaBsARjCLXhbLtdMzclApotBDEUHUcuUdcnGKBBKHq5gH19cxN6wd4lBYWIw9dH/zJypEaCG5xAtHxIQ7tZ3YHa7CWeVjFW9JpWg9vCwxKuz3RMSNH22wiLxXNYqVvBs/J06yBy3GI9Z0NHsN9LjvuzxKEQ4+pmp2CpQ3DIBXVSEVTmJoOmgY2B4LDhWizIcoSilPJptLuCj1uED0cJ1QTIhVJJ6IwdZNZT/UvzeRLRbN40T/zqI7R4vhHEMwBv04ULOFgMWLoaRZwMB7seswg0aCSCmg48+3kjvcedZt9oW3f2wqH8+u3sjy03Rq0HIdYomHoGK7fQ1fioeNrOPsz2slkVVLcMg6/HXehC7s3XeFZcbYGbMaiCMEmzHALWiSKoemYRvcDskzcg57UiTUkiB6OE22IctbWDf3un6maXBDYNrCDsxg1jLY6DkOB5apkMaJp65Psn+dl/FmTyTt5HqnaWrb+4x1atkV6rTAquUQUr4QtVyHVkhYOLdsiyL7+pyEbKBkXjI61HF4qmoXkFHGW21jpm8Hy0PZh65OFxUii7W99uLIedRfz0J1FwhKMfScT35XJcKd4Jez5NmxuGf/EfJx+D8FDAQxNx+a2oyVUGt9Zh57S0BIqsaYI8eY48ZYketzI3uczdXIERUCPG6QCWvazOO1TX39wxqnIdqlPaVUt0WABIGIiDiBD0kC2GQ4mTpyIaXbfN9M0qays5MMPP+SKK67oU10HSzhYjHgyD/cl69Zy+P/dQMvGLRx8azeRqniftjdVEzWczq7U9gE03GlRuxqgmKqJjpHtixW8OfKxBo9DR3+vf8klDnlhxY6CZqBtnEhkJmvaZkISFAFJEXEXulFcdvSUhmyXEd1pl6RES5RkOIGW1FHjKslQilRI7bJYnKGZSK2CpOPEUeY7enX8HDwlTtQO18ehm66i4jf/IvbGY7jO/uRQHL7Fccxoy6q0bNmyHoVDBp/Px7Jly/rUpiUcLEYcXc02Zh7ehXc9zNvzFxLaG+vzgCFT3XQk5jPS4wZGqP2PerBdtCwGjxNtAHgs6Ek8KD4J2SelqwW7ZOw+G2pUJbgj2qvlsaf9HU2f+sKJVDdCcok4xii4Ch3oKQPTMNOpWEURySbiKcrBXZQHYrrCs5ZIkYokSATjBKvSQdG6qmeLxCleCS105O6dyZSnqZ3v6G0tQ2KrRaIj8UAEwBINFicEf/zjH/u03oQJE/jTn/7U+4pYwsFihNKTa8DpG9aNmofwRfEdPWaVsrA4UenqHuCd4KJodjGeEj+y045oUxAVmYOrNnHghdoh7U93Rf/6yokgHkRFwOaXcRe7yBuXRyqaQo2r6b9RFVGRcBflYfPnYCRTaPEkZiyJllBJRtIWBlM10xMqmpnNwNSRrkRix+8lk02vI1P/8cLgHbDF6GOggc4nUHC0JRwsRjTdPWyPl4dwxz6KitAp05JV0fb4wPpejg2Z34Tik5h66Uk4y0uQ8gtBljGjEfRgC+POmT/kwiHD0VgfRvPvO5PuWnKKSLKIpziPZChGKpJIWx2iKqIoIHtciLJMKhAkFYqRaIkSa4qhRo+IBj1upLMuaSbJerVXa1JP34c1AWPRH0ZbHYc33nij13XOPvvsfrVpCQeLEc9QiAdliAOje+rXSt+MrJtVd0KibYpW68FncaLjKFLSVYIXzCc2djZxZx7ORAvOpnRVVCNWNaz9scTDESSXiCinA5bdZU5sLgXJLiM77QAYmo4gCihuBVGRSDS1YNY3EalrIRlOkIqkSAST2fYycRHdvW9Lb9/BUN/nLUYfAibCAAKdB7LNcPCRj3yk1xgHw+hfnNiQCod77rmHJ554gh07duB0OlmyZAk/+clPmDbtyE3TNE3uvPNOfv/739Pc3MzixYv5zW9+w6xZs4aya0NC45Z3cddsx3n+59h8yVIadwRYtmfTse7WqKC7zCf9eQjb8mWmXjaFghuuR9q3lcYVX6BgxR8G1J/GFV+gbv1e6tYdJlGv9lhMqrsaFbZ8mbFnlVL7P9ew4+kt7a6Vjtu86J9J6ZIxzHlu1YD6a3F0jKaB3vFAx4H5udVbeH3yXCITF7DJPAmHrlHmqsbZeACttpbGTXuGJVB6sBip4mEg/fKMd+It8eCfWIj/pGlI4yZBKECy8iAAsiOJw2fHNEwMVafq/X0kWpIkm1LYchXchU7yJ/txFfio31pDcG84XWU6ZmS/z/6KtEu0naz0zbAyJVmc8Pzf//1fp2VNTU08++yzbN26lbvvvrvfbQ6pcHjjjTe46aabWLRoEZqmcccdd3D++eezbds23G43APfeey/33Xcff/7zn5k6dSp33XUX5513Hjt37sTrHZ48+4NFwezTYPZpANS804AeN6xZ4yEk85Dr68NOcorYfS7qiuaRv/rlfu/vgzNORRAFRFEgFVMJH4h16UPbW+rGzOcbLziLvEkl2HI85E3K5UX/TARFaJft6f3TTgGsVIHHkpE4wDsR6CgePKVuJC1BniuKW4rib9yDcWAPhzfspHH3YcwBBkcPhOP9fj6Y/ZcUEUlJl4QyYnGkxjoAhFafD8kmIztsQIJkOJ0uVVd1JKeI7JCweWxM/7/0/bj+rNMwNDPrmnQ0/bRSW1sMhNGWVenKK6/scvmNN97IZz/7WbZs2dLvNoe0ANwLL7zA9ddfz6xZs5g3bx4PP/wwBw8eZN26dUDa2vCLX/yCO+64gyuvvJLZs2fzyCOPEIvFePTRR4eya0POBYFtnVxQLAaf/jxYUgGNPS/vwPmrb7PvhQ1osWTvG7WheVuIxo0tNG5qoWVHpEvR0LFvPfXvpBdXI7ud6MkULr+LsctKOesPN5F4/kFCv/yf7HqGPjJNoBYWw0luRS62cCMl+gFKmrYi79lMYN1W6jbV0rI7POCsSv1lsAbdXbUzEgRJf/ugJXRSkRSxxhDhyhpi+w+SajiMnkyBYWIaRlpEtK5rGiaSIiG7ZCSb2M6Kmolz6O3eaWExVAxX5ejVq1dz6aWXUlpaiiAIPPXUU+0+j0Qi3HzzzZSXl+N0OpkxYwYPPPDAIB4pXHPNNTz88MP93m5YYxyCwSAAfr8fgP3791NXV8f555+fXcdut3P22Wfzzjvv8MUvfrFTG8lkkmTyyIAvFAoNca+Pjo6zz9bNcPDp64ywHjMI746xV9/Fwq9fAtPnsW1PDTMnl/Zpe0Mz0zUhBtEdIv+7D7L72uU07W2icNoYXij+L4JRiUvPXs3BL3+Mxe9+MGj7shgYVvGvkcGUv68kvvIhvOxDrN5Py/rN1Kw/SHB39LhxUerISH0e9MdlKdGYtiKkYunsSa5ABJvHgexQ0BIq8UAENZ7CUHUEKS0gRElAEIVO9ze710bMmbCKYVocM4arAFw0GmXevHnccMMNfOxjH+v0+de//nVef/11/va3vzF+/HheeuklvvKVr1BaWsrll1/e7/51RSgUIhKJ9Hu7YRMOpmly6623csYZZzB79mwA6urSJs2ioqJ26xYVFXHgwIEu27nnnnu48847h7azQ4hV4Gvw6c9DzlBN4rVJovsO4ssvZELlwxz6+QYqfvOvXrfNFDGim4JDA6VhWwORA3H8EzRaIhI1DTp15VOY+cC/gbS70uQH7+PJhtN5/4Mmtr17xJXp7Wf7lw3BwuJ4xrn8RuL//F9a1mzk0Pv7aNkZGVbRMBru3X09hr7eV7WQTlxNknKqaAmdRCiJ4lSQ7VK6kFs4hZbQESUB2SEhtoqHjqJh6xXnMG7pTLwlVTTuauz/gVlYDALD5aq0fPlyli9f3u3n7777Ltdddx1Lly4F4L/+67948MEHWbt2bb+EQ1dj6WQyyaZNm7jttts45ZRT+tdxhlE43HzzzWzatIm33nqr02dChzNummanZRluv/12br311uz7UChERUXF4HbWYlSjhnS2/nMDeev2E2+OEz4Qo+I3PW+TfYAehTtE7OEVuG5Y0Wn56RvWZf9P70UGjlhBFr/7AU0//CLXnFXFxVdOJ/jxiVRGiih2BUk88QscV94y4D5ZWBxvNL35AYferyS0J4oaGollHUcmAxE9fREPaRexdN0FPZ4g5VORnGkv6EwRNwBHga01psHO/Jff7NSOntKwXXI1pUWrSEXf63dfu+L1yXPxlXtYuOqdQWnPwqI3OnrB2O127HZ7v9s544wzeOaZZ/jc5z5HaWkpq1atYteuXfzyl7/sVzsTJ07sMquSIAhMmTKF3/yml8FPFwyLcPjqV7/KM888w+rVqykvL88uLy4uBtKWh5KSkuzyhoaGTlaIDAP9EkYCo2G2aqTS32wg8eoU8eqGrF/0887pAO3iUvZ//nIattXSsrP/pryu6Eo09ETknadQV79M5aubiAfi+NbswlOUQ16+j7EzJoNhoKVSRB64Hc+X7xmUPlpYjCS6stCW3/9/bG6T0nioGakZkPrDUD97DNUE1USHbA0GIPsdSS6RVIuKZBNxF3Y97NBVA2XfJuKBZmY/8/pR9+k5eRru8XYUl3LUbVmcOAwkXiGzHdBpIvv73/8+K1as6Hd7v/rVr7jxxhspLy9HlmVEUeQPf/gDZ5xxRr/a6SqGwel0Mm7cOBYtWtTtJH1PDKlwME2Tr371qzz55JOsWrWKCRMmtPt8woQJFBcX8/LLLzN//nwAUqkUb7zxBj/5yU+GsmvDjiUahp7u0p52haGaiIqAZ4oDb5EbXTMI7Y/w+uS5LPjKR/jsni/T2HArT5z9R7bUbhjSmc1VM+ZRMMVP0dzxFN515EfuWXIFLLmCvG+3PZ6abq+lyhuvwNB0RFlCdigIokjZLx8fsn5bWAwHXcWHLQ9tH9bB/PF6/x6MfvdXOGVERFsyqVVTAQ1DN1m3dAmSXeakF1dn18lYIZxH3WOyBQPdxS68Jbm03PtVcm+7fxBathjtHG0dh0OHDuHz+bLLBzrR/atf/Yr33nuPZ555hnHjxrF69Wq+8pWvUFJSwrnnntvndj772c8OaP89MaTC4aabbuLRRx/l6aefxuv1ZmMacnJycDqdCILALbfcwo9+9COmTJnClClT+NGPfoTL5eKaa64Zyq5ZnAD09sAzVJNUQCPlVZFsEoZmMvW8KdhKivnSsgksq3qV7b/a387cPhQs3f5hn9brbRAw/qGnevw89sgPcF33vb52y8JiRNHR+jDUloDjVSxkGIn9N1STeH06uYnskFi3dMmQuRHJPomcshzy505GOvn0IdmHxejjaCtH+3y+dsJhIMTjcb7zne/w5JNPcvHFFwMwd+5cNm7cyE9/+tN+CYehYEiFQyZ1VCa4I8PDDz/M9ddfD8Btt91GPB7nK1/5SrYA3EsvvXTc1XCwGJn0lhFHC+lEq+PYchVEWWD3yl3Ub61hrP9l1h1oIbgj2mOax5H4cO4O13XfO+FjIjrOXlvJCo5fhko0jIbrYSQfgxbSiZPE5pcxVIMN553ZZczD0SLKAt7SPKIXfIZHNs/h24O+B4vRyEioHK2qKqqqIortKyZIktTvKs833HBDv9bvS3rWIXdV6g1BEFixYsWAfMAsLPpKd5WdM6JAkAScY+wEd0Q5XN+MoQb63PbxlGrXceUtJ7TlYaDf0fHu4z4aGew0ucfD73ekcDTWHkM10UI6etzAHGNSusBP4vkHcVzUOf360aCG0+6lbzXP5dm/vMm3r7Yy0FmMHCKRCHv27Mm+379/Pxs3bsTv9zN27FjOPvtsvvnNb2bjEd544w3+8pe/cN999/VrP0888USnsbhhGMRiMTweT6dlfREOQ1oAzsJiJNJ2gCAqApIzXflUEAUuiu/oVyGptg/P5+Rp7V4jlR1/efFYd2HEYA0Wjy9OBCvD0fRlOAqnZdo/mv0YaromjrvYRckVF9A8cTEbdx0erC4C6fTZkt3GeH/QSltt0WeGqwDc2rVrmT9/fja+99Zbb2X+/Pl873vpSb3HHnuMRYsWce211zJz5kx+/OMfc/fdd/OlL32pX/sJBoOEQqF2rzffTFv4mpubs8tef73vCQmGtQCchcVIoaeH3mD5To9UN5iaNxpZcKw7cQxp+9325fsZySLQ4ugZib/R/jJcYmEw8Ux0MumCecQrZrDXmMTOag8nTR289iWniHtsCe/tyeVnfzzIY/eOHbzGB5mR+qw4ERkuV6WlS5f26JVTXFw8oKrOfaGr/fbFQyiDJRwsLLpgtFcLPpEfVCfqcY8W+iv8OnI8fP+jIQVsT0guEU+xC1uOFyEWpNjbiFokAa5B24ca1gntPsC8s2MEQ6Xc+2+dV5/eTKR55Fkgjodr8kThaNOxnghYrkoWFj0wHKZ/i5GN9f2PXPo6uM78jo+n7/JY97UvLpcD7aPilXD5XRipFHJdJSV1G5im7B5QW90hygKRuhbmR15n+YIQBXkikebgoO5jMHjRP/NYd8HCol9YFgcLiz7QXXB1X7cZaXS0qIzkvlpYHA3WtT0y0ZIasfomRIcDOZUiL9wM0+YNWvuCIhBpCGO8/QozZ9QiTbqCPw5a64NHpliexchAYGAz6sfTt+j1ejnjjDM6FX/razE4SzhYWPSTgYiIweZoBvwdc+FbWIw2BnJdH60L1GhkqM5Dol6lflNj+v9ABLvvIIIs4bzw84PS/iXaTlbNmIcoSxgpFWSFk6YWUlBRTOOhOk6/9A2AEeGydH791mPdBYs2jEZXJU3T2LFjB6ZpMnv2bKZMmcLq1avbrTN9+nSeffbZPrVnuSpZWBwFwzXA6C5b00jP4GRhMVwM1B1pJP9+RrqA6Xju+vMdaCGdwN4W6jbXULWmkoNvDZ6r0runLMJd6MLhs2PLz8NwemjZ8Cp3fT0HhycdRzFryexB25/F6CETHD2Q10hk586dzJgxg7lz5zJv3jzmz5/P4cPpDGYPPvggr7zyCpAuXHfRRRf1qU3L4mBhcRwz0gcWo4XRHqx6otHWYjcY6UWPJcey30fzu1BDOoaWQHKKiLKAoQ3ewCu3IocZ/04PiOKv/pW4pxBXzQ4m+pr5/V0LMCjEMKNA/qDt02J0MNosDl/72tfQdZ3HHnuMVCrFN77xDb773e/yu9/9jmAwyK9//et+V6K2hIOFxVHSVQYm8Sj8Vnt7EHesHdGRvDkeTt+wrte2jteB0rFitGfaOt7JZAobbd/PsTim/u5PVNI1cNrSl9+LHjPQY0a79Y+WHVeflxUNAJo3n2r3NKSpUyiJ7MT56+/gKMjF1HRqWsKU/vyxQdmvhcVI5L333uN3v/sdH//4xwEIhUL8+Mc/BmDWrFncf//9/W7TclWysBgi3j/tlH5vMxgDhERziq1XnMNK34xu17FEw8Cxzt3IZbSJhgzDfc31x+VLVATsRUqPbQ3Wvnpj6xXnYBrtZ36leIg8s5Fc/TCOwweI1LUgSBLOpefg/dRnia98aFD2bTE6EBiou9LIRJZl/H5/9v3s2bOpqakBICcnh8bGxn63aQkHC4shwtBN1px1WqflQx2XkApo1G1syM7kdURUBJ53Th+y/Z8IWOLh+Ge0fIfHWizZixTyp+Wx/WPndnm/g+7FwWB+By8VzaL63bp21gYA19mfJCZ5yaveQuSNNxBEAS0WJ5FTwp7cUwhMXDxofbA4/hmuytHDxXnnndcu6NntdmMYBrquU1lZSXl5eb/btISDhcUg0TEw0FANDFXngzNO5d1TFgGd3YyGQkToMYN4VarTcsklovik1r6NzJvc8cRoGXhaHP8MhXjoa5v50/IoXTiBMXMnUDBlTJ/bH8zfz3PyNFJNGqkmrcvPp04aR8Pj/2LPS1uY8veVBHZWY1//GpNC6/C1HBy0flgc/4y24Oif/vSnvPLKK3zzm99k7969GEZ6QrGmpob77ruPc845p99tWsLBwmIIyPj7GrqJntJJhlM9ug4NtRVCVAQkZ/rnnhENVkYmC4vjl8wkheQSkVzioFsR+zqwV+MqWjwJooi7KLdP7Q6maFjpm4GjSMFRpPTY7rgHn0SNarw6fg5V79ew/6nV6C8/jbx/26D1xcJipDF27Fh27drFfffdx5QpU1i8eDGCIDBu3DgSiQR33313v9u0gqMtLIYIQzcRRBPTMEnWq+1chzIBj6IiIPskFK+EoAjp9eLGoFkEREVAUAScZTb0uEEypHZa59XxczincvOg7M/CwmJ4cVc4GLtkHI4876C33Zd6MZGaKI2eWjxFUZz+nvsw2Fa6NWedxpgFeSxc9U6P6717yiLUqIae1NFCOoZm0lwZRLbvpghwDmqvLI5nREzEAVgPBrLNcLBixQpMs33fnE4nM2bMYPny5UiS1O82LeFgYTFEnLlpffb/ttaGtukfX588l/LFZSguOwDNlU3Uvd8IgyAcFJ+EZ5yTotnF5E4q4cCqbdRWNbVbx5YvU7qwiKYffpH87z541Ps80RiNWXxOBI5HN7Pu+jzujPHIt97J2sgMSnc1sWDq4KYY7e1cpQIaLQdCJCMpxtiGd0gxZkZxn9Zr3hwGQHKKeCe4sgHUgX3NqPFtRG66iorf/GvI+mlx/CAwwHSsI1Q4fPe73x30Ni3hYGExDCwPbe9y+bI9m9h6xTnIDhuKywaAOUjWBu8EF4XTCyk5ewGi2413ZxX6qQayXUKUJZKhBOPOnEb153/J6mAOs/YeYOqkcYOy7xMJK03r8cXxKBp6IndKBduM8ZR5g4xN7ADOGLS2M8K4p3N2QSDt6rN61nxqNlTRfMFZ2D22TkHKQ0HBotlIpeVE3/oX7jOu6nKdjlaTwN1fAiAVjBKpDZAIxkataOjtu7PozEDjFUaqcBgKLOFgYXGMmfXUq+y4+jwMTadlf3DQ3JSSwRTNB5pJPvMWhmYQ2N+CpEi4J+ahxlX0lIFpGuimwPb9JopUinfHRkqmnzQo+z/RsASExbEgtL+GGc/eQXBvFWHDJP+hwRMO0HehFT2UQPFKqFENd6GTDeedyfyX3xzUvnRE9PlonHw6zx+Yxdp7mvj97UesLatmzCOyO9FpG1teDoKiYCvw4yjIJV7f1Gmd0YIlGvrPaBMOjzzySJ/XNU2T66+/vtf1LOFgYXGMeXv+Qhw5djxFIqULSzgUr8aWqxDaGTuqdlMBDUOLEtofQQ3rAORO92BoOtGGKKIi0rSzhlnv/ILIom9jmiCYBtv3VHPzd2tIRGKUTK4gGUsSqGlI9/XZs4/6eC36T1cDAEug9J/ROJA6vKOWpj0NnPTi6iHdT2/xDstD23lOnoYeNxAkAU+Rm+0fO3fILA/13/4svo8spd4sZdv2CLvW7eLa2yv4+z3p9JLuQhfx6lQna6/nKz8h9vAKME1kj4uS2/pfAMvC4njhc5/7XJ/XtYSDhcVxwukb1rFqxjxERSIRTGBoJvHa5FG3q8cNDC09C2KqJuMuKGPiFz/J+u/8DlERKVs4lup1B9nxl5c5ze6gcvFnEVI6CcOOYreRiMSo3XOIK244k5efiHPVdfM5/dI3AEtA9MRgxT30pXCWJR4sFrz69rDur+M11/Y6lVwiNr+M3Wcjf/IYCk6ZQ/i9Z/Geeumg9uHAFz+KzedC9+YT1xXcHhtlUyqwORTu+afOfwe/z6LV73a7veuGFYPan+OV2MMrQBRxXfe9Y92VEcNoszjs379/0Nu0hIOFxQhAjxsEdreQrFcHzVXJUM1skLUtX6Zk0RS2TLyKieeuwuZxocWTtOyIYKomhvEMs4vL0V0+ynwmd3xzJhsr3RTmmlzgfoOl3z2JSfHVzPvfeTz8tEHskR9YD5se6MltqTfrwWicFR8JWOd16PHP8uLMc2Jz2yg8ezFViz7OoVgRHxmEtpvuvJHAripMw0SUJWweJ4ZswzBFHA4Jt8+JzS5z+8cl4K5+tR357bfwfOUng9DL4wtLQHVmoMXcRmoBuLFjxw56m5ZwsLA4xmTyrw9VUTbJJeIosKFF40wPvkvK56F2zS4adweyKWLjTQloqkMyDdxainnOZmaVOdBlO1X2GSRVmaQjhynJTfzoApPUS4cJ3fYZiu/965D0ebTQVkD0NHAd6KD2Em0nK30zEGUBOBKoalki2mOJhqOnLxauxe9+wN7rLkEQBQSnk7DupSli77Xt+m1rKJq5qMd1HBWleEJRkqEYoiyBKCBqKXRTwDBNUgkVWel/akkABKuklUWa0WZxGAos4WBhcYwZiGCQXCKmauIss+EpdePMdeDIcdF8IECkJkq8OpVtO21RMNj/+nZ4fQWBreGsYBAVAZtfxl3oxAiFIBRCawmiRmIIkoSrrJjxM09GaawGNUV002b2vrwZSRbxFHnpWzJEi6EcuHb04X6paBaiInBRfIclILBEw2DS9lxmrq1MPRpnmY1lezYx6ZHn2HH1edQ+8wrTW5opPeUSYEF2u8TT9+O4/Kvt2u1NNDy1RmPSmV+mdNFecmt3ou/ZiRoMIwUbceRqBFtM/nxn/+9G8X/dh/OqW/F8+Z5+b2sxOhltwuGGG27o87qmafLnP/+51/Us4WBhcQzp78BOcon4Jrlwj3Hj8NnJGT8G39QJiHl+BIeLsliY8MYt7HlxK+H9MQxVx1BNYpVJNH86QFpyitkZakERUMM6umYQO1hN/HCQpj0NJIIJJJuEr2Qf45xOUnX1NO+opHrtIYK7ozjLbEh26/YxEjm/fmv2f1ERhsySZXHi0VOAtKGZrFu6hIWr3iERSnJ4ZxPh2hYqaupI7JmNqdhxXvh5zHi8y7a/fG8zD9yWl32fiafK4M3P5erPLOHsSaWUAezdDU0NOCamkGV3v48l/tKfcF51a5+Pz8LieGT16tWdCsB1R1/Xs578FhbHiP6KBkeRQsFsP3nj83Hm+5DsNpzjKzAnzybuKQDTREmG8RomhQcaiNUdwtBMRLm1OrVbxjAMcsp9AK0pWXVEScDmthHYWU2kPkzjppZ0ZhRFILQ/gqtgDaHqAIe3NZFoUFG8EnrcIBVNsfGCs4Y8m4vFwLEXKWghHTWkH+uuHBOsAeDg0pO7kh430JIaH5xxKmpUJbw7RrIphWTbSWE4iuJ147zw8zg/eVuX2z9wWx6nX/pGt4kXwk0t/OkXq4n811lcOW0xBYZJpHwWKUPmMx8JEn3rP93WcugK5/nts8286J/Z520tRi+jzeKwd+/eQW9zRDj2/fa3v2XChAk4HA4WLlzIm28Obe7n4cRyFbDoDsklIrlEREXodV3FJ1G+pISi2eW4ivKQ7DZkrxtz0kx2FZ7FLts8Wrxl6DYnAKIs4RzT3rfYMAy0kI7DZ8db7KNgSiFFs4opml1KTnkeDdsP07w7hBrSsy5OgiJQ9cEBGncHSAU0TNVMWyjiBuGqKNGGKO8sPHlIzo/F0ZM/LY+iRQV4pjhwj7djyz8x5oou0XZaomGIyJzXzDmWXCKSMz2UiNTG0/eFmgSGaqatm5KAFk+SCkb61P7pl77RydrQln/+fjXP7JnJrkmXclCZil1UKYvtQqza1+djiK1+nPir7eOzTlRxbdGejHAYyKs/rF69mksvvZTS0lIEQeCpp55q9/n111+PIAjtXqeeeuogHunAOebC4fHHH+eWW27hjjvuYMOGDZx55pksX76cgwcPHuuuDQrWw8uiKxpXfIH8uTk4y2zIvt4D+lzlDryl6YJF9rwcZLcTQRA4XDyXR19z8fTbdg7ES8E0ie7YReOuBgRRyD7Q9biBHk/HNSRCSSSbjCPXjdPvxeZxIMoiqZCarfeQQY8bxJuSrTUhTAzVRI+lBUiyXiVakyBW17nIksWxJ/7Sn/CV5lA0t4L8SXn4yj04i3oPVD2esQTD8PGcPC0d3yAfmfjQQjpaSMdsdY+T7BKyQwFAT6Y4dFP3FoGv/LSlz/veuLGJfc3pVKwOMYFg6iDLNP3wi9l1VvpmsGrGPLZecQ6NK76QXR574zEwdNDVPu/P4kTCQBjAC4x+7SUajTJv3jx+/etfd7vOhRdeSG1tbfb1/PPPH+WxDQ7HfPrpvvvu4/Of/zxf+EL6h/2LX/yCF198kQceeIB77rEClixGH8F1L6Fc+nFKm4IceGsfmqxnrQ7d+aPnjvUhiAIIAnoyRby+CUdBLqsOTeGd/6RdhU6aeSaK3syhtXto2hii5IxCFLdC885Q+kHuTMc3xANxvMUagiwhCCJaIkWouhmbL+3WYrb6xRuqSapJywZit+1b5n89bmDN041M7q6+lqKrbuAT49fg/PGdCKKAltRQfNKonF21BMOxIVMrBs3MCoYMqRaVaGOUKX9fye5rl5OKprptRxR7t7xmkGUJ3QDdSE+6mIKEYLMj2W0AvFI2G0jfnxItcZLNYaIP/T/Eigng8oDZ2VUp248+WIAtLI6W5cuXs3z58h7XsdvtFBePvBQkx1Q4pFIp1q1bx7e//e12y88//3zeeeedLrdJJpMkk0eKY4VCoSHto4XFYAfMxR//K/Y8L9VrDxDaG0NyirjGp2eCUwEtPRhvk/Vo4iUV2H0utv1zC+4yJ3avjURLkgkfmcZffrcGgJwx+VyW+AeVv3mYeEuC8mVFTLzkVLRIjLqiHTRsa8SZ76B0/lhypk9ErhhHqmgcSjhA6KUXqV1zmFST1mV/M33p6TOrDsHI4//l/wHT7iH899doPhCg4tTJTPr0XASHC72xgciu/QR211D5cnWP3/HxgHXNDT8dUw13dMsVWxMv1KxuoLZNyuBZ3bT361tzWPaunVSi5+KXY2dOZOasXFTNJJJSkMRcbJ5S/JedheOy9DqpgMZF8R0ArJoxD8eBRsp++XiP7c774hzUWJKJDz/L1ivOIVIfJrgvSqpJa3d81rU2ujnaOg4dx6R2ux27fWCW3lWrVjFmzBhyc3M5++yzufvuuxkzZsyA2hpMjqlwaGxsRNd1ioqK2i0vKiqirq6uy23uuece7rzzzuHonoUFcCQgcDAGx8/J03CWp2fFMjEDkv+Ix6DilZCcIik0Jl86nvIrziUxZQGOLe/QsK2WwNYwoixgaCb7jB384+8Cv994OtGoyp6KAsZ/Mx34LOoqgq7iaKzFc6iO5gMt2D02cqZPxFx4JmGXn7CzAI8rgHvCVmz+D7sVDgM5xgzWQ/bY8PrkueSM8yLbZZp2NSO7ZEzTAJ8f3ZuHGGpBjcZR42qnWeLjDesaGxl0FA+GamZ9oU3VRO/DdTbt5Klsfmtzj+tMmj4GZ+s4LKGKiIKdsOJrt47QajV43jkd13g7hqZz+P/dgPeUk3FcdlOX7fpPmo4WTA/6Zj31KgDvnrKI5lC43XG1FRCj+V4X/vVteG++91h3Y9gRTBOhj9mFOm4HUFFR0W7597//fVasWNHv9pYvX87VV1/NuHHj2L9/P9/97nf5yEc+wrp16wYsRAaLY+6qBCAI7U2Dpml2Wpbh9ttv59Zbj6RQC4VCnb4oC4uhYjAeDm2rQ0uu9mFGskvGkWunaHkptv++gw/06aiGyPy5CpMvOsjG2neIV6XN/cEdURwv/J3zlk/lbyvhuQ2FzJ96AW4lhV1SKZQbycmpJaeqinBNM3mTSpAmTcFQE9iSIXRnMS2OItwz51M8ew17dg9+XNFofrCOZKKVSRINKpJTRAvp2PwGgd11uEo2I9psVL35IQ3bD2Pq6QB4kd7riYiKgKAciZsxVRM9bhzTdK/WNTUy6K7AYcdro7fva9mZuRzclU+woanLz5d+9FTKS23YFRAEME3QdJF5U47Mwh788sew+WVeKpqFvUjBmWtHcSogCqB1H9cgjp9MznnXZ9/X3fYZTvtgDatmzCNZr3a61ruztPRW7LG/rJ41n7O2bhi09vrKiSga4OizKh06dAif74iQHegg/xOf+ET2/9mzZ3PyySczbtw4/vOf/3DllVcOqM3B4pgKh4KCAiRJ6mRdaGho6GSFyHA0Zh8Li4EymA8CQzU7+dFmMhjJDomxS6YQvfF77IqWo+oiggDV7ilMWnYe43ZVsfvpfegxA9knYaRU8m3NFBaVkUwaHDysAOlgxLnlIkm3g3Ez5+DdfQDP+FIQJYx172ArLMA/202js4JYXgXuMTmDdnwWx55LtJ0875yO3hqwlwpoNO0OAJsxDYOa9xtaBYWMzS+TrO9hQNUqFjKiQXKKiKKYzdKVCmhWrQgLoPfq0s87p2evlY731A3nncnSX95H/UdP5qm/riEZO1LvwVeQx+nnz2RMgYTTBmLrfIskwqUntx/GKB4HrjEOtISOzS3jKfLi9HsQFQUzmaB65yaicg5Jw45mypgILJiaT7KgAuOtf2VTunqnjCNw95dYuv1DXp88l1RAIxMAmzmGriwRmf8H8syI/+s+zHAI1w0rssuc+Y5+t2MxcNIWh/67bmYsDj6fr51wGCxKSkoYN24cu3fvHvS2+8sxFQ42m42FCxfy8ssv89GPfjS7/OWXX+byyy8/hj2zsBha2ooHLaSnB2SI+Cf48VxyGTsTJSS1dOCfiElT0otcvISJn2hEjf2LeEsc/8RCnFOnUBjcw6dOFTgUHcNraw1WPfkeADfeehaTxkiUu3NJRRLE6w7jFHYQrzuMFAwj7KukwDAxVBXTMHssFtbWMtIxULqvWD7Cw4uhmtD6PYmKgJ7USbTEadzUghpKB+TLPgnFIaOFdKD9jKrYRihIThHJLiFIaXGbQVL01pnY4Q+2tq6jkUHHWIee6Om+Mf/ldBr25fZKHF9YRFOzgd0m4HYJ5PvSAznTNBFFE00XME2Qxc7tCYKI3WtDdhg4fHZc+R7GPfhk9vOyNuuu39XEgqn5AOTOP6ddO+4b70L8290ALNuziVfKZmN0CABve+wd6bisL9erYHeA2j6AfNHqd3n/tFNY/O4HvW5vMXppamri0KFDlJSU9Gu7ZcuW9fi5aZqsWrWqX20ec1elW2+9lc985jOcfPLJnHbaafz+97/n4MGDfOlLXzrWXbOwGFIyPsAGQNzA0EwcuS7qS05CjYpIoknG1TKlSTQlfTinn8O4r+UhpBIYdheqzYk9UM3YQ9vxTT2dx+rGZtt/+t97+OoXy0m8+Cz7X69EcVfhyLNTsXgi9oI8IgdqqfpgP+WnTCB36ljy5hykZUcEPWZk3VJEOf1X8UrYvAqJ5lSPs9N9obsZSWsgOLh0nP3V4wahqkg2o5KgCEiKhKiIaeuVZrZzWbIXKShuGckmIirpfPyCJCLJIoKUFr2STUfza/1yWVJ86TieTHFCIF0bpB8B2ta1MjLpzn2nLZIrXbn+1fFzOKdyM6tmzGPp9g+zn5fWrOG08Q4SY+2ImIiCgWZKJHWZhKaQUCVMU0Q3hE7WhvCvvoGhqoiyhOJUcOa5ceS6aVzxBQpW/KFTXzKiIUPNzg+RtSSylkBJRvB++g4A3j/tlGzcRMfrvK+1ml70z+SCwLYe13Fc+pUul8t2mdWz5pNoTLWrDG8x+AxXAbhIJMKePXuy7/fv38/GjRvx+/34/X5WrFjBxz72MUpKSqisrOQ73/kOBQUF7SbZ+0IgEOhUEToQCFBbW4vf7x9Q1qZjLhw+8YlP0NTUxA9+8ANqa2uZPXs2zz//POPGjTvWXbOwGHQu0Xay0jej0yDJ0EzQTOKBCIXROnz2fMIpByldQjcExNaMDSnsRP3jEA0NQ5QRMJESEVBVDFHiwLYjcQoNB2qwScXUrt1DvCpFUlExxhuosSRKQT4ewyCnJoBok5E8bnIrcog1JIjHUhiqieIUsfllJp4zCT2lEaoJkgqn/eZln9Au+9NAcJbb0hWoW4OyLYvE4JMZxBmq2epqcQTJKSI7JNSo1i73vqgIOMtsuItdWZEgiCKCKKTFQ2vaTNNIr2/zKiQUNWvd6AlbvoyzyE7BFD+uAi82jxMtkSLaECSwr5nAh+E+HZPFyKNj5qGusizJPomciW4Ul4JsTw8/CqcVsOmis5n7fLrom/vMq1H2HEKQTERMDAQEw0SU0sJWwMQ0FVJdGLliNQ3EGsNpC6qcriEhKjKi0v1QZ8ueWgCcQhxJcqKJNkTFhVOUiL/2d5wfuZbF737AS0WzOiUS6G+B18Qzv0ErKMOU0v3xLr6kT9stXJXOMvlK2WxW+mZgqmY2a5TF4CJgDMxVqZ91HNauXdvOGpCJ3b3uuut44IEH2Lx5M3/5y19oaWmhpKSEZcuW8fjjj+P1evu1nw8//LDL5Rs3buSaa67hoYce6ld7AILZUYocZ4RCIXJycggGg0PiV2ZhMVg8J09DcokoXolEvZp1VRLaxDuIssD48yoY9+nLqZxxKVWxQlQ9bX3Ic8QolA7jTgQQzdZZY0PHHmlEjLag+QrZkXcGj79q492Va/neD09l/j//i02PrCMV0LD5ZXwTPEw8dzb25VcQ94zBlgwhJ6PITbVsvvcRgnvDJFotCpn+TbykAsVlp3ptNYZhUDx7DOM+dh7N8y9A+8UPqFy9j8i+eLtjtRcpeEqcaAmd0N5YlwJD8UnZmWpHkcKkCyex4/92Zde1BoiDR9sBTmYA5yl3orgVDq9pzs6iiopAznQ3ueNyceSkq5CbholpGK1/0+sJooCh6ahxlXhLgnBVNBu03xWiIuAab6filArKLj+X8NRTiTr8mAgoRhKbGsN7aDM7f/4INasburVeWNfE8cPzzunYixT8U3LxTyzAUz4GW44X0eXE/YUfDrjdD3Y0c8r0vB7XeXPuAs7ctB5IBznbctyIioIgS+Tc+osB77tjsof+CIecmW5O/smXQbFh2hwYsh1TlECU8J5yUZ/byQgH4LgTDyN5vJbp29b17+P1ePq9fTgSYdaCxSPy2Lrjz3/+Mw899BBvv/12v7Y75hYHC4sTCT1mtJu1ygSdmqqJoaWz1NSsq8VV8BoV/mLCBcuIqHZ0Q0QWdOxaDEk/MkBz7dtIcu8eEEVspaXMVBPcfP48PrZsPvPeu4e62kA2C46gCDh86SJJqt1L0DEGt2zHY+iQSmCoaX/1zCDPXejC4bNTcf5ixPJxuMasonZ9JZ7iXKKzz+TD2AyWnnM6h7fXZoVDRgTpcQO7z8HE8yZTuWo79e8EOp2LtkXIEvVqO9EAlgViMOk4yDFVk2QwRSrW3u1McooobgVJERHlI7EMhqZnRYNpGAit0amibCDJIopbJk73wsE13k7htAIKF0xDLZ9K2FlAxPBimCIuKYYzGcRsqEGNqyMi0DpTQOzc6i3HuCfHL5lBbfOPb8JeWozo8aYHzbJyVO32JhoAtNgR65qeTGGo9uw1ezR0vBf1FOPQkXh9Em33TuTSUoTcfARRAkHANAVCa1YimGavAmL1rPnpdNxw3KdRtjj2lJeXs2FD/zN2WcLBwmKYyQyMhNaZXwBN1bOZlSS7xJ4XdzGZR5n5KYNYbjlBdxF2PYavaR9iuBnT4QRBpO751wjXtuDK95ATiuBKJSmKtFCsqdSsXsfhHfXocQNBSbsWRRtjNG7ZT/n4dymaHEOOBRGb6kju20e8JZmtAustcjPxwvlsuPinfOk7HzBp/lR+/IVTmLnzLYycfA46ytGTAnrZJBy5zmw8hOyTsvUpPGO8eOefhPzubsaeX0zTrmaild0Xd+rO7ckSEINDW7clMDq5LgHIPgnZLmVdk4Cs20fG6iCI6WtWEIW0wFAkJFvXg7JMgHVOuY+C6WXYJkykxVtEzHSjGgqSoKOYKezhwyRr6kiFuxcfw4klGI6e5nu+Qt7tvyXv278BIPbGY5iSjCkdnXDojRf9M7H5jwxtDE3H1HRMxUjncD1KugoC74uA0EI6LTsryVMUZIcLQbFjijKZQLaMaAi//xzexZcQf+URnOdeR+DuLxGrayJ4KIDillF9adfCC0Lbs20/75x+3FkfRiqCOUBXpQFscyxpbm7m/vvv7zaDaU9YwsHC4hggtg60M8GhcCQLTrw2iR432PWfnRRXP4C3JJeSBTMQbDYa3lpP9HAYZ54Ld1EeDdvrSIZSqHEVPaWhJ1LYcmpp2VPNgTcPoMfTaVvlVregWEOC6nANyfCL5E9LF1oSJQk9mR6wibKArpq4C91ITgcTnFUA7N2wi3cvPoM5s3JJmTZMU6DMG0Q4rCNKQrYonammA17VkE7DtnoK5uxm8qWLkeadjPGj3xKtrB/+k23RCUM1MVS9XVpgURFQ3DKiLCGIQqtIaD/Qavs+LS5aYx+UzsJBcqWzMdn8MjnlubjHlqD7i1AlB7opIQgmHimCJ96E3FRDsLYRNTE4RQgtjj15t/+23Xvd6cNsHbiH1qzEt2h59u9gIjlF7Dk2Nl5wFie9uJqK3/wLgKYffhH/Hb85qrZX+mZkfzP9FRCGalK3uRqb14XP50NwOBFkGyYSgmkSWrMSSGeFCr/3LKLdRXzlQ8guJ7LTgd3rwO5NoCV0zqnc3Kntwa4fcaIyXMHRw8XEiRM7BUenUikaGhrQdZ0//elP/W7TEg4WFscAQzURlLRrUibDTIZMqsxkvUrdxgaS4QTu0gJkp51wbQvN+4PYfWGSoTixpjjJehVTN4kejhOuDWHz2AjXRtDjBnlTfHhL0v6WTXubiDUkSAU0at5vIFwXwVfqw1PkQxDFrMVD0AS0pEasuoHCl//E0o+uYPuGQ/jdSUQMbEIKWVBR9CRS8DDh+khWNKhhHXeFA0NLEN4fo2HDbsovXELNH/5K/ZpGJJc44IBq68E4+HSsKSLZ0tmTMmTck4B2rh5pdyXhiNVBErLpfNsWirP5ZZy5drxlBUj+fDQlnZPeISQQRYO8aDWOYC16XQ2xxhB6/PiatbPoO5kZ9cwAObRmJQgiobUvgmm0ExDhD57HFIQBiYpzq7ew8xMXYPO0r3+Q/90Hj6L3aZa3meUfCIEtQRy+g9hyvThdbgTFjiBKmBxxCzQFAUGUcJ95NQB65e1IDgXZobDg1Z590a175NFztJWjRxpz5szpMqtSMBjkW9/6Ftdff32/27SEg4XFMNFxNioz0O5qsJQZgOlxA1M3UTwuTNNEtssIkoCeMmjcHcjWgDAMg/ihFKmQirfcjSAJeMe6mHzJydgnTsRMJnC+tZaqNQewe224CzwIokDp0gWYqkbL9n3Eq1PZ/TZXBkmGkpSaBv9vwc/hdBHj3RCiyw3+ArT8MgxJRq8+RMvucFYMiEDZyWW0FAYIVUVIRZPo4QiyQ0GPG3gmOkk0prD5ZSRFIrgtOmzn36LrgM62MQWCKCDKYgfLgtBOQKSXiQjiETcmUZHS8S2t4lPxpq1cdq8NV74LW64XZBlRTeCJNeCmMZ3ysrEKs6GGyP5DRBujlt/2CYCUiIAoYYoSptBahVySCX/wPKKaANNAbF0effP/cJ95NbFVj1JbcSr1yUKWzPSyZmczptl9vMO0x18c+uNw9T9mQg3p1G9oxObeQ5nPg+R0p60OPbhveb58Dx6gsId22/6uLfFwdIw2V6Wnn366y+X19fVccMEFLFiwgIsvvrhfbVrCwcLiGJFxTequdJbR6vZj99mRc3NI1jVg6Ca6qhOvT8cK2Pwy+ZPyyB1XQKwxTNOepnSwqlMhEUyQagkjB5qIHaymas0BotVxnvvhW9kicTwHl3zmDG7JuxfjwbT5W/ZJJJtSxOuT1L+/DnvRJrSQjqAI2Pwypmpi8yo4/Q4EUSTVpGHLl6k4owSn30PRp66mYP371K3ZydiPngOaStPuBuZ/ZQFbH9sEQLJeZc51M9BOV9n0UM/+5BmXl0zaVoujo7tsMEZrwLQ0XsrGNAB09TzMWB8yFodMak3JJeIss+HMtWP3OXD5XTj9HhBF9IZ6aGpE0dM+54amEWoIkArHSEUSOHx28mfmkShL0LIjMuBCgxYjm8xMeobYX36ImJOLkVuIKUoIRusdURAQNI3Ek79CiEXJ941B8mmAl0XTeg+Q7ivB+27BSKnZWIyONN/zFUzDwH/H79ot78760FugdKJeZfe/K2nYfpjJF1SRd8apGMUTEBCzrlzmAGIx2k5MdVVPwxITFm0pKirijjvu4Hvf+54lHCwsRjp9TeOXcfkQRBEjkUSLxlHjKqKYHkhnLBWyXSZncgUFpxWQs2kH+1ftQI3GceTZadhykNxwjGhDkEQgiXOMnViHTDrPP/ou//0/k7P5+wVFwOZS0FWDlFMlWX8k001m8B5XUqjjtdaKw+nYCFeBl8Il8zk49kzGBuopczn5d+k3KfCpTCx5E0ShXarXuk2HUGO9F5MzVRPJL6L4pF7XtTg6Eg0qLYeCeIt1FKcta3noHNtgtrNEpC0V6XVEMR0wrTjT7hWSTUaLxtHjibRg0NPXjKnpJINRDE1HsslINhlHrhvTMLF7G4nUxQjtjA3zGbAYblyf/W6797FVjyJkLFymgel0g9uDqKu4ki0c2rWVlOQkargJptzYJA2XlMArhHCoEQAUNYYt3oLSVI1eU4XWEsTQdERbembf1NpP1xjJFGvOOi2dclg32lVp7ko0DAbh3TFKNv0dAO3dpzElsZ27SyZIui0fnHEqp7z1Xp/a70o8WNaI3hltMQ494fP52LGj/0H1lnCwsDgG9EU8ZNK0qnEVU9dJBiPoyfTAXZQFtNaiXpHDUUxdR3C5MXWdWEMCURYwdYOWAy0Ymk4ilMTmVSg5qZQrl8EHrZZ8b34uv/puLom/PULuzHTuakEScOY5ceY68Y0toHZ9JXXvNCH7JLzjXEg2CS2uITtlGnY3IyoC/uk5jDnrFLTJcxi39Wm0w4eRfD7OK1hLzs53ic+bxFdD3+EzvvOygqfmjcY+nau8OV4KphQw5e8rB3i2LfqKHjMI7YmSDKdw5TuR7Wnrg6SIrTENYuv/YhtRkV4GmXSuMopTQXEqrZYLEy0abx2U6W1qQhgYrQM4ySajuJ3ILjuSw45vfDHhg/VUGvuJV6eOqtCgxfGFa+k1XS7XPngeWUtgiBK6qKSLXwomuiERx44p5ZCy2QEQbXk47T58pokcjSDG4iBqCJKEqevk3nY/TT/8YvYa1pMpFq1+t8v99lc0dByYd3Wfz0wKZfCcdjnh959Lv2l108I0ib/6V5znfCa7XqK5+6x0bfffk9uSJR56ZrS5KnWFqqps376dO++8k0mTJvV7e0s4WFiMQDJZlwDizXGMVAo1ls58JEjpDEaGZmLGDSI1UerX7cJ9qJ7DO2oRZYG8SbmEqsJEDyWI1iSQnCKTL5hMwWeu5d2AO7ufG788m9IXv0NTTSPjz5pMKpKgubIJSA/mfNMmkrtwHorzeexeB2XnLSZy6iU44s0Iq1ci2z8gb3wB/hnj0j4ta1YTbmjEu+hkkqWTydn5Lgf/+TyKy84fLn+K135u9Nv9xJHjoOVQy+CcWIteUUPpuBs9bqC45XTAtCIiO2REUUBxKW0Co6VWa4OUDYgWJSEbYG0aJnpKywqEzLL0XyO7reyyY8txo+T4kNwuBEXBnp+LzeOgak0lzdtC7ep+9AVrgDS66GuRtE2769FMmcnTJgBz4dT2nwfvu4WmH34RPZ5AkCUKf9D/rDL9oatJItkncX791nbLvIsvIfLu05iCCYKAqKsI8XQM2NYrziF4KMhZW/uWc78v4sWia0ZbcLQkSZ2CozM4HA6efPLJfrdpCQcLi2NET1YHQzWRnGBoJslwimRjM2osia6lg6VN1cxmQVLDOgdXVyH7atMDOUVAtkt4il2kWlTUcLpGhJZQkQL1HEykZ0ZKJldwtvsDKl/4gHhLghmfWgpApP49miuDxBpjqLF3yRlbgBpXGXfeQjad9j888YaMmtL5zEUnU1p1M86ifAAa3lxLKpKg4pOXcsu2T3L3+O3U//N5ajbWkmwt8JYJvi5clIeW0GhaH+r1PNW+ddjKUT7MGKpJsl4lpWhITjFrSZBsIlpSQ5BEJFlEkIRsfEMmQ5iW0FFjataVKeOG1NbtKZPKVbLJSHYbituB4vUgeT0ILjeCJCEJIs4xYVz+elqUcL+PwRINJx7rdzUhIKGbIh/ubmDelDFdrieIAmN+9Miw9auv16LntMuJvPNUWjjEwxiH69hx9XmEakLE6hIDFsOWy1LfETBIl9jr/3YjkZtvvrmTcHA4HIwbN46PfexjFBcX97tNSzhYWIxQ9LiRTo0a0onWt5AIxkmGUiQaU1l3n4wLh+SXsXtteMa4yanIR3HZOby9OpsmVVdNDr59kHjzv7j5jnH4v3oxHie4N/6D4KEQueNykQoLERwuKs6KEm9ZQ7wpQePuQKurlIlSUsyTqxXe+c8HzDt7HlOD77Hhhe14Sz24C9w4/R68ZQVo+aUE6oO4tr/Djh2HSQU0Sk4tJFgVzmZRyhvnJxlO0Lw53KsFwhINx4ZM8L6pptMGZzJ4yT4JUUyLBlNPf3eGYWQrlKfCKoZuoiU1tKSO4pRx5LhaszUdcXESZRHJbku7JzkdCHYbgt2BICtp65UkIdptKE5btm1rwGPREwumpicxNuxqRBI6W6jij9073F1qx0rfjF5TunqWXEHimd+AphLZf5CmPQGiNYmjTg7RMauf9Vs6MfjlL3856G1awsHC4hjSndVBbK0qbWsVBJB2HUqF1E4PEFEWcOTZ8BZ7KDttBrbCfIxEkoPv7EHxSijedDXneHWKQw11VJz1Ep+dXY+pOwlt2Ykjx44zz5XOlGMaKPl+yhdNIFwTIBGME6mPklORQ2Lqyez+QxXe/FyuuwRCDzxCqkWlobYJV3mUisUO8maVkvQU8Ksbm6m9dzWhvTEkp4gr30PLgbR1wVBN9v5nf/Z/i+GnrwH60EZAtKYHzlQiN1UzK0wN1UTxSegYmLIAaOiqTiqqYXPLmIaJzW1vtTwoiHLa6iDKIoIkIcitge+mgalrYOigH4l/kJxitk6ENeCx6I35Uws6LYutehTRZiPn1l8Mf4damX71VCIP3I7ny/f0uJ7jspvSf6+ENf87PXufHIzrvrfffuazE/Y3ZpKt5t3v7U4QLOFgYXGMaXsjFxUBe5GCa4wDm0tpzU4jY2g6sl3GW+5OV3eOGyTqVWz5Ms4iO64CF/nTSnFMTgc6mXoTgiQiKAKiKOIskVCjGopbJhkIYgPEYBOOglwKphURrm1h71+exVuSy5iLz8N1zRLskp2oqwDnnd8gVB2k+ns/4I+Lp6EnU1R9dTcNwML/3I/9wzfZ+beXObyzHt/4Yly7PgBDRyjKw1lmQ48b1G+pQ3ZITPnYeBp3NdK8OdLnc2MxMsgMXgy161iDtjEIkktMiwNFI6YmCCpRRFnAlqvgyLPjLnDjyvdkg6cNVUUMRxEDLQiShKjIIIpo0Tjx5mi7zF5dXRN9mckFeN453bJgnaB0F3TdE++fdgrjz55O0Y//AsCL/pnocQPZJ5E/I4eFq97hlbLZpAIahmr2er/6dMOtlOyq4KNvmlx7Zt9SrnZ3va70zUCPGX2+R7YV3D1t09YycSLef0dbcPSdd97Z4+emabJixYp+tWkJBwuLEUTbAFNBOhKAKtnSs7aKM11ILRXQkFwiORPdKC6FWGMMLZZEq60luPsAjbvqadoUzBbUsvllXMUOHLl2PNMnIyRjxLdt5/CmfcQCMVLRFIIoULZkJi2TFuGKNCCvfoqCOSdRI0t4S3xEGsJUvrYZu9dBIphAS+g4dq3l8HsfkggmUKMaNe/vhPd34i70kWhJF/TylrupWDwRUZGx5XpJRZM4/Q7q3mnKDgad5TbGzM6naW8zqYBGqkk7IR9aowU9ZqBzpEiWCCSatLTly5kkWZ5ql1FJsh15FImyhGRXMA2TeFOI5v3BXgOjl4e285w8DVERuh1obb5kKTa/fMIOiCz6z+J3PyD+yiOEf30bkf1VyL50DJkop+/Pez5zcbvsSH3B7rCxsKQKqDiqvvW3inV/r/kT9Tcy2tKx/uAHP+j2s0zsgyUcLCyOQ3oyHwuigN3nQnaoxJuj6HEj6z4SO5ygcKabyZedCkvORa7cxoGHXycVVnGMUTC0dMrWVEBDcqYonF6IIIok9+6lfv1uDu9sQnZIOHIcTPt/NxEsmk5CdiO6dLwzZkNjPcVnL0T0+kgdOEDdmp007Wki3pQkFdA4+O9XqN1UhxbS0/tpUXEVOyhdPI3g6m24i100bwsRrduC7JKRFJFIVRxnkb2dm1KyXiVWEiNZr3ZZSdti8BjODCuZGBydNnVJFIFUSCXSEMXmtiPKImKrq5JppOtDSDYZPaURa4qgRrWsm1Km/10NajLLVs2Yx9LtH3b6vOTkych2mboPG4boaC1GG69Pnouv3EPRnDK8E8oonOknUh9FsqWLHqqxZKtlLV01vTcUu41Pf3wM43c9DJO/OAxHYHGic/jw4U7LAoEA//nPf3jwwQd5/PHH+92mJRwsLEYIl2g7ed45HS2ko7sMZLsJcnoGVnY7kJ127N5wuxmuskWllC8/nebFl1NljmXyNC8lJ61i99N7MbTWtJeqieyTKJyZT96UMrSWIKG9VUQPRxElAW+xh7HnLODbGy8ildC44gIPpW4fj+uLsOfDx6e9hhILYhMEfLWNWaEgOUVq1tVi8ypZy0Y6haeCkuOjaHY5oaomwlVRopVJIInkEtFjRqc4DUM1adkZwdBMy5VklGKoJiKgt2YfSYZTJMMJJJuctrC1qQuhpzTUuEoilMxeW32lK9EQ/8ePcZaXkBuNE66PWC5LFn0iFdBIeJP4JpYTuvjzTDnpQ4RwAK26isPrdlC15lA2a11f+NEPZnPSmh+z6/FXCd/xe07fsG6Ij8Ci3wzQVYkR6qrk9/u7XPa1r32NaDTKD3/4Q/75z3/2q01xsDpnYWFx9BitGWxSMZVUTM3OwIqSBK0zsc6idJEjxSdRdt5iknPP4KAxnoaIh4OO6ZReeg55M33Y/DI5U9zkn+SjZFEhY2aPxV7gx0gkiAciiIqEe4wbd6EPZdpMqvY0sHPtLsa4wkx85RfMGpvgkV+txt5UhbHhPYIfbKB+SxWpgIYeN7D5ZXIn5ABpweAss+GfnYMz14EaDBGpayawP9DOgtBdIS9HkULeTF82e47F0HCs87kbqpl2Y2rN0hRtjJEM5XdsLQAATiFJREFUJ1DjKlpSQ1fTReEywiEVTmUFsNhPl5AMsYdXgCSBKGJqOmpUtYLyLbIcuukqnndO77R83dIlOEvsFM0uJnzRDexTJ9BSOos9s64iftZHcfg9RCrjaCG9T9fT6Ze+QXPCQbzyELnjCph+xYKhOJxB5VjfL44Jpjnw13HGqaeeyksvvdTv7SyLg4XFCCPjXgQgSgKG3wWA2aaIViaIWvR4kLQUuk0gFJc4SC6+eZcx939EjHAQM5VCC4UxUiqKz4PgcKDH4kg2GYcvLUAEUcB0OHF6HNQnknz1f7Zgc1xO0f60iTOx5n2ath1AjSWJN8fT2ygCNpeCzW0jEUxgz7dhc6fbVOMau59bTyqqkWxK9SmNoOQUUZwKjgLboJ5Li5GJHjMQZYFodRw1V8PuU1BcSromhE3GNAxS0RSJ5lS2XgnQJ3eQjsQOVOEoGYMaaCGwt55oTWKQj8bieCS26lE0dx7++TOw+Xew4+rzmP5/LwPQ/OObECSBspPLCN3xZ379gp17Zj1BrHACGxvmcW5hLYlAJGtpaOtK1x1vP3s2p1/6BnbXjaTiCc5YsIg3L30j+5nFyGC0BUf3xMsvv4wkSf3ezhIOFhYjiEysQ8adJ6YkCR+MUb+lAT2ZjiPIBIrGq1NEtmzHI0pMm56DnjeX2qCDXaFyknOuQhZUJHR88Qa8+9djNDeBaWIaRrqir6pjaAZ6fRD/hjX84SMpkh+v4OLvyaQSSdSkysO/GI/2SAJRFqn7sAF7jo0lKy5DGj+R5OZNOGbOYu3Ea8m97VKqVtfj+YiXSefMZ89zH9CyM9JtUKuzPJ2b313oonFjCw6/HV9pDiXzxw/j2bYYCB1n/gc6e6+GdAyt1cLWoiL7JCRFQpQE1ISWjXfpb/BpW553TmfCReWI2w9Rv6WByL64ZW04wVk1Yx6+Ug8TzjsJ59y56ED5khIatjUiXbuc/Ntu5+clP+fjzvOJNUUo0Q9y3YVjMRqcSC88zrmNDxKpDVCzvoaz7vsoclER6+/+G0vWre3T/pOx9OTLm898MIRHefRkkg286J/JBYFtx7o7w8Zoqxx9ww03dFqWSqXYvn07Gzdu5Otf/3q/27SEg4XFCKNtoLShmiTq1awFou2gx1RNItVNiNJ23OEQ82c34y08hahqx0DANAUMQUQ0NMx4FDOZBECLxVFjSbSk3iogDKrf2kzz395k3KN/ApoB+PgnJmCY1ShXXENRtJlI/a9JRlJIBQWYddVILifh995nYSzMO1uaqFhaTOniaQS27Sewo+dMOKmAhtlandhd4aB4TimyQ6F5by39r2Np0RcGy+2g40BeZODiQY8ZmIqQFRCSU08HTwe0duv0x01ppW9Gttp10WI/5WefBECk/h0SjX2zgFmMXnLH5jBu2Rwc5aUEV79N895aglVBQjtjJBoPYho/4rbT5/L+hkYAxr/6GDPGT8SUFWzFY5A9LhwFuTTtOUzy9Iupc5dRMPWFXusfxF/9KzB2uA7zqMlkKHt1/Jxj3RWLo+CJJ57oVDk6FothmiY333wz997b/6KIlnCwsBiBdKzy2XFgJrambTU0nVhDM6lIDHcozPR5zYSKpmHoMiYCvmAV0va1xKtqMA0TDIPKVduJHo6hOGRsXht2jw1RliicXog72oDTl8dp58/hIul5mn7yBz782qN85/tr+K/bVnHK/eex/XdPED0cR3ZIVCweT3jlasbMzqf0ByuQVz+bLlQX6Hlwlq147QTFnc5OUnT2yRSUjR/0c2kxuGSzyJAWrwYMyIUoQ9sCc5l4hoxYOFI74kj73Q3MMr8VZ7mN4pPGUDx/Iq6Z00lOmoeciOB5ezPNu0M9pmy1GL1kro/Tvr+UHZffg0tOYH/6Wuq2NGTvV6kmjT1PVXJwdVW2XkPV6+vJGXsQ/1lLEDxehJIK5GSC/M37UFJRcsR6mjQdxSdhaCYvFc3i/Pqt7L3uEgRRYOLDzwJQ+7d/At84Voffby6K7+D1yXMHLe7sOXkaMbPntMojAtMYWKDzCHVVCgaDnZalUileeOEFvv3tb7Nnzx6mTevfpJIViThCOL3V19HCoi2XaDu7HChlB26GiZZQSbZEiVbVwYE9uIM12NQY7mgD8sEdJGvq0ONJtGicZEuY4N4wscokkQNxoodjxJvjhGpDOP0eTFHi4e87+E754/z6wHIKPncD/341/VD9y4NrKTtjDt5iH7GqBKE9UbwTyjA0A1e+B2X1s0QO1ZIzuaLXGWhREXAUKXgnuEgEktRtqufw2+txnvOZwT+JFoNGRrC2fYmyMODA5bZkA6dbRWVX11BvueVFRcCZb2fM3HHYz7uY+vmXUuObierKQbLJGJp5VK5PFscnba1tsttJTcgNQGBfM5HdCVJN6ZS/mZTB7jInvsnpYpuVL1ez56WdBFa/Q2TTFlpeeIkDf32S+i11qP/5F8bffkv0cBSbP13hXI8bvLPwZFKRBMlQPLtfNZbilZv28NDPp/D9u07l//3gtOxnI/X5n7EEnkhkYhwG8uoPq1ev5tJLL6W0tBRBEHjqqaeyn6mqyre+9S3mzJmD2+2mtLSUz372s9TU1AzKMdpsNi677DJuuukmbrnlln5vb1kcRghWcJRFfzBVE101iTSEcfjs6KqBGkvi8NdhHx9FcPuRUnHMaAQjpaa3aRUZhmZiqCaSM50NKaVomLpK4656zId+w+EdtRR87hIKi0Skfds4Zf5lVFScyVMPv8kPnXfz3ZPvoOr9amxehcDW/bjH5BAPhDnwyjpyKvJJBcM99t1RpOAd6yLekkRL6CQaVPRYkj3RPYwbjpNnMWAyBQolezqgzjBaB/maeVRWh77Q14JUslPGWVxIMH8iLUYeuimlEwiktD5nwLEYvRx4ZQNntdxIrL6Zw3VHAuUzQlgN64QPxHAW2SldWMKBVVUkGlNsf3IrjjwbqbCKGtYRZYEDq7dh6iaJYBI9ns4WpscMIlVxksF0RrAZwCtls9MWDMeTRPY+xNQZxeTPmczK75/Hk5Hz+f3PVnP6pW+MuHHAOZWbB6WdTO2VUCgEOTmD0uZQMVwF4KLRKPPmzeOGG27gYx/7WLvPYrEY69ev57vf/S7z5s2jubmZW265hcsuu4y1a/sWS9MXZsyYwe23397v7YZMOFRWVvLDH/6Q1157jbq6OkpLS/n0pz/NHXfcgc12JHPKwYMHuemmm3jttddwOp1cc801/PSnP223zonGn14z+dxHrFkxiyN057rUvDcdWGzqJpJNxDRMykuLcYjpgZ0WSLsxGSktm+YS0jOzNr+MzasgKulK1blj/bQcSPv1HnjqNa5aVEPD3ioum/kN1GUfZe208XzmnDCR39ZSPG8MNo+D5spGtGQ9+ZMKGLvsJLRYnNo1u7s9Dskl4hxjR08ZxCqT6dz+rTPA8arU0Jw8i0FFskvIjkzBtrTR2tDMblPtHi39rWCrp3T0RBJXvIk8t40mCtFlG57iXATlIJdYbkonNFWv11P9VkO7jEiQnkRpex27C52Un3cKqWiSmnca0DEI1kcRFAE9ZiC5ROKBBJEDcQRFSE/mtG6rhXS01hiv553Ts/frXU/uRXKK2SKHtpq/c/WFTfyesuE+DX2mt9iNvm5/3LgqDRPLly9n+fLlXX6Wk5PDyy+/3G7Z/fffzymnnMLBgwcZO/boY2V0XefRRx8lPz+/39sOmXDYsWMHhmHw4IMPMnnyZLZs2cKNN95INBrlpz/9KZDu+MUXX0xhYSFvvfUWTU1NXHfddZimyf333z9UXeuS7qqRHgss0WDRHR0FRLw6hRpOF2Nz5NlIRZME1m7GU3+Y5p0Haa5sRFcNRFFAVKR06lXVxOY/8tPXEjrliyqIfeu35JhBWr72Jeq2NCDZZEpOn8vOf76J/dX1/OmbX+HKH04h0vzl9IYBwAUvfeoVdv7jNVoOvI+70E3V6lqmf2oyVWursrNwZacVkzuugA2/2Ujz5kh23xkBY2gm59dvHbbzeCLSU3XyvqD4JGx+GXehE8meLtqmqwZaUkNxpNDjsUETDwO5F2eupab1IdY2vErRqg/xlfkRvv4gEdcYCj9yBhX7rarRJxodr/lMTA0cSWvtyLOl70uqieQSsflltKROaPtecscVEGuKET4Ya7etHjMI7oh2acEyOoiSDHrMQPFKJFqS7HlxVzohwL828r1/reEvj3eu8DsSaPvMGcjvsu02x4PFYaTGOASDQQRBIDc3t1/bLVu2rNOyVCrFnj17OHz4MD/5yU/63ZchEw4XXnghF154Yfb9xIkT2blzJw888EBWOLz00kts27aNQ4cOUVpaCsDPfvYzrr/+eu6++258Pt9Qdc/CYlSQKRgnygKGbpKKpogHIghiAw3baonUxtsFKoty+kFmaCZG+EgGm1hTBAmdvMBenCdPovx0G4FPfov/1I9j0ZrLqV5Xjecvf+fn3/stN379SLDVo/cVcfjezYw7ayauM85i77hzKbv1GtzFuRRMieHMc7Pn2X0EDwUJHuocpOWd4mLSOVP58I+dq/1aDD4DFQ+SS0T2Sdi86XoLoiwiiCKibGQrPivedJXnY+UKlMlABmnr1aFAHaJcz1mnPwgFxZjxOK58zzHpm8WxoS/XuqmaGLqZDcY3VRMtpBPaH6EytRtREoi3JDtt15faDV2RCmioYR3Fm7baJRpUir95LnePz2fjBQFaDga7rH5+PDOSJmZ742jTsYZCoXbL7XY7drv9qPqUSCT49re/zTXXXNPvcXEgEOiUVcnhcHDWWWdx7bXXcsUVV/S7P8Ma4xAMBtuVv3733XeZPXt2VjQAXHDBBSSTSdatW9elUkomkySTR37EHb+kgTIUF/WqGfNG3Q3AYuRhqiZqWEf26QiiiLesgJxT5iM77dSs20/d+43ZmWCd9CAQzURyikR2J1B8Enavg82BUr7xhxBjp93H9vd3kHrvIA//QqRuUy3h3TG0eSplwS288F2N57ULaQ4LBL5yFgDesUWEi6dhmgKF08up3VBJrDFGLBDH0EwCH3Yd9xDeHeOQe9+QublYHD2ZGVibT0FxKwiikBYNkpCuyEw6fsaWq6TdPdSjc0cYrHuxHjPQgb3/fAVfmR8tkcpmuLEYvfRVGLd1UUo2pdqJAEMzIW7QsiOC4pU6pyButVQk63uuQt6tNaLNcsUr0bI/yOFNAbRQ2nqccW86XgbbvXFcHYdpDtDikP5OKyoq2i3+/ve/z4oVKwbcHVVV+eQnP4lhGPz2t7/t9/Yffjj4Y9BhEw579+7l/vvv52c/+1l2WV1dHUVFRe3Wy8vLw2azUVdX12U799xzD3feeeeQ9nWwsESDxXBgqCaKU8TmUvCM8WDP8yLY7PjOPQdHwTok5UPq1jVm89dnBulma3yBzS9TMGcib69N0FzXyMIzp/BhIok3P5eCx+6hXk0X4Trw5kEC+7+HIAqcVPJLCmaOZWtNhERjiljjWsbWNWEPRDgcTiApIrJDonlb6IjP8Hg70cr2M3eCIhA+GDu+HizHOf21OkhOEZtPweaWkeR0HI1pGBikxYMgish2CcUtk3KqPdbv6EvfBpvgoRCxQJxkKMXEAbZxtH7eFkPPQN3wMtbX7PvWgb1OWiCoYb3LiQ3tKK5zaHVb8knIPonCaQUE9jUTbIpmhbctX+adhSf3ubDc0fC8czpAuzTFHa0El2g7ed45ffSnMjbNrAjo93bAoUOH2lkFjsbaoKoqH//4x9m/fz+vvfZav60NN910E1deeSXLli1DFAcviWq/W1qxYgWCIPT46hj1XVNTw4UXXsjVV1/NF77whXafCUJnf37TNLtcDnD77bcTDAazr0OHDvX3ECwsRiWKWwFADUcxmpsIls1BPOM8Jly4iHFLy/FNc6WtDa0YqolrvJ2yRaWIH7mEq5ZpvPzNOm5YUglAuKmFS9/7FFpMw1lmY9yZY5l03hzKF00gWB3EduHlzP/jD5h73QJkh0SkroXDOw7jLvQy8ZJTmffNa5hy+aR0Ck+X2GVth65m8yxGDm19tAWpNRBaNzE0Iy0e9DaztKrRa/2O3hisInVtidYkCO2PkGzqe/D9c/K0dn3pLi2yxbGhbcBtx++qr7StRWJ2YzUw1K6D/g3VTFc+P0q3PDWkE6tMcvC1GsK7Y9nloiJQMDuXGVedclTt95fezuOoFw2DgM/na/caqHDIiIbdu3fzyiuvDCiIec2aNZx//vkUFxdz4403snLlSjTt6Atg9tvicPPNN/PJT36yx3XGjx+f/b+mpoZly5Zx2mmn8fvf/77desXFxbz//vvtljU3N6OqaidLRIaB+IsNl3/d8eTHZzG6EBQBLaGRCMaR61sQ5EqSS1wYeWPJKy0ld0IDhqYjSAGC26JA2gWl4pQK+N6v+MGLRYwd6yI+/lL+39fXZNv15udiaCa+UjfFZ8xDUBRqnngDX4kXacd6Xp9zO2dfoePc8nNsHgfxhiTN+5vw//f5CJEAkk1GUAQUr0T5khIOvFrdbkY645NuMbz01eqQ8fnWVR09pafdlDQ9m01JENMDJy2pE61JHLP4hp6OJWNps+7No4eO12/GcqrHjX5ZvEZCat6OwdqGmq41kje+AOfs2cPSh4viO3jeOR1REdpZ105ES5tA/2syZLbrD5FIhD179mTf79+/n40bN+L3+yktLeWqq65i/fr1PPfcc+i6nvXC8fv9fc46+sEHH3DgwAGefPJJ/vWvf3HppZfi8/m49NJLufLKK7nwwgsHJGwEs2PUxCBSXV3NsmXLWLhwIX/729+QWv1hM6xcuZJLLrmEqqoqSkpKAHj88ce57rrraGho6JNZJhQKkZOTQzAYtIKpLU4YOj40JWfaD92eY0N2ysh2iRnf+jyIEsn1a4lWN5CKJIjUBzn0avoG5JnoZMHNF3JL061sf38bsiKjqe1nI778zbPI/ch0PFMcLLzpAiLnXkNu1Ydg6NT/3zPYfS4chXmYus6BVVuRFJGcCj9508fTsusgWiJFvDlGtDHKuDOmUvXeHurfD3TyDz6RHkwjhb7O0mZiHJz5dmSnjCAKiK0B0YKU/ptoSXYZx5KxcGVmbTMFtkRZ6DaF60Cuhb4ci3WNHd909R1LLhFTNSlclMfUKxajRePsfGpdtzFVI522Ade2fBl3qYPTN6wbtv139zsarN/OSB6vZfpW/co/8Lld/d8+GqPs3E/1+dhWrVrVZRzvddddx4oVK5gwYUKX273++ussXbq03/0DqK2t5amnnuJf//oXb775Jg6Hg4svvpgrr7ySiy++GJerb8c9ZMKhpqaGs88+m7Fjx/KXv/ylnWgoLi4G0ulYTzrpJIqKivjf//1fAoEA119/PVdccUWf07GO5AvRwmKo6OoG386tRBHwjHdi6iaGYWBzKUg2ET1lZB+qtnyZqZdNQf/2ffz86Xx0zcDjs9PcGGX7+9sAmHPGHO6K38a+V7ZQOK2Ium/8lW/ctoGrbjyT8/5wDgU/+RkbErMJxmQu23s3a3/yBInGFLlTvEz4yExi9c048334Tp5PfNdulLwcGtduo2F7HYnmJGdt3TA8J8yiS/oTSJqpjJvB0NKPDsUtI0gCsapEp9leURHIP8lH8dwy9r26l1RAw16kYPfakB0yWkKjZUekk4Do70Clt+OwRMPxT+Y7llwijjEK5YvLKLvxMyTeXo1pmLjnz8e0O9j3m7+y/7mqY9zbwUNUBDwTncz/8v9v787DoyoP/YF/zzmzZiULJAQCqCCrCASlkarFKhShxWr1erU8oMiVaje96k+rLVhFtEjt1Vaudataa71KEQuyqIgKoiIioCCLbAEJkIVMlknmzDnv74/Jmcwkk0xmMvt8P88zD5Mz55x5zzCZvN95t8uQ/fM/xPS5I92LIpHra0bZvn375bCDQ8ll1yfktQVSXV2NFStW4PXXX8f69euhKAqmTJmCf/3rX0GPjdrg6HXr1mH//v3Yv38/+vfv7/eYkVUURcGqVatwyy23YOLEiX4LwBFRYJ1VkozF1IxvdJ0nWrwD+JxmT/9u3768boeG49uPYczWZThr8H9j91e1qD7VCLXF033IZDZh7hVA7e+Pof95g5Az7EwsXOYZ3FxVpWLQtHJ8ibNw+KQZq/71NS6/aTzOe6wfqv+9Gqe+roQpw44TX+1C76E6LGecA5uuw/6T25F1MzAoei8PRYGuCrhq3H7jUWST571mL1Bgz7dDMctoqmz2jnMw5SiwF1lR+p0zYZnzK4zu/zdUbNwN1anCZPW0XDirmzvtXx6Knq5RQclBNkuw9TEjqyQTGYU5kJyNqN17FN9u+xbKG1shKRIc+xvjXcyI0lUB5/EWNFeegnjsNuTc9ljMnpuBO3UVFBTgxhtvxI033oi6ujqsXLkSr7/+ereOjVpwmD17NmbPnh10vwEDBmDlypXRKgZRyglWSRKqgA5AOPW2PrydTAvo2N+I46s/wPV3XIw/HB2JzavbJjZwq24cOp2LyeXnYMXoR1DcqwU/aDJj9ydAVpYJqAXG7H0RYyQZM8+rxL7cX0LPlTHi0kbUVbyByi17ULvLgdx+ueg19vvA2O9H+qWgGGo/jaQwS7DYTTBnmmHLscKSaUFGYQZUpwpZlmDrZYc9LwO2wl5489R38OPL61HkeAE1+yohdB1CF2iuciVEP3NKbMbnnRFg65z1UBu/QfPpRtQcrEbdrkbvlyaJRjZLnjVQ8k1o2Ncc1jlUh4Ydf/8MvUfkY/RtES4g+UvQBeB6SgiBPXv2oLq6GgUFBRg6dKh3EqLc3Fxcf/31uP7667t1rsjNz0Qp7fQffhHvIlCrrkKD3roAl9akd7tCdvTTo2j+8yOYdVk9cgrz/B7744MbUf2Dm7B08QdodJkwreHveOWPffCDMbVQhoyEcLlQ/+lnqN66C0O/+BtGfPkSTm/6FI1VjdA1gSk1uzD01bU9ul5KXJLZM95BsZhgy7UjuzgHvUp7Ibc0DxkFWZBkGad2HMSMvA2wfL0VzTUNMFlNMNstkE0KNGdkxjh0hd+aphZLvgkFI/KgqToOvnMINV/W+T2WNcgex9J1pNhl2IusyC7K7LCSdCicR12oOXga2y67EJvPPy+CJSRfxgJw4dwS1XPPPYf+/ftjxIgRuPDCCzFixAiUlpbib3/7W1jni+kCcJS8et3VvTEnlDxks4SsgXY4T7bgwIb9GDvkYfz2zgdw5/+r9dtP0VX865EM5Hz+CNTqGlhLRqBBlEKzZ0E/ehQNx2tgy8+CXlcHtex7yGmox/l/eClOV0WhiEQXH10XELqAbPKMY5NkCZrLjcZTDjSeaoS7WUPms0+i4puTaDjRiOLRfWGyWeCsaYBsktCz2fAp3ShWBfZeNjhrnH6zshmtEYHCaDxpTh3OEy0dFpkLlTnHE7QbTjTCZFNw+vN30GvcpREsKQEAdN1zC+e4BPT8889j7ty5KCsrwx133IHi4mJUVlbilVdewY033ggA3eod5IvBgShN6apA3deNyB2WCUu2BXvf+ATjBj2Lcy+eje3vexYvtGVlQBFu5H69CcJigWyxwKS5MEz6EkqTA40nqnFqzwmcNaUYclYWbN/uR8vJU3G+MooFXRWe6S8bVbhb3LBkebYLXaClvhmNpxrhPN0CWZZx+nAVWhpcyBvUC70G90Nz1WkIXYcl3wTdLTDVsTu+F0MJzTfgOvY0obEi8OBnrUlPuFXodVV4pwTuCdWhQXPqcDs0mHIUNDz/FINDNPRwAbhE88gjj+BHP/oRli9f7rf9tttuw1VXXYWHH36YwYGIuk9XBWp3NgAACsblYO8zy7HokgOQ5k9Dsz0PGXXHsFWdjN88fxoA8OqSAuRveh1QFOz75zvoNbAQAGAtzMd8x6/wh/+0wzY9XldDseZ2aKjb14imymZkFNdBU3W4m9xoPqlCqAKmHAUFw3OR0y8fuaUSHMdq8eU/PoHrtApTjoJJ+3dErCzskpS62reKJVo46CnfaVi74tlHR5+yAtRV1KB/0CMo3R0+fBh//OMfAz42Z84cXHnllSGfk8GBiAAA9YebUH+4CQ0nPkLuxq88A1vHnA18fzKumnMhNB34rE5H+YRpcFh7Y1B1DT7/63rklGTh1Ge7cP+kPwK4N96XQXHQfEKFWq95Z0gyKkFuhwbH0QbI5pPQVQ2Np5xw7PGskKvUs5MSRY4xOFqxyxH5hj+WrEVmOI92b2XzgjE5KDy7CLte2YWRUS5XWkqxwdGDBg1CbW1twMfq6upw1llnhXxODo4mSgOyWfLeOiNUAUu+Ce5mDQ0n6uFuVmE58yyU2E/iZ5kvYtbQz1CU1QST5kJBwxFok34EAGg85cTxL47hm/97h1NiphljIL7Bd1YbJUP2TCV5zIVTO2pQteM0Gg44vY+n2rfGFD3daU3KHZaJ7z44DRf+8acxKFFkZA6yYsDkYu8Uxl0x5yiwFJjQcNyJQx8egOrQsDpneAxKmV5SbXD03Xffjfvvvx+HDx/2237kyBHMnz8fd999d8jnZIsDURIJp2LeYZrCTprEJbMExaygcEg+SiaOgnXwEGj5xeh39GM0fbwZ9rxdGHDZT/FRywRcuP422IaeDc2pI6ckC5mFWcgozIal4GS4l0ZJrn0Q0Jp073vP+AbYCK+cgpVCFWwgv+bS0VJzGvUHk2fxN8nsmZGsOyFascvQnDpcTjdaTqiQzRLHBkVDirU4vP/++3C5XDj77LNxwQUXeAdHf/TRRyguLsb69euxfv16AJ4pW7sz0xKDA1GKklub7Y0F4SSzBM2pe9Z5CFBxk00ShCbQVN0EZ2U1FLsdJ5evQd+fXoOMIWdBPX4c+Z+/hUsa/g+f/30ThLYR598+BdWX/xeKd7wFKApK/9K9BWQocURz8bT2az8wMFC0OPY04YunP453MULSdKgFx2oqu7Wv7wxShrfsw3C58+tIFyu9CRFmcEjMz7YNGzZAlmX069cPhw8f9rY89OvXD4AnWBhEN6+BwYEoxRiBwd7XCsUiQ9faPgxcUL2rSbentvY5VxvdaK7bBWAXGg474az9G1Sniqw+2RD61zi56yScJ1rQZ0wBTCPOQa2eD4y+HHlvPglbLC6QIo4rL1MyCPY+Ves1KPbk6YHdkxmXlAyZ3f0oqAMHDkT8nAwORClCyZBh62OGJduM3sN6o+Ke5ciyNWFw3acw7dqCui/34MjGfXAedcFWZIa1wAIAkBUJrnoVjYdavH+IfAfqHVxpNP2fAABkDbGh9Lt9YeuViUNLX0LJkHdR9PCLwO1/iuXlUoQZ/chjESA4AxJFipIhw97PgoZ9zd7pWJUMT3iQTRLUTr4oSSaWAhM0Z9tUs7JZgtak8/coCsIdr5CoYxyigcGBKEm0r9C17ytuyTdBrdfQ64xclF41GTfc+ykAIKewHy78wWW48ubjGNZ3CZpOrUfB2XnoNbAQtrwsSCYFxz7ZD+exk93qSmLvZcWAqeU4uXkHjn1cieHL3onshVJKY2WHIkXJkHHBgin4+JJHYJtWBrVeg72fBWabCQ2HndDdqVGZc1W7IZslWApMEKqA6tBgKWD1LSpSbAE4AHjvvfewatUqCCFw7bXX4rzzerbyePK06RGRV6DZkdytCwRl5GdAHdQ2UZ+jqhar/r4Jj7xsQeWPbkdmcQas2TbYC3JgLymCvbg3+owo8R9A3QlLgQmyWUHTkWOwZNkC9rslIooWI3ga37rv+ucmjH7pBrhq3DBnK8gosHu7ZyZTt6VgdFXA7dC8LSiJtkJ2yjAWgAvnloBeeOEFXHrppXj66afxv//7v7jgggu8g6HnzJmD3//+9yGfM3V+q4jShJIhQ7HLHVoHVIcG2STB1isDTZm9/R678Efno6gkB2bJhRaHC47jDshmE0y9cgFJhr2oIOjzymYJhaN6ISM/A/tW7cChD/bz2+MUFM3/U75fKFKMz7/qzx3Y+j9bAXgq042VTWg62uzp2pNilWvjmm1FZo5voG555JFHcNVVV6GmpganT5/GJZdcgkWLFgEALrroIrz11lshn5NtXURJxGhpkFqntSws6wVLpgUmqwLFrKBgaD9kTZ6CI+beuP2+c7Hho0bs234QBQVWnHuWir5738Pp3nZk5GfA2qcQWmMjvv1gG+qO1cGcrXQ+41LrtJot9S5k9cmGrZcVDZVNsb58ipFoDJZmaKBIMd6fvn3/JbOErIF2aC4dmtPVYUavVGLvY8Wlx76MdzFSU4pNx3ro0CE8/vjjUBQFiqJg7ty5uOmmmwAApaWl2LdvX8jnZHAgSiLGH0Pj26bBU8cg49wxEM1NaBh2AX7xYgkqlhxEfkkDXvjZRnx3Sgaqf9gPbnEKZ53cBPc3+9B7WF+YMqxoPnEKaqMT1d9Uw7G/sctmfWNF1tNfN0BWJPQeVoRx726K1WVTkmNooGhwVbthKTAhs9QGk02BpurQWrQeTfvb2Xs1lrOOGV8QdXYdtTsbYlaWtBNut6ME7arUr18/VFVVeX/u378/HA6Hd+pVtzv0Wb0YHIiSlDlHga2kGHrNKYgzhmFj03mo2L0RAFDz7UkczRyGM09tRrb6jefbkIN7obtc0N0aTh84AV0TELoOoQkodhmuGnenf6iEKuBWNUhmCU2nmnHm5n/H8lIpxjg1KyULt0NDM1ywF1kBAJZsMxrR0q1jQwm0vvtG+/fDO97M5/PYmH5VNkuwFpmj+vxpTYQ5ODpBWxz+67/+C0uWLMGMGTNgt9thsXhmU9R1HR9//DEGDx4c8jkZHIiSjLFOg+rQ8OWza1BafhZyXC6Mu/gcWGxWuJpbMOnK72Dw8TcgnTiKpl1fo+lkLWSTApPdiqz+fWDLy0ZLXSOcNQ1wNalQ67v+ls54bDoXG0oLkeiqxFYGiob270tjLQRj5iFTjtLl8ZF4X0Z76uL24xeMgeAAuOBbtKVYV6XCwkLU19dj2LBhmDlzJiTJE0oXLVqEhx9+GI8//njI52RwIEoC7f9ASWYJ5hwF/coGwt47H2rNafT5dDleeOgKbKsbgrN7nYD02WHo9Q4AgL13L5gy7DDlZgO6gLVAh73FBcvxKpzcfQqiG037rAhSMHyPULR1FWqNENH+fbjSNDTq781oLaJo9gYhPSFXXjeumb/7ickYzwDAOyhakiQ8/vjjuPvuu3HjjTeGfE4GB6IkpdhlKFYLZLMJWosLDbv3wrL9IVyYmwkAkEaNBEoHwzZMA2QFLZkFaDZZYHn3dainHXA7W+CsdnTrufhHIf20rwjxPUCJoqtKeqD3aSxCQ7T4LmCXyL+DsQhnMZFiYxwOHjzYYZvdbkfv3r0D7N09DA5EScb4Vk02S6je+y20Fs8qz6cPV+HUnioIVaBwWD4Gl50HR8GZaDTnQoeMyuZCmGUNZx5fisYTtXA3q1CdKoQmPH1qje5IqfDhTxHB9wIlqunuPXjLPqytG2Uc3quxHPeQqHxDXEqEhxRbAG7AgAERPyfXcSBKUroqUL2vBt9uO4Kjnx7Esc2VaNjXjOaTKoQuAKHDpdhwsqUQlc2F0ISEs9UdOPT+16jccRxVe6tQva8GrtNqt7oqERElksudX2O6e0/yV1a7IR2uMSHEcAG4+vp6/PrXv8bAgQNht9txwQUXYMuWLVG4qMB27tzp15WpuxgciJJYwwEnqr44jeovHHBVe6ZVU+wyMntnQ8/OgyLcMCtunKy34fApO8yuRgBAS50LDUedaDjg7DCbUrp+c0ZEFAnpEmYM7Vte+Deke2666Sa8/fbbeOmll7Bz505MnjwZl156KY4dO9aj88qyjE8++STgY0IIvPHGG5g0aRLGjBmD5cuXh3x+dlUiSmDBPoDbL3Jk72/BmBu+g5Zrf44XDo7Grk8d2PbeF23nGzwEzz3xAJQdH6F22y4c334UVV+cTtmFkoiIYiHdV1yP9kxTMSNEmLMqhfY31Ol0YtmyZVixYgUuuugiAMCCBQvwxhtvYOnSpXjwwQdDL0OrzMxM7NmzBxMmTPBuq6urwzPPPIO//OUvOHz4MMaMGYOnn34a1113Xcjnj0lwaGlpwYQJE7B9+3Zs27YNY8aM8T525MgR3HrrrVi/fj3sdjuuu+46PProo965Zomo+2x5FthKirBHOxONTQJNjS6/x80WM1psubDWN6D5dBNMVhNsfcxoPql6p/tLhj9SRESJriczLQVbBC7RBbrui2pi1w0nbLrw3MI5DoDD4T/hiNVqhdVq7bC72+2Gpmmw2Wx+2+12OzZu3Bj68/uYNm0a5s2bh+3bt2PGjBl49dVX8eKLL0JVVfzkJz/Byy+/jPLy8rDPH5PgcNddd6GkpATbt2/3265pGqZNm4bevXtj48aNqK6uxqxZsyCEwBNPPBGLohEltFC/xWmudaFu136cXf4lHGeWoX+fAgwYdAH2fFkJRZFR9p2+cJlrYdV1OL49DWdNM3S3YGggIoqCcMNDqq3XMN29p0OlOiH1cB2H0tJSv83z58/HggULOuyenZ2N8vJyPPDAAxg+fDiKiorwyiuv4JNPPsGQIUPCKbnXc889h9/+9rd46qmn8NhjjwEAJk2ahJdffhnFxcU9OjcQg+CwevVqrFu3DsuWLcPq1av9Hlu3bh127dqFiooKlJSUAACWLFmC2bNnY+HChcjJyYl28YhSimyS0OJwIv/IDpw5tASuLAsG97bh++Py4BYyFMkJt2yBubgIGfkZaKhsguZkaCAiipbOZl8K9MVQMn8OJ303JaDHsypVVFT41V0DtTYYXnrpJdx4443o168fFEXBuHHjcN111+Hzzz8P/fl9ZGRkYMmSJbjvvvvw7LPP4sknn8SGDRswadIk/OxnP8MNN9yA7OzssM8f1cHRJ06cwNy5c/HSSy8hIyOjw+ObN2/GqFGjvKEBAKZMmYKWlhZs3bo1mkUjShrd/TA25yiw5Vshm2SImir0cexHSeM+nNW8E+c6N2F8w7sY2/g+Bg4ZBvt/3o1hr72Ni77ahsknvkrqP1ZERMnCGDjt+5lr3E/mz+GUCA0RkJOT43frKjicddZZeP/999HQ0ICKigp8+umnUFUVZ5xxRkTKkpeXhzvuuAMHDhzAihUrMHDgQNx+++3o168fbrnlFuzatSus80YtOAghMHv2bMybNw/jx48PuE9lZSWKior8tuXl5cFisaCysjLgMS0tLXA4HH43olTV3Q9j2SzBkm+CPc8OS04G9OZm2A59Bfu+z2Dd8jbUVa+jYdk/4Vod+gwKREQUWe1nH0rlmYmSKhDFcDpWQ2ZmJvr27Yva2lqsXbsWM2bMiOAFeUyfPh1r1qzB7t27MWfOHLzyyisYNWoULrnkkpDPFXJXpQULFuD+++/vcp8tW7bgo48+gsPhwD333NPlvpIkddgmhAi4HfAsmR3s+YnSjSlHQa8zclE0uhSZ/YshVDfUiiNoqTmN6t0VOL7Ds8YDAEyfH+fCEhGlOaMy/U6/UWg+ofpVri0FJu/02oksWLhJqsBg6OEYh1CsXbsWQggMHToU+/fvx5133omhQ4fihhtuCP35u2nIkCF47LHHsHDhQrz00kv485//HPI5Qg4OP//5z3Httdd2uc+gQYPw4IMP4uOPP+7QTDN+/Hhcf/31eOGFF1BcXNxhrtna2lqoqtqhJcJwzz334Pbbb/f+7HA4OgxGIUo3QhUQuo7mmgZAPw5Tpg29f/8cTt/6EzTVcBwDEVEiMj6bU6mFIan1cFalUNTV1eGee+7B0aNHkZ+fj6uuugoLFy6E2WwO/flDlJGRgZtvvhk333xzyMeGHBwKCwtRWFgYdL/HH3/cbx7ab7/9FlOmTMGrr77qnVu2vLwcCxcuxPHjx9G3b18AngHTVqsVZWVlAc/b2dRWRKkmlD8kulug8ZQTQjsFxVoLxSyjN4DSv7wOxmoiosSkOXWYcxSoDi3eRem2lGxpaCWEDhFG60E4x1xzzTW45pprQj4u3qI2q9KAAQP8fs7KygLgGQzSv39/AMDkyZMxYsQIzJw5E4sXL0ZNTQ3uuOMOzJ07lzMqEXWTMd+3u8mNJjRDMcuQFAmbzz8PQhPQVB0X7ujZLA1ERBR5lzu/xjv9RiVVcOhMMgcG6r6ozqoUjKIoWLVqFWw2GyZOnIhrrrkGV1xxBR599NF4FosoqeiqgFAFNKcOTdUgdAFd1SE0AaELyErg8UJERBR/klmCkhHX6liPpUxoEKKtu1Iotx4Mjk42MVkADvCMexABXtgBAwZg5cqVsSoGUUrSW4ODYpehmz1hQbT2uZy4jVMbExElqqLRhXA1ulDzdR2aT6gAErMinhbjMGI4ODpZxSw4xJrxBk/EXz6iYML5gNacuic8WAWgSAwMRERJYNSb7+HgnBnQVB2XHtsc7+J0kBaBoZXQdYgwFoAL55hklbLBgYGBklW4H9K6KtB8QkXzCTXpm72JiNLJGc+uQGSW/Yqcrv4WsY6VvlI2OBAlK+MDOZ2+5SEiosSRtn9/wl3MjWMciChewv3Als0SLnd+HeHSEBFROknl6VaD0gUQTrejcNZ+SFLsz0CU5GSzhMxBVoYGohBtGluGTWMDrxlElK5SOhgEY7Q4hHNLEwwORAkk1NYG2Swh60w7+k/oh5O/mYW6P/46OgUjioOt37sgquefuG0rJxEgCqCz8JDqocIYHB3OLV2wqxJRAvH9UO4qRBiLvtn7WVD6nQHoUz4aSp9iCHsmnO+8AMnZCNsPb4l6eYmiqWzDR/EuAlHaS/WwQKFhcCBKIN1tcdBVAdkswZJtRsOJOlh27kXWwHpY+hYDeb0hMnOjXFIiIkplaRkYjAXdwjkuTTA4ECUxSfYs9NZU5YDmcsNWVYs+D90d72IRURe4zhBRYhJChwhjMbdwjklWDA5ESczdrEFtUqFYXBjy8up4F4eIQsAAQZRg2OIQFAdHEyUpXRVorGhG7T4H6irq4l0cIgoDQwOlg7RdFyIFscWBKIFMd+8J6QNWa9IhVIFLj30WxVIRUSQxLFC6me7eA4fDEe9iBCd0zy2c49IEgwNRgunuzErt9yUiIuqJbZddCAAY+/aHcS5JfAhdQITR7SicY5IVgwNRAlMyZMgmz9SrUusUrEIV0N0CQhVYaRoacng4fuf1kCQ54GCuvotf7nmhiYgoKaVrYPASengrR6dRiwPHOBAlMHO2AsUuw5Tj+de4b2wHQu872nfxyxCaFnA7ERFRe0ZLRKoTQoR9SxdscSBKYEY4MFobDMIkIJkl6G4BrSn0bzr6LvlHRMpHRERE6YPBgSiBtQ8MREREsZY2XZj0MLsqhXNMkmJwIEpgsixD9/lAEqqnOVR3e/6VTRKEWeJ88ERERD3EwdHBcYwDUQK76Ktt3vtGaPCl2GVY8k2wFJhgzlGwNn8EVucMj2URo2LD8HOxYfi5eG/w6HgXJeGsKxoZ7yIQEaUmIdqmZA3pxuBARAnie7u343u7t3t/NlobAHgHTJuzFb8B1OuKRmJt/gjvLdkY1zxp/w68029UvIuTUCaf+CreRSCiJPHFlIviXYSkYrQ4hHML1bFjx/DTn/4UBQUFyMjIwJgxY7B169YoXFVksasSUZKYtH9HwO2+38pfeuzLWBUnZlLxmoiIYmHM2g/iXQQKoLa2FhMnTsSkSZOwevVq9OnTB9988w169eoV76IFxeBAlOQ6CxRERETUfULXIcIY6BzqMY888ghKS0vx/PPPe7cNGjQo5OeNB3ZVIiIiIiLSRfg3AA6Hw+/W0tIS8GnefPNNjB8/HldffTX69OmDsWPH4umnn47llYaNwYGIiIiI0p4Qetg3ACgtLUVubq73tmjRooDPc+DAASxduhRDhgzB2rVrMW/ePPzyl7/Eiy++GMvLDUvUg8OqVaswYcIE2O12FBYW4sorr/R7/MiRI/jhD3+IzMxMFBYW4pe//CVcLle0i0VEREREFDEVFRWoq6vz3u65556A++m6jnHjxuGhhx7C2LFjcfPNN2Pu3LlYunRpjEscuqiOcVi2bBnmzp2Lhx56CJdccgmEENi5c6f3cU3TMG3aNPTu3RsbN25EdXU1Zs2aBSEEnnjiiWgWjYjSyErTUK5xQUREXQtzhiSjq1JOTg5ycnKC7t63b1+MGOE/4+Hw4cOxbNmy0J87xqIWHNxuN371q19h8eLFmDNnjnf70KFDvffXrVuHXbt2oaKiAiUlJQCAJUuWYPbs2Vi4cGG3XnwiomAYGoiIKCgR5srRIrRjJk6ciD17/P8u7d27FwMHDgz9uWMsal2VPv/8cxw7dgyyLGPs2LHo27cvpk6diq++apuDfPPmzRg1apQ3NADAlClT0NLS0ulcti0tLR0GnxARERER9USs1nG47bbb8PHHH+Ohhx7C/v378Y9//AN//etfceutt0bpyiInasHhwIEDAIAFCxbgvvvuw8qVK5GXl4eLL74YNTU1AIDKykoUFRX5HZeXlweLxYLKysqA5120aJHfwJPS0tJoXQIRERERpQljOtZwbqE477zzsHz5crzyyisYNWoUHnjgAfzpT3/C9ddfH6Uri5yQg8OCBQsgSVKXt88++wx664t477334qqrrkJZWRmef/55SJKE1157zXs+SZI6PIcQIuB2ALjnnnv8Bp5UVFSEeglEFCMrTUP9bkRERARMnz4dO3fuRHNzM3bv3o25c+fGu0jdEvIYh5///Oe49tpru9xn0KBBqK+vBwC/wR9WqxVnnnkmjhw5AgAoLi7GJ5984ndsbW0tVFXt0BLhew6r1RpqsYkoDCtNQyGbJVzu/Dqs4zm2gIiIkoUQAkKEPjg6nGOSVcjBobCwEIWFhUH3Kysrg9VqxZ49e/Dd734XAKCqKg4dOuQd/FFeXo6FCxfi+PHj6Nu3LwDPgGmr1YqysrJQi0ZEPbA6ZzimOnb7bWPFn4iI0oYe5uDocI5JUlGbVSknJwfz5s3D/PnzUVpaioEDB2Lx4sUAgKuvvhoAMHnyZIwYMQIzZ87E4sWLUVNTgzvuuANz587ljEpEUfTljyZB6ALO0804f+PHANAhNBAREaWTcAY6G8eli6iu47B48WKYTCbMnDkTTqcTEyZMwPr165GXlwcAUBQFq1atwi233IKJEyfCbrfjuuuuw6OPPhrNYhGlLeffF8L+03sx6s33/La/028Umk+oAY9hqwMREREBgCSSvGOWw+FAbm4u6urq2EpB1E1bv3cBavc5oNhl6G4BzanDVe3usB9DAxERRUIi19eMsu39xTXItppDPr6+RcXZT/xfQl5bpEW1xYGI4u/+l1WYTRKysxQM7e/CBR/fj8zemTh9qB6Nh1pg728BAMhmCbrq+R6BgYGIiNJNOFOrGselCwYHohQ28Yfvd9j23GPzMDC3F2TTelRsPobvH9oZh5IRERElFo5xCI7BgShNZOZm48xzBsElXLBfexfOvvYumOfMiHexiIiIEgJbHIJjcCBKMVf+Yr93EcX+QwfBnmlFTn4GevfOQL9iBTb5sHffM55dEceSEsVfZwsTsrtez/i+ruG8loH+X/h/QhR/DA5ESeyvb7c1j8oSIEnA9B+fBUUGbBYBq1mHzazjB2Ms2LKnFucNzQMwKG7lJYqH9pXY7qxi3n6fZK60xnvV9kg9f7Svw/f/OFrP5fv+i/d7avP556Gl3oXv7d4e13IkEiHC7KqU3PMMhYTBgSiJDS5uhiIJyJIORRKQJAEJng8wRdZbg4KH732iVNdZ5SzcCmFXx8W7AhhIvMNCMorFa2Y8h2yW8JZ9GCSzBCA+6+iUf7rFe3/D8HMZIABACM8tnOPSBIMDURIrsVdBkTQocEPR3ZAgIAlPX0tPgGBYoPTQWaUvlpXBUEUicDAgJD/ZJGFt/ggAwJSaXXEuTXrjGIfgGByIktiwwaXe+1Vfboaka57gIARk4QYwCo7P1kLSVEiaG1kXXBG3shJFUjpXmNP52lOB3NrKYLQ2GCSzhHVFIwEAk098BcCzOKfvfr6z4L03eDQm7d8RkTKxtcGDsyoFx+BAlCT2f3MQMjQouhuKcKP/2aP8HlfczZB0DbKueQKEpqJx07+gtP6ccfG1cSo5UWChjiNghZmvQbp4p5/n8719uHh30DmQTW3b3hs82ns/UiGCqCsMDkRJ4Mi+3bAJDbJoDQZCQ9WXmyG7XZCFG5KueQOC9+Z2QdI0QHcDugbn6qchuVXYfnhLvC+HCEDHgcqJMmg0ETEwpDbfgOAbDELx3uDRHYIGwNaEULCrUnAMDkQJpnL3VkhCh6xr6D3qOwCAAUOG4/S2dz1dkHQNELqndcHt8t6HrrUGhdbHXS7PfU2D0DzhQahuAEDjM79F5k0PxPMy01KginEoleVg+wabWjRSlc9ozz6TDpXkSA3apuTSWTelSBGq6HD+DcPP7XR/hgp/7KoUHIMDUQKp2f4BLEJAgg5J6Kjbug65ZZNR/+lbnhYFIyS0/iu53Z4WBSEATYOkuwFdeEKCq8W73RseNA0NT/3Gs42iItD89d2d/rOr8BDom/lwyhQJrORGXneniaXUJFThrezrbhF2q0OougoVsizjoq+2xaQciYLBITgGB6IEYm5pAFoHNxuDnBs3/QuKpnq2aVrr47qnhcGteoMChO4JCLrnMahub1gQrTfoArrL5blPEdPV1J+BwkA8ZwCixMP/9/TjGxRC3a87waK75w/mg5FjO2xLtzBB/hgcKKU1ffBqwO1CVgBJhpBkQJKQVT4jxiULLPv8y9H0/j9bWxREW0hwuz3bhO4XFITqCRT2q/8bzlceBnThCQtCQLhcnhChaRBuzbOwjaZBb3GlVX/MWApUAWSlkHz5tkKxlSH96Krwdlfqcj+fcBCpEBAKWZZj+nyJgmMcgmNwoJTkXPMsIEvwftRKPh+CQofUGhwgyRCyhKYN/0DG966LR1E7MGY/av73k62L0bS1JAjjZ120dT9qXXjG/p93e7ohtQYOXXV7WhrcrcdqGoQuvMGh8q6ZKP7DS/G8VKK005MuZ5TaugoI7R+LZqtDV6Eh1Vsb2FUpOAYHSinNyx8HAEiy58PSNuMXnu1v/sV/R0nyhgkJgG36PDS/9RQAeFohANinzgUAOFc/3XpMxw9T+w/mhF/WFU947rRW9G1X/hrO15Z4trWGA/u1dwEAml58wBMQjPCge7oxZc59EPV/vgv1j9/hCQatj+luDbrq9tw3uii5W4ODqnrvH775xxj41PKwryFdscJHROEyWh2Min1nrQvtw0Gg8AB0PQtTpFsrPhg5NqXDg9AFdI3BoSuSEMm9TrbD4UBubi7q6uqQk5MT7+KkvD3/McVbKZdkCZLPNxOSLEE2Ka3bPfe9P5sU9F38snffU/fdgN4PPg8AqL7fU0GHLKPgt09FpJyNz/wW6Kqp1WhWbN1HkiS/n1s3du/J2v8K+TRZen+9fJsxhWgdh9D6mNC9HzqecQh627G65zFhtDjobeFB6Hpra4LosI/QdWgut/cx3btf2/bhy97p3vURgwIRRYVslrqcirWzxzoLA12FiFADxPd2b+8wxqEnoSGR62tG2bZe9X1kmUP/Tr1BdaNs2bvdvralS5di6dKlOHToEABg5MiR+N3vfoepU6eG/NyxxuBAAIAdl1/sFwhGvfleh332/ucPcPYra/y2HbjhhwCAM5//N76++jJIsuwNDpIsQzbJfv/6P6Z4TiJLkIxv/2UJRQ+/iFP33QB4yyOjcMEzYV1X/eN3eO939laXfAOC3FaOYAJ+w9BFaPD92RsUWlsOjPvtg4ERLrwV/9aWCGNf30DQPiS0f0xTtdZ/dYxZ+0HQ60sngWZC6uxxIqJICjRFa1choatw0dk+wfZvLxrTtCZyfS3WweHf//43FEXB4MGDAQAvvPACFi9ejG3btmHkyJEhP38sMTikkU+/61kTwKgUy7IESWlrNfBuVyS/EOH517OPYpb9fjYe190aVKfa4RjF3DEw+LZI+LZatN/H+zyt931bLEJRs3Beh22SLHsHM0ntWybCbGnwHRzlDRUBgoQRCIz920KE8M525NtyAAC6W/cLBx2Dg882zXNfd+ut91sf0wR0XeC8DzZ37/rSSFfBgaGBiKLNd8B0dwJEoGAQaoAIdEw013VI5PqaUbbPfnxJ2MFh/PL1Pbq2/Px8LF68GHPmhN8FOhY4xiHJBepv+OHocX4/m2yeb/ZlxfiA8FSUdQDQBWS5rQIsKRJ0N/wq755jjQqs1CFMAJ6Krrul4xSfkix1CCKSLENW/Ls1+YYHY7vv/gBQcetPAnaP8pbFuC913WrQndaE7vJtdWjfAmG0DrQ93hYUhF+rg3+Lg2gXKoyA0P5YIyB492kXEjS3DqG1/r9pAuWfbonYdaeaUBdUIyKKJL114TZj7AOAgOMffLcbAj3uPW+A/XwJVWDS/h2RvJSkFo/B0Zqm4bXXXkNjYyPKy8vDPk+sMDgkiU1jy/x+1lxt32QHmmfZl2gd6KNpApIieRf/MoKEUHwq4rrRGtExTADtWxo0nzDiYbQ6tO2D1vNJ3nMZ5/G0RnQeKHy3A4BsCtza0fF+oGAR+ansOgsNgVoSfB/rLDAY23x/DhQOfPfTVJ+Aoeltj2ueLknG/30qD2brKYYDIkoU7QNEoJDQPiB09rjvPoH2o456GhwcDoffdqvVCqvVGvCYnTt3ory8HM3NzcjKysLy5csxYsSI0AsdYwwOCWrD8HMhy7K3ou3L0+Wk+3MGC923ZUB4K9HtgwTQFiZ0AJIRKLyhQWp9pC0IaECHMrqdbu/99o/5Bg1J8QSH9l2mjEDh25pgtFq0Dw2dBQZfgUJD2GMYOnk8UDelzsJEW+W/Y8BoHwwAeLsYGeEAaA0UWrswoQkGhHYYCogoGXkDhM823xDRWUBoP9NSsBDx/UM7uyzHe4NHs0UiBKWlpX4/z58/HwsWLAi479ChQ/HFF1/g9OnTWLZsGWbNmoX3338/4cMDg0MCeW/waO994xdc+EwLZlTCtQBdgjojmSVoLt2/At96TlmROnav0Xwr1Lrf8xpkRYJvbJEU/wq7t9uMEUwC8AQIrS0AKK1dmhQZ7pa2MAG0dZuSFf+w0L7LVPvWD93nOtvrKjgECwztp2oLOLbB577v/u0DAQDorfud98FmfFJ+vt8xQvMPFW3HeM4Rzf6oyYhBgYhSSaAuTAD8/gYHChG+rQuB9umudAsNPV0ArqKiwm+MQ2etDQBgsVi8g6PHjx+PLVu24H/+53/w1FORmV0yWqIaHPbu3Ys777wTmzZtgsvlwjnnnIMHH3wQkyZN8u5z5MgR3HrrrVi/fj3sdjuuu+46PProo7BYLNEsWtS9O+icbv+SekOC7y++W4Iw+c+/LLd+9yCZJWhOvVvnN84T7Lm7q6uFYXxDgtAEtBYNmjP4L2D7Mih22e+5jPP6jZXw2eb5OfhsSOH2QTS+5fflFwY6BAnR5X6+rUXG/6HuFnh30Dn4/qGdeKffKO82Y58pNbvCKns8BJuhKBLnJSJKJ3r7v/c+gUJr36oQIDRoAeoLklnCuqK2GXwmn/gKALCuaGTArkyXHvsy7PIni552VcrJyQl7cLQQAi0tLWEdG0tRDQ7Tpk3D2Wef7Q0Ff/rTnzB9+nR88803KC4uhqZpmDZtGnr37o2NGzeiuroas2bNghACTzzxRDSLFnVGBbB96g8o0D5uAWGSILklb0W6fYWzO+eW4f/NRLeeuwsa9JD6Rqr1reMpujrG2e45nMZzaB1mkTB+DhQqDJ2Fh+58GARb+KV9SADQoduY37dC7V7fQMEAaPvAXp0zHFMdu4OW01e0KurhPH9Xj4VbNgYGIqLA2geKQF/taZ0sAtd+37X5bV1kjL9qxt+mdKFrArocenAIddG43/zmN5g6dSpKS0tRX1+Pf/7zn9iwYQPWrFkT/OA4i1pwqKqqwv79+/Hcc89h9GhPF5yHH34YTz75JL766isUFxdj3bp12LVrFyoqKlBSUgIAWLJkCWbPno2FCxcm3HRdBt+Ebgj0y+Wbzn1/IdvrbOl4HZ5fbN8WA6O1QXeLbrU4aKqA5I7cIKjOvrnoilBFaMc4A0875w0NnYQK3326U6ZAuhX0QjjH5BNf+f3fr80f0WXrQXdDQ6JUpkMpx0rT0LgEGyKidNGhZaJVKIECAOAWIX+JlQpiNavSiRMnMHPmTBw/fhy5ubkYPXo01qxZg8suuyzk5461qAWHgoICDB8+HC+++CLGjRsHq9WKp556CkVFRSgr88wQtHnzZowaNcobGgBgypQpaGlpwdatW/26NCWSQBVG38phoIqh77bVOcM7nKt9q4BRETZaG3z3dzu0kCq4XayfHLJQQ4NskqA2hd5fED7PY4zo6GqRnFC7XLUXLISF8nr7nvMt+zD/86iix9/Ct6+sJ1NlPJzwYOyfKGGJiCjZ+AaKZPqbkaqeffbZeBchbFELDpIk4e2338aMGTOQnZ0NWZZRVFSENWvWoFevXgCAyspKFBUV+R2Xl5cHi8WCysrKgOdtaWnx6wPWfuqrWJhSs8uv8h+qYCn+LfswSHYZil0OWGHtTmuDrgooGbJ3/66EM2AqFLJZ6vRbkFB4z9FFqIjYc8SIURkO5YM8ET7041GJD3bdDBZERF1LhL8fiUyIMAdHizC+IE1SIQeHBQsW4P777+9yny1btqCsrAy33HIL+vTpgw8//BB2ux3PPPMMpk+fji1btqBv374APAGjPSFEwO0AsGjRoqDPHwvRbMK73Pl1wO3Gt9fdrdxq4XzTn6RiXeGPtEi0IoRTce7O80SyQh6NP1oMDEREFAnxWAAu2UhCiJCutqqqClVVVV3uM2jQIGzatAmTJ09GbW2t31iFIUOGYM6cObj77rvxu9/9DitWrMD27W1TStbW1iI/Px/r168P2FUpUItDaWlpQi5hHggrORRNyfJtEn8PiIjiK9Z/LxwOB3JzcxOyvmaU7f2LJiDLFHpnnAa3Gxd/8ElCXlukhfzqFBYWorCwMOh+TU1NADpO3ynLsncWmvLycixcuBDHjx/3tkCsW7cOVqvVOw6iva5W4SNKB4kUDhgAiIiSUzhdZVMdWxyCi9oYh/LycuTl5WHWrFn43e9+B7vdjqeffhoHDx7EtGnTAACTJ0/GiBEjMHPmTCxevBg1NTW44447MHfu3JRNbBzoST0VjfdOoD8cfI8SEaW+eE/pTcklasGhsLAQa9aswb333otLLrkEqqpi5MiRWLFiBc4991wAgKIoWLVqFW655RZMnDjRbwG4VMcAQYmE70MiIkrmWfsioacrR6eDqC4AN378eKxdu7bLfQYMGICVK1dGsxgJi5U1IiIiSlSB6impHCaEJiCkMLoqhbgAXDKLanCgrk1372F4ICIioqTRnXpLsoYLoQF6WMEhCoVJUCkTHNbkjUOGpETl3NH8BWDfciIiIkolgeoxTelUu05hKRMcookVeSIiIqLUJkSYsyqFtrJBUmNwICIiIqK0p2sCOkIPATrHOBARERERpQ+h6RCQwjouXTA4EBEREVHaE3qYsyql0QJwcvBdiIiIiIgo3bHFgYiIiIjSHsc4BMfgQERERERpT2gCIozgwAXgiIiIiIjSiK4J6GFMraqn0RiHpA8Oxty5TSJ9RrQTERERJROjnpZOax6koqQPDvX19QCAG8RBhNG6REREREQxUl9fj9zc3HgXIyChCgiZsyp1JemDQ0lJCSoqKpCdnQ1JCn3u3UTjcDhQWlqKiooK5OTkxLs4KYOva3TwdY0Ovq7Rwdc1Ovi6Rkeqva5CCNTX16OkpCTeRemU7hbQwwgO7KqURGRZRv/+/eNdjIjLyclJiQ+KRMPXNTr4ukYHX9fo4OsaHXxdoyOVXtdEbWkwsMUhuKQPDkREREREPaVrIqzWg3AGVCcrLgBHRERERBRjTz75JM444wzYbDaUlZXhww8/jHeRgmJwSDBWqxXz58+H1WqNd1FSCl/X6ODrGh18XaODr2t08HWNDr6usSdUPexbqF599VX8+te/xr333ott27bhwgsvxNSpU3HkyJEoXFnkSILzYhERERFRmnI4HMjNzcVrtsHIkJSQj28SGq5u3o+6urpuj0eZMGECxo0bh6VLl3q3DR8+HFdccQUWLVoUchlihS0ORERERJT2hCrCvoXC5XJh69atmDx5st/2yZMn46OPPorkJUUcB0cTERERUdprgh7WmmBN8HRVcjgcftutVmvArmZVVVXQNA1FRUV+24uKilBZWRl6AWKIwYGIiIiI0pbFYkFxcTFmVx4M+xxZWVkoLS312zZ//nwsWLCg02Parz8mhEj4NckYHIiIiIgobdlsNhw8eBAulyvscwSq9Hc2sL2wsBCKonRoXTh58mSHVohEw+BARERERGnNZrPBZrPF5LksFgvKysrw9ttv48c//rF3+9tvv40ZM2bEpAzhYnAgIiIiIoqh22+/HTNnzsT48eNRXl6Ov/71rzhy5AjmzZsX76J1icGBiIiIiCiG/uM//gPV1dX4/e9/j+PHj2PUqFF46623MHDgwHgXrUtcx4GIiIiIiILiOg5ERERERBQUgwMREREREQXF4EBEREREREExOBARERERUVAMDkREREREFBSDAxERERERBcXgQEREREREQTE4EBERERFRUAwOREREREQUFIMDEREREREFxeBARERERERBMTgQEREREVFQ/x9OnnYRkk5ZsgAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 7 - }, - { - "cell_type": "code", - "source": [ - "print(f\"Min longitude: {min(new_dataset.lon)}\")\n", - "print(f\"Max longitude: {max(new_dataset.lon)}\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:37.887341Z", - "start_time": "2024-07-01T22:08:37.881993Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Min longitude: -179.75\n", - "Max longitude: 179.75\n" - ] - } - ], - "execution_count": 8 - }, - { - "cell_type": "code", - "source": [ - "new_dataset.to_file(\"../../examples/data/geotiff/noah-precipitation-1979-corrected.tif\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-07-01T22:08:45.650104Z", - "start_time": "2024-07-01T22:08:45.586921Z" - } - }, - "outputs": [], - "execution_count": 9 - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# convert_longitude" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "- some files (espicially netcdf files) uses longitude values from 0 degrees to 360 degrees, instead of the usual,\n", + "GIS-standard, arrangement of -180 degrees to 180 degrees for longitude centered on the Prime Meridian, and -90 degrees\n", + "to 90 degrees for latitude centered on the Equator. the `convert_longitude` method corrects such behavior." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "- to run this notebook make sure that the currect work directory points to the root directory of the pyramids package" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "from pyramids.dataset import Dataset\n", + "path = r\"../../examples/data/geotiff/noah-precipitation-1979.tif\"" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:17.623436Z", + "start_time": "2024-12-06T22:28:17.001939Z" + } + }, + "outputs": [], + "execution_count": 1 + }, + { + "cell_type": "markdown", + "source": [ + "## Read the raster file" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "dataset = Dataset.read_file(path)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:21.423983Z", + "start_time": "2024-12-06T22:28:21.407105Z" + } + }, + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "code", + "source": [ + "print(dataset)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:22.902677Z", + "start_time": "2024-12-06T22:28:22.897795Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.5\n", + " Dimension: 360 * 720\n", + " EPSG: 4326\n", + " Number of Bands: 4\n", + " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", + " Mask: -9.969209968386869e+36\n", + " Data type: float32\n", + " File: ../../examples/data/geotiff/noah-precipitation-1979.tif\n", + " \n" + ] + } + ], + "execution_count": 3 + }, + { + "cell_type": "code", + "source": [ + "print(f\"Min longitude: {min(dataset.lon)}\")\n", + "print(f\"Max longitude: {max(dataset.lon)}\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:28.136325Z", + "start_time": "2024-12-06T22:28:28.132669Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min longitude: 0.25\n", + "Max longitude: 359.75\n" + ] + } + ], + "execution_count": 5 + }, + { + "cell_type": "markdown", + "source": [ + "## Plot the first band in the raster" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "fig, ax = dataset.plot(\n", + " band=0, figsize=(10, 5), title=\"NOAH daily Precipitation 1979-01-01\", cbar_label=\"Rainfall mm/day\", vmax=30,\n", + " cbar_length=0.85\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:33.705411Z", + "start_time": "2024-12-06T22:28:32.844565Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZhcVZn/P3ertat6S3rJnhCykJAQAmEVkFUQF8QN/SmgoijiIIobKjAqiI4IMwMoisDMiDCCzCiCbEPCLhCQnbBkXzvprbq7truc3x+37u1b1VW9pTvdnZzP8/TT3Xerc0/d5bznfd/vqwghBBKJRCKRSCQSiUTSD+pYN0AikUgkEolEIpGMf6ThIJFIJBKJRCKRSAZEGg4SiUQikUgkEolkQKThIJFIJBKJRCKRSAZEGg4SiUQikUgkEolkQKThIJFIJBKJRCKRSAZEGg4SiUQikUgkEolkQKThIJFIJBKJRCKRSAZEGg4SiUQikUgkEolkQKThIJkQKIqCoijU1tbS0dFRdpvLL78cRVH46U9/WvE49913Hx/96EeZOnUq4XCYyZMnc9xxx3HDDTdgmuag2nLAAQegKArz58/vd7tbb70VRVE455xz+t1u1qxZKIrC+vXrB/X5A+Edb3fx2n/55ZcXLff6+dZbb93tz6jEOeec43/n3k80GmXBggV8/etfZ/v27aP22cNh5cqVg/quB8P69etRFIXjjjtut4+1u4zkeY00a9as4Ze//CWf/OQnmTNnjn+dDHRttLW1cckllzB37lzC4TANDQ189KMf5aWXXiq7fblrsdzPxo0b++x7//33c9JJJ1FTU0MsFuPAAw/k5z//OZZlDfu833jjDT72sY8xefJkotEoBx54IL/85S9xHKfs9qtWreKKK67g/e9/P5MnT0ZRFBYsWDDszx9v7ZBIJHsWfawbIJEMhY6ODn75y19yxRVXDGm/bDbLZz7zGe666y4UReGwww7jmGOOoa2tjccff5xVq1Zx/fXXc9999zFz5syKx3n++ed54403AHjrrbd49tlnWbFixW6dk6QyRx11FHPnzgWgpaWFZ555hmuvvZY77riDp59+mlmzZo1tA/cgt956K+eeey6XXXZZH2NuuFx++eVcccUV3HLLLePSOOiPG2+8keuuu25I+2zbto2jjz6atWvX0tzczGmnncbWrVv505/+xF/+8hf++te/cuKJJxbtc/TRR1c83po1a3jmmWeYOXMm06dPL1p39dVX853vfAdVVTnssMOYPHkyzzzzDN/61rd4+OGH+etf/4quD+0V/Mwzz3DCCSeQTqdZsWIFs2bN4rHHHuPiiy/mySef5I9//GOfSYN/+qd/qmgUDZfx0g6JRDIGCIlkAgAIVVVFKBQSyWRStLW19dnmsssuE4C46qqr+qw744wzBCCWLFkiXn/99aJ17e3t4hOf+IQAxKxZs0RHR0fFdnzta18TgGhubhaAuPDCCytue8sttwhAnH322f2e28yZMwUg1q1b1+92g8U73u7S0dEh3njjDbFz586i5V4/33LLLbv9GZU4++yzy35GS0uLOOSQQwQgzjzzzFH7/KHS09Mj3njjDbF169bdPlY+nxdvvPGG2LBhQ9Fy73q67LLLdvszPAb6LkfyvEaa3/72t+Lb3/62uPvuu8XGjRv9637btm0V9zn99NMFIE499VTR3d3tL7/rrruEoihi8uTJoqura9Bt+PjHPy4AcemllxYtf/bZZ4WiKMIwDPHAAw/4yzs6OsQxxxwjAPHTn/50CGcrhGmaYr/99hOAuOaaa/zlXV1d4ogjjhCA+N3vftdnv0suuUT85Cc/EQ8++KB44YUXBCDmz58/pM8ej+2QSCRjgzQcJBMCQITDYfGVr3xFAOL73/9+n20qGQ5/+MMfBCCampr6DII9bNsWJ510kgDE+eefX3Yb0zRFQ0ODAMRDDz0kADF58mRhmmbZ7Se64VCJsTQchBBi1apVAhCRSETk8/lRa8N4YywMh4nEQIbDxo0bBSB0XRfr16/vs/6jH/2oAMR11103qM/r7OwU0WhUAOKNN94oWvf5z39eAOK8887rs9+rr77qPzssyxrUZwkhxH//938LQCxdurTPOm8gvnjx4n6PsW7dut0esI+XdkgkkrFB5jhIJhTf+973CIfDXHfddbS1tQ1qn2uuuQaAH/7wh0yaNKnsNqqq+mEPt956a9ljP/DAA7S0tHDUUUdx4okncuSRR7Jz504eeOCBYZ7N8LEsi6uuuor999+fSCTCnDlz+MEPfkA+ny+7vRCCP/zhD3zyk59k3rx5xONxEokEK1as4IYbbigbl1wpx6EcixcvRlEU3nrrrbLr169fj6qq7L///gghhnSupSxbtgxww8927doF9Mahr1y5kgceeID3vve91NTUoChKUU7MX/7yF0455RTq6+uJRCLMmzePH/zgB3R3d5f9LNM0ueGGGzjqqKP8OPV58+Zx3nnn8eqrr/rbVcoFCOaD/P3vf+eUU06hpqaGZDLJSSedxDPPPFO2r0pzHI477jjOPfdcAK644oqi2Hov12So3/GsWbP8kL9zzz236JgrV67s97zAvQb/7d/+jeXLl1NVVUVVVRUrVqzgxhtvxLbtPtsfd9xxfi7P//zP/3D44YcTj8epq6vjrLPOYvPmzWW/g5HihRdeAGD27NllwxG9/v7f//3fQR3v7rvvJpPJcOihh/aJ1V+9enXRMYMsWrSISZMmsXPnTp566qlBt//ee+8F4KMf/WifdcuWLWPOnDm8+uqrI5YrNd7bIZFIxgZpOEgmFFOnTuW8886jq6uLX/ziFwNuv2vXLp577jkUReGTn/xkv9suXLiQgw46iGw2y6OPPtpn/X/+538C8P/+3/8r+u0t35OcddZZfO9732P79u28733v48ADD+Saa67hIx/5SNmBeS6X41Of+hQPPvggDQ0NfOADH+Cwww7jtdde44ILLuBzn/vcbrXnS1/6EgC//e1vy66/+eabEULwhS98YbcTt7u6uvy/w+Fw0brbb7+dU089lZ6eHk499VQOPfRQ//O+8Y1v8MEPfpDHHnuMxYsX8/73v598Ps+Pf/xjjjvuOHp6eoqO1dPTwwknnMAFF1zAyy+/zJFHHskHPvABampquPXWW7nrrrsG3eannnqKY445hs2bN3Pqqacyf/58Hn74YY499lgeeuihAfd/3/vex1FHHQXA0qVLOfvss/0fLwdkqN/xRz/6UZYuXQq4uSTBYzY1NfXbHtu2+dCHPsTXvvY13nnnHU488UROPPFE3nzzTb7yla/wsY99rGKS7A033MCZZ56JEIL3ve99VFVVcccdd3D88ceTyWQG7Ivh4n2/tbW1ZdfX1dUBDDoO/7/+67+A3ufAaH5WcNuDDz647Hpv+WjnEYyXdkgkkjFiLN0dEslgoRCqJIQQW7ZsEZFIRCQSCbFr1y5/m3KhSl5I0X777Teoz/FCDEpDobywhFAoJFpbW4UQQrS2tgrDMEQ0GhWdnZ19jjVaoUq33367AMScOXPE5s2b/eVr164V06ZNE0CfUCXTNMXdd98tcrlc0fJgzsCqVavKtr80NKZceEtHR4eIxWKioaGhT/iQZVli6tSpQtd1sX379kGdY3+hSr/61a8EIKZOndpne0Dccccdffa58847BSCWLVtW1M/5fF588YtfFID45je/WbSPdy28973vLbrOhBBi8+bN4vnnn/f/f/TRR8t+115fAeJ73/uecBzHX3fDDTcIQEyZMkVkMhl/uRfGceyxxxYda6BQpeF8xwOFKlU6r3/5l38RgDjwwAPFjh07/OVbt24V8+fPF4C4/vrri/Y59thjBSDi8bh45JFH/OU9PT3iyCOPFIC4+eaby7ZjMAwUqvTggw8KQDQ2NpZdf9VVV/nf1UB5Dps3bxaqqgpd14vO38M7nxtvvLHPOtu2/RCnb3zjG4M4M5fa2loBiJdeeqns+osuukgA4l//9V8rHmMkQoTGSzskEsnYID0OkgnHlClT+OIXv0hXVxf/8i//0u+2ra2tADQ0NAzq2JMnTwbwQ2A87rrrLjKZDKeeeqo/W1hXV8epp55KJpPh7rvvrnjM2267rV8Zxw0bNgyqbR433ngjAD/60Y+YOnWqv3z27Nn84Ac/KLuPrut85CMfIRQK9Tnfq666Chh8iEY5qqur+cQnPkFLSwt//vOfi9bdf//9bNmyhQ9+8IM0NjYO+zN27tzJLbfcwre+9S0AvvzlL/fZ5v3vfz+f+MQn+iy/8sorAfjDH/5QpMRkGAbXXXcdTU1N/Pa3v/Vnybdt28att95KNBrlP/7jP6ivry863tSpU1m+fPmg2z5z5kw/xMjjy1/+Mocddhhbt27lnnvuGfSxKjHa33GQf/3XfwXg2muvLbq3mpub+fnPf160TSlf//rXOf744/3/Y7EY3/jGNwB47LHHRqR95TjssMOIRCLs2LGDv/3tb0XrHMfhP/7jP/z/g16tcvz+97/HcRxOOeWUss+WY489FnDv/VLuvPNO37My0OcE8cLpYrFY2fXxeLxou9FivLRDIpGMDVKOVTIh+c53vsNNN93Ev//7v/ONb3yjYu6CKITtiEHG1XvblYbTeOFIn/nMZ4qWf+Yzn+HPf/4z//Vf/+XHoJey33779SvpeNddd/UJk6mEaZr8/e9/R1XVsjHGZ511lh82VI5//OMfPPjgg2zYsIF0Oo0Qwh+8vP3224NqQyXOP/98brnlFn7zm99w5pln+st/85vfAHDeeecN+Zjnnntu2X49++yz+c53vtNn+Qc/+ME+y1paWnjppZdYuHBh2dobkUiEQw45hHvvvZe3336b+fPn8+ijj2LbNqeddhrTpk0bcrtLOfPMM8tKb5511ln8/e9/54knnuCss87a7c+B0f2OATZu3MjGjRtpamoqMgA8Tj/9dGpqalizZg07d+70jXGPk08+uc8+8+bNA1yDbbRIJpNccMEF/OIXv+Dss8/m17/+Nccffzzbtm3j0ksvZc2aNaiqiuM4qGr/c2pemFLp88Djggsu4IYbbuCZZ57hnHPO4fvf/z6TJk3igQce4IILLkDXdSzLGvBzylEp1G+wz7iRYry0QyKR7Fmk4SCZkDQ3N3P++edz7bXX8vOf/5yrr7667HaeQdHS0jKo4+7cuROgaIZ506ZNrFq1ipqaGk4//fSi7T/wgQ9QXV3NypUr2bx5c9lB5tFHH91vsbSVK1cO2nBobW0ln8/T3NzcZ2YZIJFIUFNT06dIXj6f55xzzuEPf/hDxWMPZfazHCtWrGDZsmU89NBDbNiwgZkzZ7Jt2zbuu+8+ZsyYUXbAOBDBOg6RSISZM2dy6qmnctBBB5XdfsaMGX2WeR6dN954Y8D8il27djF//nw2bdoEuEbfSFCpNojn/di6detuf8ae+I6ht62VamgoisLMmTPp6Ohg69atfQyHcvdIVVUV4OZpjCZXXnklmzdv5s477+SMM87wl+u6zi9+8QsuvvhiAGpqaioe45VXXuGVV14hmUyWNVTB9Ujdc889fPSjH+W2224r8jwsWbKEww8/nJtuuqkoB+Kb3/xmH0/n0UcfzRe+8AXA7aP29vaKz4p0Ou1vtzuMl3ZIJJLxiTQcJBOWb3/72/z617/m+uuv55vf/GbZbbzkz3Xr1tHe3l4xWdHDU0MJDkz/67/+C+FKF3PCCSeU3c9xHG6//XY/jGa0qOQRGYhrrrmGP/zhDyxevJif//znHHzwwdTW1mIYBm+99Rbz588fkZnCL33pS5x//vn87ne/8wuLWZbF5z//+WHNrn7hC18YUmGySCTSZ5mn8NPc3Dyg8VIakjQSFbj7YyRnZ/fUd+wxmL4pt81o92l/hEIh7rjjDi688ELuv/9+WlpamDJlCh//+MdRFAUhhF9RuhKe9/HMM88kGo1W3O69730v7777LnfeeScvv/yyXwjuYx/7GJ/97GcBV2HJ46677iobtugN2GfMmEF7ezubN29myZIlfbbzVKnKGc9DYby0QyKRjE+k4SCZsDQ1NfHlL3+Za665hp/97Gd+bG2QyZMns3z5clavXs0dd9xRNi7e4/XXX+ell14iHA4XySh6YQmdnZ08+eSTFff/z//8z1E3HCZNmkQoFGL79u3k8/k+Xoeurq4+3gbAj6H3BpZB1q5dO2Lt+/SnP80ll1zC7373O37wgx9w8803o6rqbqs27Q7eDHdTU1O/np8gXhXgd955Z0TaUCmPZePGjYCbt7O77Knv2GvrunXrKm7jnVdzc/OIfe5IctRRR/kqVR7/9m//BpSXUPVwHMf36FQKUwpSU1PTJ3TQsixWrVqFqqocc8wx/vKB5EuXLl3KSy+9xAsvvMBpp53WZ70nN1tuMD8Uxks7JBLJ+EQmR0smNN/+9reJxWLccMMN7Nixo+w2XvjBP//zP/dxwXs4jsPXv/51wI2f92aeV69ezeuvv05jYyOWZfmeh+CP4zhMmzaNV199ddQlCA3DYMWKFTiOUzYh+4477ii7X3t7O9A7IA7y3//93yPWvqqqKj71qU+xefNmLrnkEtauXcupp546InkCw2XatGnMnz+fl19+ud/BbpDjjjsOTdO477772LJly2634e677y5b28D7vkoHseXwjETLssquH853PNAxyzFjxgxmzJjB9u3b+b//+78+6//617/S3t7O/Pnz+4QpjVfy+TzXX3890H8ujheSOH36dD8Beqj8/ve/Z8eOHbzvfe8r+11V4v3vfz9AWRngF198kbVr13LAAQcwe/bsYbVrorVDIpGMDdJwkExoGhoa+MpXvkI6nS6rYALwqU99ig9+8INs376dE088kTfeeKNofUdHB5/+9Kd58MEHmTFjRlG+hBeW8IlPfAJN08oeX1EUPv7xjxdtP5p4M5g//OEPi5JJN2zYwI9+9KOy+3jJp7/61a+Klt91111FajIjwfnnnw+4ijswvKTokeb73/8+tm1z5plnFhVu83j33Xf53e9+5/8/ZcoUPvvZz5LJZDjnnHP6FATcunWrP7M6GDZs2OAXW/O46aabePrpp2lqaiqKt6+EN9O/Zs2asuuH8x0PdMxKXHjhhYCrkOTlBQFs376dSy65pGib8cTGjRuL2guul+7//b//x5o1azjnnHNYsWJFxf097+OnP/3pAUPvVq9e3Sc07KGHHuLCCy8kEon4hSkHyxlnnMHs2bN56aWX+OUvf+kv7+np4YILLgB6J0lGk/HSDolEMkbsWfVXiWR4EKjjUEpLS4uIx+O+BnuwjoNHOp0WH/7whwUgVFUVRxxxhDjrrLPEKaecImKxmADEggULxNq1a/19TNMUjY2NAhBPP/10v+179tlnfU1+27aFEKNXx8FxHHHGGWcIQCQSCfHhD39YfOhDHxLxeFycdtppYsaMGX3qOKxatUpomiYAsXz5cnHWWWf52v7f/OY3h1Q3YCDtfyGEWLFihQBEc3OzME1zUOcVpL86Dv1t/+ijj1bc5lvf+pYAhKZp4pBDDhEf+9jHxCmnnCIWLFggALF06dKi7VOplDjiiCP8fj7ttNPExz/+cbFixQqh63pRvwxUx+G8884ThmGIRYsWibPOOksceuihAhCGYYj777+/aJ9KdRwymYxoaGjw15177rni85//vHjyySeFEMP7jr2aKJqmife9733ic5/7nPj85z8v3nzzzX7Py7IsceqppwpAVFdXizPOOEN8+MMfFolEQgDiwx/+sH8feHh1HMpd55XOuT9Wr14tDjvsMP8nFAoJQBx88MH+st/85jdF+9xyyy1C13Vx+OGHi49//OPi9NNPF9XV1QIQp5xySlE9jVIymYxIJpMCEK+++uqA7Zs5c6aYNm2aOPXUU8UnP/lJsWzZMgGIaDQq7r333kGfZ5Ann3zSrwFx2GGHiY9//OOiubm5Yp8LIcRvfvMbvz8OOuggAYhIJFLUd6tXr56Q7ZBIJHseaThIJgT9GQ5C9A4KKxkOHn/5y1/EGWecIZqbm4VhGKKurk685z3vEf/2b//Wp3DWX//6VwGIWbNmDaqNc+fOFYB48MEHhRCjZzgI4RYu+8lPfiLmzJkjQqGQmDlzpvjOd74jstmsf7xSnn76aXH88ceL2tpakUgkxJFHHinuvvvuIRccG4zh8N3vftcvejYcRsNwEEKIRx55RJxxxhmiqalJGIYhGhoaxMEHHywuueSSsoOWbDYrfvnLX4pDDjlExONxEYvFxLx588QXv/jFosHjQIbDLbfcIp566ilxwgkniEQiIaqqqsQJJ5zgD/qD9DeIfu6558RJJ50kqqurhaIoffpoqN+xEEI88MAD4qijjhJVVVX+PeT1Y6XzEsI1rK+77jqxbNkyEYvFRCwWE4cccoi4/vrrhWVZfbYfacPBa1t/P6XX7ssvvyw++clPilmzZolIJCKqq6vF0UcfLW6++eai4nzlCBYRHAxXXXWVOOyww0RdXZ1/j37xi18U77777qDPsRyvvvqqOPPMM0V9fb0Ih8PigAMOEP/yL/9Sts+FKC5CWOlnoPtmPLdDIpHsWRQhpOiyRCIZOYQQLFiwgLfffpt33nmHOXPmjHWTxozLL7/cV5caijqURCKRSCTjEZnjIJFIRpS77rqLt956i9NOO22fNhokEolEItnbkHKsEolkRPjCF75AR0cH9957L5qm8c///M9j3SSJRCKRSCQjiDQcJBLJiHDzzTej6zrz5s3jRz/6EQcffPBYN0kikUgkEskIInMcJBKJRCKRSCQSyYDIHAeJRCKRSCQSiUQyINJwkEgkEolEIpFIJAMiDQeJRCKRSCQSiUQyINJwkEgkEolEIpFIJAMy4Q2HG264gdmzZxOJRFi+fDmPP/74WDdpwnD55ZejKErRT1NTk79eCMHll1/OlClTiEajHHfccbz22mtj2OLxy2OPPcYHPvABpkyZgqIo/M///E/R+sH0ZS6X48ILL2TSpEnE43E++MEPsnnz5j14FuOPgfr1nHPO6XMNH3744UXbyH4t5qqrruLQQw8lkUjQ0NDAhz/8YdasWVO0jbxeh85g+lVer8PjxhtvZMmSJSSTSZLJJEcccQT333+/v15er8NjoH6V16ukHBPacLjzzju56KKLuPTSS3nxxRd5z3vew6mnnsrGjRvHumkThkWLFrFt2zb/55VXXvHX/exnP+Oaa67h3//933nuuedoamripJNOoqurawxbPD7p6elh6dKl/Pu//3vZ9YPpy4suuoh77rmHO+64gyeeeILu7m5OP/10bNveU6cx7hioXwHe9773FV3D9913X9F62a/FrFq1igsuuIBnnnmGhx56CMuyOPnkk+np6fG3kdfr0BlMv4K8XofDtGnT+OlPf8rzzz/P888/z/HHH8+HPvQh3ziQ1+vwGKhfQV6vkjKICcyKFSvE+eefX7RswYIF4jvf+c4YtWhicdlll4mlS5eWXec4jmhqahI//elP/WXZbFZUV1eLX/3qV3uohRMTQNxzzz3+/4Ppy46ODmEYhrjjjjv8bbZs2SJUVRV/+9vf9ljbxzOl/SqEEGeffbb40Ic+VHEf2a8D09LSIgCxatUqIYS8XkeK0n4VQl6vI0ltba347W9/K6/XEcbrVyHk9Sopz4T1OOTzeVavXs3JJ59ctPzkk0/mqaeeGqNWTTzefvttpkyZwuzZs/nkJz/J2rVrAVi3bh3bt28v6t9wOMyxxx4r+3eIDKYvV69ejWmaRdtMmTKFxYsXy/4egJUrV9LQ0MC8efM477zzaGlp8dfJfh2Yzs5OAOrq6gB5vY4Upf3qIa/X3cO2be644w56eno44ogj5PU6QpT2q4e8XiWlTNjK0bt27cK2bRobG4uWNzY2sn379jFq1cTisMMO4z/+4z+YN28eO3bs4Mc//jFHHnkkr732mt+H5fp3w4YNY9HcCctg+nL79u2EQiFqa2v7bCOv58qceuqpfOxjH2PmzJmsW7eOH/zgBxx//PGsXr2acDgs+3UAhBBcfPHFHH300SxevBiQ1+tIUK5fQV6vu8Mrr7zCEUccQTabpaqqinvuuYcDDjjAH6DK63V4VOpXkNerpDwT1nDwUBSl6H8hRJ9lkvKceuqp/t8HHnggRxxxBPvttx+33XabnwAl+3fkGE5fyv7un0984hP+34sXL+aQQw5h5syZ/PWvf+UjH/lIxf1kv7p89atf5eWXX+aJJ57os05er8OnUr/K63X4zJ8/n3/84x90dHRw9913c/bZZ7Nq1Sp/vbxeh0elfj3ggAPk9Sopy4QNVZo0aRKapvWxaltaWvrMPEgGRzwe58ADD+Ttt9/21ZVk/+4+g+nLpqYm8vk87e3tFbeRDExzczMzZ87k7bffBmS/9seFF17In//8Zx599FGmTZvmL5fX6+5RqV/LIa/XwRMKhZg7dy6HHHIIV111FUuXLuW6666T1+tuUqlfyyGvVwlMYMMhFAqxfPlyHnrooaLlDz30EEceeeQYtWpik8vleOONN2hubmb27Nk0NTUV9W8+n2fVqlWyf4fIYPpy+fLlGIZRtM22bdt49dVXZX8PgdbWVjZt2kRzczMg+7UcQgi++tWv8qc//Yn/+7//Y/bs2UXr5fU6PAbq13LI63X4CCHI5XLyeh1hvH4th7xeJcDEVlW64447hGEY4uabbxavv/66uOiii0Q8Hhfr168f66ZNCL7xjW+IlStXirVr14pnnnlGnH766SKRSPj999Of/lRUV1eLP/3pT+KVV14RZ511lmhubhapVGqMWz7+6OrqEi+++KJ48cUXBSCuueYa8eKLL4oNGzYIIQbXl+eff76YNm2aePjhh8ULL7wgjj/+eLF06VJhWdZYndaY01+/dnV1iW984xviqaeeEuvWrROPPvqoOOKII8TUqVNlv/bDl7/8ZVFdXS1Wrlwptm3b5v+k02l/G3m9Dp2B+lVer8Pnu9/9rnjsscfEunXrxMsvvyy+973vCVVVxYMPPiiEkNfrcOmvX+X1KqnEhDYchBDi+uuvFzNnzhShUEgcfPDBRdJ3kv75xCc+IZqbm4VhGGLKlCniIx/5iHjttdf89Y7jiMsuu0w0NTWJcDgsjjnmGPHKK6+MYYvHL48++qgA+vycffbZQojB9WUmkxFf/epXRV1dnYhGo+L0008XGzduHIOzGT/016/pdFqcfPLJYvLkycIwDDFjxgxx9tln9+kz2a/FlOtPQNxyyy3+NvJ6HToD9au8XofP5z73Of89P3nyZHHCCSf4RoMQ8nodLv31q7xeJZVQhBBiz/k3JBKJRCKRSCSSfZcbb7yRG2+8kfXr1wNuMd4f/vCHvmiNEIIrrriCm266ifb2dg477DCuv/56Fi1aNIatdpmwOQ4SiUQikUgkEslEYySqoY8V0uMgkUgkEolEIpGMIXV1dfz85z/nc5/7HFOmTOGiiy7i29/+NuCK1zQ2NnL11VfzpS99aUzbOeHrOEgkEolEIpFIJLtDNpsln88Pe39Rpn5FOBwmHA73u59t2/zxj38cdDV0aThIJBKJRCKRSCRjRDabJVkzFTPXNuxjVFVV0d3dXbTssssu4/LLLy+7/e5UQx9LpOEgkUgkEolEItlnyefzmLk2Djnhv9H0+JD3t60enn/k42zatIlkMukv78/bMBrV0PcE0nCQSCQSiUQikezz6KEEujF0w0FRXa2hZDJZZDj0h1e1G+CQQw7hueee47rrrvPzGrZv3+4X24PxU5FbqipJJBKJRCKRSPZ5FFUZ9s/uIoZQDX0smfCGQy6X4/LLL69YIl0yPGS/jg6yX0cH2a+jh+zb0UH26+gg+3V02Ff6VVHUYf8Mhe9973s8/vjjrF+/nldeeYVLL72UlStX8ulPfxpFUbjooou48sorueeee3j11Vc555xziMVifOpTnxqlMx88E16ONZVKUV1dTWdn56DdQ5KBkf06Osh+HR1kv44esm9HB9mvo4Ps19Fhb+9X7/yO+uBDwwpVsswenvzzSYPun89//vM88sgjbNu2jerqapYsWcK3v/1tTjrpJKC3ANyvf/3rogJwixcvHnLbRhqZ4yCRSCQSiUQikewhbr755n7XK4rC5ZdfXlGRaSyRhoNEIpFIJBKJZJ9HUVU/0Xmo++0rTHjDwXEcADo7O8e4JXsXqVSq6LdkZJD9OjrIfh09ZN+ODrJfRwfZr6PDSPSrEIKuri6mTJmCOk4H2qoK6jASncfp6YwKE95waGtzi3XMmDFjjFuydzJ9+vSxbsJeiezX0UH26+gh+3Z0kP06Osh+HR1Gol83bdrEtGnTRqA1I89wEp29/fYVJrzhUF9fD9Cn6IZEIpFIJBKJZHyQSqWYPn06iURirJtSkeFKq46EHOtEYcIbDl4VvaEU3ZBIJBKJRCKR7HnGQ/VjyfCZ8IaDRCKRSCQSiUSyuyjKMJOjZaiSRCKRSCQSiUSy7yBDlQZGGg4SiUQikUgkkn0eVVFRh+E9GM4+E5V950wlEolEIpFIJBLJsJEeB4lEIpFIJBKJZJihSshQJYlEIpFIJBKJZN9B5jgMjDQcJBKJRCKRSCT7PLIA3MBIw0EikUgkEolkD/Fg46Jh7XfyjtdGuCWSUqTHYWCk4SCRSCQSiWTEeXzJwbzn5Rd4fMnBCFsA4DgOx73xEisXLgVAmMLf3rF6/z5h/St7trGDZLiD/sEQ7ItyPFB3QNnlp7S9PhrNkUjKIg0HiUQikUgkQ+bvR6wAwLF7B7wi8LeqKTy5bDmqpuB4y1B5bNEyVFXFcRwUw52pFaZA1RXfeHhk1oH+co+gYVHKaM3GPzx18aA+fygMZCAMlaBBUdrGU1NvjOhn7e2oqoo6jAJww9lnojKqhoNlWVx++eX8/ve/Z/v27TQ3N3POOefw/e9/3+9kIQRXXHEFN910E+3t7Rx22GFcf/31LFo0ela9RCKRSCSSYl444aiK64IGAYDjCFRDA0DRgoaDayI4tkDRFH8/TVUQjgBN8Q0NNaAI7xhOYVngMyzRx7CgZL2H5wnwDIjBegZKjzmYbYdrQIyEwTCcz74/uZBTU29wX3QBp2Xe3O027M0oioKiDCNUaRj7TFRG1XC4+uqr+dWvfsVtt93GokWLeP755zn33HOprq7mn/7pnwD42c9+xjXXXMOtt97KvHnz+PGPf8xJJ53EmjVrSCQSo9k8yQhzrz6/z7LTrTUV1wfXSSQSiWTP8Y9TjumzTNW1yjvouAN/b9vCb+G4A37fsNBVHEdUNCaELdAK8eCisI1jCzRNc48RdsOZADRD6R1sB7wRpW04ccurgOsd8DwEQzEIRpPhGAvDMQ76+xxhCu6LLgDwfwM4g2jbvvaeljkOAzOqhsPTTz/Nhz70Id7//vcDMGvWLP7whz/w/PPPA6634dprr+XSSy/lIx/5CAC33XYbjY2N3H777XzpS18azeaNOMGB8US42coN9PvjdGvNkPfpb/s91V+j/TmD6ZOJcD1IJJK9i5dPO9b/OziwUVQFPVxsJChDCLXwjAX3b9Hnb8+j4P0fNC4cR/TdL2BYeNv520Qqh0J5BoaXL6EntT4D6MEOwgczwB/oWAMdYygGwaDaM4hthvOel0j6Y1QNh6OPPppf/epXvPXWW8ybN4+XXnqJJ554gmuvvRaAdevWsX37dk4++WR/n3A4zLHHHstTTz1V1nDI5XLkcjn//1QqNZqnUJZ79fn+zVXpphzKzTpWN+pQDIHhGA3ljjEWjJWxUGl7+WCWSCQjxYsnvQdwjYGDHnhsyPuXGgyqNvDMqVMcUNRnvReW5K1RVA3hCBQVFMdxB/8FQ8ZxhL9e0wpGhKZw2NPP+sd7avkhvYZGINTJ91IEW1MIefIG3v2FNw2W/vbZEwYHDM5IGC7yndSLog7Pe7APqbGOruHw7W9/m87OThYsWICmadi2zU9+8hPOOussALZv3w5AY2Nj0X6NjY1s2LCh7DGvuuoqrrjiilFpb9CFB/3fqLs7iPYY6xu2v8/fndAib989fX4TIRwqaHhKJBLJSBCcwYfiUCRVU/z1ilr6t1P42x35OCXJzaU4JQN1RVUDxyg+dnnzQkVRe70QmpcHoSosX/lU2XM7cvXz/t9PLT/EP66XRwG9nohySdcD0d82wzEaBmOcFCV9j6JR0B/yPdQXFRV1GFaAyr5jOYyq4XDnnXfyX//1X9x+++0sWrSIf/zjH1x00UVMmTKFs88+29+uNKlECFEx0eS73/0uF198sf9/KpVi+vTpo9J+1VBG7YaeCDfs7rRxb/Iu9Pc5wzEgB9p3IlwbEolkdFl93JH9rvcG2cseerzs+oMeeMz3RtiO6J1FtYVvEIjAcuHYfWZa7b7OhCERNCS8z/QOueyhJ/vd97ljjvDbWJpw7aHSa8gEE7ErERzQlxv0j2YokrfvWBkJHiMRPbA3I3McBmZUDYdLLrmE73znO3zyk58E4MADD2TDhg1cddVVnH322TQ1NQH4ikseLS0tfbwQHuFwmHA4PJrNHlEqDQKDM/IyjGXiMhSPzUDLS9fLa0Ei2bt49ujDyy5f8cQzfZZ5hkGlfYLLvf29wbbHoY897f+9+rgje2fnneLZ0dJBTzlPw3AHRqX7aarCgfeu9P/38jCCeRHCcdAM1fdE2F67cPqoNamB0KUglWRcByPvOtiE5sF6I8baWAgi3y/9Iw2HgRlVwyGdTvfRttU0zU9omj17Nk1NTTz00EMsW7YMgHw+z6pVq7j66qtHs2llOS3zJvcnFxa3N+DuHM7NX+kmDf4vb+CJT7nwo3Lfq8yNkEj2HZ5afghHrn6ep5YfMuxjWBnL/1upkH/w9IpDOeLZ53BMu2i5V2dB0dz38IqVfQ0MtWTAo2gKBz3wZJE0a2kexO4YGkGj4ZXTj/O3K5Zr9TwVhRAoR+kTiuXhKTVBb7K0nSnOc4CBvQ2l2wyVPknZ48hYKEW+S8aeq666ij/96U+8+eabRKNRjjzySK6++mrmz+9951eKvPnZz37GJZdcsqea2odRNRw+8IEP8JOf/IQZM2awaNEiXnzxRa655ho+97nPAW6nXHTRRVx55ZXsv//+7L///lx55ZXEYjE+9alPjWbTKlJaLMUzJBSjN16z9IFQSXJUNXq/9PuiC1AMRRZj2YsIGgtDfRCXbl/OoJC5EBLJxOLRuUtQDKWoMrL3uxLHvfFS2eWPLXIn04557UV/2eNLDu73WF5C8ZPLlvvL3IG5O5D2DBgvZ+DpFYcWDfoPe/pZnj368CJvRnD/ckYGVPBgBEKilty3ipdPO5Yl960q2u7Ae1fy6gffWzhGhdl/W/jhSp6RIBzh/+04jjuxVxj0e38PtnCct89IMZ4NBg/pdajMnqrjsGrVKi644AIOPfRQLMvi0ksv5eSTT+b1118nHo8DsG3btqJ97r//fj7/+c9z5plnDrl9I4kihBi1q7yrq4sf/OAH3HPPPbS0tDBlyhTOOussfvjDHxIKhYDeAnC//vWviwrALV68eICju6RSKaqrq+ns7CSZTI7WqfgEE6hlIZWRYd3nP4SZzpHvyZHvyZNpy2JmLYQpeO87L4918wZNucTsSg/o0Yox3RdfBPIlKNlTDFUtb6D3RamHu9zEklcV+JS21/1l/RU3O3nHa/76SrUMlMCkVnAbb3lppEBRXkGJd6FI5rVk3RHPPlexnaV4Rk1Q0tXzJNg52zcGggaC51mAiTFgH0+MxfNyT4/XhoLXtjO/9ipGeOg1xMxcF3f/6+Jhn9vOnTtpaGhg1apVHHNM3xorAB/+8Ifp6urikUceGfLxR5JRNRz2BOP5QpRAy2vPoltZNCuLauZQzSxqLo2Sz2Jv34rV1k4+1Y3VkyXfncFM58m092BmTGzTKYrRHa+Mt0SziTKALheGNdJGgPTaSEaCkbzH+xNHCHqpg4ZGqeLfQHj7lhom/ueUGBS+wVBh+UDr/G0CBkfQUzJYHp27pMgwAIq8B308CdJYGBZj9Uwcz+M1r20fvej1YRsOd117AJs2bSo6t8Hm5b7zzjvsv//+vPLKK2Unznfs2MG0adO47bbbxiwix2NUQ5Uk+x5b1rgeAlGQMwsF1inCQREOCAG2DY4DqoqqaWhhA8NxmPnre/ZIO4eTOzDeDIRKjNfBsteuSmFZ/f3v0Z8Xp9L2Esl4or/nSHAgHLzOT8u8OaTnz0CKbX0MkYz7q9RQOGXL677Ho9RQKO/NsMssGzyVPMyeATTYUN+J8qyWjD92N1SpVOXzsssu4/LLL+93XyEEF198MUcffXTFaJvbbruNRCLhF0seS6ThINltuv5+L/loDbYWQlN1HFVDAAIFzTFR7bzvbVCyPURP/txYNxkYniKSZHh4/bk7/TrYcC9pLEhGmoGuqdEMPezPUN4dsYVyBAOUbFP4BoZiKGAVF1SzS2b7g4bFyTteG1K7BmKouYG7I5e9LyBFN0aPch6HgfjqV7/Kyy+/zBNPPFFxm9/97nd8+tOfJhKJjEg7dwdpOEh2n+ceIz51GiJRjR2rxg7HsIwYlh7GyKbQ8hniR42dlVzuxTuQTO5EZby+BHYnx6OSWtVE/64kE49K3ryRzmEarOqeZ1iUE+gYjl5/0OMRDJsSpvANA6fEgAhuA+VDmMaKSsIlEpfx+r4YS3ZXjjWZTA4pDOvCCy/kz3/+M4899hjTpk0ru83jjz/OmjVruPPOO4fcrtFAGg4jwFDdqHsLTy5bjh7RMGIGVQ0JIjVxwtVxIpNqiNbXoVbXEPnIRWPdzBGZqZsolBtEjIeXQ6nx1t9Aa7DtHQ/nJdk76e/5MNCz43RrzYAD1pG8dssZ0sH7rL/2VsotGqwIyAN1BxQlbUvGP/K52T+KqvRRDxvsfkNBCMGFF17IPffcw8qVK5k9e3bFbW+++WaWL1/O0qX9K7TtKaThMALsSwZD5ZfQLmD0Hkr9DSwHejH3F1u/N1IqCXyvPr9o9rA/OWHom1DZnz75aAzyy6lTSSQTheEaCoMZ4A92+8E+60oNhtJnhWIo3J9cWDafQTEUFEPpV+EpyEiHLw2Vfd1TKZ+jg2NPybFecMEF3H777fzv//4viUSC7du3A1BdXU00GvW3S6VS/PGPf+QXv/jFkNs0WkjDQTJohvpiG63P6y/mt9LLYW81HtTCy7vfbehffaQojpkySY+6UqSDXqmeye7Q33cjDQnJRMe7hlVDGfJ9M5rhNpWOXe5ZsLshSJ6BMdYGxL6GfF6OT2688UYAjjvuuKLlt9xyC+ecc47//x133IEQgrPOOmsPtq5/pOEgGRTjecBdOugc7AB0olA6A+gv1wc2GoQpQFfQopUrp3rH0KKqf9wgjiXQDKVXEtH7fEYmFGokEzzlS1Kyu4zWc0Id5sC7XKHJwbaxnEE+2HvEew6MdM7Cg42LpPEgGbfsbo7DYBlsJYQvfvGLfPGLXxxye0YTaThIBmRAJY4RfrFU+rzSz7kvuqBP2MxENQ7KETxfb1AfnAlUDKXiy71c1dSi4kl6X8Oh9Jjevr7RUPA8eP87wOll4p/LeYT21PcyXnI6RoKHpxbL8p245dUxaomkHEN53uzuM7L0uh7svTXYivSVjrE7RkN/1Zg9iVcPxxLjOuS30vcn60jsfagoqMMIVVIZP6IAo400HPYQ6z7/IRzLxs5bfoXkgx95kgcbFyFMMa4TzPqLf/W4P7lwRB785QodDfahPV6Mhv4GCQO9aMr1b3BAX/RbVVE0BVUrP0NSWoHVcZxe4yE6OBUUz4jwvAxBI0KxBPcnFyJM4SdQDsbzM9oMVb5SNZRxVQW+UtVfz5AYDwbEaCf8jiWDGZQPxQMw0hMr5drSXzHF4RwjSOlEQn9UMhYq7Rfc/r7ognF1H3r09/156/ZFA2Kki3WOF/aUx2EiIytHjyLrPv8h/28rm8fKmuS685gZEytrYWVtcq15wJ1R1mM64WSISDLMkvtWjVWz++WBugMGfHnsjgERTMwt9xIajx4G7+Ux3Nm5oNRhuZjigQwG729/P831TgjbwbELHgZbIBzRx4gIUklmsRxeBdfgb+9cYGK9SFVDQU9qfc57rAboD9Qd0MfzM5bGwkhKi443RmrwM1gv6UjcF4NVTRuM+lMp90UX9OuB9Ch9B5R9Vpc8E/zlu5HjMZJ4kx5Qvk3lnuv+REqFsE+PsXj+VXofjmb+4VCPPZ7Ha17bPvP9tYQiQ68cnc928Z8/njMuz22kkR6HYbLlnz5BrKme0OR61GQSHEFu4ybyHSlynT1k2rpJt6XJpbLkeyzyKRM745QdZHkohkkmmiPamOets96HmTFJt6VxTLca52FPP7vHz7OUwXpGSsOIPErDb0qPZyS0PuE0lfprrPESk0vDhUYqNrj0hR08nrDdUCEV17MgbNeAAFB9/0Bg38I6TVUQmkBDxTF6jQotpKKoCrbZd98+3gp6v4vgdzLevp+BCF6LdsZBlOSMBEOFSsO97LTbT5ViyIc72D7dWjOm3sfRMMRH45iDLcg22O+idMZ+oP3L1RYZ6HNGajA5Ujlc5bwUpTP+DzYu8o3WR2YdCLj3QLkBdBBvQgF2/7xHK/ywala06H9RmGRxHPfeHoz3pDQk1H9GjsGzcE96AcfzZIBk9JEehyHy9IpDSU5JEp+cIFqfJFSTQAuHEELQvWEb3ds76NnVTaYtS77LNRYqzcqWohgKWlQlMilEcloCx7Ix0yaOLQgnQsQnVZFuS2NmTCbPb6R6TjN1l/5qRM/vuWOO8P92THvYxsrDUxf7515pBrtIqaewjTdo8sI1/JdP4EXktk2MqcchqGYUTCquNEM3mhTNiBW8EUCxF0INeiT6eig87WqnEN7khTl5XgvHdLDzDo7jYKXsCetpqBR2MJik8yIPSz/nOZxQkeDspvf5ezqBdDx474bDeJDZLNeG/iSQ9zSDfVb2F7b36Nwlfe/3wv/Ba9XzSp+aeqPiBNJwGI3B6t+PWAH0emlXPPEMT6841DciPC9tKaLMMm9yxc44ZHeYI97WwTKeB/UTwePw2R+sG7bH4T9+NHtcnttIIz0Og+CxRctQNAXNUAknQkRrY+gRA8e2ybZ2YGfzZNq62fX2Lswei3yHazCUogZkLctV6BSmQOgCs8citbmraF/HdDDTJlbW9T50bm4nl0qz5fTj6G7pwTEdjnpxdb/ncV90AVpUJdxoEIoZaCG1j2HgDRihr4fj/uRCIg0GekxH1RSOenE1fz9ihT/w9Pa38zbRhjB23sHsscqq9HjnWzpjVZoQ6g/ODQWh927vKfqMNaquFA00VV1BC2tA78zVUOnP7V+6vrT/gm3RoiqqWkiqDoQ2aSENTVdRDQ3NUMvGdAqnN7TJsWxs08Exbey8g51xXIlXQASu87EeHEH/8cj9eYBKK+OqJev79HM/sppDvS6DnqtKHg8Y+XCl8XD/jATj4Tz6a8No3RfBqtED9cFg+8gxhf+eCHq+Vi5c6l6j3nYMzsN4WubNEfl+Rmsw7L3jvAmz5445Ai2k+RMmiqagGpX39yZgFE319zF7LMwue49OpoxnY2GioaoMqwCcWvrS2IuRhkM//P2IFTi2QI9oCMd9iCia4iY4d2ehO4uZztO9o4uuHT3kdphFceLllG5UXfFDTJySB4tquIaFlbL7hDVB78w2QKYlB+AbKHpS48WT3kMoHqJuv0aaf3F7n/M5LfMm7559OkYsjGPZdGxs4+kVh2Jlbd7z8guAO+MC7gN09XFHohoaelhDD+vMO2M/auY0u5+by7Plnz5B4+Ip5Luz9OzqcUOqCoNQERLoEQct1PduCsbdl8MbcJcaX0IXaBS8D7pAMQYOkxmth7ZjCn/wrJfkH3ioFZ4kAxkUSkD6FMp4W/rxXNmmQLECIU26KLzw3QAmTfVedAp6WEPVXeNB1bWyxoNj2Vg5C8dysE0HK2ehaIpryGYt1/swzgyGgZK9K3mFSsPOhCnIt1kV+7vcZw4lnlsNGHjBY1TyWD0y60B/3XvfebnicSXjh1LP6O56ScuFSPV33KF+XmldGO+a85YFn02eIbEn8m9GOwzH7DF9Ty0Uv5uCHlrPM+GvU4P7uPspmhs54E10BfcY6do3kpFnTxWAm8hIw6EfYvUxDrx3JQBrPnFKYebVpmNTh5/cnE+Z5NusfhVqys2sK4bSK2sZNCBMgV2yv5e8qUVV7Iw742t7xy15EEWqo+jxCF3//i3MzhSZlnamXnenvz5UFUEL6dj53oeh95B8avkhaCF3JhrAcdyHnqIqROuqqJ4zheiBS0A4iEwPTipFflcbmR2t5LqyWIBw3NloVAV095FZ6upVjcJnlszklIbY2DF3sOrH2BdyHpSCKhDACetfcZWpSvIhvH4fTsGloaDqvdKkKuAYTlHychCvH9SS+ez+DIng+ZQbwJaLMVbpfcH7hkTU/VyhBfqn4F1SVLXgidD9v12Pg4NjaSiqimPZKKrlhzTl0yaarRGq093B9RgaD0NRrfHCAaP1YWKTYsTqYoSqIoRr4miGe/7CcbBzJuldKba/vI1se941kCp9fnCgXxL7rQ1UnE9321OUv2L2vZZLk+ZXLlyKMMVuGRDjIcRnb8a7J0ZSaWwka56Uo5znq5wHzvOeK4bCw1MXFxkPQU/FfdEFw3oG95eY7LVppHIfHp66uI/4hIeiKWASEKIQ7t9lwjuDaFEVm17PLAw9B0waBpLxijQc+sEzGtZ9/kOEqiLku7PkuvOkNnYXGQtFD8XCYNU2BWQoWj/YWdFSnELcpOeFCB7DG5g4lqD19XY61nWiPLsJI6L7syFTA8dK7+pC1VV/0HjEs88VfZadd2PZbdPBNnvdrT07e8h3Z2nQNLRIGABh21jpDGY6h5kxixJrK7n6Sr0M5eLtNV0tzIgLbMvBztvuDDe9fX7C+leAvuEcexrHEijei7U0mTkwu+/+Xxj4a8Vxs+UMieDM3mDyY0rbhCX8ZF8VsHEgCopdeAEWDARVU1B11+MQ9Dq4xoPiD6SF46DqrufN0dxwJ8d026knNayUa+7uaQOinNEQDDsqRYuqxBoi1O9Xz+Qlc4jsPxfRMJVcsgGhuAaz6phouTQ1HS3EG1fS/u42UltTZDpyvjdwwHYNQsLSG6hoURUtrPnXiWcoF+WS0GuEeHHUjiWK9PCHmxchDQgJ9L2XvGerUvCEl3rCgqG3lfCeY0HZ0kpyt8EJMiOuo0c032Ptheh6qnB2zu5z/Q9XVCDfZgHus8E14h3//ILnoRkaGipoZZ45ZYyHouiCAfopiDQYxhYpxzow0nCowIsnvQfNUAuz8xaZ9gyZjhz5Not8q9XvvpUGT6UGBrgPy8FI9tlpx3cjGwmtKGzJ7LKxUnbFhKxHZh1ItD5MOBFCC+v+QL1nV5rHlxyMbZb6ONyHaXCAlG+z6Fzbw8bHNheFVAQHtH1k/FSVfIfbptKBb7lwET2pEa0JUze/EXAlbPM97o+ZMTGzbtiInXH6yMKOpCTe7iQ1et4GzVAx4r0uleCLRdhuv5aGbHnbaKjuC1IVKIbjDvqtYoMxOCtYLoHcmw0sGpwamvsyNnpzUrzvXlEtzHSuT1sdWxQMBzfnwfMAuf3kvuCFaaIntYptGU4/DhYnMCgp+qwSY927byYfUMek+c3ULFkAs+eRq27ENOLYWggQaLaJ6pgojg2aRnLhfsSaJ1G/s43ubW1070jRsytNrivvX/PBPBIP27R9Y3+g0FfFUDDiOpHqCEZUx4iG0EI6esRA1TUcyw7UgMmT68rS/m6q6JrweHTuErSwVvAcqqiagpW1++Q/PTx1cR9J3dH2zu0tjBcZ6EoMp46MWvLs9hgofM6bwKlEOWluT50JIDothBZVCcUMjLhBuCo0qIGbYxXyCTImjmnj2IKnlh/Ckauf73e/csRmhVFVtWxYLVAkeR3M5wtOjrnLVLSQ+78XqkTGwTYHL6gwEjy2aBkAekTz2+3lcjx79OF9tvfeR+BO3HnhyvsqquL+DGe/fQVpOJRhw5fOoKqhip5dPeTa0uS78n64wmBmG4dCOW9Ef9tqhjJgTGnwwVwknecIFMsGCjPHhUFgqRKPYwu0aHGegTeL7YVIQfHgX4uq/kDKc23b2AMmiQXjvBVDwY45dO/o9AdMVs6Nsbfz7nG8n0rfw+4OfIYS9uJ9H+D2hf+S1bzZNdt/0RSpGqlu/3uyqaVnIhzXHY6moNjewLRgrEbxX7Tett4sHFBUn6G05oNqqGghN/TID1Pz9jdt/2VcbvZMOL0Gg205CNvx43n1pNa3sFzGKXLRj+agtL/j+vcXroHdta0bVd+BoqpU9aQJ19cRNkKInm7srm7yre30tKXIpdJYWRMzYxZCtlxxgnzaxDEdjIiOmlAL/aoVDSJsy8HKWFiqDVjY9M1X8inkNAkzh5W1C3VcHMKJCEYs5IeQ6RH3+w5VWRhRg2xHjny6WIRB1RVfuMC73hxb+EbDI7MOLAp3LMrHCkxElErOSooZS6Nhd4vJDWb/Uo9dJVno4954aVhtCE56eQN2LaS6YT+28CWmg89Mz/v/yunHuW1QXU+qZqhohoqwBctXPjWs9hz3xks8d8wRftiRZ4hUysHz2uY4AjUQruQZD4rmvlPtQNCxYihlJVpH2ruwcuFSfyLDytpuv2oazx1zBEbUIJIMo+oqSmEb79lm5Sz/fL1E8UMfe3pE2zZRkB6HgZGGQxnckA3VneXuMcm2593E592MURyJF473MvcqNXsF04LVeyO1IX+2W9gOuZRJrjNPpjXnDy70iIYRNzDi7jbBpC87b2OlLf+xV3Hm2BQIozhG21MV0iPuDLSdcTC77IqDEG/G2Jv1zKdNurZ1F4VtuEpN7kDH++nTlhGi3Ax2JVTPDZ8IJNWWuLHd2Ry1z0PFe8mAW3fBU/AQtvBzDKBgyAHR+rDryQhpGFEDPeyGFVk5u3c7r8ibafsvNa9NwRdF0OMA4Fh2kYJSb9s9Y6TXmCienSrE/6oqjuH05uwAiqUU/S8G6NfRnun2vBCpd9NkWnJ0bkoRb9hMJOmG3aXbXC9Crivvhy5A8SAnOEgP1emEVAM1ohf6szc3JF9QPzN7rCKRg9J7wA/fsAROlzspkU+ZpKMZQjGD6ukWoXiI/X9/PwCbL/wYM399DwCdxxzhXi+xXm+VYwts0+Y9L5cf0J2w/hUenrq4yJj3QkPK1R7Jt42f5HfJ6FegBirKZw+nJs3KhUsrrgt66Xzvp+WgaDbCCeQYFNa9fNqxLLlvFQfeu5KXTzvWbastUFSVZQ89PuS2lcMzGuy8UyTDqmqKXytHC/VNkO5zbgURFcVQUCz359Q9WJvlmNde7O37vNtPmuE+91VNL5o4QnPf04rpZmO4E4n7zgC4HNJwGBhpOARYe+4HsPMWVtYkm8qRac1i9lh+/PbuMNLFgYTpyuYFeaDuAPSkhhHXUVTLLeqlqegRzZWJLQyIjIQD9SH0iO4+JLwkZqf8bHMlggMfb5bKC7uoaogTiofJp7cXDcS8/cqGYxVmQe2MU1bCtTTHY7QYzHehlvE0QHFhNjvvuLP9OAibIjd3OUSF2X49ohGKGaiGRigewogaRcnMfY5TmEUKGgG961zjwA+T8rYt+WxV11DDbkE4J2f5BkPwHBTNnZUTmkCxXaOHMH6MsDAF6ApKQQUryJ5OYvew0wGt9fa8H5pRNMAPGAje36WhBsIU2El3gGHEDRS14D0ybdItWT8/Ibh9KZ6RGvTUYfV61I5c/UjR9tP+7Y9F/2shrff4tpublNmR6/f8PW/lg42L/JjuSupfnndiLIpZSfoylEmN3focq1cx7uQtr7qeqjKf6w1Oh+p5KJWIDiJsgbDt3omjwq0oHJUXT3qP/+w56IHHhvSZA3HoY0/7ggPlRAm8HAegEI6k+l4Ht329EyueEqNmqOTMPCfswXosx73xkv+9CFP4Xg8R1sh15bFyNkbU8ZUSoVcco5CNUdHTIpF4SMOhwKsffC+Zjixmj9k7e5cb2NU4GEbatV1a8dMzIIKDHDtq+54FRXMH8x5uvHuvsQD47lmv0FdwkB4cGAcTND28h61WeLgmmqqYtGAaVbOnoer/oK2mlfTOrD8oKzXEPGlTL6G8nOEQPL89OQNaLt+hVPGjVFUJB4Tdt36Cp8ihGlqfF41nNARnuQA/gdmTT/XybrSQTjgZQ9G0Itcz4Ock2Ll8IT7e8b0KwnGwsiZKoTZDEHfmvFei1UuMzqZyeNkzelj3rx3bdNyXpzdLV0j6VlHdkKUyKljBa8X7u1R+dncZTM6Qb4jqii9i4PdDIewOCsZsmf3NgmFgZxxCdZY/qLBNu8ho6O+8SqUvPQYjbxkMI3j26MNdg04Tg+7HYBL1yoVL/cGfV+TLVyuTRsO4YU8YDUEj1psl9+oLVfI6DMeAKPXMus8NB6cQ+tN38Fp4tznuQPfFk94zYp4Gj9yO3ny8Ug+cqivYhuO/R7WQK78aDGkKho06jlP2XbcnCBoPHt5YxsraWBkLPapjRA3f++y9G4Bhh3ztLSiKgirlWPtlnzYc2n96AU4uz8Yn3iS9K03P1ix2xiE6NUQ4EXJVhQKVnwfLnlAp8V4iD9QdgBZViyv5+nkJJvmUWWQAaFEVI6L7iWBewTbPYDB7rKIcglJ1GD9fguJqwcIUaHUq8clRYvVV6LEwTj7vxusbmjurW0jiLjuQKwmBsik/aN+TlL6oK724gzN0FPrIm+lRDAXbBM3QUB0FYfd9YQJ9jIbShDwPL0lZ1TUUTcNIxFANHVXXQFVRFAUhBDgOZncaK53DMU3svFIwHhRU3en9TFRU3VV8CsXDGLEQRizsejN0dzAc685iZfM4lref43rmcpb/sgHXw+L1g4oKYTfnIjhbaeP+P9K5QtD7/XiJ2n6fBRK2of9aDsHrG+hjVATxvBfuYKtvoUPoa3SXKrX4nxeY5XywcdGQ1JFKkxm98EWPcgmqQYIDvve+8zL3RRf4kxHlClVWkpz2KHevajF1wARRyfjAu17uTy707xXFEmW9DkGCBmgplZY/uWx50f/uM6kXL2wmaEh4HokXTjiKgx95cqDTGTSntL3uqzT592Pht01AejvpoJlar0x4QGDA29d7vg107+1J7JztTtLYrsiFZ0BourrPGwtBFGWYoUrScNg7KZV+8xNyS2bXczvMQaknBakkMTdaOKZAiwWSzHTFlwMt1YQPPgQrGQVQPHgp1Zb3juXFR5cOAMyUjZmyyWzJ0/5uikjtVoy4QbY951eP9uLF/bCQAQYRYz3IGKh4lz8rTe/MtWIo/kvGk0LVwlpRCFMw3EcPBwaSgVwEbyZI1YsHwcFkWT0WJlRb3ZsT4Tiu0WC7KjxO3sQxTaysiZ23sPOWr9CjqKpf08OIhTHiEWLTmtAmTYL6JqxEPWa4CkczSKR2oHXuhLZdWK2t5Ns7yXV0ke/OkmnrxspZWDnbz62o5E2x864krOdRss3eWfndVcDyBuFe+E0lPMUhtx97q2d7bnvAD9sSjuMnIVspu+y175huXLTXFi2qEm0O+1KSXk0UVVX8v30vUuH7zXVlyXbkyHXm/XC9oRoPQUoHKwPNzj7YuMh/1gW9IOWK2akVDK7gYC9Yn8Y7nhZV0epU/7heocuxvscnCv0ZbRX3KTGQi8QswsXPlWNee7HP/pUGvY/OXVL0f6VaIpVkkT3Vn2Nee7FI7eup5YcATh9vRGk4EwycZzBcPEnX+5ML+4h62LjvOSqoF5YylrKqw01cl4CiuD/D2W9fYdQNhy1btvDtb3+b+++/n0wmw7x587j55ptZvtydaRBCcMUVV3DTTTfR3t7OYYcdxvXXX8+iRYtGtB2lg3n3YeBApvxs92DZ3YeDkdR6i3VVCIuAvjUgvMFR0DDwkhyDg35PEi6IP+Ct8FnligB5x3Is0VvYpmR/r425Habv9q2aE/Vjpb3Z2b0Rfzabvi93x3H8uhpaSC0kNgdk/Qq1FAA/5MWtq9BbX8HNZ1B6/w8bKJqGsG2E6SBsG8e0CsaCayTku9JY2bxvNLgeAoGVs/3kai2ko4VDGIk4+tRpWJOnk66eQkekkQ4zSdYOMa1xGzWxLUSNELpwcPJ57Jx7XFXXUEz3eMJQiz0opu0rMHn5HiI38t9/ueu13IBFVdUiiUK3KrruS6AGk9K9cC8jamDlbMyMyYonnuGRWQe6UsWBROegTHK0IUzj4ibCySiqrmFl8+RSGfI9uaJEdlV35XFVXUPVov7M6cqFS0c8l6c/o2Hjl8+k4aB60rvSRYaLMAVmGUEDxxRo0ZJlhWvfSGjoSQ1VVcnuyvvnYacdX0669FiSgRmq0RA0GII1QjRD9QUWFFUZtmpOpZoEQTW/E9a/UlQ47tG5S3rDfgqTI0EDAiiSUg16IhyzuCbOEc8+x9MrDh1W2wfLqak3RrTC997Mqx98rz/hteh/Hhlg6/GPp5Q1nP32FUbVcGhvb+eoo47ive99L/fffz8NDQ28++671NTU+Nv87Gc/45prruHWW29l3rx5/PjHP+akk05izZo1JBKJEWlHpQfA7r64dufh4M1OTlpSw+SFzURqq2h/dztt69pIt2TJbM6X3c+fvSvEYZuFl7NnfDiARu/D2cYucqMO5uVTrphZ8LNV3fXSKIYompUJ6ud79GzKAgOHMkw0gomKg+1bJTBY9fISgtKZiqr2Li8YDV4+gxGPouhab2iQI3BMk3x7pzvItWxs08LO5jHT+SIPg12QWrVNxx/MO6btGyF2Lu8eIxTBDscw9Qg5J0zWDpExdcxwCKEW6jQUDBTbtIoqTzuWVZRgHQxhKsUzdouSEEcgOVrVXWlYI9L3seaFfnkJxV6fe8nh7t/FRoNju+Fb4YS77Rtnnkj9/Foy7Rm6NqSLlIliDRFqpldTPWMSyQVzUCMRcBzsnjTZll30bGuja1uH/9maobHw7of7tHNPzhTu+M5nCVfHSTTl/FndjJWDku+mFPfe73utRxvC1MysoaoxiWM5ZDt6aF/fQefbPdjpypMiezO7W/NhuEaD946I1oT9Z45m9D5fdmeAV6l2Q2n4oVe53m9/IYzTMYq3KzUggD51RzxDQjii4JlgWDUbhsJ4r9cxXlj850f5+xEr/FoRkr2fUTUcrr76aqZPn84tt9ziL5s1a5b/txCCa6+9lksvvZSPfOQjANx22200NjZy++2386UvfWk0m9cvwUqX5QiGCQ0HxVAINxrM+Pdr+PB3c7DZXf7Dmw5nxd8u5ukrHimrouEqJThlH9LovTOvRcWogtuWGRCUhh7YBUPEO8Nyyate1WrPC1EpcXxv1YIv/V6Cs97B/rQzjlvQzRCohjsroYV033gIVmuGXo1wzyPh/a2GCzPilu17FIQXkuT/OJjpnO9dADeB2fUyWH4CvJW1UTWlUJXb8tWXoh2thIwQSdvCiGepMeJgQKJrO+HWzbB9M/kdO8nu6qCnpZNsZ7rIILFylh+aFJTT9c5L2L0Vj8vlOAx0z/X3HXjqVpqhoRrF96bnXdACy712lcZIv3DCUX7SuGaoGNEE8/7wN8BVXdMjhuuFyLoGmaqqROsj1O83idp50wk3NaDW1UPB0FLrbPTaWkI1O7CybzP3P/86qHPbEzT+9D9o+d7Z/jUonF7xgoG+g3LGsmqoxOqrqD1gDkZ9HU42S82atbydfZ3UmnSfY3jP0L0192EoA89K+VPDCU3yKi+HkwbxyXG/oKDntZz1m/8Z9DGHQmloXdE9XgjjFLqCRnEYrFOYZAgm9JYa0EFDojQvYjSRxsPgyKUGF741EVAUZVj5CjLHYYT485//zCmnnMLHPvYxVq1axdSpU/nKV77CeeedB8C6devYvn07J598sr9POBzm2GOP5amnnhpTw6G/F5kWc2dzVi5cSihmDGvmQ5hujO+uyHTgHX/5VT9+gf+e1+3XZAD8Ksl+3HCZtqqG4s8EaoZGOBnyJTS1aKAIW8Bw8Ab1pYnI3nYDJZH2Nys5URkonCJYsA6K44ZLq6z69SasYIE24Yeq6JGQXx3YL8STzRfi6+3AMhM7b/ruYM9Q8KVVAwaAF44E+HUZrJyrpGGbjl/RWJiCHitLZFKOcNINpYlMWkdo5y70+nqSVVXu4FcInI42zPYOcq3tZFtTZNq6yXVlyXfnyafNohwGT73DC4/w8BIJ/X4MXlOlCfhl+n0wCLOQTxEwXFRNcWdbw3qRgoiZMcsmVvbszCBs4YaURVz1q3fPPr0o18TOW26dk4yDnnSNQSMWxqipRkkkEaFI4IgGSm2IcDTK3IuvHfI5DYVHZh04YCXfUhquvI23znofmY4s2fZ8v+GS0FcJKnitp1uydG5uJzG9E722BpHPk23rxuwpzhXTYio1C6qo36+ezi2ddL7bRb7N2uuMh8EMOMtNQAyHUqMhUhsmkgwTn5xEjxi+2EHzz38/rOMPlVKpcHBruwjvWWmVD4cNhjEd89qLPLZoGYqm8J6XX/C3KfVGjDZDNR72pTAlj3I5MqXcq88nLfa8ytRQUYepqjScfSYqo2o4rF27lhtvvJGLL76Y733vezz77LN87WtfIxwO89nPfpbt27cD0NjYWLRfY2MjGzZsKHvMXC5HLterVZ5KpUbvBCrgzfpbKRvN0Hw33b36fE631gzqQeMUEo0Xzp3Kk3+Zyu/+TxA24CPZ21h7/WbeWX4I+bSbK1Cq6lRJlch7CdmmjdnjzgAIu+AeLmwXlMEMhof0OabpFnfzZoqAogd90WDZEn0GFBNxFtELHwuiRfsWRfJySDwN/FI9cr+gkdlbXTm43spZfmVs4bi3oGc0mOm8H+bjy/sV/i8q3FOgNAwpWPjNK2hkZW3MrOXLhAZle7tTGfJ1JnbeIZzYSLSuinBLK6pRaJfp5krku7PuT08OM2P6xoiVtX2DIJhvoxRkab2BgFMSulR6TXn961U1hqGFtnjSqplMjlCd7idBq1pvfLfX514V2nIEByj/OOWY3pn4QuhXritLz640Zpftf66Vc422qi9fBUDm/t/4x4ieet6gz2F38Qq8DSTn2vK9swvXlo2VztHd0kXP9rQvHRn0BAQpzSUJGg0qbsG41jXt2LnXib+2gXRbmtTWbj/fCdx7LLlfjEn7TyLeUO0v7472kG0xB/RQjna9j1C9TrQxTD5lFtX2GI3n2WDDkMomo5fUGvBybEIJg0h1mEhNlEh1lEhN3Fddm/zjW/ocZ7Q4LfNmn3egJ7nte7MD5xWs7QC996Gn/hfEC1WC0Q9X8ihnDJR7x++LRsNgMZIa71v/HFRXD7zxGKKo7s9w9ttXGFXDwXEcDjnkEK688koAli1bxmuvvcaNN97IZz/7WX+7UhePEKKi2+eqq67iiiuuGFI7Rtrd6MXyewnNuajKI7MOLHpoeH97My/lHqTeS/KRWQdy5KFN6JEQz7+0jfRmNy/AqzZbpBxDecPBG7jbGcdNTsbs94XkqTB5eQr9GSOlBao8RRzv+FrU1e0vDdEZ6uBvrPD6zouR9wezBaMAKM5FCMikBsOMVFUpCtHxEoODOKbt1kXImO5MeCjjV32285YfJiMcxz+Ge7zeAmweiqpgZS1fSteVPtX8tga9AGaXXZR0G/xe8m0W+bZuonVRrKxJpq3br+Fg5y2yqRx2ziKfNnFMBzNrlfVgBfHXB4rBecaWEpBF9Qb4btKye25Wxv2sfJs7q99f1XHAD5Pz5rLsjIMWVdGTGpHakK+YJBynX6PBY+OXzwSgbs5kP9/ByppYOYtcdx4ra3Pyjtd4eOrisjP8e9JYKGUwNSAarryNTRd8FDOdI5fKcPAjT/LYomWEG4sNf+gt7liquOZ9d0Gi9REc0ybXlSfdluU9L7/A/cmF/vfkeWpDiZDfp14YmMf9yYXYaaesSp33HPSMh+BkxUAGR2loaelgPDjw1iPuPWRGLd+QrSQIMRyGkrdQzmgoXe4/u2I60boI8UlVROuqMKoi6NEwqqaVPcZI431PlQbPwfeJW13elXgNTr6UymCW8y6UMybGgj0hu743sfATCwfeaB/iqquu4k9/+hNvvvkm0WiUI488kquvvpr588tfT1/60pe46aab+OUvf8lFF120ZxtbwqgaDs3NzRxwwAFFyxYuXMjdd98NQFNTEwDbt2+nubnZ36alpaWPF8Lju9/9LhdffLH/fyqVYvr06YNukzer7NU+8GQIB/MQ8F5YRlLzj1FJig569dQdU1Q8rrf8nc0bKx6ndIBUiWDoUbm2e5RVnKkwk1fus0uPr8VUjITWJ6ypv9yHsSb48g6qUYWrQ+hRHT3sVml2axuE0SMGgB8a5HkBHMsh1+Uael7RNC93AVyvgZnOkenI+NKe+bbegbd3HXmGiqcL7h67tyK332697/fovXiNkHs7e8ZCUCGnv1lTb9mWR1uGXGSqNFTLO59QzCiSO1V1za9W6nlSgpKkkZq4G+6TcIva1f/g10NqR5B79fmu96VwzoMNbdj69U9ixKNE65O+weAhHEE4mSnKkxjMIH28Mv36u4r+Lw018GZ1PePTq+8CYMR1jLiOHuktBqjqGskp1YSTMUKJGGo4ROuPvjRkHfty21caiD46d4k/0DdiBnVzJrsJ2Rs63Cq5Zap3B8MHPbSoSrQxTKhQ3EvRVPSIm7MhYqIoxM+7d4eSh1Mu3LNU8rZcwcABVcJKjQdNIZyIEG9IEkrE/Dosju3KL7de0WvQ1l/2mz7H210GI0keVOVSdfeZ5z4n1KKaNc8dc0TFz/FkjQH+fsQKHFtwxLPPjcAZDA/pZShm69c/iRYOoUVCaOEQqqFT/c1/ZcaNd49JhMhQ2VM5DqtWreKCCy7g0EMPxbIsLr30Uk4++WRef/114vF40bb/8z//w9///nemTJky5HaNBqNqOBx11FGsWVN8U7311lvMnDkTgNmzZ9PU1MRDDz3EsmWuskI+n2fVqlVcffXVZY8ZDocJh8O71S4tqhJt8I6R7Vcv3RsUx6dGqWqI+1KWA81c7ulZiCHVRChJuh7KLFqpzrtTkFuE4lAmEVg+3igXVkUhZ0OP6kSSYddoqIoQqoqgRyOouuqrFoHlzvAXwovyPXkiyXBRzoKiKpjpnGtoBGoZlEsq9UI9ggpYReFpgXAxERwsFOKE7YAp51dELjnGYL/j0urYpcv79CUUhcGBa8gYcYNwVYhwIuL3oxGPuDPNmVyR6pOVNcl29Pi5G1Ovu3NQba3EcF7kmy/8WMFQyKBHwyi6Kyuqx6LUfOvfdqs9E5FyISAP1B3geh4L3jAv4V0Lu1VoIzVxpvzyDtp+cj6qYaAaOp3/8jWqv/mvo9JGb9Lm2aMPx8rZtK9vJd/t1o3xvFWlhnfp/afqihvaZnihMp4XUUXFAa23EKOq9nofhjohUhruWBR6WsGo94sp6sqAEwiqrmBmLbp3dAEQrc2iR0J+QrSiayh7MJaiPy+/VzkePKU51ZeILUVVFRynfF/7HlXT6bf4nGR0ee3DJ/iTQAv++BDd2zt6pb5DOjN/fc9YN3FI7Ck51r/9rdjbesstt9DQ0MDq1as55phj/OVbtmzhq1/9Kg888ADvf//7h9yu0WBUDYevf/3rHHnkkVx55ZV8/OMf59lnn+Wmm27ipptuAlwL7aKLLuLKK69k//33Z//99+fKK68kFovxqU99akTb0t9g4r7oAv+hXfrAs9OO/5A2ogbR2jht61r99V3/+k2cfJ6OtzdVvEHKPUSHqiBTuu/uusyHMmOmRVXCjQbhRIhQzMC2HNKtGTJb8r1hImlnSPUv9jTBmb/SmHpwX2ZGVCVaEyE+OeHOgCdi6LEoasjAyZvkt7S4IStZ0zcYzLRJpCZKOBklnIy5g05VwTYt0ru66NnV7c5+Zm2stOUXEetT6yEw41guPMR75XsDieB+fl2OoIdhD10fQYQpoDCbqId1QvEQ4WSUSG2CcF0SozqJncmQ29WOcNJYWafgjcmS3pUmUh3eoxVMO6+5yJWxzeXRIiFwBBQGWUZVHD1RhT5zFunH7sSKJkkeeuoea9t4xCuO9WDjIuyMQyjpEKkJE4kaRGtjKKrKtks+7UoFF5S6dtcIHAwrnniGlQuXkm/r8u+toDJUUB0ueO97YYnhRAg9ohe9+AtTIQjbKeQVFYoGFmSwxRCewQPVzal0HE8II3jPl/U4Bpbleyx6dvVgZkyMqKsA5k1kBNXaRgsvzw8qGw/B54RaIUTJo5zR4BqsbnimlbWxc+6Ey3DEASS7jxty6xYlXX/eh/3rT1EVIskwb5x5IkBZ+enxyFgVgOvs7ASgrq7OX+Y4Dp/5zGe45JJLRry22e4wqobDoYceyj333MN3v/td/vmf/5nZs2dz7bXX8ulPf9rf5lvf+haZTIavfOUrfgG4Bx98cMRqOAxEMAYXynsKHEuQ68rTtaObcFWIdGvGV31Ib21BLbGqS49xX3SBH98bbQwzeX490boq2tbuYtsTO4tmeRXDnQEzCm5zx3GTsEM1hl/xFsDK2uQ7TDd2fRRn9rWoSmxahJoZSaoaq4k31pDr7KHlta2u4TABCIan6UkNrRA+4yUvgxt+Ea2NUrdfI+HaBEZVDC0WRQmFQFWxO1N+BWZP0UgLuTOtyWn16NEwejyKHo9i9WSwMp2YmTy26fjSnQOpUPXxNJRQmpxaLg59LJLS/fYWZkYdp1ee1c5bWJksSofiJlqnusmn0n5RtHxPnlxXfo8rpQCouo7QNDekw3Gwc3kUVSU6tQm9eSp2XSOddTOxtRBT5i8d+IDjkPuTC4ccLtQf3rPNe55pRm9NgKDR4N0je4rj3niJlQuXEp8cQw/r5LtzdG/LuOISpvA9x8H7P1ITRlFVYnUx/1r1apE4uWIlKFVT/AG8YigoljIor8NIGPBeInGpelsQL9QR3BwhYTvke/J+sUkorka/5hOn+MYEuMILoyEV3J/x4FjCLxg5GDyDwbGFn9flGQ3eMQcjDiAZWRqWzcVIVqEUatdk2p6ma2s3juOQ7cj1EfQY7wTvi6HuB30FewYTJSOE4OKLL+boo49m8eLF/vKrr74aXdf52te+NuT2jCajXjn69NNP5/TTT6+4XlEULr/8ci6//PLRbkof7tXnoxpK0Qx+uVwHTzq1hzQ9O9Pk2yw/vCnTmqqoi60WjIBJi+uIFmalJx1yANrchQjdoO6VF+jc/ADp9Tm/gFooqRGtDxNOhFA0xU9SDRYNcyy3km02kiNNb4G10VD98GJn/WUhdwZLNTR/9m08J0B7AxwjoaHHdPSIhh5x6yh4xdAAojURklNrSe43HdUzGHBfqMK2USMRIrUJsu1d2PneQYWqa9h5y39omF1prIynQORKq+qRQr6DKRABhSuPSh4Ib7lfATZYEbyQYDjayi8DUfx5hQRuQyGfNgvn4ZDtzPgJyrmuLFbOwkyb5FImds7uN09oNNh1+RfQY9FC+IYCjuMXtdOjYfTJDZiNM8nGJ5E1EghFZf07bzFr7rw92s6RwKuAu7tx2MHnoWeIGxG9SNJWUVSE6uwRL0M5jnvjJd7+9KlUz2xAC4fItqVoX9fC1r+3EKrTSU6pIlYXI5yMEU5GiU9vQlg2VjpDekc7uVQaK2sWVMN6BQn8auiBQe5IVfYulyhd7j52LEG5FOdSIQfvWe3YAmwbO99brRx6Q7H0cKESfWC2f6QqAA90vbnn5kqH21EbO6/2EZrw8IxPO2/74XFe6GepUptkz5O56xoihx6OlahHMbNoba5SZr7DLHjzzb1Str0/SnNuL7vssgHHt1/96ld5+eWXeeKJJ/xlq1ev5rrrruOFF14YdzUiRt1wmAhUUivyXpCxaRFs08ZK2X6oiUep0XBfdIFvMNQfUMv0o+YTX1RQExAOSiQGqXasTRvZ8dwbvgKM7xzXFf9h6SWUAv4D3T1Mb8y8N7B0YMRUPzwc32DKku8y6drWTfeOTqycTdfW7kEVihpL1ID3xlPuMWKu+z5SHXULpmXyhZk5ndjkGvT956OYebBtEA7oBoquo9o2VYBjriPf7ale2WQyJvmeHInmGiKGUTSDF59UhWO5KkoZO4NdkLctim+GPrHP5bwOWlT1FYgcWyBUAdhYY2g0lOINCAByUTc8S+vK+wMaxxaYPVaRytNIzoYPls1Pv1UYQEbRIyEcy6Z93U6snEW0JooeixKJxtHDcZxIPQDqBNAfr8TuGA2Pzl2CnXEwkppf40ExlLJ5YU0/+8/daeaIsP/v7ye96g4cI0K8bTtVb72JHn6NSE2cxLTJhGqr0RKF2VFAZLNoXd0AqLpKLpUpeB1cye+g0eDWTansERwqpYnTXqFNh958oSCleRL+cQpGQ2+eRuB5Umi/7Rs9DormqrEFjYkgwnZ4avkhQ5Y6DRqXgzEerFThXdpYrFTneRW89geNBX//kpowjiX8/nuwcVG/eYuSkSP6UVeoJvu//wa2jdOVItOR8cdJpROyEwFVcX+Gsx/Apk2bSCaT/vKBvA0XXnghf/7zn3nssceYNm2av/zxxx+npaWFGTNm+Mts2+Yb3/gG1157LevXrx96I0eIfd5wcEw3Ucu7wO/V5xOdFmLex2ZTu/8UolObwBG0/uNNtr+8ZcCy6nNOn+5Lakaqo5hdabpefJl8V9ov2BV04c85YQ7JWU2EaqvJbt/J9n+sI7Wli0RzkvoF0wnVVmOlM3Rv2kHrOy2kNnf5BZWCs81BeVUIhLGUhEFBcRKzd5z+JC/zrRb5VosecrS91DXkPt4TlM7ceV6GpqUN1MxqwEjEyOzsIL2rC8eyidZVoeoaVtYk350l25mm7e2tZFr/hlEVITF7Gtq8A+iYtpTt6jQM1WRO+2+JNtajhUPkOnvIpdLkurIoqooeMYg21WPU1uDk8+R3tbHr1fWYGXcG0zadPlWTBzXQL8RTZ1tMjITTKz9ZkIkcDwZDENdzZvvFCIOMl7Zue3pnH+ng4H2y6YltRBufJtFcxUEPPFb2GG0/OR+Aukt/NfoN3kM8OncJeqxQKE9TELYglDBwYgLbdAcCe9o7NBxix34SgLuesZkzr4P5yWvpfmcDodpqjJkzcWom4+gh1K52lO5OVCEI2TZaOES4Nku0K42ZMcm0Z/wwQ+85693Dg72OI42Gm0sRqGcSVGeCgMLTADOzXq0STxQBevMmtLCGZfc1boMqbQPhWKJIiSqY+9cfwZyGIIOpZeSYBY+IWqh2HdOwTQWwi8KYRElIk1ZQVvKEIdRC+90CqAoPT+0N95ChS6PDI7MOLIQralQ1xqmf20By9hSqGhLYBzlkWrNkd+X9ba2UzRHrnxnjVg/M7qoqJZPJIsOhEkIILrzwQu655x5WrlzJ7Nmzi9Z/5jOf4cQTTyxadsopp/CZz3yGc889d8jtG0n2acNBNRSiU0NUTYmz6x8dfjhIpDaEmTHZ+Nib5NOvcMSzz1EFzCzs9+jcJWhhjaqmGJMXNBOujtNw5W1s/PKZhKoifiVfd0Dq6vSHqiK+tn6mvQczY5FoSlI1tZ5wfQ1aMone1U2k2s0a82au1VgUIxwims0Ra+smlyrMdjuOPwD15ET1wqyg+4IprrPgyidq6FE3aTWSDBOqivhFrdJtGdKtbkywmZpYs6ueUeR9f56meawuQrSuCgCzJ+MbbtlUDj3S7RY7q44TSsT87fSoKwmqJZOkG+fycnYhf/m/LC8++hq//+UnaHj8dqx0BiubJ9uZIZvKYUQNcqkM4bZOcBysngw929vo2pYi25kj32UW1VEY6uA5WDcEytcEGW94bR6PVDIaoNdQtlI2XW+n6Vm2vGz+Rd2lv6LtJ+fT9pPzqbv0V+z8/rlse2EtS+5btUfOYSTxQjb1pNY7ueAo/nk/uWw573n5JR5btGwsmzlkPnq4xud+5PDts85jRtUdpNe8jd6UpWXqwdiKTrP1LKplouZyiIg7wFE0NydAD2s4poOVtvp4GVRdGVRytNenRkT3n+fCUVFV9zmQ3WESnOsvN8njUS6c0aO3aGLgWCUytNB/3YigwEKwLUNlqM8lzyscrY8QrYkQTkR8uWvhCL/AZaY9g53vO7nleTIxev/38LwUj85d4n+H0ogYGYKVwRVDIbMjR8e6TsLVGwA3B9PssdCiKlXNUWpm1BKpifH8Ce8dqyYPGkUFdRgCZEMVLbvgggu4/fbb+d///V8SiYRfELm6uppoNEp9fT319fVF+xiGQVNTU8VaD3uKfdpwOC3zJk8tPwTNUJlx/BSqGpPsWrODdFuW1NYUWkhD2IKnVxzqy8U5pt1btKqgJqDoGtsu+XQhcTag8V8o6qXFQ1TPbiKzs4PUlna6tne7FXdNm1BVhFx7F4qqYqZzCEdgRA0y7Wna39lKtC2FGtIxu7N+0TCl1r1Cwwkbx3TcZB5NIRRzn5625RTFtkZro640mqH6kqF6xEALudtH60yqGt3CX1313XS83eXXtxjveDkMkUkh9Ij7vSiaihE1SDQlScxoRBQq5HqJgd5LKVybIDZjKmokgpPJYHf3+PkMSiJJT6SO9etCvPioO0tywyPT+eemesyX3yTd2k3Xtm4yrTmi9a4r0rFs9EgbVjZPz64eenZm/AT2kVQ6Gu9Gw2ApTZwspwM/Gi7uaHMYRVOKwg9LPW6OKQb87KC3YfKPb2HyiLd0dPFe/t5A1QvvWLlwKe95uVfa0jMgSms9TATWvfwuL7x3BZMXHk79J79F5v9+z7vp6eiqoCFShZLpgVAINRZ1FbVybuV2K2cXJJeLjQYtqvqTMgOFaiqG+0z2vDflksUr7R80FPxnhykgpvZRWiqtAVExpjxQeLGoDUFFt918Rg212KoWVYlNjlA7s47YpARa2M0tE45AiELxSMvGTLsSzmY671evt83eWite3oabDK64Yahpk3zadEOz0lZFVSvJ4Cn73Zqu9Hq+1SJj5HvrEukKsaYINTNqqd2vCSNZRW1HD+yZYt/jnhtvvBGA4447rmj5LbfcwjnnnLPnGzQE9knD4ZFZB5Jvs/wBp5WzqZuTIDGjkfb1rdimTSju6vk7cbfKqXBcvWi/Em+PhZ1PkevOE62JFB0/mI8QioeoaqpBi4TJd2eLioVlO3P0tHTStaO7KGFNM1TMtEkq10F3SxeqprjqPAWlj2hNxJfZg94EMr9mQMFwcWfO9KLaAqquoYV0d19VAUe4uRQR/PAdTVfZ8fe2cRFW4uHlmwTxvAyhpEGiucpXDdHDOkYsTGxSEqMqhp1zZxNVXUUL6YSTUeoOmI3R3AzVtRCKoGV6UHZuJ7N5G6FIBFSNaK6TxlqbeYcs4K3n3+Qzx3eS/u/X2LVmm2s0tOSwMw5pM4uVtcm0Z9BC7ndi9ph+gth4CdHZUwy2RkjpS6iclONIJPaWMnlBPaquYWbydG3vpmdLpshwmEjxuEMhOEvocVrmzT7L9iY9/GXHHcgBjbvQOzMA5GoamRJro8uKkY1PIp7tRk13IRQFNRRyM3R60uRSWRzH8UNAPRRDQegCMpUTc71nVahOJ1ITRtiuKp8XeuM4zoAJo5W8A8EciEo5DwNR+tlDrfUyHEpDSYMFMKO1UWrnTiFUW+0XrXM3Vt3/FQVF03CyOcyOTjItbaQ2t5LpyOKYtpsfESgw6QmK+F4eW/j5ZTL/YXQpfZ6sXLiU1LYUVs6iqjE5qlLAI4XCMEOVGNo+Qgz9fhvLvIYg+4Th0P7TC9jw6Cu+trgR1333bs8mNw6vZ3saxVjnFw7Kt1nkGy1CcVeBx7Ycsu058h1u5V8AK+pKoqaMbrSoSqIxjhbWUbXel4qZEVi5XbS920Ln5i5s06ZmRjV1cyajRww/GS/XlSXbmS1KBgvFdYwYOFZvjKdmqMTqq4jUxFELlYKFZbuyl1nTNxqEI3zdbk+NyTMcgkaD4++bd0OrUjlyXXn0pDZmyc+lxccUQ/GL8Hl6657iFLh9Ep+cKHooKaqKlc2Ta+1wZxJVFSNZRbRpMlqiityyY7FQCXfvRGtvQXSnsFJdOKaJFo9hNsxgZ2QGdUqOT59RTfb0I5m76b/paEu5yc4tuV5PQiH2OWvki2YB90WjAQoSkl7IyxBrjuwJb8rCux9mw5fOQI8YWDmbbFuuTxv2NuPBK94WZCwS0/c011wQZ+err7hCB0DNwSfyzD/y7Ow0yE1azKLqHLGOnUDhRe4InLzpJvYbGkIVfdSKbGycrsEN/LMdOb9QmYcwh59g7cmzel6PoBHgJQeXeiL6YySeT949G7znvfYARapwnrdeURU/bLZ29mSis2egViXceA/hFOJFFFBUhBFyJ3fMPFpHK2o4VJgsayPdlkZRXVlgzdACdSrUXvW/kIpmaoioa/BJ42HkCb6zSyWb7Uw32Q5XervbGv+RDIo69LAjb799hb3GcPj7MccS17SyShDtazaS2txFvsP0XcwA0akhjIhO6t10n9AcYQrSZpZ8Uitc/K4xURzSUEgALQwSe9QM0fqI7zIFyKdytL+bZvIB9cTqIvTszLhhNDNd111m+07CySjZjh7MdN5VJMiYRJJhVF3DiLpKPXbeIt+TJ5yIkJw+GS0aRtE0EIUXXSaHqudcz4KmIYSDU6jO6860G2hhAy0cQtE1hGXTs72NfHcWM50j110oaNZj+i85xRicVvlIEaxj4X0HXoxwKBGicdEUIrVVGIk4qqG7BpZpuh4FzyuUM323tpU1ybSm3OI00bB77uEQav1kWhOzAKjHIZpqxW5vp2fjNvcYPWlUy/VSzFPXUL3tFZRMD5lXX6WnpdOXaYTeWP6JlRWyZxjPBpNjOb53Tyvcq6NtLPzjlGMqJluPBs8efTgrnniGx5ccjBZVOWUfje9+wVrGzkyId39vctmnDd53kBsOc8mvVGYdPwl97VoyO9yinmpIR1g2ekTDzjsITRTPktrCn3Tq7/oWpijkNWX9ZUWhR/0M6st5G/pUcg9UXy7d1zNKPLWh/to4Eveol8sRHIx7ibPgJjK7k2Cuol1VYzWRmjjhuiShSXXoDU2IRDWObpScTGEkpigIVUPRDVTHwsjniOXybp5Zyq0T4MqVa6h67+hNLShNqYaGZjjYXv2NfUwedCQpF4qmxVSqZkWpaowXLbfTji9l7+XOdOfHv+GgKgrqMDwOw9lnorLXGA626VA/v8H/vz9FCC3mPlzybRbqJLUoqdZXljAFetJ9CIcbQmj1Guloxt3Hm0EJa0WzUaqhoqoKRlQnVl9FOBlDDekY8SjRGVNx0hmcfB4nl8dMdZPetotoQy2tb2wi35Onbr8GkjMmkU+l0SMh1JBOpK6a8NRmlKapWMnJ5GO16GaaUNtWaG3BSffgdPegx/No8ThqJIxiGP7MjTBNnIzrplejUewDDuHv0RPZ0RnmAy98k3fvfZZMW8b3cowGpbKDHo4lfPWjUMJAj2jE6mPEJycKuQgCVVeJ1idJLFvCi4u+yI7uGI6AWMimKpQnYWSo0rppbH0DvW0btLZg7tpFrrUds8stNKaFdEI1CcJTmlBicRAO9V3rUYRDeOcGsq++SsuLb9O5pZOenWnszGsI8z4cS7BrUohIbRhNV8mnTcweyw1TywxerWRfJVTfawAONNDa03RsbMMxbXJdebK78nvEw9Cf0fDqB9/L4j8/ymsfPsFfFtTS96qvegymCuuKJ9zcnPe8/MJQm7pXccpBbg7SUR94iss+fay//Ofnx2i94lq6O7pQDYNQdRwjUYUai7J47iyym7ay8Yk36dyc8u/3fJtV8ToOetccS7gTSv20y3sPefRX+LHoc/oJT+pTFHIE77lgIc1oQ5jk1ATV0+vRI70D/m2XuMVdD/jYEhTF9XZr0QhGsgq9pho1WYPdMA07FMXRDCxFwSqEbAhVoz0xnZyIYqOiIlCxUZVCzqBQURBo823Cdpra1GYa1r8GuRzCthD5PCKfxzEtzFQ3+VQ3mV0pHLuTTGvWH8AqBdUlmSg9dMoZDf15Lr3rz1NmzOrjv/bGWFWOnkjsNYZDvssk15Vl7bkfYNfbO/t9uHsIU5DZlvNj5VVdgYzjyucVEnuEI3zDIJwIEYoZfhiQHnU9C6quoWoKuW53ljpYhwEg39mNtmMnWiyKFgljdfXQtaUVLaRTe9QxzDrgAMxNG1HCIbT9F2FHq1BefQ4nl0evr8OZPpdcVT3dsQZaaUCNOjRFakgoCuLtN0m9u4lMWzeTl+2PNmkSYnIzQg+hWHnUdBdKexuoCs60/XiQU7nmUrfIyJG/PJ/9DZ3tT79K27pWsu05X75vqO50r1/L1cII9m+w+rEnwRefFCOciBCqihBOuqpSXtiVEQsTaZyENWM+v7qjm1Aoy5KDJjGn2cFQbTTFfTXnI0nUqjRaPouW7kHtcCs951LpQrxrq9uf8ahbzC2eBMtC7NhCdleHW/Qpa5HbYRYplPRkeiXlgH02/GioVM2JEq2PoKoK2c7e0K6Bqpx7A/hy8fgjybKHHueV049DNcp7Kfc0i//8KNBrLAQNCBicoSDpnyf/cmyfZemWdgC0cMit8ZBMgqaBbhCenCXfnSOzJT+ke96v9gzF75bgNoFq76WU3iPBd5YXnlTOeBjtQpBe3kZscoTklCTJafVE6pJo0QiKrtH1r98kMXtaUcyGYui+2ISoqsGKJcnHanE0A0fRcFQNUHBUjZwW4/FN+9Gddr+CaBh0DXRNuFFLikDXBLGQTTKUJVNbxZR8Bq27DTWbQeRz4NhopoUacT32+VSafE+ezLacbzQYgUKakqHheRz6m2jpL0Fevjf3DvYaw8Fst1hy3ype+/AJ5FL5PuuNpObPcHszoKEGg3B1iEnzJrnhLBGD7h0phOMQiodxLJvUti403XV3eqpKoaqwX0DKyyOw8xbW+l3YpoOZMUm3dvuFwoQj3Iq0iSrQNMyeLJ2b26meVkumfiZRVUPd1YIw3Wq73TXTqI69jjp7fzqmLaVdbyDvGLRmq+jKGRxQtwXNMRFGGLOjkw1PvEv35gyTl+5HZv9DeCeyBE0RTHXWk9zxJkqqE5FJg6qxo733oV6VbfUf8maPSXZXftgvHz3pGknl8iJUXSny0njF2OKT48Tqq4jWJdDChp+zkOvsxkznMNM5sh1p7LzFpMbXOe2U04iHHZZUr6G2cwNKl41QNRAOqpVHcWy3CE0uj9mTJdPWTefmTsLJHLlUBmNXl6uCpSoYb28glIhh5y0yre53rmpuG4vOv6AYIRk8WkwlMaWKmhl1CMchtbUTxxY4Vm7QfekNuEplJneXxxYtQwupxCbFiNZEOPDelSN6/JFidyr3SgZP7yRQGH2qO+gVuSzWtm20vfYuXRvTg75mS2V91cIkSahO9+sOCFtg52zIONiFfISBnrdFy72/C+pKRduNciFIxVAIV4fc5/akBEY8An7unI5iGCiG7mtZKorier8jUUQ4hhOK4BgR19OghbBVw/1RdEwlRNqOsX6Lxfp32jBzFqFoiJq6GMlkiClNOiFdIWwIDE3gCNX9McJomgFKFkVzP1uoGkq6Byfv1ujxPG/36vP9Pjth/Suj0kf7AgN5Zye66p/0OAzMXmM4nLTleVYuXIpmaGR29CY7evGX0cYwesT1DFhZm56tWfdBmAgx9aTDUBNJRHcXkTVr0aNhYvvNovXv/8A2HZJTawklYnRva6Nzczv1cxuomjYZsytNtt0djArHIdeV9yVcMx1ZzB6TTGsOYQoaD56Llkxgtuwk05pCUVWynRkiz9yP2Zmifc1GrKxJg2mRVBXszg605hlE07vQQ1myoQTxeA+tRi3Nra+h2CY99bOomr2RcOIf5OtMQgcfxpPqYTzzok5nZ55ZM5bxsZkWic3rsLu6Ude8xKeWVXPkL5YwiR1s+vKX3FCNthzZFnO3BsieYaDqCmZXr4PekxVUDKXIaDBiBrH6KqpnNRFumITd00O+owsrlyeXypBp7yHdlsHKWHTv6ELVV3P6jD+jZC3Ud9Zi7doFjoMWi7ovLE1zC691psjsaKVnRzu5riz5Hgs77846KWoPaiBeOVQVwoi6HiQrZxedi5Tu2z3SuzxPj0qmLYOVtobkwRKmwGbkw8G8PCfHFix76PERPbZkYqKoCo5tk1+/HmG6+WI7X17LzjWtvhDGcHBMgRZ1Y/z95GoKXoMuUZSPMNTBvjBFn2fUaBkMQa+xJ0rh1sRxUG23oKmwbddIgCJFGuE4rtaMqiA0A0fVECgIRSOvRckRISfCZMwwaSuEoSt07EzRsmGrf4zmudOpfu8s9CoFQxfEQiYJo4cIGXfiqPfDevsil6f+st/gqeBP9MHsRKHUU1xqZKRSKaiu3pNNGjKqqhSNE4ay377CXmM4rFx8OEaHIDo1RGJmjB7dzUfwHngNCycTqoqg6iqhqiitb28jObWOyccfiTnrANSOHfS88hpdW1qpnu1q/+e7s0w+YBrRpsl0b9pGtjODbTo0nHYCojtF+9+ewEznqJ7VgJK3fM3uUDxEKB4m35PDytpkd+VJrd9Ori1Fpq2LXCrjS8ftfPZVurZ10PJqK3bGoXNTO5NeX+vKy727CceyUUM6dkcPyfok0044HnvtWzjZHOGjTiaz8HAO+H4jYssG1s84jm1bwiSqIBQK01jnEO3ZRXbTFrJtnW6856PPUwXs3J5i66pdQGXlm0rhR+XwCpx5Ckgefh5DXC8yGkLxEKEqd8bKzmTIp7rp3tYGQLYzQ6Yj66tY2aZDx4ZdVD2zEkVRyHR2kW3txLHcUCYvUdrKZMl3Z8m0p0m3pcl35cmnXC+OFjVRVdXPSXEKEolayJ2DsrK9uu2DUSORVMZOO6TeTZN6N100ozoUggXkRlLlSMY1S4LMuPFuAN782EmYmbWYGRNhC1Kbu8lsyY/YYFw1vLluh3yquGDbcIzjPRXyEcxPE6ZwC3tlTOy8hShUqhaOgxDC9ZgLByUaRQmFXVUk3UCJuN4GoYdwVANbMzC1MD1UkcpX0ZkLk85rqApMqlOZtl8jHTtayWfdCcBt72yiZ8UMvv5BHdCAGBCjc/XLGD3tkM+CZRH5yEVlzyE4mPX67ZFZB/rPJul9GDnKyTt7PLZoGQc9Pf4LZEqPw8DsNYZDpCaEtTNLKGYQqfbqKrhJwbGGCJGaGOHqKoRwsLN5Zp58KMrBR9IyeQGJdAshM0e2NUVqawdd21NEXtvI7LPPoGvOcvSXHqVj1T/IdmQIV4XYvvBEJu18g3DSLYwkLNsNgSnMKsXqq6iZOxUtGqF6+mY6N7Wy7tG1/stCMRRCSYPqaQmsnEV3Sw/5NndGNt2WpXNTG52bu4jUhKmdWUdy+iSEI+ja0op939/o3LgLVdeYnkxgHXw8m2Yfx3TrYeryW1ncHCYxrYuazHbiO97BWfcW3Ztb3OJuhUrGZtbylaWgfF5CuNHwQ7pg4MRWO+1gU5Bgq9N9RQ074/jxuIqqoBpuTohmuMnPVk8GChKyoaoIuVSaXJfrrbELXgAr7Xoddjz3pq8wZWZM/5iKquJYNlbOJt+dI5fqraHgGQFBSUAvvtU2bUSn6E2IDwxwZSzm7uF5r4aiNjXaCcpvnfU+5v3hb6P6GZKJyYI/PlRUYbi/JOihoBgKekQjnHC9m+nWtJukOwHCH0tFLRxLkE+ZZCLuezBSE/flv3EcFF1zc0TqGxDxJHYoBqqGrYdwtBBC1XAUjZwep4M6WjMJdnSG6exR0DWoqXJYMCVNY22MGTNX8Mo/dvDui2+hahrTmzVeeruF2R2rMda/jrl1K04mi1OdLDRWoec33yd+3o/7nEfp9+hYwi+iJ0wh5VlHmfuiC1AMhalHN9Bz64/GujmSEUARw6lCMY5IpVJUV1fzx/BcIlZAiq0wi67F3ISuquYoM46cS9XsaWhLlvNu87Hs99RNPPW9/2bGMdOo3X8K6R3tpLa0u9runVlyXXlCMQMr6w5/7JxNtsX0ZVz1iIaiqb73oOWlVhxLYCQ0wtUhIjVuLkSoKkK8sZbUpp3sfHMnXevSvspM7YFV7rHzDoqmEKuLkGhOkphWTyhZhZ3JokUjxBcvIj3nIK56+hCe+utzLD9xGZcf+yLRt5/H2rGD7PadvHrHaqpnJtw8i55CZc1CTG1prHiwzkDRck/Kr/DSGGrMrKfd7OWSeLUOPM+Pp6BkxA2SzYmCF0jDsVwPT7otTeeGLt+D4bWvVJUpaBAE/4fKMoNBffHBxBZL9ix7qnK0RDIQIx3aUprgHDQcSj2+/XmAR/tZFWk0CNeH0COFnLWsXRT6C2AkNGKTI0xe0EjtvOlEZs9CSVZjJ+ow47VkYpNo1RvZ0l0HgK46VIVyNOg7qU1tYE3sEN7aUc22XQ75vEDXFWqSKrMaTY7puIuehx+i/d1txBuqiUyqIdLcgDZlmitm0dOFuX0HPVtbyOxKMeeWv1Q8l/6UFcvVmjil7fXd7j+JWzPGw4tC8CYSs2HBhza9QWdnJ8lkcqyaWBZvLPmj/2wnEht627LpFD/4TO24PLeRZq/xOJQSLEJlpWzseof0rhRm+l3EK28zZcrDiKlNTFpch6prRKc2EZ3ahKq/xa63diBsQazeVfjJp02SU6owogabW3bQ/Xa2aGDtDUTNlN0b3mPlMOIGmY4s+Z48sck1hJMxwokQXaT9B5oXuiNsQT5t4jgCM2Oih0Nu+M7WNqqaajE2biBqmZx/0jQWLziGI6dvILr6Wbpffp2eHe3ku7M0LW0gWleFmc7R8noL6c3ZPmE3fiEeozdhOVwdIloXJd+do2tjune2bRgvKU+72TNUgoaJZ0g4llsQSdNVX4fbq4yd78qTbTH7DuhNgSjVMh9i/QTfKAJsaTCMK8oZDRLJ3oLv5Uw7qLhiHYnZMfJp13OaXp/DMQWRRgPFUMjt8EIsVcyCd3i0n1daTKVp+WTCiQi5riw9O3v83CQ9qRGpdetfKKpbNyFSEyeybDlb9j8eW2gYSp6wlQbAwCRqWIQ1k3qjncbWN9DeXE1+ews1H5mHoSdRVQXTtOnutunuVnFEiGO1PJ0bWujZ1UOkJo4WDiFsG9HmhtU62SxCCIx4lOaf/76o/U8tPwThCI56cXVvnw+QcO5PNQ6jArekPKe0vV5ktKmA7dZkx0yP/4pHbhTDMCpHyxyHiYdjCspV/PZmpDvf7qF78zrAfRhPPbSb6VMamfepE9nx2Gqy21pw8iapLe0IxyFS42p/Z9qy5NssUnQTLSxTAy8BT4vbTNkYSY1oc5i6/Wqonz+FULKKjne20LaulUxrCj1iUNWYwFksyLRmSa1Jo4d1qqfVoqgK6dZuUlu62LlzF5HqKKGqCJGaOHbepGfjNiKZLFPD93PK/keQ2L6e/MZNtL29ldZ3WsmnTaYdMg1FVUhOn4xjOcAuzKxFZkveP28jofkGj5lxUAqGhXfRe4nMu1P4rdToUD3PBYDVK/Vq52xflhXAcRyslF3RCzBSL05pMEwcdie/IX3L5cTOvXxkGyTZJ+hPUnI4lIYmhRsNtJCK6BRoYQ09qfl1BrzE6eR+MRoXN7HtpW10vt4zYm0ph/fuUlQVK2vSs7OH7m0ZP4RT1RVqZtYgHAfN0KhqqqH2yEN5e7/T+evqSSgKTGtU2b+hk8nGLmJ2FweILcR2bEC89Sq7nn+Nzk1t1MycRKeVoKVdob09T3tbhl1b28mmc7wVC3PSBcfRdNjr1Oxqw6iKocXdomK5rdsBELaNkzcRls22b3yK5l/cXnQeR724mscWLeOY116sWF8g+L167wLFkO+EkcTLdbhXn++PB1RDKaqgPl6ROQ4Ds9cYDtBbUCc48PRmvp2CrKaR1KhZmKB+/jS0+kmIaJy2d3fS8vo27LzjqyAphkK0PoxqqFRNi5JormLS/Ck0LcmQ2tJOaksXmZYciRkxqhoT6GGdSYtn4eTyhCfXoS0/AoSgsf55tNAawskYiqYxqaGW+oWCzM4O2mfuxLEFRixciNu3yLTmyLdZtLyxg0RTlV9ITgsbGLXVWJOmskmdTfPkEJPmbyfy9iYUrQ0jomOmc3RtT6EZbWRTORTVVY3K6e7sVbB+go3tD9Jzet5NDi4T0jQSBGcenILnIPg5Xt6BJwUrB/b7FqMRjvT6O1uZHY8PvKFEsofxpKszHTniTTGsjFtU1DEFjtk7I5ttz7Pj1e1kduSIzwrTsz5X6ZC7jWIoGHGdLU9v92WQvfAS770RiofIdmaIN1RTs3AO6fmHsT1dw6aNXaS7smSz9cys14nSTTjbSfS1p+h5+112vrKe7S+1YGcc6vZrYM2OGna2mpimQziik6yrQjN0NE1FIY9e606koWmokQiZ9ZuwMjn0uBsB4Ng2jtV35vrI1c/z+JKDcZzBvcOCxqEs5jk6eM/2e/X5aFFXHIWOsW3TQKiK+zOc/fYV9hrDITI1RCSko8d0N+ynw/Sl9Lxch2nHNDLnI8eiJpJYO3aw85En2PXWDna93FFkYIA7A2PMMJi6fCZGPIqVy6MZOlU1CcLVVcQndxCdlKT6gP1xsjm3YvPM/REb3mbbMZ/l9fYZNFZ1sWiJQkNVFRRUJ9RkEqe7G9XQ0WNh1j78JqnNXSiaQj5l+i7qI559jmePPhwrZxNN50lOq0eLx+lJNtKaiROJT2LaB77CzA98hZlA+08vILVuK7vebsNKW/6DXwkM0hVDwUrZaNFCyFDgRaVFnV71DF3BpvyAbndm4fyqqn3yKuwhKThJ9h6GW0ioHDu/fy75rjRTr7uTA+ZOgbmXjEQTJZIRxUrZfr2bzJa8H+YaRDUU8m2WL5phZ9xJr+B2WkwdsRwtK2XTtSFNvrVXftZIaoQbDaI1YRxbuAVLZ0+mZuEctLnzWR+dS65TY3JDjHRViNoaHUXJktciGHoGu7sLK53DiIWpmV1NKB6idtkBrN1soSowfVqEWY02s6q7yTpVRNQcU574T6yubhRNQ9t/EelJM0k/ey3h6jiqoaOFQ9i5PJaTxrFtVh93JOm2LJqhcuTq59EK6lX9JTwHnzkyh2rPcLq1hpULl2LmlHFvOEgGZq8xHKqmxKgKGURrIhjREIqqkO/J0bOzh4413cw+ZQZTvvZl/uJ8gIMatzD59//MxqfW0flmT58Hr5fga0QNlEL153RLJz07u/wKx2Y6T8Syye3Yya5X1qKoKrVzt6CGDMJ2ms60xjtbq5myYAGRh/9GfP5c1PoG7JZttK1+je7tHaRb0/RszRbNvgdzM7zCNW+d9T5UQ0dJJAllOjg2dSfRgz5T1ObI9Gmse+gfdK/P+MuChhMUqh4XkoKDn+kbFlavyTzSRsNASINh36PSSztoMAzlxZ5t7xqRdkkkMPLhSh7BZ52nRuehFhJJ9aSGEXdfz3bOJt9mkZwbJ92SJZQ0yLXm0ZOaa1y0Dr/WRLBN3nGCbWg8YDKRmjhmOlcolqeCpqHksjTl1mMmDdbV1RGJaCgKbG6P0xWbQyKcY/nM14mlM0Qm1dB8bA1aYzNmwwyW6xAL2US0HLO0tdRufBk7mkDr6aDztbeJT2tEiYShdTuxbRtJZU1qFjaihkOo0Sha1ius6hCfHCecDGPlbF444SiMuIGStXxviWT8MOvo2bS2dsG68Z2ELkOVBmavUVVa953PUhU2EJaNnbfQQjqoCl2bdrLxmY1MOaiZ6acfi5g+h+zjj/LCDU+QLczu1y1NUNUYp2tbt689D26Sz2OLlpHvMDG7bIyERnJ2FfudspTY3NkI08Rs2QlA6ODDUDpbsbZvQ9E1lHmL2TnlIDqoY1r2bWKbX8fZtpn8jp30bN1J+7qddG3rLlJY8gyGclrIl/1Hnm1bunjtqVe5+ZdzWDB3ur9u/XkfZueaHex8rt2voxCqMdAjGrnOfJGLu7+Z/dJB2nBemkG1CqlYJCnHQMbAfdEFRXK+5e6HF096D8JxOPiRJ0eljRLJWCTpVx8Q9yd/KineaTGVqllRVxp1c37EPttIaiTnxonWRolPilM1pY7E3Jkoiw5GXb8G6huwapuwwzHCbVsRukH3pDn8/t1DAEjGFSwbetICR8CsZkFDIktUz9OZi5I1NQ5KrKF21R3kWnYRnbc/uXXrUXQNJ2+ix6Ko0QhqNAqKSnbTZnJtKWqOOxpsG6EboKjQ1YG9s4XM9p2kNrTgWDaO5TD/zgdGrC8kI89za9pJdr/OgkOOHpfKQ95Y8ur/7iA6DFWlTDrFtz9eMy7PbaTZazwORm2SSHUCs60Ds6eNbHsX2Y4edq5pJb0+x8bUZrpb7qVuzmRSW9r9WXbVUEg0u5KoZtbqU5HzmNdeBNzBjJ1xsDJu4RthmiiqiqJp7v+b3qX73fV0rttB+4Y29PAq5pyyjOoTPoRm5qCrA6e7BxQFVdeIVEdJt/YaDdB/8ZQrPhviqA+4xauCRgPArN/8D7Nwi9pE68MIR/hyenuSUom73U2ylux9DMaD4CvQFO6N+5MLiTQYxJtixOqiOJaDY9osX/nUaDdXIvExCrkJpWFFI4mVdmf9vWRq75nqJU97uXojlSytGorr3UhoxJtiTFk2HTtvEa1PoqgqWjKJo6iu0VDXDELQFW9iY9ViHKHSILZy8JwsquK2N2fr2I6Cpgpau0OksiGqElnCmkVMN0l0baXr7Q3senMz1mOvUzOjjkhtgqpZU8gf9X7CqR2Q7SE7eSbW0ig6gpSi0bBoBV3P3geAFo2jKQqhdIb9bvvdiPSDZPTZL/sKuV3rx7oZAyI9DgOz9xgOs+agJZOYbaux8xbZjh7aN3TQvT6DYwqyO0x2dLXR9mYndqa3cqc3WH+wcZH/YPYIhkuclnmTp1ccSqKpCuE4rtEQT2C+u56OtdvIdr5Gx4YO3/iIN8XYsfotEjt+R7gmQaqlnVwqjaprmOkcmfY0nWv7hkn1x5N/Obbf9Sesf4UXTjgKYQsUTSHXlS8ykPSkRs3+CRRVYedz7X0+u1TBZriuellETVKOwRgNj8w6kKpZUYQtyO7K+wn8ZpdNNux6zlY88QxPLls+2s2VSPyBe6hOp25BNTueaxvVzytNgPaeoSMRjhREi6moulvoMzmlivq5DaR3dRGuTZDe0U6+K020oQ5qJ5OpbobqZjaG5lGnttJiTWZnuoraSJZovo22fJh0TkXXBNUxi/poD9V6ClVpQFMEm1LV1EWzxPQsWj5DzTFH4ZgrsbKmW7+nK43e1ExWM1BzaVA1VNtk8kHvLWqzFXKTo4WqoQPVH714RPtEMjQyD9+GE00gVA2hqOg9HfQ8vopJl/+27PaRf6zECkXKrhtPKIqCMgwrYDj7TFT2GsPBnDSVHTMOIvJ/K+nc1OqqHrUWP4S9GgPlZvbLPZi9h6vHEc8+B7iJyErdJMy6KYRbtpM0LdKt68i25/3CYqF4iGhdFVXTm1HCIexMzq2KnMqQ68pi5SyMhIaqu0lw3izr7nLwI0+6SdVdrkJTtCFM9X4Jsh05amYkmf3+I9CSSf6+8w66384OeLyhGA/SUJAMlwfqDkBPamhRlVhdhHzarf4N7nVlpWx6Mlky29x72tNql0hGG6eg9tb2ZmfFis9aTJ0Q1aDBNYbqFiWIT44Tn5wknIwSn95EKLmT2PQpdG9pRTgmejSMve4d4prGP6Z9BMtUCYUTNOg7yUd0GsM74c938dLUo3nzlS04ls28A6fwoSOhyupgeX4NlhFDU7OoD/4VY8EBtMx9D3WqRt0xR2K1uBKr6Q1b6HntDYy1a7FCIRJf+xeiZdpdW2JISMaOzEO3onR1oKo6QtNQO1tBOIQn1bH6uCOp228yiemTiU5tAkUhs3kb3Vt2oc+dNtZNl4wAe43hYGxdS61q8crja+jeliHfZlXUcQ5yX3QBoTq9j0KFaiiE6tzueXjqYk7c8qq/j7BtcAR6OkX+kOO4e9ZJnHXGQ+hX/gzbdOMtw4kI8SmTQFUx2zpI7+yge0cKRVWoakwSqopQN8eker+p1H7n+hHtCy+pGuCV048jUh2l6tBa2t7dgRqPkV10OJPnP0z325sHdbzRShKU7BsMxtPgecbybRZWyq3v4Sl/gTt4O72fUD6JZDQY7Iy/kdD2iOFQ7j1VOmFTqcK0kdQI1enEJkeI1kap378ZPR4h39mD1ZOh9ohDya1dS/MHT6Rrv0NxrAxqtptXao5GxSFnh9jUVc/B4c3E9ToaW16hq7WD2YfrbN4QpTuVobkxhKGkUByB9uyjOJ0pMjvb6dy4k8x9zxOK34E6tRY7bzF5xWKsg4+hamE7zhsvse2xF9n/9/ePeh9Kdp/U1EVYWhjDypLYvobtf3mI1rdbyHXl6d6cIduZI7axDeX/s3fecXaU9f5/Tzv9nO19N7vpvRMgJEBCD9KkiOJFmlwvTYGrXBGUIAiK5aKiiHpFLCg/EATpNQQkhJBC+qZuku19Tz9n2u+Ps+dkN9lekt1k3q9XXtmdM/PMM2dnnnk+z7eJOwg3homHVURRxFbZdLS73isiA0zHOuQ9GbkcMeHw8MMP853vfIdvfOMbPProowCYpsn999/Pb3/7W1paWjjppJP41a9+xfTp0/vd/q6n/oXXrtBaHsRoLzLWF7wTXcz9zffwnHIJACumzibcbi5O1hXQIwavOqekLBWZ9/wmdfzOnXWkRUykeISixTORvB7MeJxofROiohCtbSBQ1YgWVbG5bUg2GVGWUNxOPCX5GKra72t9I3Ma5zb3LTPBzJdXsHbJKanfy//8Jr7C1dRvbuhy/+4KblniwaI3BpraMHlfJVMDL/Nv61R51EqZaDHSiTdrqWx8esRI1QIaajGRKjragztoV9s8Ex2MWzIBNRzD0HT8VW20VtSTMb4AW5obR1E+/smn4CoYy4Hc2RRXfACGjhAOMFWUqM6cQYFUQyuZuJpqycuwUZUzl4IrHVwor2T8pfOoC2Sy2PspvopNGO50tEgiyNtVkI27OI9oQzNaJIaoKDgyZIxIFNvezeD2YsbixAJRGpd/tVtXF4uRg2/je/hnLSWuuECNU7+tlvqPW4CEcI3IMdRoQmzH6lRUv47kEmlp7t3L4WhjxTj0zhERDmvWrOG3v/0ts2bN6rT9kUce4Wc/+xl//OMfmTRpEg8++CBnn3025eXleL3efp2j5uMG2oT+r/pklKWlRAPAkm2fAYnJTDIWIjkQvyxPRlSETq5OsybmMWsi7PjS4xTd8lXaciaSXrsNdfdL7PjXBuJhFc2vkz8/B8Vpo3FnI6ZuUnJyGe6xxUhjJxB58w84z7n+sL7VbluHPdaGc89nNLzzIRUf7CFYEcFUzdTEqi+TqlggTuaUMQT217Hvje3U0NCjW9FgqvVaHH8M9l5JilKxg7tex8qjFhYjHUM1sfkkPMVO4mGV4M5otyuQ7jI7sksecIBzf95xoiLgLLKRNT4DV14GzeWV2DwOpn3nq0TXfkpgfx0Zl16LGPbjrdlGW9EMaqI55HuzUOoqMMMhjJWvo3x+EutbJ7KvVsI5dSbPfFLM9PECkXQnYwPr8SlhxmRW4lv7HoLdgWiYSG4XeqSZtn21+MYW4irOR8rIIDx9MbZIK1F3NrIWwbFtNfGWNhxpLlp319B2zQWMf+rlAX03FkeGbb97kak3wta5X0UunUNGaQatOwPEmzTseQreYjc2t41wY5iIlsj8pYcNYqHhSywwVFjCoXeGXTgEg0G+/OUv87vf/Y4HH3wwtd00TR599FHuueceLr30UgCeeuop8vLyePrpp/na177Wr/PoYYNl+o5+HbN2ySnYfXZ2fnnZYSbSjpOh13xTU9Uz9YjRaTKTFBIHVlWRPeNt3PaVRCIxTMMgc1wGoYYQWrqGIIo4Mz2MH5+PZ+JY9Gkn0JY+hswD63GedQ27du9lp7+IDEeEPKWegk2v4amtIVJTR01VE6EGP3afDbPEJHQgitmevvU139RU6kqtPdtHR1EgKokAuE1Pf0ykKt7nOISu8uhbVgeL4SKZO97QzE7WPUvAWowW4k0azU291xJJjMPdV4FOuiPJPinlwucucRA6EO2TaEi62XrHuLB57ADY3HZMw0gUcZtaRiR3PB+c/RVOkz+AaJADpYspWfUXhMJpfLrTiX3KKYxzZbJXnsze0jTa9ghs3xHG0A1WOkvJzYbqRmgOZGMrnYFHCOBrqyI+cQ6CoSNH/MhFY5DGT8ZRvA9zwgx0m5OYw4dz3TtUvbmKjIlF+Gua2FNex/wVH5HVx+/Z4ugz9foLMAvGMLXuLYS6StwLZ+LK9tG0sxZPng+7z0W40U88FMdd4iC4J2LFQB5DDLtb1i233MLnPvc5zjrrrE7b9+7dS21tLeecc05qm91u5/TTT+ejj7pPsxiLxfD7/Z3+AZzXsu6wfV+WJ/c40RUkgUhrlF3/qujxGpb5t+EqduAtdeEpc3ZaGe1YXG3fii3Ur99JtLEVUVFIK8sld3ohmeOycKQ5GfP4P3DkZCJm5xLyFQBQ/ednqbjxEjLC1TgULSEadrxL7avvsu+NT9j77lZqNlQRaY1i6gaSLRGwnSzQY8uUUbyJdHpdBVgbqkmsTiVcEev00hH7GIxtCYXjg4FO0IdqYm+oJqpfRw8b1gvG4pjAVWZPuBUdQseaPV2RdLOVnImx3pGrYBhGn0SD5BLxjHNSsCCPnCl5RNuitFUmYutq1+0h1BDAVlzEPtd0apsloo4M5IptZERq0CbOZjdTuGb8KmZVvoh35ycEVQeRmEAwZOLz2fC3RWlqNWhuNQhFDOqbDNymn/RAFbZAI7Y9m5C3fYr66SriO8sxKnahTz2B2vw5aIoLOR6i6ZONGJpB9vLfU/rEC1Za5dGI3Y4pyQj1VegN9RjxOIrbQeb4XERZItIcxF/VRrQlhhoa2oxgw40oDvxff3j44YdZsGABXq+X3NxcLrnkEsrLO79Pn3/+ec4991yys7MRBIENGzYM3YUOgmG1OPz9739n3bp1rFmz5rDPamsTGRXy8vI6bc/Ly2Pfvn3dtvnwww9z//33d/t5fya6umqgRbU+DcinbkwIkw9mzQMOTphedU4B4Jy6Law6cQE2tw27T0N22lGcLmSnHUEUKP7lswBEG5rx3XEzaW8m8k+35qZhT/firNvF/DQ/ytbNtKxeT93mamL+g5llbOk6kk1Ej3eY/MtCyhJiqma3BdcOtUBIzoQvbrIAXldYK73HB8m/c38F4nDfH5a7nMXRZrAW1kjVwIqzJcfrWJ2aShLQl5g9xSfhKk6ku3SkOZEdNrInZuMtysY0DfILc6n9ZBvh8l2MKb+HSUX5NI79EuFpp6A9+QuU0xcxr+GvmLJCa9l8PvbP5NH7Pka224gGw6nz1OzJoGh8ATNnZzO5REUTbdgD9Qg1+9HbWgnuPoAei5O57BzwNyO21ZMLKFW7iO7cScP2Gqtw4ygnuGET3nkiZmYeYk4hUs1+4q1+JIcNQzMQRA1Xlgstpo064XCkXJXef/99brnlFhYsWICmadxzzz2cc845bN26FbfbDUAoFGLRokVcccUV3Hjjjf3v1DAxbMLhwIEDfOMb3+DNN9/E4eg+d++huW9N0+wxH+7dd9/NnXcezN/s9/spKUkUREtONrpys+mKeCBOtKV/g3ukLoahmqlzdYx38OZ7cGV5EEQBNRQhHgijxzXU8EGzdO5DT3Hglstx5qQjCAK+qRMQZJnop5/QUr6flr1NhBoiRBvjqeBsAEMzkZxialsy7SsRAyJ0isVIioPkcR2FkaGaCIqJERj5voYWw0t3z8dQVBC3sDje0cMGzmIbkXDX75jush/ZsuROWZz0iJEazzsiuUQcuQqRqjiSU8RT6qRgTiF2nwtRlnAVZNNSvh/vpDJEt5vq1z8k/8SpROqaiLYEiNQ3kzNuHWuyL2FeaSHIMoYnne9tvoApsovaBh1N1dDUzhO/8TNLufRsG9PkdUi6yurW+XiymvDu3Y40YSrC3kr8lU1kigLhqYnEHK7tHxPZvYfGTXuItnbvpmXRmfcmzGLpro1HuxtdolZXo8gKseLJGOmFeD0+tKr9VK9YR+uBVmL+OLqqd5qbjAZEYYBZlfp5zOuvv97p9yeffJLc3FzWrl3LaaedBsDVV18NQEVFRf87NIwMm3BYu3Yt9fX1zJ9/sFCTruusXLmSxx57LGWSqa2tpaCgILVPfX39YVaIjtjtdux2e4/n7utKZaQ+hh4x+rWy2VNavhkvvcf+my7DNEziwShqOIYaUYkH47zmm5qqIVG9bj82Tx2GqjPuXAXJYadpSwUV7+4j3qx1MmUnHzizPZd90h3J0EzQTPT2zzo+mJJTxFlgR3ZImIZJ2/bOheZGS75xi+Ghr4KhJ4baInDoJMqyNlgcC2gdqkx3dE/qKeNS8h0jOUVsmXLK4nDoM6KHE8k7Ck/LRXEqiWNsMoaWOKd/bzWKyw6iiFlYRubUA9gmTsY2Xsf44COka7/Bu9G57NwjMe2MyzGjbSjl6zj/VBFVj1PbIHXqlycjjaknjCcr28lJ/pfA0BGjIc6sewcjHscEhOZ6fEtOR4u8SXTtp7jK6hHcXlo+Xkvb/gbqtzZy2pb1Q/LdHg8cKhpe800FEt4Gfc2sOBzYMtMI7q1E2F9D+iKD0Lh5aJn5iE31tB5oxb83mIrPSS5+jhYGa3FIus8n6cucFaCtrQ2AzMzM/p+8Cy688EJuvfVWzj333CFpryPDJhzOPPNMNm3a1Gnbddddx5QpU/if//kfxo0bR35+Pm+99RZz584FIB6P8/777/OjH/1oQOfs72SjY22GruhppbWrc+294WIMTUeLqsQCUWLBOGpIJdYW7/SSaC0PIighTNXElbUDm8dBy77mlGhIFp4zNPOwtHtdudElP5NciReNI8OGMzNh5YkF4gmxMUSK3wqQHv10Nenv7tnp6W89WPGweuGJRFpjxHpwmbOwOJr0Nt71liFJ7SAcOq26djMedywkd6iV4dBx3JGnkDkljawJufjGF1P9782YhonidmKaBp6SPGLNbfi37SLd5ab18ttxrPsngt2Bd2wxYUCWTM6Y2kjM9LBTnM4f95/A7AwHza06q97pXDclpziH9Ss2Mv2U6YhmOWRmY1TtJ7CjAkd2OrYTF0I0ghCPEmkOEqpvw1XdgCCKNGyvoam8xXrWB0nynjinbstR7Yd/dyX+qhb0uIYWieIbt4doW4CWnVW07gykBHPSjfp4IukBk+S+++5j+fLlPR5jmiZ33nknixcvZsaMGUPSj23btnH++eczfvx4brnlFq677jp8Pt+QtD1swsHr9R72BbjdbrKyslLbb7/9dh566CEmTpzIxIkTeeihh3C5XFx11VXD0qeOL4CefLt7mgz19NnY/3uxy3N1PLajG9XL8mT2vlqJ7Eus7CRiDw4ODkZAT7kdJavqAp0qPouKkDJZ50zLQlIktJhG1B8j1BAmUhUfkIWhr+5eFqOTvorijj8PhWAM/eE+jGAIeco0Cp96kox3/sKmJ9+mad3BVRrrnrMYSfT0rghVxIChc71J1mnQw0YqBk1yiYkCc80Hrd2SK1EvQg2r1HxWyY5XytH8OvY8hYnnTEGLxmnYUokW07B7HShuJ461y9m1rYr8eeOo+PJPGaPv4kRW8b1/zWH9e0384ieF3H5FjNuXryfUdnh2qOKxmWiazk+nPwtKIQD+8j3YfB70SBT1049BFJG9HhSXjer1ldRtqU9kA9QNNL/eybXXov8cbcGQZOvftiIoiRjL+s+a0CNbDnOLBg4TyOe1rIO0tCPY0/4zWIvDgQMHOk3Q+2JtuPXWW9m4cSMffvhh/0/cDbt27eLVV1/lscce48477+Tee+/ly1/+MrfccgszZ84cVNtHtXL0XXfdRSQS4eabb04VgHvzzTf7XcMhSX8mNn3Zd6CBo30558GiVybxJq2TGTtp4oOEYrdlysguGUlJCAdRiXWqqCu2H2NoiePUiIoaUok39y3wu699tjh+Gar7QLTZaNyyEeOzndg8b7BnZy3+XQdXay3RYHG8o3ilVApLub02RNvOUOJd4JNwFyasyYZuIioSakjF5lNwZNgQRAHZaad1XyPBuhBZE7JIH5uHEVdp3llLpDWK7HSgCBpKPEyrt4hp03ycNP80QloYRVQZN7OMUCDKns92pvokCAJXLfGTdVorfNoIiow6dgay0068NYAeV1H319NS0YgginjzfYSqIugRg6CWKAR3vK08H0m2XHIm0//5zhE7X1duUu9NmIUeMbpNunKBVn6YG89IZLAxDj6fr18r+7fddhsvvfQSK1eupLi4uP8n7oHzzz+f888/n927d/OrX/2KP/7xj/zud7/j1FNP5dZbb+Xzn/88kiT13tAhCKZpjuqn2e/3k5aWxjPieFxC/7+AQxnKiUtXFo7u9jnUJJ7c/43MaSnhIEqJO3PR+rWHTeSShX46Bk73Jhy6C86zOP7o7b7vr9vem3nTu1wdC/zim+x4/iOatrWh+fXD7j9LOFiMZI7EQkqyAjWAp9iJFtUJ7ongnejClenA7rMTqA0i2SS0iIZkS+wr22VERcJXmEbF+/vQ/Do5czMoWjAeNRQh6/SFmOEQ1Yv+g5DhZmN1DlcEnsB0uqkfs4A2Mvjm/VVdWhsAFi47Aadb4fMLA0ypeQt17ce0lu8j98xTUKuqKX/hY0IN4dTCV7zdQtLxHWQ938cuO750HuHmMHPeWNntPsn5Wltb25C5zQwVyb498WobTnf/+xYJ+fna+X2/NtM0ue2223jhhRdYsWIFEydO7HbfiooKxo4dy/r165kzZ06/+5akpaWFyy+/nPfeew9BECgsLOSuu+7i1ltv7TEp0aEcVYvDSKQrv+2Buu0c6ubRW1BqV58fquzfKevaxGSoZqrA26GB1V1xMPPS6Mp4YDH0DMfL3JmXMM9+NP8EBEnAV+ij9JwTqPrgM1orAl2KBguL44WexmhTNcGZCIAN10ZJG+8luCdC3K9i99loqWhDUkQUp4Iki4iKRLAuRMyvooY0aj5sSLWlOBW0SAx3YQ7hbeXsX7mVrIWX89RHRZw+N4a2dR9S2Tgigpuf/MnoVjQArHrtU2644zTyzCqE+iqMWJxoa5j6uReivfJN/PsTAbGp4O72QnaKT0rFelhplo9dJv3tdfw//+9uP39ZnkzYtLI5Jrnlllt4+umnefHFF/F6vakSBWlpaTidTgCam5vZv38/1dXVAKmkQvn5+eTn5/f5XJWVlfzmN7/h97//PQ0NDSxbtowrr7ySF198kdtvv53y8nIee+yxPrdnCYc+MFQD3aGrVRdo5X1e6T20YJDiSxR865jlyTgkkLonkmlZLY5vBntvd3X8iqmzsbkU3i6agaAIaH6dwL4wwbr3aC0PdgoYHcq+WFgMN0OVHEJyip1cUhWfRPpkD00b/Mg+idw5WQRqgpQuGkv2iTNZ2/oSkiIiySJaWCMWMdCiido+hm4Sa4qjBvSEtbk9wYanzInd66Blbz2e0gLsRVnkTGmmQi3mykVNTNj2AhQWgmnwq3+lsXt9z9mOSqaO5arQ4zT/ZiXh62/D5U0nMxLF/+A3UxYOPWKkLNmmamLPUzBVM5WS03rGj11aH7kNUZH5ZPHJNK5tHbULQ4JgIgj973t/j3n88ccBWLJkSaftTz75JNdeey0AL730Etddd13qsy9+8YtA3wKuAd59910ee+wxXn75ZRwOB9dccw1f//rXU9aNr3zlK/z85z9n+fLllnAYifSnvkR3dHwQhXaLwWDcjay0rBZDzcvyZCSXSExWDxMIDU1t3R5nTSgsjie6Es/xkHZQaNcE0cIaDdtqUMMxvAUeAjVBdM0gY3w6akTFNEyc6Q4qV9bhKXNSfEoWGeMLWPvzTwCw+2w07W4if2Yhtmkz2T/hbLZNLeSfzzTyq7P/jVZ5gPcWPMAjD36MofcsGm761mkse/+/2PlEOROuuRAt3EJs4wacRfl89n+fpGpNqP5EQo/M2V4km4jNY6dpa4slGo4DKt75DNkuEajsOsPYaEEYYIxDfwOq+xIlcO2116ZERH+ZOnUqO3bsYOzYsTzyyCNcf/31XbpQnXTSSalUsH3FEg5HkIEMnF0dYwUsWwwVfRWzSeHbl+JwetigO4O0NXmwGO10tQg00DFZVATSprjJHJfB/veq0cMGWfN8zPiP01FKxvDhrb8lFojjzHQS96u4c5zYPTZi/ig2jx0tpnPC7QvZ+Kc17HunivqtjdgyZWzpCrlT81Fcdvy3/YxthoMXP/Jyx4wVCBcu4Zz7c4Dz4NWuKzhnFubywH9nE1Cd5Dma2BNQ2b9yK2VnzMS/9jPseytY9eDbnYuLaibOYlsiILoygi1T5qRVnwzoe7EYHXS870VF6LE+yWjhSFWOHm6Kiop45JFHuOCCC3qMX5g3bx579+7tV9uWcOgCyw/TYrB058Pc0eVsNJlyByNWhzo7mYXF0Wao0hQbaqJAZ3BfJGWFiDbH2P/uetTIJ0TrEtnxwpmJFNzB2jC6auDOcRMPxQk1RKhdt4d4s4YjVyFzfDqhhhCt5UHqNlcz++5rSF/5W8TSCdz27BjeflbB5vi01379v89/hN6UTXXuHP6xtpjbGr/DXrtExbubCFQHidTEDtabaI9lEOWDOftHStpQi+Ghq3veUM0hqxd1NDlWhMPbb7/dp/1sNhulpaX9atsSDt3QVTzCQI7r7/EWo59k4LmhJVLldgxYT1b+7qoS7NHoZ7JPr/mmssy/rdt9+2v56mp/6xmwOFYZTOyDoZoY6kEbXaQqzr6qKgRFwFlsw5XrwJPrpnJlXSKurTWAOFFAcSlE6mIEKxKuSjmTs6jdXI/m13EW2DF0EzV3DIqm8mnBJcA6AOLRnutOPP6zKbRpXgxRomT9P/jqtFMIPFXJ2HvuYNM3HsST70KQhFTRu4MrzIn/j2ZFY4v+YdVrshgIlnDoI315wHqrstvb8Rajn6S5VlAEJEVAx0Bqn6CLcrsVQjvyYuFQS0dS3EhOMWFejvTfvNydJcG6xy2OJ4b6fk8uJjjzFCacOwHvmDz2r9yKqZqpysv161rInO5l9nXz2fTndcSa4tSsryOt1It3ng9DM8iaWsIbnM//PvkhC86GcbMndqrN0BWvfF/DXvEaFWPPJvdv3ycQieJubeGTFzYxvzCXUFUEfyTUaQzraF09P2KJhtGENVYfjiiYiAMIjh7IMcPNX/7yFx599FG2bdtGNBo97HNdH1iWK0s49JPBujH1pbZDx/364lNuMXJIFeTDSAkFURZSVTb1iJEy5x8Ja0NSyHSi/bySU8SeZUNSRLTowNPkpU1zE66Movp160VkcdwyVBmXkpiqSfrEEmwzZpNd20T1yvrUmCGSKAAXqGpCjxjoEYOsOT7Gnj0HQRTRwhHcpy1lbEYi6DEr20nN/uZuzzX1pGncdIXEbqA26zSmCvswYnG2v7iReOtaAFY98EaXQd32PAXJKbJk22dDdu0WI5djfQ5yrLgqJTMyXXvttaxbt47rr7+eaDTKSy+9RGFhIV/60pcG3LYlHAbAUFkPulqpPXTbsf6QHoskfT3N5Eoc7S96EtaGwQqGji5GAwlES6bytWfZcOc4sbltxEPxAfdnzMJSqj49QNvO0Z1Nw8JiqBmUC5NmcmDlJmxrdxALRMk/JQstpuPKdFLxajVN6/w0rfMjuURsmTJpxWmEqurJOnkeclsrDSXzePjXrQC8/reug6B/8shc4rrMifUvoLVlcMEP09BUjf/733GEG1pRQxrROhVHnnKYaBAVgUmXj6fy00pLNFgcMxwrwuGHP/whd955Jw899BD/93//x80338y8efOora3l1FNPpaSkZMBtW8JhEAz1pN4SCccWKYHQLiIMf9eCIWkVSFooOsZBdOdClNrfJXbabnYhSsyOFoY8BbvXhigJ2Dx2vPk+MiYUoqT7qLztCop/+Wy/r7NpVz2RpliPMRIWFscDXQmFgSYHiDdpVLxanfo9OU40qq2d9lO8EhkTfWSML6Dq+v+l2hAZH9/CR/WTKZsYoWbXgdS+MxfPZP+Oap6/6D0Ca9cTeOQnyA4b4ZvuIG7z8L3lkzlp1QPIW4u4d/ZfyDrTwVc3fpVPf/ExoiJgy5SJtrtLAez7YD+RyoEvOlhYjDREBpaOVex9lyNKeXk5999/fyqjkqYlan7l5+dz77338uMf/5jrr79+QG1bwsGiS4ba7H6805uVIenOlIw7EEURPaYTb0487IJyMGOJoSUymEhOEan999RnHC4eOgZnA4iSgN3nwJ3txpXtRbQpCIKAZFMGdG3z3ul6NdPC4nik49g5lGNod1lrJl00Gf2/f4gSqiFTbGJN0wQ2hRcxNjdKc1OY7JJ8Gg/UcsblC8nOVHjwc+WsuuR3qTiF4pMKkew+tscmcuYsJ8x6CICfJE/whSdZ9mDiWjqKBkM1LdFwnGHNCUYPuq5js9kQRRG3252qTA0wZswY9uzZM+C2LeFgcRjJFTJLPBw5DM1EUgRsPgWbW0aQRPS4nhIMyQBmPZIItla8ErIr8fjqakJgJAVDR4tFV4LF0E3sHhue/Axkp51oYytmfTOF//v3I3fBFhbHMN1ZHgY7nh6a5llyiThz0vCs+QfxSfNIC1ZxanoAt1CN/tqbNJ31c2bkxJGEMiaNt7W3spCluzYC8JpvKgc+rGL8I99l4Ve+BHyxx2tK0pVLrRXfdOxwPCdzETARGEDl6AEcM5yMHTuW6uqExXL27Nn87W9/46KLLgLgueeeo6CgYMBtW8LBwuIo0ymgWhIQFQnFqWA6TURJQI8bmIaJKBqIso5kl1DcMs4MJwCRlgiaX0fvxqqRdDGwZ9mQHRKSTUKyyUh2BdnjItoSwJHhPYJXbGFx7HOoUBjKRRhREZB9EopXQg2EqXnz36Tt2os9Kx3bzBMwFAfS6edywYFHCb62mZzv/6HLdgbqXnjotdmyrKnEaKM7sdeVaDieFhCPlRiHM888k7fffpsvfelLfOMb3+DKK69kzZo12Gw2ysvL+eEPfzjgtq2n3eIwOg4oltXhyJAUD2pUQ1QOeksauolpmMgOCcWtoDgVZLuEKEu4sjxAwvXIUA0i9TGIGIelSpScIrZ0BU+eG3e2m3BzGD2u0VRehc3jwJWbhnfBvAH1e/3ZpzL3rQ8Gde0WFsciXY2bgx1PO1oQNb+OHjGoWruPaGuMmg3VlJ02AamiGveYAlrOvY4xJ12A8/IBn65PiIqAt9Q1vCexGBZ6S6V9PL77RWGAMQ4jTDj84Ac/IBZL1Gy54oorkCSJv/71rwiCwF133cW111474LYt4WBhMUIwVJN4s5ZwR3J2DrVS3ArOdAfuHC/ekhzsWRkAROsa0aJxov4YUSWOETA7pXsVFQFDM9FjiYwoNo+DcHMYLaYRD8YJN4WxeRw4Lr6t3/39YNY8Tt24bpBXbWFx/JBclBmKCVlysaF5cxuyT0JyitRvrUZxyjiy08muWg8Tpw6+093QsYClFtWpuPESyn73z2E7n8XQcahVoas08cejaDiWsNvt2O321O+XXnopl1566ZC0bQmHUciRsAJ0HFiOV5Pl0UDz66lsSpJTTAVNx/xxFKeCI92NMz8HuaAI05eBIG1CDUWJtkWItsRSLkuHxjbEmzWaIi0EqoO4c5yAjGGYRJqilPzquX718c286ZiqaVWItbDoge4mYB0tuoMdTw3VRFDMVEa25p2tANRtXMGZd/1yUG33xvmR7bwsT04ESdfFqNtcTVn7Z2/mTSfelEjscDz6yY90Dv2bWJaGgwiCiTCAYm4DOWa0YgmHUcqRciE6dGVioJWzLfpGx8xKyVgG2SGjhlQUZ3swdDSGFA4hmAZaMISh6ZiGiSB1bSs1VRMDkAA9phNqiCDZRAzd5LQt6/vdR0s0WFj0na5EQlI8DMU4rocNovUqklPEkZ2IY7J7bb0fOAQk+69HDNr2HKzjck7dFsB6J4xGjve/2WiOcTjjjDP6vK8gCLzzzjsDOs9ISz1r0Q+O5EpOT4PJ8T7QDCWpNKt2Cckm4s33kD0xF7vXhuK0YRom8VY/sapqYhUVBPbVEqxtJeqPoYW1w+IbhA6Vo9VAIvtSpCZGcF+EcOXhJej7giUaLCz6T3fjtagISC4Rd5mdsvML8U12dUqf3BPJY5NWymhjnEhTjFjgyKZJ1cNGysLQEcUnWe+HUYT1twIRc8D/jjaGYWCaZurf9u3bWbFiBXv37iUSibB3715WrFhBeXk5pjnw/loWh1HO0Q5e7so38tDtFj2T9BVOBjLLLhlJEZFsInavA8Vlw+axIYgCelwj1hIg2uRHj2v4q1qItESItMZQA3qnFKySU0wVikt+pnaoNN1xcvLJ4pM58cOPj/i1W1hYQNpEN2WnTSDjhNn4f/aPPh8nKALuEgfxVpV4s0Y8rCG2p24+2rxTNhPZJ2FoppWu1WLUMJotDitWrEj9/Prrr3PjjTfy73//m4ULF6a2f/TRR1x55ZV885vfHPB5LOEwCunvICy5RPTw0L9IujK9JxnoS+J4EhySS0zFMSQtBYIiICkidq8Nu8+O4rKjxzUcaU5EWSLaGkKNqBiajhbTCdaFiPvVVI2HjiRrQyTb7hj30PHv807ZTDwFzsP6d+CWy/sd/2BhYdE3kmPm+ZHtADTcex2tGzYTrIz0uQ1TNYnUxNAjRur5NlQz5Sp0JOhurNcjRieXJUs8jGyOp3fv8cC9997L8uXLO4kGgFNOOYX77ruPe+65h/PPP39AbVvCYZTS2yCs+CRkn4QoC7jzXaghlbbtoV4rGPd2zsH0qS8cbQvKkUJyiThyFRyZ9k61GvS4gWQTsXlsePLScOdltOd5ayEeTARBhxrDaNFElqRIXSLdmuKVANBUPXUOUzU7/Z7kUMtQVyuUnyw+mfSS9CG+aguL45uuajskn8ecB5/k33Pnd+ny0x2GamJ08YyPBDpeR/K6j+fCYiOZ4+Gd22cGGBzNCAuO3rJlCyUlJV1+NmbMGLZv3z7gti3hcAxwaPCdLUvGU+wkb0Y+noJMbGkeREVm/4qNVK6sGxbrQ5LuXJcsDpIsyObOd5FWlIYoi8RDcdSISqg+hKhIONKcuPMysGWmYcTimIaJFlWJBeOoIQ01pKX8mhWvlIpj6EhfRaKhmodNViy3JQuL4eHQ8bqjeFi0fu0xP4mz3gsWI5ljpY5DXl4e//jHPzjnnHMO++zZZ58lLy9vwG1bwmEUc+gKvyNPwZauMO6MCWSfvYTwmBlEnBn4qjZBUy2lZ0pE/R9T91HzUelfXzlW80hLroRbkm+CG5tLQbLL+IqzkJ12tEiMSHOAeCiObJcRZQktFkc9kAh+DtT4ibYlrAuCJCTiFQKJlUZDM4lUxXsUhL39HRSfNHQXamFh0SvJVfiuUmMOdOxLxkkNF931K3leQzNT41B3KT8tq4PFSEbARBhAoPNAjhlObr75Zr797W/T3NzMVVddRX5+PrW1tfz1r3/lhRde4OGHHx5w28OaVenhhx9mwYIFeL1ecnNzueSSSygv7zxYmKbJ8uXLKSwsxOl0smTJErZsOXL+maOdjgP5WVWbUdwy9gwvav5YKt1TqKUYw+4E00CPxbF7bEguK5nWkUZyiSheCU+pk7JTJzL5C6dSsngq9kwfoiIjKjKCKCK0L1vEg1HaKuqp21xF3ZZ64mEVR5odX5EXT54buX2in7Q6dCUakukee3tBi4pgZUqy6JEn3jQp37X/aHfjmKO7Z7O/k2rFJ5E2zU3puUVMuWJ4Flx6qjJsqCaqX0+NQ6IisHbJKb22d6wtDo1GrL/Bscldd93F9773PV555RUuv/xyFi9ezGWXXcarr77KPffcw1133TXgtofV4vD+++9zyy23sGDBAjRN45577uGcc85h69atuN1uAB555BF+9rOf8cc//pFJkybx4IMPcvbZZ1NeXo7X6x3O7h2TRJtj6FGVmCuDxqgPh6QhRkNotXW0lO8n0tL3wLujzUiNdxiIRUSUBexZNty5bryTypBKx+PKbkZvakYLBDFUDckmI9tlDFUn0hpBVw2irTFiTXFcE324c9y4sn3ocQ0tpqH5daJ1KnQT9NzXa3nNN3zVZS1GP5G//ZDLZp6Oe882mHA9702YxdJdG492t45Z+muptWXJTLpoItnXXYsp25B3rKdx+VfJXv77fp+7cflXqV23m9q1DYmxha4tB10FO3ccD2WfROH8si7vlUPbeyNzGoWn5DLz5RX97q+FxVAzmrMqHcry5cu54447WLVqFU1NTWRlZXHyySeTnp4+qHaHVTi8/vrrnX5/8sknyc3NZe3atZx22mmYpsmjjz7KPffckyqF/dRTT5GXl8fTTz/N1772teHs3jFDxwHcU+jGluZG0KJkuEK4pRDGvl00rC+ncWcDwZoI5iACpI80R1s8DJU5PZktSVJEjHAEqbE2sV2WElYGUUCyJR7HWCCOZBPR4wa6qiM5E8HSU559C4Dd11wAkMqWNNg+LvNvG9TxFsc2zi99GyfAjER2jkhV3HI3GUY6ujD1ZeyTnCJ2n4vavNlk+/egVVb3+5yfLD4ZQRTQohqBfeEuA7R7+1t3/HzDuafhyE4nY3w6b2ROS7kxJbMsrV54IgAnrfrEsnYeRUbiwtzR5khVjl65ciU//vGPWbt2LTU1Nbzwwgtccsklqc+DwSDf/va3+ec//0lTUxNlZWV8/etf56abbuq2zTvuuIPLL7+cRYsWpbalpaVx3nnn9ft6euKI+qy0tbUBkJmZCcDevXupra3tFLxht9s5/fTT+eijj7psIxaL4ff7O/2zOEh6STqK14Mt0EiBvo+Cpi00r91C7cYaWncGiNWpg8qs1B+GalLRna/scNOfF2VvmKqJFtWJB+MEKqoJ791PvL4BPRhCj8XBMDGNhJlfi+qpLEuSIiG75E6rceOfehk1pGKqpjVxszjiJNOHgjXxGC7681zHmzV2vbUd5y++Teuvf8me19ejhWP9Ol/LVj+NG1pp3R7sU1an3lwg57yxEj0Wx5XpYszSQhb891mc9vtbiL76RGofQx89C1gWxw9HqgBcKBRi9uzZPPbYY11+fscdd/D666/zl7/8hW3btnHHHXdw22238eKLL3bb5vvvv8+pp55KQUEBN998M++++y6GMfTJcI5YcLRpmtx5550sXryYGTNmAFBbm1h1PTS6Oy8vj3379nXZzsMPP8z9998/vJ0dxUz862v4f/7fiMFWvOxBrNpL9br9tO0MDWs2peFmpE6Q+7oqqPp1BCVRzbVpZy2u5iA2jwPJJrev9KlEmoMYqp4IfjYSg5AoCam4h47YvTbCzoFVfrawGCxduaiM1Gd0tNJXUaaHDQI7w+zWd1B8YjFT/uNMmDKbrbuqmTahsE9tGJrZqXjkUNCys4qm3U3kTM5FXHwOrwvn0BaSWHrTZZy06hMAdl39OSb8+ZUhO6dF/zhWE5EMhiPlqrRs2TKWLVvW7eerVq3immuuYcmSJQD853/+J0888QSffvopF198cZfHrFu3joqKCp599lmef/55nnjiCTIyMrj44ou5/PLLOeuss1AUpX8d7YIjJhxuvfVWNm7cyIcffnjYZ8Ih37hpmodtS3L33Xdz5513pn73+/3d5qo9XvF946cAVN52BQdWV9C07shaZUbzBGKgWaD6MvDGmxJxCZGaGLKvOVH8TRQxDIN4c2KVz5Ftw+5TUFwKgigy960POrWx8fzTGXveAib+5D7ENSv63dfusPzWLSxGFv1x0zRUE395mO17drLvg31kjH+fSMuP4JM1PR7XW/t9GQ/DTy7Hdd3yw7ZP/OtrTOzw+yXJH5YcrIwdaQnR9MDXcJ62lLa8KXwWnUa+q41xbZ9iO1CO49Lbez2/hcVI4lAvGLvdjt1u73c7ixcv5qWXXuL666+nsLCQFStWsGPHDn7+85/3eFxZWRnf+ta3+Na3vkVVVRXPPfcczz//PBdeeCEej4cLLriAyy+/nPPOOw+Hw9HvfsEREg633XYbL730EitXrqS4uDi1PT8/H0hYHgoKClLb6+vru80xO9A/wrFOVwF1xb98lk1HKPD1aMcijBaSBZv0iNGp9kIqG4ksINlEZLuMzX3446mrBtH6Jjx7NhJpbhmSPr0sT8ZdZj1TFgNnNC8WjGT6uyJsqInUzJGqegzV5FXnlNRnHV3MVi88kdbyYJ/O3RtdiYaeCH70T9SVb1HxzkYizRHK/7kW35odePLSOG3xPDAMTE1DMwyCj9+N56aBp420sOgvg41xOHQh+7777mP58uX9bu8Xv/gFN954I8XFxciyjCiK/P73v2fx4sV9bqOoqIhvfOMbfOMb36Curo7nn3+e559/ni984QvY7XaWLVvG//t//6/ffRtW4WCaJrfddhsvvPACK1asYOzYsZ0+Hzt2LPn5+bz11lvMnTsXgHg8zvvvv8+PfvSj4ezaMUlX4uFIuieN9snDYPrfX+FkqGanbEhJErUZDtZr2HzRUma89F7q83gwxv4Py+HDRF8z7xlwl4GDlaNtXoXau64m/5E/D65Bi+OO0f7cjwb6a32ARIpWe55CuCKGoZqpZ33M2QVkjssiWBNBjxjDFvP2Zt50smekU3zSBLynnYbzvBsS/VPsiLJEPBijbWcIUzVp2xlCctZjGibuvHRktxPZ5QQxEYa588vLEEQRm8eB4rJjGgbR1hB6XGPiX18blv5bHJ8Mto7DgQMH8Pl8qe0DXej+xS9+wccff8xLL71EaWkpK1eu5Oabb6agoICzzjqr3+3l5eVx0003cdNNN9Hc3MwLL7zA888/P6C+DatwuOWWW3j66ad58cUX8Xq9qZiGtLQ0nE4ngiBw++2389BDDzFx4kQmTpzIQw89hMvl4qqrrhrOrh03HKuWgKG+rpEy+dHDRsLXWDMxdBNTN9lw7mnMeWMlQMo3eCiRnCKKW8GRnT7kbVtYWAwN/bE+iIqAPU/BleVE8+sYmonilZh38xl8ZddN/Nb3A6ByWBNl2DJlbG5boj6NejBY27dgGSxYxknfPLjvy/Jk9LDB2P/rOvBTsiWKYoqySMFPn6bqG1cy7sl/ddqn5Ye3kPHtXw3LtVgcPwy2crTP5+skHAZCJBLhO9/5Di+88AKf+9znAJg1axYbNmzgJz/5yYCEQ0cyMzO54YYbuOGGGwZ0/LAKh8cffxwgFdyR5Mknn+Taa68FEkUqIpEIN998My0tLZx00km8+eabVg2HATLQas2DYaRMugfCSOy7oZqJWIh2y4PsGN6qzrJPIq0oDWXR0mE9j4WFxeDpi4AwVJN4s4YrKxH4rEcMplw6BVtBPv+1dCzVd+1NxVUNF0u2fdbnfXsbhw8VCUU/fyb1c/ip7+O65nsI4vFb2PRovPePVUZC5WhVVVFVFfGQe1qSpH5lSVq/fj1PP/00+/btIxrtnExFEIQeMzT1xLC7KvWGIAgsX758QD5gFkePjrnGRysjue8dxYMtU2b92aceFig9VIiygLcwg19WX8y3h+UMFhYWQ01vAkLz60RbYoiygA7sfG0HdVuqGZP5Fvs+bOjR2jCSx8ZDcV3zPaLPP0r6Xb882l05qnTMbjba383HA8FgkF27dqV+37t3Lxs2bCAzM5MxY8Zw+umn861vfQun00lpaSnvv/8+f/rTn/jZz37Wp/b/9Kc/cd111yGKIrm5udhstk6fd5eAqC8IZl9m9yMYv99PWloaz4jjcQnDuzI72uiuqudQtTkSGOh1Dcd1HNqXoUp1JyoCZ/y/r9My8RTqxCLmTMoZVHtJkv1SfBJz/vME8n74pyFp18LC4uiRfK5FRSB9mgeAU9Z+2umzwTLS3gMAB265nIbtNcx7599HuyujiiPpyhw2da40dtPW1jZod56hJjmXfPOTStye/vctFPRzzonFfb62FStWsHTp4Vb+a665hj/+8Y/U1tZy99138+abb9Lc3ExpaSn/+Z//yR133NGnSf/kyZOZPHkyTz31FBkZGf2+np44YulYLUY/I/Fl0V+G8xqGq23POCeRkqnsNsZTXuVhzqShbV9yirjHFPDFu/bz90fGDG3jQ4y1kmZh0TM9PR9DFRs2Ep/Dkl89x2fyZOYd7Y4cRfpbU+VYjH8cLEfKVWnJkiU9euXk5+fz5JNP9rsfSaqqqvjVr3415KIBjnDlaIsjy8vy5EEPDMkKoSPtJZFkpPZrKJFsIlFHBi1hJ9EY3P37oSn81vG7kzIyCLWFhqRdCwuLkcuxPGZKLrFTCloLi/6STMc6kH8jiblz51JVVTUsbVvCwaJLRrJYOJ6QXCLOTAfe5gqmZhxg2pgIk8cPbc0FNaDT8skGTloykUf+oXPuVzYAsOjC94f0PEOBdU9aWFh0hx4evvSyowHrvW2R5Mc//jE//OEP2bhx6Au7Wq5KxwH9sTqMxkHnaKec7c1sP5j+KV4JV6YLubaCAtPAlT0eX2EJkDnA3h6OKAsEa1tZNs/PZ1UZBFvaRpxoeCNzGuc2bz3a3bCwOCYYqvgri9HN0X53jkQEBraiPvBQ4+Hh5JNP5tJLL2Xu3LkUFBSQmdl5ziAIAp991vfMZx2xhIMFMDoFw/GCFtNQq6uR43EyAi340iqAi4esfUERCNYHmLbnH0jjL+H/hqzloaNjlW0LC4uh4dBxv6+TyJH8vug4GR7J/bQYmQy2cvRI4Uc/+hEPP/wwOTk5lJaWHpZVaTBYwuE4YzADaXdZg453evseevveenpZR+tUqj6sI1D7HpJNwtQNtKjOovWDFw7vlM0ka54P2SHjynRheDMoC23kNz+bzsbaPP7w609ZdOH7/Ptfpw/6XIPlnLotR7sLFhbHPH3JxCcOsYjvTaz0J9A3ua/1brIYKCOhjsNQ8POf/5zrr7+eJ554Akka2oyjlnCw6JaOA/qx4Dt5tPo/WHOw6tcJ7AsjygKGNnSDU9bkDOweG1P/8TYAzRvex1W9nXG+Foq8OZz8YAkGQ5P61cLCYnTR3bgl+4ZuEtLTuNjf8Xq0v5+OFpa7UmeOFYuD3+/nqquuGnLRAJZwOO7ozh9/tA8co3nw64u/cbxJS630nR/ZPuhzrjltIWlFaUz62+upbbWeiWSXOnH5a3Du+ASn+lFi+xNbyX/kz4M+p4WFxeji0HFVVAQk5+ByqvR1nO7N3ai7uKeRmCrWwuJIs3jxYrZu3coZZ5wx5G1bwuE4JDmwjtaJ9kiivy+pwZj5DdUcsheiN8+DIHbui26KNNqLKXCG0PcfIFRVjyM7HUNVh+ScFhYWo4+hfFcMpJ3kMRkzPSxav5ZdV3+OCX9+BdWvW++wIcKaDxxEYGBuRyMtCu/nP/85l112GSUlJSxbtmxIYxysdKzHKcfiIHE0Vpn6ek5RERAVAXueMqC2htJVbMslZ2Iahw+MGWYj6XoDjoZ9hGsaCda2IkgS3i99hchrvxuSc1tYWIx+Vi88sd/HDPadE22Js+WSM2nZ18xrvqnd7mdZGwaG9b0lOFbqOJxwwgns2rWLSy+9FJfLhc/n6/QvLS1twG1bFgeLXjlWBpSjacI2VBNnsY2syRmsOW0hC1au6nK/I7HyU7Wqtstg47DkpWTfhwTff59gbQuCKKCFI1Skn0huWjVFw9orCwuL0YKhm12OY8OZzSjerFG7oZ54s4YeNrrcR1QEXnVOGRJ3zuMRK03vsRMcfdlllyEIw2MHsYSDRY+MNtFw6MS740AouURe803FVM0j/mJRfBK+MR5ypxUiO/tWwG2ov/vXfFNRvFK3GYomjS+F8aWsue0nGIaBHjHY/+9K5jm/h2NsGUyeNaT9sbCwGB10HIveKZuJoRpoaKw6cQGt24OHTeSHY+Kphw0i4XinbaIiIPskTNXE0MxUP6w4h8FhuS6Nfv74xz8OW9uWcLA4bnCXOBhzSimODO+QttuXVTY9YhCsDtHoqSFnas9r98Pxwltz2kJy52Uwf8VH3e6z6sQFqCENPaZjaCaaP/F/3bqd5AHOIe+VhYXFaMNUTQzdRBBNTMM8TDQkJ522LBnFKyEoAppfR48kFiOGqrKzqAi4yuzoEYOYXz2s3XfKZnJmxaYhOZfF8YOIiTgA68FAjhmtWMLBoltG64pNV/22ZcmULi5DvvN+Pg1O5YIjcM6OGKpJvFmjdZ+ftJKhq/rcV3Kn5ve6T8umAACSU8RZYMeZZcc0TJr3tKBGthK85XJKfvVcv89trf5ZWBw7nFW1udPvXVl4L9DK2fnlZSiuhHXV0HTaKlupXd0IQyAcFJ+Ep9TJ5Ivnsm/FVmoqmzp9bsuSKZyfR9MDXyPru08M+nzHI8er1UFggOlYR6BwiMVivP322+zbt49oNNrpM0EQuOOOOwbUriUcLI4b0ieX8uinU/n47W1c8OTQud0kB9jegpsB3pswi0hzkJpvfZmCH/91yPrQG94xeb3uY6gmjjwFZ66dRevXsuWSMxElgaqPa4mHVbSYTkk/z3u8vXgO7NhCyaTpqd//9yWDOy6yclBYHLt0N8GUbDKyQ0GUE3nkIy2JWjT6IM8nKgKuYgc5U3LwzJ6Fa1MFiq8VPWJgy5SxZ9mw+2yUXXEO+phJRF77Hc5lNw7yrBbHC8dKjMPatWu58MILqaurwzQP75slHCyGnGNthVhyimAYnDMvwkULCo9aP5bu2siqExcQ9cdovewsRFli8jNvDPt57Xk5SIXFhD58Dvfiy7vdL7mauPmipRSelJgMKC470bYwM156r9/nPdbuo97oKBoASzRYHBd09ZxHWsIIoojiSqSBjIfi6JGug5r7i6SICKKAGQ0j2WQypvkAkO0SoiyRP7uUrXO/yv62NNyFGmW79yViuCz6xfFodThWhMPNN9+Mz+fjN7/5DVOnTh3SdKyWcLA4LjizYhMHbrmcqf+6h7bdlfDEC0Pafn8myKGqCGpIw53jRHEprD/7VOa+9cGQ9qcjzT/4L5wTx9M4YRGv7pvOfx7y+Yqpswnu7GzGnPHSewR//T8IikK2ohCpa8LCwsKir0z/5ztsv+JsDE1Hj2u07m0bsviGWFucln0tRP78Gs17W5EUibRiL5JNRo2omKaBbgps22vS2mpw2gmFeLdvoGDKnCE5//GElWlpdLJlyxaefvppLrrooiFv+5hbDkvmu+/4z8ICoGF7DRXvfEbpEIuGQ3lZntzjIButU4nUxAg3R1HDieJq2y47a1j6UvftryDZbZCeRZ1ZyNZtQb58d2Wnfdw5LiSXeNiz4rn5RwiyjOxxUfDTp4elfxYWFscm/547n1BDCC2qkjWlhML5BTh6qGPTV5LxYoHKEFUf1hOpiiM7JBSngqHphOpDNJVXM/2jRzl5mkpOjh2noiGYBtt2VbHowve5/I497Nq9lwu/to1FF77PogvfH4IrPrY5XuZSSYvDQP6NJMaMGTNsbQtmV85Powi/309aWhptbW34fL5u97PUct85XgaI4aK7ey35va5eeCLODCc2tw1Xto+c00+icsEXOBDO44yZg89d1HT/jTTvqEQQRdy5aXhKCzEXnskG12m8/5mdutoQj93Z/+IvwV//D56bfzTo/llYWBwfvFM2E0hkldP8+pBZHJLYsmRO+Pqp7L78YWbseY7Wd1dg87j45KcfYqomOQsymPrlpUgTpqK7fIR9BTxTsYCcdJOzfasQ9Ti7nHMYH9nId96Yyc/yH8N1zfeGtI/HIr2947ra9wKtvM/ztaNBsm+frN+Gx9v/zIvBQIAT504dMdf2xz/+kT/84Q+89dZb2O19SwHfV44bVyXJJSLKiWIYesRI5fG3BEVnLNEweHrzCz1p1SfsvuYCBFFAdigITicB3UtTsOeHu27rGvKmLej1/I6SQjz+EGo4BqKAqeuIWhzdFDBME6OLqtF9QjjmDJQWFhbDxKvOKQBDLhY64si2oYUiTGlbhRCPYvN5qFmzI5UiNtIUJd7YjDOjFsk0cGtxvlwUQZftqJKTBsd4YqpMzJHGQ+duIv5mA/67rib/kT8PW5+PBQ51X+pLYpDRwrES43DttddSUVHB+PHjWbJkCZmZnbM5CoLAz3/+8wG1fdwIh2X+bUe7CyOe0faAj2S6Eg8vy5MRFSElWk3DJB6Moh44QMHkA9Q7vUD3AUwxxdPreXft3kvB5Nmku9wEN2/DNBIvUDEeQQTUuMGvv5ner2uJvvALHJ//Olog2K/jLCwsjl/Oj2wf1MKcqCQW+oT2/03VTIkQUREwVBPZIRGsaUZ+6yVaqxup3VRF8+Y2ILFYKNlEJKcDVA0hHEQKB3EFmtHTcqjLn0VUszOR7Yiajvjmc0QammGgCyvHIcfinOFYEQ6vvPIKDz/8MKqq8vTTh7saW8JhgLyZNz01AFlYDDU9WR7GP/Uy2684GzUco3F9OXnel5hzogHMS+0TffGXOC6+LfX7mIlTezzfogvf51vfW0Qk10mhLw9ncxNqWwBEESESwiZphMMm0D+zpalrAKTf9ct+HWdhYXH8MhDRILlETNXElikjOUU8hW6c6Q4irVGC1SEiVfFO7+t4WKVhex0N2+sIN0SJ1qvoYQNREVC8Eo40O6IsY0TCEAmjtbahRWI4ivLJkRRyAKWxCtQ4G19agySLePK8FAzh92BhcTT41re+xbx583jiiSeYOnUqijL4+KIkx7VwOKduC5AwqR7v4uFYXDk4mvRU12HtklOYv+Ijov4Y8VCcWHkTgZpWSqprieybj/O8GwAwI5HDjr3pkRYevysj9fuhQX0//v6/8Walc8XVp3DVhHLYvRMjGoWmehzj4siyu9/X4rz8zi6vD6z7xsLCYmiQXCIFC3Nw+Oy4sn0oHge+SWMRMzLB0Als2MyuN7bQ/FkAySliqDrhihhaZqIyhKGZSM6ES7KgCKgBHV0zUANB9MZmIg1tNO2qR42o+Ar2UNDcgq2okHhtHS3bK2ja2IazyIZkl9l22VlM/cfbR/kbsTgaHCsWh4qKCl544QVmzRq6mlVJRoTT8q9//WvGjh2Lw+Fg/vz5fPDB8KWm7Ap7noLik1Km0eMNa/I39PT0nWoxjU8Wn0yoPkSgMkRgZ5j6z5qoXl1OdP3a1H7OL9512LFJ0dBTFpBAUyt/eHQljWUnIY2dgDJzDsHZS4kbMlef0TaIq0rwRua0QbdhYWFx7NJfa4MjT6FgYQ6F88eSM6OM9EljSJsxGabNIzLxBLTSqXhnTSdnSg6KT0JyikguEXuegi1dQfZJpI1zkzMrk9z5WXhLXWRO92Jz2wjsr6O5vIqGbTXUr22iaWMblR/VsOeN9TSsXMP+9zaw553dKF4JPWIkFnOCcTace9owfTsWI5kjlVVp5cqVXHjhhRQWFiIIAv/85z87fX7ttdciCEKnfyeffHKf258yZQp+v79ffeorR93i8Mwzz3D77bfz61//mkWLFvHEE0+wbNkytm7dOqzppDoydmkZzmwfejROy94G4sE44eYobVtDR+T8RwNLLBxZLtDKUxPu1vKDsQJ6xMBQTWzpCja3jUh9M8FbLqfkV8912c7NP2ll98YKoGfxAPD95/I4/6xrcds1XGKcbLmVvOAumh64j6zvPpHa7zXfVJxFNmZcuYDs5b9PbQ+//3cwDVxLrkpts6xzFhYWPdG4/KvknpxB684A8Sat1/3TprkZt3QirvwsREVGkCTkrEzqT7mSX71djCyL/M+8D4lt30HzniYyZ6ShhlSCWqS9oJyGqZrERBWbx076mEwc6W5Mw0ANx2jaVU/Lbj/xZi3lxmRoJrWrG2nemag4rUeM1GexulYERUByirxdNCNVFNPieMFAYCCFCvt3TCgUYvbs2Vx33XVcdtllXe5z3nnn8eSTT6Z+708RtwceeIDvfOc7nHrqqeTn5/erb71x1IXDz372M2644Qa++tWvAvDoo4/yxhtv8Pjjj/Pwww8fkT68cvlLXFm2Bt9HLxFtDSOIAlqs9wFvtGKJhqODoSUm3GYXE+94q0qoMSFU46F4t22IooDD4yTY0rvlQJYldAPimohdkhLnFqREXYd23i6aASQETKwlQOh39yKWjMV0eUAQOHQRpWPA4/FqobOwsDic8FPfR51xMsqFX6CwqQ3/3m2pMaK7xQbFJ5E+xocgCiAIhKrqcWSnYyv1suLARD56ZSUA905u4cCnu2ja4Ef2SeTMykRxK4lAaCdITpFoYxzZEcGbryFIElo0jr+qBX91EJtPQfPrmO0xjfEmDcklEm/WOgVdp/rZ/r8+zN+ZxfHLsmXLWLZsWY/72O32AU/6n3jiCVpaWpgwYQJz5szpMqvSiy++OKC2j6pwiMfjrF27lm9/+9udtp9zzjl89NFHXR4Ti8WIxWKp3/tjiqm48RIAyn73z07b2/w6oqkTb2pBi8axex34ijJJK05LBGXVhY4Z64MlGo4sHb/vZIrAQ0m+wJrKW5jzxkpWTp/bbXtjSj20NXtpPFDb67nzizzohoBuCmiGQMy0oypO8tqDnFdOn4seMTBVE82vU/TzZwCIvvwbDFHClBQ8Cy8+rN2MmYnsToJoCQcLi9HKUMcpBbbtwjNhBs05k5FkiXizhi0zMcVIrupDZxEhOUXCTWGglvS4hh7XSJ+Vz8Zp1/C7b61M7df63HPUrGlAUASyZ6STN6MILarStjuAzadgc8voaQZ2rw27z4k900e4oZXG7c2EKmJ0RXfjccfPrcWR4w9BMBGEAcQ4tB9z6JzUbrcPuI7CihUryM3NJT09ndNPP50f/OAH5Obm9unYjRs3IkkSOTk5VFVVUVVVdUh/B35vH1Xh0NjYiK7r5OXlddqel5dHbW3XE6OHH36Y+++/f0DnO1QwJPnvnL8SePpd9q/eha4alJw8gbQTZmEEgwR37KV5ZzWRuljKnDlasUTD0aPjS/pQ/19TNREUgVid2mv8wF2XSTwQy6WyfD/xaNcvxCSZ6TKGYaLpAlFNJqA68doPBlbHW9VONU22XHIm0//5Do4L/qvbNhu+dz1jThmLGo4x7sl/sXrhibTtCaVcEpLXZ91rFhajg6F6Xvd9uIMxxgt4Mrzs+HgPsk9C9iUsnZJTTAQrRwxQTURFYNwFJYy59Qbq/vQ3dr++m2B9CFM3sae7KT5lP3aXk1g4QlpuFv7KJtInenH47BTMG4ezMBctGMaWvgdHup3CuWPwlOQhud3IJaWYLi/u1gBqYM+grslQTSsRxHGGYJoIA6iLnDympKSk0/b77ruP5cuX97u9ZcuWccUVV1BaWsrevXv57ne/yxlnnMHatWv7JEQqKir6fc6+ctRdleBw5WOaZrdq6O677+bOOw9mefH7/Yf9ofrDexNmkTUpg6YdLUTrVTxlTkzTAF8mYjyOGoqgRlREWUAbxb7d1qA3cjFUM5WlILkq1xOLZ8WpOjCJTR9u6nE/Z/vYYhgCUVVEFOwElIMVLWWfhBpIGONfdU6h5Mx8Gu69Du+JJ+C46JYu2/TOmYWrqRGtLbGqctKqT1h14gJCcoR4s5Z6yXYnlI61+zDw2F14b33kaHfDwqLfdHw2Bzs5flmejC1LJlC5AaCTtQEStRgUbyKoecyFxRRfchbRifOo8Exm7NLd1G+toXlLAIA9xnYmSD/lb/fdxm83LCIUUime+Q0ARF0F00AwdByNNSjuj7F7bKRNGYcwawGG4iDgysQURNxjt2DL/KxPcRZ9vcaOHGtjmUWCwWZVOnDgQKfK0QO1Nlx55ZWpn2fMmMEJJ5xAaWkpr7zyCpdeeumA2hwqjqpwyM7ORpKkw6wL9fX1h1khkgzG7NMVoYoYaqARza9jqCaxpjjNO2txFWyidvU26rc1YOqJFWFBERDpuRKmmNyvPSUcJFaUVf/R85a0BrijT/Il3V22kY73VG9/r7nxj6g/9Qz278iirb6py32WfP5k7EoiTAHANEHTRWZPTJg59990Ge4cF3rE4M286YnMYk4FRAE0leYN75M55/TD2o2PmYrirSHt7GsBqL3rahZ+soZ1Zy7CXx0kVqemAr6hewExHFaJldPnctqW9UPaZm9YosFitDNUVkLNr6feowB0dqlGdsk40u147/0Bn+hTUA0RV1wlPOt0Jpy/nw01HxGpjNO2PcRucSvTc//K2csm8ZfX4N+Oc3ErceySik8OYidKWloN6SUvkzG+AGn8RMLeXByBemwxP3Xpk3FPm0v+jDXsqTgwLAkdLEvEsUnC4tB/z5KkxcHn83USDkNFQUEBpaWl7Ny5c8jb7i9HVTjYbDbmz5/PW2+9xec///nU9rfeeouLLz7ct3o4OHRCE2/WqN/cQLT1E2o+bEJUBFxldly5DhwZBsF9EQy1swgQ2zMw2DJlJLuEIAlIioggHbSa+HeFjqp4sDj6dHzB9JSusLeVrfR5Z3ElMC/Pw3Nrp2K3CbhdAi47OO2JAc80BQzTJGlxtcsmF55w8HG3eV34CnxIioiuGjh8dqY8+1bqc0eH863b0cS8SVkA+E44t1Nf8h/5M5G//IB57/w7te3tohnEm7XUyzrZ/67Ew6H09SUc/devcVx4c6dtp21Zz+qFJ3LSqk/61IaFxfFOx2dzsHScnIuKkAhGVhO1FWSXTO7UHIpvu5EVkZmJfQSTgGFjozyPvC+NY9Hcl9j6v38mc1wO6RNLsJeVMSWyhq9fPJGn3new4oVEquqTzjuBWdNcjM8toMjnRHIo6Lt3omzbQqiuEcnpIAsIqyqubB+Fp+VSvbK+W/EguRL23o5B0v0hKbosF02L4aSpqYkDBw5QUHD0yxMedVelO++8k6uvvpoTTjiBhQsX8tvf/pb9+/fzX//VvZ/1cKNHDPyViZSZgiIgKRKSLeGrKfukTiuqSrsfp+KWUdwyoiQgSCKSnBiMkuLBlhnrdFxvJHNVJzPxiHKiHTWg9yvOwhrIRh4dXzTd0dFy9U7ZTCSnyJJtn3Xap7B6DWfNTkPERBQMTAR0UySmy0Q1hdawgm4ICEJn0RD4xTcxVDVxHllCcSo4M9w0Lv9qp3SsSZKioSPV5Z8hazGcoUa8/3FPavvqhSciHFKNvS/Xm+SNzGkUn1bA9H++0+N+h4qGJLJd5s286anijhYWFkceQzURFBMiBoaWsNg70l3UFcxBChxc0DBMgbgm0RTz4ZxyJlPvdmLYXRg2Jypgb65izIFt1Nd+KdX26tc/Ze+2Qm77WjF736tAcVfiyLDjTHeQPbkQe3YG25/9iOITx5I+aQyKx0GkJULr9iB62EByiZ08AhSvhM2r0LZ94AlQDnX5OhTrPTx6OFIF4ILBILt27Ur9vnfvXjZs2EBmZiaZmZksX76cyy67jIKCAioqKvjOd75DdnZ2p0X2o8VRFw5XXnklTU1NfP/736empoYZM2bw6quvUlpaesT60HFSY6gm8eaDPpGSU0R2SOhxHTWkobVbDURFwFlkw55mQ3bKSLKIqEgIooDYLhaSWWdMw8TmVYgqairNW2+4ih1kT8zEle1FcdkRRBEtGidU38auF/b3+bosRi5dTaZFRUD2STjz7NjcMopLQbbLSDaZjeefzqxXD9ZucJ96Bc5dNYiYiczTpoiIiCglYiYiskxcB1nqfM+Fq+sJNwaIBaKYhokoS8gOBVHpfjjYvKsGAAUVWdCQJCeaaEMyVCLv/hVt62d4b32Ek1Z9wpt50w87vj8FoRxpTqIv/QotuwhTkvGedEGfj52/4iPeLprBa76pqbS3yeBvCwuL4eECrZxXnVMQFKHTwpahmaAl3qmR5iA5oVpsUhFxXUI3BMQO2Wvi2AnnjscQZXRJQdbjSNEgqCr7tnZ+59Xvq8Ym5dNaGSemqBhlBjF/nLSSLJTsLNKK0xBtMpLHjSsvi/SSNML1USLhOKIsYMuUyZ6Sia8oAz2u4a9uI7gvguwTUnFmg0mEYsuSO8VWWG5NowcBY2CuSv2s4/Dpp5+ydOnS1O/J2N1rrrmGxx9/nE2bNvGnP/2J1tZWCgoKWLp0Kc888wxer7fffRtqjrpwALj55pu5+eauVxCPFIeKB0iYMN2FDuxeG9HWGNHGOKpfR1QE7HkKaaWJypSSIvXYtqGbiIqI5BT7NBiJisDY08eTffYSDF8iC46g62AaZBs6tZt/TnBntNfrsRiZdPzbdLzvREUgZ0EGaUVp2H1OZIctlSK1O2ZMKGDn7gomji877LN3NkaQdQm3TaXjo96yu4ZAXRA1pCLZRBRn4jNBFGl95DbS29O1dkTCQDMlVEFJuEEJIqYgMGbmVEIf1iB0EB3n1G3pd+XY1HmcIp6CzEQdCUDQNQKrXwZBxHvi+X1qI1mw6VXnlAH1wcLCon+85puaqOLsUwjsDGOoZipbHCTiH5r3tFDy6Vs4F84irh98ZwoCKKKesJqKB7cbgoTu8CBn5jFhzjg+e7+zxXWKsZmP23/W/DpSloSh6YjeNApOmoqhJRb5DE1HV3VEWUBUhFRqWMWpkDGljFhTK637m/FNcCM7ZFyZLqKtEVorAqmicR1JWix68iBwFzqINx0s9Kn4JMtVeZRwpCwOS5Yswewhe9Mbb7zR7z4cKUaEcBgpHLoCLDlFBFFAVw20qJ6yNgA4MmzYvQ5sbhuinBjsDE3HNExM4+DNIIgCgqYj2RKuR72RjKnIXrqIwLj5hByZGIKIYJooRgybGiZ9TBrhiphVwfcYISlEMyemM+a0adjSvAh2G4LUsyBN0pVoADhzlhOAzbuaAHdqezKW4Z2ymdh8Cieteg+A5h/8F4Ik0faz20m789FObU2dUNTt+d2LL4fFl3f5WV9dlJLYs2x4Jo0FNY4UbsO0OdBFCQQIfPJqn8XDa76pqZ9fdU6xrA4WFsPEy/JkJJeYqN7cFE9kiVMOugIlCewNU/nGx2Sc1kZItWGaB9+HkmigmHEE00AA0EHS44haHLQY111o8ozrBFa99ikA33vgZIyn/xNRSVgPfGM9+Aq8eIqyUQvHYZZOQ4mFkJpqiO7YS6Q1mproi4qQiGXc2ghsRnHZCdaGyZ2WTellZ9My91wy9q+n4fl/UbFyD8E9kVQ/hfbzeQqcaFGdlk1BuqKj25MjT2H8eePZ/uwOKw7C4pjAEg6H0HGiY6omsbY48bB6mPuS4laQFBFRllLCAUiJBtNIrFIIYmJwlGQRxS0Tdx2+gpFq1yXiLLKRMzkbtXgSAWc2QcOLbkgImLikMM5YG2pEHTGiIVl5OLnKa9F/kpPalh/egnPSRFBsIEmYQu9Csy/MmNB1MJXm11OxMwCGqqXu18FyqFUlSW8iIlIXo2HVZ2TNDCEXFiKkZyEoDkxTAEHEv+Y1BNPsUUCsnD4XUU4Yjruq0m1hYTG06GHjsGdNcibERDJOT48YVK+t4cS6NQSylxJU7ai6hCiYyIKOXQsjGInFOXvcj61yJ7Hdu0AUmeb0cus5s7ls6VyK5CqyP3yY2ppmIDGZd/jsONLdSHYbqt1L1JmOx9AhHsW/vxFDTdSQSFp1HT472ZML8U0Zh1hciit3BXo0TmjGqXwWnkpBaSGTz2ymYVsNwT2RlAiyZcroEQO7z8G4syewetO/6YqO7+doncr2Z3ek3vuW29LIRjAH6Ko0gGOGmjPOOKPP+wqCwDvv9BxL2B2WcOiCpHhQ/XrKNanj6omzwJ6yNCTjGARRQJSllGCAzhMwyZ4Inj7UXUlyiamMTO4cF1njs8ldMI2W9FIChg/dlJAEHbcYIi1Sh7viM0IN4V77f6SwBMPQkfHtXxH45FXMDjVM1DWv4VvQc1n6JNt2VfVoGejI20UzEq4FLoUN557GnDdWkr389zQ98DWy7v71gPrfkeQq/6Evyd5ERLxJY9sz5WSX1zHmlIn4Zk5FKPMmRJSQSHlnCkJCQOgaohpFDLZCcyNqfT3hmkY8+S4ESeDUjesOa99a8bOwGB6Sk+VklkHFKx3m6hNv1vj4y/eRP+dX5BWkkz5pDJLHjWCzUf/hOiKajjsvA3+Tn/pttcT8cdw5Torqm0lLew9zVxX+Bj+7tzahRwxcZXb0iEHD1mYatjYjOfeSvWobWZMLiUgSwViceChGpPVgsczJl51C0+f+i+seDBN4qRWAO++9nslZ9ZimQL7NjyxqGAVluLJcCEoLijeRFCVWl1i0CzeGUTxuznjnfnY89Gsq36nr8bvparHwWK5vM5o5Uq5Kw4FhGH2uCN2Tm1RvWMKhDxiqmap2CSDZxFQAdJKkpeHQFVvTMBDERHpWUUoMqGJ71pmOaVyd6Xa8eR68RdlImYksNg4hiigaOPQQrlALjrYa9NrqXouEWZOj0UvHlXT/mtcO/i+IYBqHiQh/B2HRV9EABwVf+ZXnYvMcTL6a9d0nBtz3jgzGNUgPGzRvbsPh248t3Yu9eCyCKKWsDilECfepVwAQee5niA4HkkPplBq2K6znw8Ji+EhlVIKUtSGJ6k+s/NduqG9PzmDgKc5FdtoJ1LQSbgoT80fQYhrhpgixOhVTN6n8eBc2j41ATZBYWxw9YpAx0Ye3wEfT7ibC9VFM1SQe0aheXY8ginjyfAiimHAfbo+3EDSBcFU9OW/9gce++588+f4Utq0/QKY7hk2IIwsqih7DHgshtTUQqAsm6jAFdNwlDiSbiH93mMDeMPXrdyJu2kPdmkYgsQg4mIBqi5HBYCtHH01WrFhxRM5jCYdu6Mo3O7mikrAuiClrQ08IooggJtJeiop0MA1c+0Bmy5Sxe224sly4sn3Y0r0gy3jC9bhpRNaiSNEAYrANs76a4N4DvbpfWJOi0U94xdNIkgKihCkm3JZMSSbwyasIupow6ZsGkiAS+uBZ3KdeQeS5n2Fm51NTcjJ1sRwUScM04cQpGd2eZ/IzwxuA1dPLtKf4B9WvU7e+EZt7F2PmzEOQbZ0CJw/FeXkiI4Wnj/2y3AUsLIaG5DPU8Vk2D8lOeCh6xMDUTWSHDcXjwjRNZLuMHjdo3JlwQdL8eiIluWHQWhHAW+xGkAQMzcQ7xsWEC07AVlSI88NPqVyzD9khIyki7mwPRWfMx1Q1WrftIdISIVJ1MPai6pPdFJoGhZWruddZAYtEjFV+xOJStKwiDElGioXRqw7QujOQOA4oOqGIwrMXsvX3r+CvDBIPxfDkpaFHEile3SUOoo1xbJlyr8lLLEYuo9lV6UhhCYcBYBomkiL1yR9cEIVEysv2onCSXQJUREVA8Uo40+04M5w4M9zYvC4ERYFYDGdlORg6ZjyGGQ6h+QPEGpsJ1bUi+ySkHuo5HOsrqsf69QG4llwFJAqdIUmYdheGw40hKYky0KaBYOiYgomoxon8vx+j1tSiqHE8uRMJyF7mTMrp07lCv/8upqrhuenhfvVx3ZmLOq3utzx8M6ZhkHnPb1Lblvm3dXt8b/EO0TqVmo21lNRXIzicCauDdPCZ62ugdEc6FmrqWMn7WL+fLCyGm8MzE3b9fkplXJIEnLkZSGk+tNY2BFGgbWcIUzWRfRK2TBnFISe2V4UQxgjYvTbC9VFERULJygTDRA3HkB0ynhw3Y27/GpUFJ/FeayFzfOXYKn9EYH/4YKZEp0j9uhb8lUGKKpvIP3k6LVv34K9qIa1kG57iHGyZGWAa1KzajObXUXxSex0KN+FZp5M/eyPRtl1kjM2lev1+BEXAVE30mI4tUyberKW8CiwsjkUs4TAA4oFE8ayDdRp6Uppiat+OQkNoz9dv9zlwpDmxt1fANHUdva0V2loxNR1D09AjUdRAmHggjKHppBX7sHujhOujxJu1AVe8HK0cT5O8ZKGz8J8eQEpLR0jPwZTkdvFgpnJHC4od0WYDw8QebSPd1wL0TTi4v/pAr/u0/ex2jLhKpK6Jwv/9O0CvLkE90ddMS8GdUdo2bScjLR0zK2F1EBBTcQ59jf/oyKH3T8cJz/F0b1lYDCc9vZMkp5iIE1QUBEHAiMXRVSORedBJKgOhr8hLemk2UIHY/g5V3DJaVCO0ex+IAnVbaglVRShbMpWHdl7Eikc+BvZywdWLuX3mVCTnhtR5EwVdBSJVcfY27+fAqio0v46gCDRub8bmrcCZmciWqEY0DNVk7PmFODM9ZF58EQfcJeSV5JE9qZXMhfOp/ewAc26cy4bfrU9kbQokRNGMa6ez8Xe9x/8lYxwtRg6jOcZBFMU+xzgIgoCmdW8V7AlLOAyAaL1K64E2vPk6sl1ud0cSOrkuJUWCIJqdAqglm5jKZCOKIopTQXYoSDYZDBMtFEGPRNFjcQBMTUeLxNCiKoamI9lkMsqyMNtXWoL1AYK1YfzlBwOmrcnPsYfrK989bFt4xdMIesL6YDrdyEXFmA4noq7iirWye/ceQoabsOZANSRskoZLipKjVQMgmDqyFsMWaUVpqiK2dUsiD7ot8TI3TRNTO5iC2IjFibaGWHPawoTfsG5w0qpPANh/02V4inM6WRt6o6+rcgU//mvq5+CqFzElMeVPGlj98mEF4j5ZfDInfvgxfaWjiOlojbCeIwuL/tGX9MvJZCOCKGKoKkY0hhaKoEbURPKQDjF8sl0mbUIJitvJ3hXbUUMRJJuIZJOo37wfxakQbY7hzLXjKikkHFZTx7769Cq+/t8TsHkVIkocZ5GtXThIxJ1qp5oTkEjMEFHiqGUakiIRa0q8g13ZXnJOmcv+MadSGcqhpKyMIpeTfxR+ixML3gUx4T0QrVNT11ez4UCfvi9TNZEyLeEwkhjNrkrf+973+iwcBoNgDia0egTg9/tJS0ujra0Nn883pG33ZQCUnCKyT0JxJ7ImyQ4ZURQQFQlJOSgoZLuMrhq0HWgjWBlB8Uq4chxklGWiuOwJ4UDnatOJ/w/ejKIsIbvseEqLkNwuBJsdTAPd78e/cx+bntqYKjLT10mPNUE6Ptm4sw7dlDARmDcp67DPA4/dhRGPo4UiGKpKzvf/MOx96up5s2XJnFO35bDtwVUvYooSohZHaqlH278Xz80/YsslZzL9nwdTzPXn/u7q/NazYWHRf3p6dyq+RE0jd5GTstMn4SrIoXnLXpp3N6SKriXj+JxFNooWFBJuDtOyu5WM8elklGWx78MKQgei2DJlJpw7geyrv4xud/Ov6Hn8+pGV3HnvYs5d+x2aPtuBZJMRZYl4MEpLRRPefB8Fp88jcvL5uDd/wK6/vIrd6yDtuw/giLQgrHyNqg83EWmNkFGWTf7SE9Fa24jWN6JcchWOqh3ECidg37+dmpffoeDic6h+4XW2/31nvy3/RUtz0WIaC1auGtT3PVoYzvnaYEn2bdfq9/B6+hotd5BAMMiEk5aOyGsbaiyLwyAwVDOVHzquaAmfTLeMZBNT1gVBEpFkEcOVEADxsJoIpnKKaFG9PbOE2T64iZ2sF4mfxVSqV8luQ3E7kLweBJc7VSBMEkScuYHDCu70BWtidPyxbkcTAhKGKWIg8NnOemZPzO20T/LeEkThiIgG6N+96Fl4McFVLyJGAhgNtQQrqqm84mz81f5OYqE/bfa3WJ2FhUXX9PYsGZpJLBCnraIeSZFRwzF0LVELIikaBEVADejsX1mJPSthLZDtEorLjiffRbxVRfPraFEVqbkOtXgy+2sS79nT3Z9Q8fonRFqj5M8swjdpLADBuo+p31qHGl5FblUtLa0B1IhK6dnzeWDldNS4ztXnn4D3k6somFOKMy+L+g8+JR6MUvLFCznzPoWZi7/ID8q2Uff/XmXvG/s71WhI1omo+6i5T99TzYcNVnHKEYaAkXIB7u9xxwuWcBgCkula42ipTBCSU0RQhITPmSRgNkQwDIN4s5byaYwHVMJNYbSYjuKUUZy2lIBIWiBEub3InKIgu+xITgeC3YEgK4mTmwZIEqLd1slX0rIkWHRHRwvD+h2NSILe6fPI3x9BkPtWtXq4eM03tcfAagC5oRI0leDe/TRsPYC/KkCoenDZTA6tM2E9RxYWQ4seMRA0Ac2vE6gLYve1Em2LEPPHUQOJsSj5TgWQMmXSx/hIK8lCcdmJ+cPIdhlDM9EjBvv/vZ9Iy3OUfW4ht86Jknnb53BveIi2A37SS9Nx5Wch5eQgOFyUnBbisyc/oHFnM+GmMIpLwdRNlIJ8PvrzGmafPptJbR9TJ0vsfH0b3kIP2ZPy8BZlo2UVklWUR3NdG65tH7F9ewMFJ+fQVhmgbevBStEZpZk0rGnpk/XBEg0Ww83mzZvZtm0bkUjksM++8pWvDKhNSzj0QH9XIPWwgakIiYFREVKpV03V7FTuXnKK6BiYskCkNUY8pGFzyyiuOIpTwea2t1ekbrc6yFLCGiFJiQmdaWDq7UEthg56YrDtWCMCLPFg0TtzJ2V3+j284mlEmw33jQ8epR4lmHLFJIKP391jpifHRbck/r80EQb+qnMKhmoeNvkf6DPQ0/NvBVNbWAyMZMYku9eGMz1RQ0ayycT96mGZAkVZwJFho3jRNGw5WRjRGMbOfURaEu6+pmoSqYpzoL4WQVxNcSDIV2bU4d9cjiPNjjPDhey0J2IOTQMlK5P8WXlE2yKJmhCBOGklaUQnnYA3K51rLgD/40/Rsq+ZeKtKfU0TGWVZZEwvJObJ5q/X7yHkzafmkZX4d4fJm5FP6z5/qr+GarL7lb19Eg3W2DFCMUkkHxnIcSOIcDjMRRddxLvvvpuKWQQ6xUBYwmGEkBowVBOdwwNAk2nqBE3AbBcWml8n7leRnDFsLgXFHSNNFLB5HJ1rRRgGRlzFCAYRZBnaA7BNXQfDSImT7ujLKq7F8U0yDWx/WHXiAmSHjN1jI60kE3uah3W/XNPlalqyonRvtP7P//FpUyZX9KMfXbV7aPrV/r6su9vfeulbWPQfySXiKXYiO2VsbhuK05ZIyNBeHLVj3RexPfOgI82Oo6QIwetDaGtFcTsQJBHZJSMoQqKas2bSUN6IM2MveelpOAtyyBzfhmkYhOuaCNc1EfeHyT5hOmOuOA8EkaYV/8Zf2YRkk3Hu+YwH7r6GSf/6HptX7kJ2SIw5rRhD09n73h70uEaeICJNnoFDsROIJypi73xxD2b7gqAtU8aZa6dlU7DX78EaP0Yuozk4uiMPPPAAFRUVvP/++5x++uk8//zzeL1efvOb37Bp0yaeeeaZAbdtCYdhpquJfNIMm3QQERQBM5JwY4o7NUQ5EffgznbjyvIkAqUdZqIehK4n0nC2Wx8EQQBRTGRe8nd2ObEGJ4sjgSgJZJRm4i3KIu+Hf0ps/OUU3sybTtbUNOav+AiAt4tm9GklbtGF7wNQMKGEuDaWL586uCwRkkvss2joryXBsupZWHTNoRY7sUPBU1GRkO0JSzokEn+4spxo/oP1iWSfhM2nICoS2B2Y8ThGJIIWiQGgqzqieDA5iSffhacgE7G4DG3zZ4iySKDGT6ghgChLeAvSkQqKCRdPJeTKJjsaJvzy+/ir2tj1xxcpm7ORPat24sp2MeWGC4lOWYD9sw8I1L1GxqRipJwc0FXsO9fhK8nBM7E6VWdCcSv4Cnw07mg88l+0xZAymtOxduTFF1/kf/7nfzjllFMAGDNmDPPmzePMM8/kqquu4vHHH+c3v+l7FsSOWMLhKKP6dSRXcvBMuDVFmzT0iJ9YcRxD03GkOZEdKpJNTph020KIsoQgJQZe0zCJNPlTGZW6Y5l/W8qdQ1SEbld+N12whH2v11gTIos+cdKqT4i+8AtMbxqBx+4iuLcS2dfuaicJ7L/pMuLBaL+D9+0OG/MLKoGSQfWvP1a2obJIWFhYdEZod9MVpETyD0mRUhmPTMNEcSqJGEBXImV52jg3iksh3BhGq6mhbec+GnfU0bK7lWi9iqma2DJlXPkOHOl2ik+agGfKBIRYmLq1Owg3h4mH4qghFZvXRtEp02gdvwDX638he+Ycmj9e3y4ofATrA9Rv3Ee0LYoW1YlW7MMhCjR8/BmRpijVq8thdTmyXcbucxFtTRSqG3f+ZERFJlTXQsbkMcRDMZyZDqrfPyggnMU2cmdk0bS7heDOqDVmWBwRKioqmDJlCpKUWGAOhw+m7P/yl7/MDTfcYAmH4eBIZVhJrrB0nPYbmkmkLoautuDKiuLwJVK2ilLHjEuJiZgaUQk3hw9zi+pqNbQ3N5HI337IuEtOJdL6Vp/dSiyOb97InIagCLgLHcz8ymnoX/sOp532HlpVJQ1rt9O4o5ZQQ6RTfvaeOOPyhSxbEGPOmv9l19ffgVffH+YrsLCwGA6S75+X5cmYqonm1zHzTJATcQ12nwtbmhsME0PTMdR6UE1sxTYyyjIpXraIlpMuJh7zE1//I+rWHJyQC4qAoZn4irzkzxuPc0wRuj9A0+rPaNjeQFqJj3HnL2LN0gd55j2VeFTjkpiHnZN+ht2Ec25bSFbgAEq4DbGmgtXffYpYnYqgCKz53xUoXgmbVyG4J0KkJkbmjDRKTp6Ae0wBwb2ViLLE2p+vBZK1KXYdFqMBEKmMU+2vx9BMSzSMBgboqsQIc1VKT08nFEoE7efm5rJz504WL14MgKqqqc8GgiUcuuFop2VMDkCaXydMBD2uY/fakO1yu4BIFJYzDRM1ohIPJIrVDKbUffjJ5QhuN4giakg9rqpRW/TMgVsuZ9MfNiMoQqcV/LVLTsFZYAcgb0Y+gfOvY486ltbpWeSN34dj7y8JrTlAsCKSSrPYE0k3pZNnnkKk4kB71diRjRUobWHRO0Z7kpB4WMWhSIk04zYZUZIw0FOZBBWfxJhFxRSeeSKxWYvZb5ThcMSZeuGZNO5soGljWyKeIMuOt8BD7owx2LMzEzGA0SiR5iDuXDfuHB/K5Gms22WnclcVLbWN5H5+IrYxLr77nU/YsewEHpi0Cm37FgL7a4g3a+gRA1eeHbvXhiPNQbgxjLPIhqfQjTPdQaCqEVuam2BtC817mztdG92Mb448Bd9YD607A0fke7YYJKY5wODokTVfmjlzJjt27OC8885j6dKlPPTQQ0ycOBGbzcb3v/99Zs+ePeC2LeEwgtHDRqrKtOaPoKZr2H0Kzgwn2GREEn6e8VCcaEs85Qoi0nVsRW+E91XiKMhFbW4ddFpLi2MH/5rXyJw7FVvmdgzNZPsVZzPl2bcAECSBohOKyJ45jj0XfY/HXrfz8PTn+YfyH5yVU0O0OYgW1vokGgD+/a/TWXTh+zx030fYXTcSj0Qx28XEv/91+rBdo4WFxfCTrN8gSgJGpgtBaE/w0V6hXlQE7HkK7tw0RI8HSYuj2wT2+9Pxzb6IWf8totVUIXo8mPE48cZmFJ8HweEAw0jVRLJ7bImFNYcTM2Ti9Dioi8a47b83UzI1UdOhsqKJaNtqmrbuQw0n4iYERcDmUsidmsi8FG2L4spx4PDZUSMaDVuraN7TRDykpSpL90Qyi6LiVHBk24bpW7UYSo6V4OgbbriBnTt3AvCDH/yAxYsXc/rpiXdoeno6r7766oDbtoTDMDMYCwAkYiBUv44tS0aP6URaDQRJRHEaKE4ZLaYT88c7BUYLitDt6kd3fDBrHpnjMkhvCRBpDh4WaG1x/BJxZ+MbN4Wik/PxV/sxDZNdV3+Owhu/QiwQJ9ISQsnNYUttFlMmg7GnnCWnbyFtwztUVzRiT0us2JmGyYkfftzn88bCnfNON91/I1n3/W6oL29QdLQ2WK59FhZdkwyU1sMGkao4esRATFodZAk1HMNf7U9ZJcKNAXxNzci5TfjSwuwOetjvyMc9A1f4owAASyhJREFUZTG2sQGiznRsahj3to8wwwmXC9MwMI3E5E0QhUS2pkArpQUCaUuLuOqKPH7x6BYMTeeL/3UaX5X+QNMrDUg2mYbyejzFTkzDRIvq1G6sYcol8yi963N8fMW9ePK8ZJVk4fDZaaloJVwZ7db1UnKJKF6JaN1Bq31acTpz3/rgyHzZFoNCME2EAVgPBnLMcPKFL3wh9fPYsWPZsWNHKjXrKaecQmZm5oDbtoTDMCImLQCDFA+QKJpjqiaSUySmJAK+BFEgHlaJ1amp2hFAn1d3k7zqnELGTC+iJBCsbaVuc73lpmTBiqmz8RV6mPbfX0GvrkzcbyGNhu1NFMzJJ5pWgCc3IQiaVn/GWQvWUyONAfcc5N//iKqaZoK1YfJn5VF42lzkvLxB9eeiT/+Dfw/RtQ01rzqndCrAaGFh0ZmO4iGmqrSpAUINYURRRI/pxJsTtYnizRptB1pIq6nDk5NDQfZetio5RFWZZkc+LsVDXLAjyV48DidmJNzJTcQ0TOKhOFpMI75rJ2eOXY07VE5MKOGhFhlPhpdzp+yHj+uxZ3iJBxuINsdY8N+fQyobR2zTRna/uhb3/Pl8mn4mauBuANInjSF9ikik9WMChLt9R9oyZXxjPKiBVhy5Co5MO6ZhUnvX1eQ/8ufh/6ItjlsyMzN5++23mTdvHt///vf56le/SmFhIQBut5sLL7xwSM5jCYcuGIr4hkSw1MEsMgN1H0qSLC5naCYQT9V/SPyeoL+C4c286UhOkbyTMimcX4anNHGDBes+wl8e7uVoi2Od9DFplC6dSdvKf9Oyu4a2yja0sEaoIka0cT+m8RB16xPBioIoUPrO35laNg5TVvCUFeLITqdpVwPu3DRiiz5HrbuI7b3EA0Te+TOv35vBeQ96j9h1Dobkc77Mv413ymYe7e5YWIxokuLBUE2idSpiu1iAg+9HU024MwWrmhClbbgDfiYtmkhItWMgoAsypilgCCJmJIQZS7gZmZqOFo6ghmPoqoGuGlR9uAnx463s2NVE6dN/AFr4wpVjMcwq/HPPwj51AXmhFoJ1jyFlZ2PWViG5nMTDKoGPVzM/HGD3knwKT5pM89a9hBoCNG9v6zGDYbxZo9nfhrvEQdbETFxZHmSHQsvuGvKH9du1GBJMY2CBziPAVSkQCBCPJ1zo7r//fs4777yUcBhKLOEwDCT9GiWnmBIPCdefngu09Uaq/kMXmRsOpadAzZflyYiKwIJvnYLzvItozJ1GE15aMCkIlpO2Zhv1rharWNxxRkfB7JnoYO6NS3l70U8puPkkmj87GNgntovW3a/sI32Kh2hzjIatTRxY8S/cJQ4mnDMZQRTxVzahRXUqP9nLhMyn8EZiuMvsqAGd13xTUbwSrnwHGWXpTP3H2wDs/+1fSCvN5e1blrB3wjIqQ1ncf+9B96ZFF74/omIdzo9s552ymUMqGjr+HY6FgOuR9jezOLocWtm9I8lUrIpbQY9r+PfXE6hsYIr4K/TJc4mZiWQJcjyEfc9Gghu3Ymg6eiyOv7KJyo8SQc6uMjvOdDtaLCFMxpwyFlekib//NJe/bDD5nLCOvwYuYsu2AGvfXo8j7Sf85p/fY89r+wBwFTuwZaZR9a8VlJ41n+CBGjKnjaX19bVE69Qer89UTbwT3cTa4ux/txp3iYPSxWWpMc5iZHOkYhxWrlzJj3/8Y9auXUtNTQ0vvPACl1xyCZDIenTvvffy6quvsmfPHtLS0jjrrLP44Q9/2KMQKCws5LXXXmPChAmYponf76e5ubnb/QfqrmQJh2FAaF+FlJwikl0CEoOJoXWfeWGo6G2i0XGgdubn0JY1jlYjg6huQxH1RDBae1VMi+OXWJ3KvrfXc1rrjXxW2zlQPimK1YCOFtUpnF9AsC6AGmgj2hhn2wtbEGUBNaAjyonqr/tWbsXUE/7LesRIWNBUE0OLEGuLM5VEgTg9YmDLrGFMXQvB3b9j0tR8XrvvJl4InsNvf7oSGHkT0TMrNg1JO8dqdqaR9LeyGFkcWiTOVE101SRYHUoEFPvs6KpBrLoWe1kIwZ2JYOhI8QhmKFGhORGXoKJGEhWkU9mbFA1TV9FjOo3OOszf/YqG7TXk3P0h0p6tjJ95Lm6Hl5KSU/nnkx+Qd8YUKldXYfMq5E7LpXnLXty5aex7ey1pJVnE2wK07m/r8XoceQreMS5ifpVovYoeNvCXh9kV2kXpsH6TFkPFkSoAFwqFmD17Ntdddx2XXXZZp8/C4TDr1q3ju9/9LrNnz6alpYXbb7+diy66iE8//bTbNq+++moeeOABHnzwQQRB4Nxzz+2xD7o+sFjWYRMOFRUVPPDAA7z77rvU1tZSWFjIf/zHf3DPPfdgsx3MLrB//35uueUW3n33XZxOJ1dddRU/+clPOu0zGkmKBtmREA6Gz8DQzMRkaZjEQ38nHHo0hivSRIbbRquciW5K6LINT376MTd5segfql+n8r06qj6sx2wvGJhEjyTuZT1s4M5xUnz2iRjRGBWvf0L1R/XoGMTbxYHkErFn2Yg0RwnuSwQ7J0Wp0Z7XXfPrqcKEyXPvqN+dsNiJAs7n/soV5zXxW4qO/BfRDwYz8e84eTpWBcQf3jWxKwy6ErjFsUXHWg/JMSBSFQdaE/EBuoni3ENxYT4OUUJ3eBDVKFpzC/FAOGFxiGvoamJcERUBR4YNURERJYH0MbnYfU5a9yXcKi9f93Xqd1cy7u0rOHHOJNSln+fTyWUE99eQPzsXm8eBIAq0VDSixeqYctlCtHCEmjU7CVfEur0OySXizLWjxxNiQVSEVHxjpLL3DEwWxxfLli1j2bJlXX6WlpbGW2+91WnbL3/5S0488UT279/PmDFjujzuwQcf5MQTT2TTpk1897vf5YYbbqC4uHjI+z5swmH79u0YhsETTzzBhAkT2Lx5MzfeeCOhUIif/OQnQELtfO5znyMnJ4cPP/yQpqYmrrnmGkzT5Je//OVwdW1YSaVfc8sobhnZcfArNtWkcBjajEX9mWBcoJXzmm8qtkyZ2tXbKHLYyZ0wGbHsJHbFxxJ05ZI+0VobsTjoGpe8p2WfRCyZKaR9uzPdCaaJ6HKSXppN635/onBhB4uVFtYSQiNyuKtedyJaDxvYMmVku0zF+9spjsT44n/9nb//ZuWwXvNgONYm+kPN9WdYgsGiew61PkTrExYEURaIh2JEKg7gstkQc4sQgq34q+uJNAcRZRGzvYAcJBbtkgt2WRNyKLrqEvT0XHJ3fMaW/3uNjU99iOyQiIdV2ipbmSAIXHLJI1zxo5sA+Me3vRwQxzKt/m1an3uOWEsbbXvrqN1Qj6AIneIVFZ+E7JOIVMYxVTO1OAKQMdOLGtKINsY5p27LEfoWLQbNCI1xaGtrQxAE0tPTe9zvoosu4qKLLuL3v/89t95666DqNXTHsAmH8847j/POOy/1+7hx4ygvL+fxxx9PCYc333yTrVu3cuDAgZTf1k9/+lOuvfZafvCDH+Dz+Yarez1y6ADWHyRnIhWb7JCwuRQke6LaMyRMqkBqtXao+tpfkgKmcnU1aiSOr2gXOYvraFxwIwBKScmQ9M3i2EH2STgybJjtQY2QcMkL1AXxb9+DLT0RzGxzy8Tkg6tryfSL0HNygK4yj5mqSbAuRKwpzo6GbVwUvZRJD/ydPz3TMNSXd9TpuOo61AJkONq0sBhuzHaXI9qzlUUaW5GcVYj1DTRt3EVLRSOmbqbSukZbY6nMg1pUx9ATNR0MXxb7cxbgyZ6E/Zl3SC9Jp2DRLKL1TexbsZV9b6/lorn/4DFyAbjsrgCwEcjlzYsnsf0v7+DOcaP5dfIWZOIrTKfy00r0iEH+nFzSS7P57LefYXRYFBQVgVBVpFO2Q4vRwWDTsfr9/k7b7XY7drt9UH2KRqN8+9vf5qqrrurzvHjv3r2DOmdPHNEYh7a2tk7BGKtWrWLGjBmdgj3OPfdcYrEYa9euZenSpYe1EYvFiMUOmgsP/SMNFQMRD5IrsSpr8yoobgXFpSDKIoIoojgP3ojJ1KqDdVka6GTA6DD5O9BciyjX0bSrnimmAdn5mJFILy1YHGv0dq+bqomhJ+7X5CTfVE38e4NUxHdicyloMY1Ia2dTfjLr0ECEcrxZQw3oiZzo9Srbny0nd89Z/KAsiw3nNjPnjZFrfRgIR7tavYXFSCH5btQjRrvFIU6kOYgg1hOobqatso1gTSSVwlWUhZR1wtBM1KhGvFkj3BREjIYQ0clo3o3zhPG0XfNdXqkrZV7efjL23UbV2io8f/orcEenPjz9szwaHtnEtO/exO7Ssyi68yqcGW5cuWlkTwzjzHBTt7mWtgNth73LvRNdjD9zEgc+3kPzFqti9KjCNAdocUjcAyWHLLzed999LF++fMDdUVWVL37xixiGwa9//et+dslkzZo17Nu3j0gX87qvfOUrA+rTERMOu3fv5pe//CU//elPU9tqa2vJOyS3e0ZGBjabjdra2i7befjhh7n//vuHta8DxVPmxOZOuFeIitTpM8WpICkikiIiKiIQ6TU7Q3cM5eqhHjbQgfq1TYQbn0dxK8T8cU794l39butY9c0+1hjIBFUN6KiBSCfBmxSg8WYNySkeZklLujgBiVTCPQjlrj5LuUTJAs4iG5pfx+a2cWD1ftq2hqiUJ2PLkvEUOzllbfcBY0PJq84pAKlCb12t5g+0ENxwPTfW82gxWtHDCeHgzfeRPWMszunTyXT7wDSIb1jL6h+/Q7xJI+n8m/xf8+s4i2wUnTKNzcUX8MybNla95uWsK37D6ge28fTEm9n23BoM3SRYEWG3fzePjvk2vgIf2dPGsP/D7ey7JEi0MY5kexFb81+JGSahhgChhgCRlghVH9ah+nXcZYevJgcrImz9f5tRA7qVnXC0YZqd6oL06zjgwIEDnawCg7E2qKrKF77wBfbu3cu7777bLy+cHTt2cNFFF7Fz507MLq5HEIQjJxyWL1/e68R9zZo1nHDCCanfq6urOe+887jiiiv46le/2mlfQTjcjGeaZpfbAe6++27uvPPO1O9+v/8whXc0SAaPClL7RMkwMHQBMBBlEMSDxaEM1UitlAyEwbgedDdp1CMGoeoootx98FdP7V2glVsTlBFG8j4ZipXsnmqEdDTR92V7f1H9eio+Yv+71am+iIpA9ox0xp41my2XnMn0f74z6HMNhNd8UztNDqzq0RYWQ48aCGFvacLILiKYMQa3J5PSNeXUba4ndCDaadHCVWancE4B4hkXUB3wcvnSEN+fUUt9YQVvP9vKhU1f4relO6nf3ICzyEbxCcW4c9M4sHoPhXdezJSFC9F8OYSe/3+07K6heU8LBXMKEUSRnPlTkPMLqP7XO5T/Y1di4cQldjq/4pUGbGm1GN34fL4hcbNPioadO3fy3nvvkZWV1a/jb7nlFqLRKM888wyzZs0atLtUR/otHG699Va++MUv9rhPWVlZ6ufq6mqWLl3KwoUL+e1vf9tpv/z8fFavXt1pW0tLC6qqHmaJSDIU/mJ9pT+TLkM10VUdPa4jiAKSlCh5bxoJwSCIJlpMJ9oaI1QdPSqVmXu6FkM1iTclxIwlAI4Nurp/k1aAngoYHcpIqCKecl0IH8ycIigCGWXZOGfMYNyE8UekH+dHtvOqc0onwXzo70eKIxm7YMVJWBwtBEUg2hZBrmtFkCvwZmQRy5mCkTGG9LF5GJqOIDUTroymxrWSE0vge7/g+2/koRtRxpb5iJRdyL13rAHAm5VOeE8YQzPxFbrJXzybvf/6CF+BF2n7OrA7WJl9NadfohN64vdE6mO07G0ia2Iu2sJzEILNSDYZxStRfEoBRafO5qPlr6bOn/QmsJ6Z0YfAAOs40L9jgsEgu3btSv2+d+9eNmzYQGZmJoWFhVx++eWsW7eOl19+GV3XU144mZmZfco6+sknn/C73/2Oyy+/vH8X0gf6LRyys7PJzs7u075VVVUsXbqU+fPn8+STTyJ2WHUHWLhwIT/4wQ+oqamhoKAASARM2+125s+f39+uHXX0iIHpMjEN82BqODGx6ipIieCtwN7wYZM2yXXwe0lOjJKFcIYykHo4sAbGkUdXYkFQBEzVJGdBBuPOnkX5P9fStjM0ou+t3tDDBjtf3kX1ukryZxUw/or/PiLnPT+yPfUdD6VVp78cyWfPes4tjgZi+7gVqAkSaY3SUtFIXluIXIcTRInmSAxHupv0MVpi4S6SGM/yTp7J7X/zsm31pzg8Lta9G+cZ9aCV/z+un0Xw+hCRyjiSM4ypaky4/TowdOqefYmmnfXMm78BNScDf3UbubOzSCvJJOeUuWgrXqZpx370uIZvrIeM8QUoEyaSPSudutXN2PMUK/3qaGaQrkp95dNPP+0Ux5v0pLnmmmtYvnw5L730EgBz5szpdNx7773HkiVLem3f4/EMW4KhYYtxqK6uZsmSJYwZM4af/OQnNDQczISSn58ovH7OOecwbdo0rr76an784x/T3NzMN7/5TW688cajllHpUPozKdD8Opo7IQqEZCal9oBS0zCJ1MdSA1sSUREQZQFbpoygCMSbNfSIgeJNxEhIJAK/JKdIvFlLrbwO1wqgNUE4dhAVAVeZnSkXzsKZn0XLtgqyZk/ib5N/xBd932TtL98i1ENe8pFM8jmIN2nEm4Ko0QNUlM1Ecoos2fbZsJ//0HHBem4sLIaexHNuEKyMIMrtiRbU/ZjGa0g2hVB9G6IsYXPbsXttxJwqesRA8vmIHogjShKK3YZitxFsbkv5ev/fL1fz/A2LWffEB8TqVKK1DfzXzsXceF0JM11vEGqIULvxAJOvmsSUa89n3z/fZfuz5VSvrySjNJ3SS88kuG0HBeeeilE8jpjTx8SLT0KL/RtPnpcatY6zqjYf3S/PYkAcqcrRS5Ys6TL2IElPn/WF6667jqeffrpTdtOhYtiEw5tvvsmuXbvYtWvXYQUokl+IJEm88sor3HzzzSxatKhTAbjRiB4xiLeq6M7OFgVDM1HcMvYsW0oAJK0OyYHRleOgcN4YDE1nzzu7ERQBu9eWqgOhRTXUQHDYK09bHDs4i2wUzSsk7ZyzMGUFXyRKvKWNq3mKPe9tIFo/sOD8kUiyMJNnnPOInbNjCtWOv1tYWAwdyUKRkHBbalMDRFt3Y+omskNCsono8YS4SL5X61as5v5vX8n/vjiTaDiOYpPx+Oy0NIbYtnork0+YhLHsKmbH4ux5ezPBmmZq6yvZtn8sxXvrmXLxLIyrv8H70RmcvulH1G9tRFAEbC4Ff02A4LYdhOta8M6xEf/wPUSbguh2kTejkPpttZZosDjqzJgxg7/97W9cdNFFXHjhhV3GSFx66aUDalswBytrjjJ+v5+0tDTa2tqGzUoxWDcEURHIWZCBJ8eNIAroqoEaUVEjKq5MF84MF/+/vTsPj6JM1AX+VlWvWTorJATCIiCyiLIog7jhAhdFndHjoI5cUIc7HB11jkc9w7jAjCIq6nHGe+Q6jsfrNo5XcRuURUdcQFQEXFiVbQhLAiQhnaQ7vVR9949Odbo7nXS603u/v+fph6S6qvqrppN8b31b8bD+cF85D6tqx+Nntg9w8IFHIDQNQhNw1DvQtLfVPwZB19sVasNh5SezBf7/WiqMyKu0oPong+FuaUPDvnrUfd7g7xqXTt2UZKPkm8q41ACvXY15xjEAGDitEmPf/ySOpSOiZOjq75N/8pH2fyNNZ260KRh+xVAU3HkfVh47A99vd2DDyo6Z1+6492yc/vQV6HvGKLwz9hFUFruw8J4vMXP22bi18T5IsgylbwUgydh5ys+hQcaoHX/Ftw+/hIKKQsiKhANrD2N6w/Y4Xn32S0Z9LVZ62Q6veQm2/Lzoj291oGra7LS5ttChAaEkSYKqxjZ5SVLXcchlsixBMRl8A6oAWIqs0LwqDBbfIJdj3+1DVdFruOJsO0zbNsFgbm9pcHnhbVM7dXFiNyWKpGxUCVrqWrH91e1QrLL/M2QqNcBkM8JZ5+oURlNFscqwVpiRV2pBM1ohB3TLi1bDvhPYcvE5aGtqw+SvNsa5pJRNTjx6K4rvfirVxaAI/L8LovidcPCrgxj8vx/BrBkXYPzFV2HbxhLYjzcCAJ54cB0+/M0s1A2ahGX/9inuXjgFrz7RF/WiEcrB0cDxwxBuN1q+3YoRbQ5IBiNOfLEJmirQerwV+eX5DA1ZqrcLwKWLtWvXJuzcDA49EI/Bj5rmGzQtyZJ/alZJltB6zI7WY62+lS69m1G4ax9q9hxFQYUNBoupfdEb3ziI3k9sSbnEWmyBs8HXfB84IF8fR+ONYmalRFOdGpx1Lrjq3fA0q72ayUl1amipa4XB4hsndGLzhygef1G8ikpZhKEhOxUMssJ51IW9H+9GU009Bl7wI+676wHc9R+N/n2+rboc/bWDePORPNg2PwL7+GloEdVQrQVQyirh+W4zWo40IG9QEzwTzoetpRm2Hw6nbNpnShJN8z1iOS6NnHfeeQk7d/dtGRQXmkfA0+qB1xV8d1doAq3HWuE84YLq1uA84cSJfx6Hq8WN4mH9YbAYITQNikmGqdQAJU/u9XoJXR3L1obsEPj/uG/1QTT92NppH9WhwV0f+x39RNCnA26r8/S6C5WrzgPHwTY4jrbh09Hj0PL8M3EqJRFlgqadrbD2NSO/Tx4c9Q788PaXGL/zOZx23mkAAEtBHnbW2qAIL4p2rgdMJhhUN04RW6E47IDHDWddPY7tqoNcUADL4d3wHD3G0JAL9FmVYnnkCLY4JImz3gVLcRsMZgMk2ddPU3V74TjWBgAw9zEirzQPluJ82PqXouXgMbQebYLzhG+Z8Km7v4tbWQIHdTIwZI/QVrF0GsOQTPrCc3kDLACAA5/vw4AIxxBR9tA8AvY9DhgLXVCsMmwDCuDYsRP/+vM2/Mk9GiNGluLkihaYXc1YUXUrVE3Cuf/3eqhuDw7urMWAScNgG38qsO4HiH4DUb/8LQx46vVUXxZRt2688Ubcd999GDJkCG688cZu95UkCc8991xMr8PgkCTuBi8aPE1oLXNCMcpQPRq8Di+ch9ww2BQYBhhgsJggGxRIsoR9H++B+4QHBpsCoyUx/00MDdklVesJJIuSJ0ccFKmTjRIKKnyTERitxiSUjojSierQoDo0GG0K3KUeHFy/A4PMD2HxFdcjr2kdnFoltsrj8Z+L1wEALrvyZEBR0LDnKA6s24U+9XYAwKJdP8OjT12XykuhZBKa7xHLcSm2du1a3H777QCAjz76CJIkdblvd89FwlmVohCPSlngYm/CI/zL0uuzyujbA/uky0YJlzh39vq1KTdE+pye98RlMJSV4bM7Xk6bwdHdyR9sRtnJJWg+0gL7HkfElhRTmQGKVYbJZkTTdl9XLSVPxgz7jmQUlygqO666CCOXf5jqYqSFaP/G6rMtAd2vcG+0KTBXGCHLMirHVmDgdZdjy7DrUW5qwIC9H6O5ahQUzQNJUyEJFVj5Or59cT0Uo4KSwUXY//5h3miLg0yYVal2xV9inlWpcuYv0/La4o1jHJJMvwuiOjRoHuEPDZJRgteuwl3vW+Ohp78QiUJF+gPnajiBxq+/hciQz5Vk9M1Iprq1HnW/Eh4Bd4MXzT86APgqFwwNlK4YGnxiuTEntf/tlIxS0N/MQPrfV8WooM8pZRh47WVQSysxQKlB/4NfwPHFBljXvoHPXZMgr34d1n9uhaO2HqpTQ34fK4qqy2AqY+eMnKG3OMTyyBH8aYhCorqCaB7RaZo5hgVKlG+e/QIAglq10pljvwuHGmp7PAtU6HVpHoH3raew1Y4oS8hGCYpVhmKVfa32Tg0qNMgI/7dTNkgQqm9NJO+hgzj61irkV5RAuvhi5A0fCs+RI7hgyyJsfnk9hLoOxnwDzrxjOuov+V/os201qv/rjeRfJKWGEDF2VcqdOhuDQ5RS0Y+cTaQUre4+p55mFYo1cxob9RmXYqHfbczVgeJE2SIwLJiKjVBMMjTVV1lzw9NprSOd5hHwNPtuJnhavfj2z2vQ8k8nrP3MKNt5CB6nBwV9C1G3tRbOOhf6nl6GoZeeCcOoU9GolaJkzx5YknaVRPHz8ssv48knn8SOHTvQ1tbW6XkuAJdFZKPkv2vC0EDxpjq0oG5KehN/NrRyGW2Kv8VBDlhlNtE/R5yhjCixTKUG5Pe3wlZlQ1F1KQDg+A91cLe6IVQBV50Hmkf4bxbIBl9LhN4lWP+d5zzoBgB47A7YdzkgGyWYShugOjUMurA/+t5zL5qtxSj5/h/wVisouuPJVF0ypUC2LAD37rvv4oYbbsDcuXOxefNm3HjjjWhra8O7776LqqoqXHvttTGfm8EhBoludWBooERQ8mRY+5vQ8mNb0B9YwNeUr3kyo+tSd6SQfs7JCkP8WSVKnPzBZpgKjSgbWobqG6/B5xWzUGJx4JQN/4WmrbtwYN2PaIFv6nJTqQHmMhNkRYK72YO2ox7/mMJwNI9AW50HBcMtEJpA01NPQDEZsP9oEwZ+/Q3w8ItJvFJKuSxZAO7hhx/GHXfcgYceegjPPfccbr75ZowfPx61tbU455xzUF1dHfO5M6e/Qo5hRYTiScmTcdai6XC9+hWUPBkFwy2omFQK29A8X2jwptfdkli5670wlRlgtCnQPAKmMgMHNhKlucAbceEGOXuaVeSV56H6qml4QZuD++/5Crf++1Y8afkdmn71ME65+iwUnZKP/MFm9D2tDCNmnoqTLzsNJUOLYSxUuhw4HchabMbAGZMBADte24FDX9SigqEh92TJAnC7du3CRRdd5J921ev1dfetrKzEvffeiyeeeCLmczM4xIgVe8okqkPDZ3evhGfiWN9AQY/Aif3NaPmns8u+wZlKn5nMUmGEbJAyYspZIoI/8IcSHoHSk8rRNPp8fPF5nX+73e7B/11bjvorfo2BZw2BIc8AV4sbhaNOhrVfBQZNPRUlw22dWiJD+dZ9KcS3y1bi8OaDAICLDm2N78URJZGqqjCZTJBlGfn5+aitrfU/N3DgQOzduzfmc/NWXC8kqssSQwnFg/751NcIUZ2+6UwLBlmhujW0HW3rWFAtC8Y3hLL2NcPT5sVMVgCI0p4cMK1q3mAz8sqsMOWbYDAr6DtmIAqmTccBYx/MudqGhkvOxseft6KszIzThnrQ74e1OOpVkd/HirzSPKitrTj86RY0HWqCu9kNY6HS5eKR+usarUZYis1oqXVgesP2FLwDlBYyeAG4QEOGDMHhw4cBAKeddhpeffVVXH755QCAN954A/369Yv53AwOaYahgeJNn5XIVGZAfrUFmiqgutQer8Lcla4+q8madSzSoO7G71uSUg4i6r3A2dMUo4JhM05H3mmnQ7Q5cMNX/4Kax/ehtKoFC24vxlTzOpw9PQ91xoEYenQ9vHt+hMmWhz6n9IMhz4zm3f9E/Z562He3+hdW7YrUPltT4/4G9DmlAuP/sT4Zl0vpKtZuR2nWVenCCy/Ehx9+iGuvvRa33347Zs2ahY0bN8JkMmHXrl14+OGHYz43g0MvxLuCxNBAieS1q2iDG9YK30DDVo+rR8dF+7nU9090gPB3P+jiLqK5wogL93+f0DIQUXwZbQr6jCiDpaoSWsMxiCGnoGbHPgBAw+Gj+NsH/fHLS07BScc2YJj7R2DfD9DcbhjMJrjtDpzYWwfVo0KoAopVhteu+mdXCkd4BLweFY5jbThpw9+TeamUjkSMg6PTrMVh8eLFcLl8f+OvvvpqKIqCV155BZIk4e6778bcuXNjPjeDQxpgYKBk0O/oWSvMsPUvhH2PI+L6Br35bCZ69rFwZVfyZP8MKgwNRJlFbl/MrX53A6RVG1A6oj8K+lYB6Ovfp6jYAqvcANnTBnXrN3A3NkGoKoSmQXV74XV54ah3wO3wwNOsRvwdpweKqbu/S+SlUabIkq5KZrMZZrPZ//2VV16JK6+80v+9EMI/cDpaHBzdC/Go8DM0UKJ0VWlv/tGBIxuPJTQ0xPMc0RCcypgoYylWGZpHwL7HgaZDTfA6XdAO7ofJ4qsATb3yJ/jXn+xA/0NfQjp6CCd27EXb8RNQ29ww5FtRdFIV+o4ZiOKBJSm+EqL09de//hUjR46M+Xi2OPRSaLcMVlgoXXR1x1/zCEyr25aSciRjDZR0/Rnk7wiizgJ/H0hGCZYKI/qeVoa+YwYir1853Mcb8OqQ/4KpKB84/CoMq/IhDx4MtWoISq8bAld+GTSDCdbDO+DZsQ3QNJgKLFCMStBCl13hzyMFyfAxDk1NTXj77bdRV1eHk08+GZdffjlk2ddG8Oabb+L+++/H9u3bMWjQoJhfg8EhTvjLh9KR/rl833pKShcWTNa4h0zAVaaJwnPXeyEbJTTsOwHFZIDq8q3y/OOanRAegfJTSlE1aQSM5jzYy05Cs7EEtW3lMMoqxrm2wHnkGFrrGuFsdECowjcOKiA88OeOIsrgBeB2796Nc845B0ePHvV3RTrvvPPw9ttv49prr8WqVatQXFyMRx99FLfeemvMr8PgQJQDLnHuTHURKADDA1H4GwmaR8B5yI16uQGOBgc0j4qWH9ug5MkQJwsoZhMgNLgVC2rbyqEKCaM93+HwmytxbGcdVLcGb5sK9wlPj1ociIIkscWhubkZ9913H9566y0cPXoU48aNwx//+EecccYZ0b8+gPvuuw92ux2LFi3CxIkTsXfvXixevBhnnXUWtm/fjl/+8pd49NFHUVxcHNP5dQwORJQSgRXnXGiJCO2mxa5LROGpDg0te51orWnzV/4Vq4z8PoUwVfSBVlgCRXhxtNmCFqeMCYWtsBTnAwBcTW44D/laKkJnUmJgp3Tyy1/+Elu3bsVLL72EqqoqvPzyy7jooouwfft29O/fP+rzffLJJ7j33nuxYMEC/7Zhw4ZhxowZmD9/Pp5++um4lJvBgYiSJtf/aCd6jAdRpoj0cxC4MKWSJ6N8TDEqzhoL57gLcNB6Mo60FuM/F68DAOy+8nzc8qsKjD1zFezfbsc3f/4aHrua8GugLCREjLMqRdfi4HQ6sXz5crzzzjs499xzAQCLFi3C22+/jWXLluHBBx+MugjHjh3DlClTgradffbZAIBZs2ZFfb6uJGVWJZfLhdNPPx2SJOGbb74Jeu7AgQO47LLLkJ+fj/Lyctx2221wu93JKBYRZZlMCCaZUEaiRIo2PJtKDRh07ijYz5+FjdqZWL+nD1Z85PQ/v/O7Q6jBIHiGj0PByUNQOqYISh4njaQYaCL2BwC73R700NdSCOX1eqGqKiwWS9B2q9WKdevWxVT0cOfTvy8sLIzpnOEkpcXh7rvvRlVVFb799tug7aqq4tJLL0WfPn2wbt061NfXY86cORBC4KmnnkpG0YgoDcR6Jz4bKuGh150N10TUnVgmS3CdaIbJ40CRuQ0nVQIlBYWorzsJiiJjwk/6od7pRXNhPxQ22eFudsNUaoDT0XETkj9X1CO9XMehuro6aPPChQuxaNGiTrsXFhZi8uTJeOCBBzBy5EhUVFTg1VdfxZdffonhw4fHUnIAwK5du2AwdFTtVdXX8rZzZ+dxjuPHj4/pNRIeHFauXIk1a9Zg+fLlWLlyZdBza9aswfbt21FTU4OqqioAwOOPP465c+di8eLFsNlsiS4eEaWJ0D/soWMAsqWCza5KRD49vWEgGyS47E6UHvgOg4bmoaWwGO4CEwb8zxJ4hQxFcsIgafDKJhgrK6C6NajOjspfpv6uoBTo5axKNTU1QXXXwEXYQr300ku48cYb0b9/fyiKgvHjx+O6667D5s2bo3/9dl2tCD179mz/1/qMS3qoiFZCg0NdXR3mzZuHt99+G3l5eZ2e37BhA8aMGeMPDQAwffp0uFwubNq0CVOnTk1k8YgojYX+sQ8MEJlaEYhUScrU6yKKVjQB2lJqhmyQIRqOo6jwB+QVlEKTjRjocULyugFZQVteKfoM/wkw/Lc499rfJrDkRF2z2Ww9vuk9dOhQfPLJJ2htbYXdbke/fv0wa9YsDBkyJKbXfv7552M6LloJCw5CCMydOxfz58/HxIkTsX///k771NbWoqKiImhbSUkJTCYTamtrw57X5XIF9Rmz2+1xLTcRpZfQoJCtiy5my3UQRRJNaJCNEqwlVphsedDa2iDXHoDFcARC9cKxbQfcLQ6YCvLQZ+GzCSwx5YwULACXn5+P/Px8NDY2YvXq1Xj00UdjOs+cOXNiLkM0og4OixYtwu9///tu99m4cSM+//xz2O32oGmhwpEkqdM2vRklnCVLlkR8fSLKfrJR6jTdYrrragpahgai8BSrDFtVESxlxYAQEC3N0ISA5nBi7z+2ouVwK0yFRkxZmOqSUlbo5RiHaKxevRpCCIwYMQK7d+/GXXfdhREjRuCGG26I/vWTKOrg8Otf/xrXXHNNt/sMHjwYDz74IL744otO/bsmTpyIX/ziF3jhhRdQWVmJL7/8Muj5xsZGeDyeTi0RugULFuCOO+7wf2+32zsNRiGi7DHTuwsf9h8Dd4MXmkf4K9kGmwJ3vTfFpeuZ7u6wMjQQdU0ySrCW26BYLRBeFULTIFxuuBpOoPWYA637XWhF+JlriKIWMENS1MdFqampCQsWLMDBgwdRWlqKq666CosXL4bRaIz+9ZNIEqIX7SvdOHDgQFA3osOHD2P69Ol44403MGnSJAwYMAArV67EzJkzcfDgQfTr1w8A8Nprr2HOnDk4evRoj/qJ2e12FBUVoampiYOpibLU+9ZTIBklyAap0/zs6Vzx7iow6INC07nsRIkQ7eQASp6MvuNLoJgNUIwyZIOC0W//I0Glo0RK5/qaXrbaZ++HLc8S+YDQ4x1tqJz3h7S8tnhL2BiHgQMHBn1fUFAAwDcYZMCAAQCAadOmYdSoUZg9ezaWLl2KhoYG3HnnnZg3b17Wv/FE1HOXOHdi7bCxUJ1axi/spIcFhgai7slGX5dlR0MbFKMMSfF9v+HMMyBUgbM2fZ3K4hHlpJSukKIoCt577z1YLBZMmTIFP//5z/HTn/4Ujz32WCqLRURpSDErkIxSxizsFO7OKsMCUc9pHgHhEVA9KoQmoHk0CFX4HrF0JyGKRMS4+FtiOu+kpaQsAAf4xj2E6xU1cOBArFixIlnFIKIMde62Ldh6+VS4W91o2NmEtjpPWlbEuU4DUfzo4UEzCsiKxMBAiZXEwdGZKjNu3RERARjz7lqUDC5H0dDCnA0NDCaUa1Snr6VBN2XLJkzZsimFJaJsJTQt5keuSFqLAxFRPAx57h3EtjxO4nBhN6LEcTf4Zk8z2BTIMu93EqUSgwMRUYx6cvc/3qGBIYRyjeYRaKvzQGlWMcO+I9XFoWyWggXgMg2DAxFRDFIRGogyWazd7PhzREmjCSCWbkc5NPaGbX7UI+vHTcD6cRNSXQyitBGpMsPKDlHvyEYJ+YPNkXckihe9xSGWR45gcMgSm84/K6Hn52A0os5meneFDQgMDUTBom1tkI0SCk6yYsCk/mh64jeJKRRRCA6OjoxdlbLEhI8/T3URiHIeAwNRePrPRncBQl/wDQCs/U2o/slA9J08FvKgoXB++AIkZyssl92c8LISUdcYHIiIeomBgSiySK0OmkdANkpQrDIUswJvmxvC7YYwW6Ga84GCUliSVFbKUfqCbrEclyMYHIiIiCihoumqJBklKCYZbU1ONO3aj9KSEhhK+gAmxgZKLCE0iBgWc4vlmEzF4EBpK/QPDe/qEhHlBtWtwd3ixol/Hkf/P/421cWhXMEWh4g4OJqIKI1wZWjKZZpHwGtX0VrThsYf7WiqaUp1kYgoAFscKG2xhYFyET/3lI1menf1OBRrHgF4BIRH4KJDXye4ZEQBhOZ7xHJcjmBwICKK0paLzwEAjPvgsxSXhChz9GRmpdB9iZJJaAIihm5HsRyTqRgciIiixMBA1DuBU6/qNE/vK1+1d88OO1C139JXen1uygFCi23l6BxqceAYByIiIkoaJU/2Tbna/jDYFBhsCpQ82R8oYhnrc+SuX8S7qJRjhBAxP3IFWxyIiIgoaSx9jf6vpYCWB+ER0LwCqlOD6tSwwjAiqi5LbFUgSjwGByIiIkoaKUw3JaK0oMXYVSmWYzIUuyoRERFR0shy56qH3trg38cgQTZKnJ6YkkofHB3LI1dkbYvDmorRmFa3LdXFICIiogDnbtuCj0ee5v9ehAyKVqwyhEFAscrQvAKrS0dB8wrMsO9IdlHjSr9m/Xqn7v4ulcWhcISIcTrW3AkOWdviwNBARD31zfRzU10Eopxy/o5v/Y9QskHyD5w2Fir+r9dUjMbq0lH+R6bRr3fq7u+geQU+7D8m1UWiEMlscTh06BCuv/56lJWVIS8vD6effjo2bdqUgKuKr6xtcSAi6qnTV3+a6iIQ5Sz9zvvaYWPDPi8ZJcgALjq0NYmlSqwL93+f6iJQCjU2NmLKlCmYOnUqVq5cib59+2LPnj0oLi5OddEiYnAgIiKilGPXHUo1oWkQMQx0jvaYRx55BNXV1Xj++ef92wYPHhz166ZC1nZVIiIiIiLqMU3E/gBgt9uDHi6XK+zLvPvuu5g4cSKuvvpq9O3bF+PGjcOzzz6bzCuNGYMDEREREeU8IbSYHwBQXV2NoqIi/2PJkiVhX2fv3r1YtmwZhg8fjtWrV2P+/Pm47bbb8OKLLybzcmOS8ODw3nvvYdKkSbBarSgvL8eVV14Z9PyBAwdw2WWXIT8/H+Xl5bjtttvgdrsTXSwiIiIioripqalBU1OT/7FgwYKw+2mahvHjx+Ohhx7CuHHj8Ktf/Qrz5s3DsmXLklzi6CV0jMPy5csxb948PPTQQ7jgggsghMD333cMCFJVFZdeein69OmDdevWob6+HnPmzIEQAk899VQii0ZERESUsaJdWZt6INY1GdqPsdlssNlsEXfv168fRo0Knhls5MiRWL58efSvnWQJCw5erxe33347li5diptuusm/fcSIjsVc1qxZg+3bt6OmpgZVVVUAgMcffxxz587F4sWLe/TmExEREeUahoYEEDGuHB3l2g9TpkzBrl3B/38//PADBg0aFP1rJ1nCuipt3rwZhw4dgizLGDduHPr164cZM2Zg27aO9RU2bNiAMWPG+EMDAEyfPh0ul6vLuWxdLlenwSdERERERL2RrHUc/u3f/g1ffPEFHnroIezevRt//etf8ec//xm33HJLgq4sfhIWHPbu3QsAWLRoEe69916sWLECJSUlOO+889DQ0AAAqK2tRUVFRdBxJSUlMJlMqK2tDXveJUuWBA08qa6uTtQlEBEREVGO0KdjjeURjTPOOANvvfUWXn31VYwZMwYPPPAAnnzySfziF79I0JXFT9TBYdGiRZAkqdvH119/Da39Tbznnntw1VVXYcKECXj++echSRJef/11//kkSer0GkKIsNsBYMGCBUEDT2pqaqK9BCIiIqKYrTCM8D+IYjFz5kx8//33aGtrw44dOzBv3rxUF6lHoh7j8Otf/xrXXHNNt/sMHjwYzc3NABA0+MNsNuOkk07CgQMHAACVlZX48ssvg45tbGyEx+Pp1BIReA6z2RxtsYmIiIiwwjACstF3c/IS586YzsHxBdlJCAEhoh8cHcsxmSrq4FBeXo7y8vKI+02YMAFmsxm7du3C2WefDQDweDzYv3+/f/DH5MmTsXjxYhw5cgT9+vUD4BswbTabMWHChGiLRkRERBRkpW0kZth3+L9npZ+6pMU4ODqWYzJUwmZVstlsmD9/PhYuXIjq6moMGjQIS5cuBQBcffXVAIBp06Zh1KhRmD17NpYuXYqGhgbceeedmDdvHmdUIiIioqhtPHcy3M1utDW64bWrEJ7cuRtMvRPLQGf9uFyR0HUcli5dCoPBgNmzZ8PpdGLSpEn46KOPUFJSAgBQFAXvvfcebr75ZkyZMgVWqxXXXXcdHnvssUQWi4iIiLKE8+XFcP6zBqX3/B8AwBmfbgAAfNh/DDSvgOYRncYisNWBKDYJDQ5GoxGPPfZYt0Fg4MCBWLFiRSKLQURERFnKev09EC8+AADYdP5ZsB9s8QUGrwjb2sDQQF0RWmytB1Eu45DREhociIiIiBLhode8KCxQMGKAG+PHXwTtmd8hv08+jqyrh3WACQAgGSXIALT2AMHQQN2JZWpV/bhcweBAREREGWXKZZ8EfT/juim4+sL+GFRUjEMbX8KF+79PUckok3GMQ2QMDkRERJSR8osKcdKpg1HZR4FbmGC95m6c9MH6VBeLMhRbHCJjcKAe62qhGzb9xq63A/b4f0JEueDKW3dDCAFN06AoCgaMGIyK6hL06ZOH/pUKBvdpg0VuAwAMee6dFJeWKHsxOFCXeroipr4fK6vBQt+XFYYRmOnd1e37Gq8gEM8ZRALPFXqe3qyamgmfly8nnwlNFZj81cZUF4UoZ939jBNvPjUMv33WCUWRYTTKsFhkVJbLKMrXUJrnRLG5BWbNiYZvPkHp6eelusiUoYSIsatSDi0AJ4kMv1q73Y6ioiI0NTVx7YcYhFYKe1MRjCQdK4qJvF6KD9koQWpf5RVA0EJOqfDxyNNw/o5vU1oGomy25lsXDLIGRRKQJQ0GWYMEX1VFkgRkSeCMESUpLiVFK53ra3rZts+7AoUmY9THN7s9GPXsO2l5bfHGFocc1FVlOdGV6FTenWZAyA6yQcLq0lEAgOkN21NcGiJKhH55jTBKHiiSCgVeGDQPpPb5LvUAATA4UPxxjENkDA45IJcrzbl87dkgtLVBJxklrKkYjWl12wD4FnrStwPoNKPK2mFjMXX3d3EpE1sbiBLr1OGVQd/Xf7fOFxyEgAStPUSMQfOXKyCpXhSc9dOUlJOyD2dViozBIUN018+8u31zGd+H7CIbOgcIPTAACAoY/xh8aqf91w4bCwBxCxBE2SAdxgTs3rMPMlSY1DYMOHlMp+cVbxtkTYWkqYDQIGkqWte/CcXrRt5516SgxES5i8EhQwSOP4gmROQahoXspweEcEGiJ/QAEdqSwZYEykWpDg0HftwBi1AhCxWK6sbxrRtQPmYyGr75BLLwQtJUKF43JD04tP8rqSrgdcG58llIXg/g9cLys9tSei2U+dhVKTIGhzQRa4U32yvK3QWjbL/2XCeH6aKUSB+PPM3/NUMEUXzt3/0DJKFh0PBT/Ntqd2yGWaiQhIAsVMheN2ThRdOmNTD4WxgEZK+rIzSovn+hqpA8LsDrhVC9gKbC+coSWH+xIIVXSZmOXZUiy7rgwMpkdtGnMA3dRrlLeAQkowTNK2JuddDPA3RueQCCQ0RPyLKMc7dtibksRNnO1loLCIETWw5B0lQUTZiGypHj0fzV+75AIDRIqscfFnwBwev72uMCNOEPDEL1bRdut+9rVYVof7Q8/R8ouPmRVF9uVurJFOOBf68zsXcEg0NkWRMcVpWMR56kpLoYFGdd/RIiCqUHCl1Pg0XocdGSZRkA8OnocZ2eY5gg8jG6WvzjEyAEWte/CWgqFH3Qsx4UNBXQBCTN2xEWvB5fV5D24ABNQKje9uCgf98RHig+AoNC4N/fwBt6oX+Xu5u10SH4f5MNsiY4UHYJDQyZcreC4kfziKDuSuGCQOi2WMNDrPTQQJRMjk9fC7tdSDIgSYAkQ0hyWs02VHjmJXB88jdfQBCa79EeEiDaZ0ryetu3C3+rgvXqf4fzlSUdrQxqe6uDpkG43L4Fu1QVwtseHHKor3myhAsD2Xojj2McImNwoLTU07sYlJuiaSVIVHjoLjSwpYESwbnqOUCWEPRplto/h0KDFBAcIMlwfPxX5J1/XSqKGlbeedeg7e9PA0L4AwKEr6ImhPC1JrQHC6H5WiIAQG1p7tjXq/rDgub2tIeFgPCQQxU4ij92VYqMwYGI0pbmEZDRMQ6hq1YHoGOWpXChInSfUL3trhTq09HjGB4ortre+hMk2fcZtVxxa8f2d/8reEc9OACwzpyPtvef8T8l9O0z5sG58tn2/TsHYOv/uKl3ZX3nKX9F33LlbwAAztcf9z2pqrBec7dv28uLOwKCpvlaE4SA8Koo+NclaP7fd6P5T3dC83oBTYPm9T2veVXf9x4vNG9AcGjf55+/+hkGPfNWr64hV+X6TTqhCWgqg0N3GByIKO0FVuz18NBdt6SuBj531/oQbXjQNK3LVgeGhsyza9Z0SLIESZYw/JWVqS6On/PlxbBefw9Em6Nj298ejXygLMH5/5a2tz4Ef66dbzwBqZsWs7Y3n/R/rd/Bt/7LHeHL9/+W+kKCb+egr63X3wMAcLzwB18waG9VaHnmdyj41UNQm1vaWxdEezDwBQShCTQ+fIsvRLQHBKG1tza03xEWqgrNq/qDQ+C/Q19YEfn9Ib9cDwuBfJ+vWLoqRRccli1bhmXLlmH//v0AgNGjR+P+++/HjBkzon7tZJOEEBkdk+x2O4qKivCaPJSDo4myWOB4h67Wcgis+IcLCOGCQXfdmCIFCU7bmv6+n3k+ALSHAhmj3/5H0PM/XPs/AAAnv7rKv23vDZcBAFS3F8NfWYmdV18MSZYhG2RIsuwPGPo22aD4v9f/BQBJUfyvXfHwiwCAY/fe4OtuJMsoX/SXmK6p+U93+r/u7k+4pAeGgJCgt1p0pcsKUHtlKuj19DAQ+Hz78fogZdEeBPR9tPbBzIHPCU1AiMBgELBd06B5tY6WhYDnNK8K1dMRJjRV4PTVn3Z7fbmkJ7MaJTM0OISKWdoeNDU1wWazJe11e0KvS2666kIUGKO/p97i8WLC8n/0+Nr+/ve/Q1EUDBs2DADwwgsvYOnSpdiyZQtGjx4d9esnE4MDEWUUPUB0FRJCK/vdhYuu9gnFxeLS21dn/8RfIZbb/5WUjoo8AMhK+3a541+9gi8rUsB2OWgf1e2Fx+kJOkbfX9+3IzhInYKF/nWncxt8f6/6LX0l5utuWDw/6Hv9evQ7pp1aFaQetKiFqRKIkFAAoFOQ8N+lDajc68eIgJYILWAcQmA4CGw1CBcQNDVkm9q+vyqgtW87c90Xka8vx4ROoRruuWTJhODw9c8uiDk4THzro15dW2lpKZYuXYqbbupdV8FEY1clIsooWns3JL1KpK/pAMDfhUnfDnSMbwh9vqt99P0CCY/A1N3fxe8iqFtdjRH5bOx4/9eyIkE2dlT89U+Eqglf5VwTkOX2z4IiQfN2VKQ7woSvAqvJoaGi47yqR4XXFTyNZGAYCWp9CBMo9P0DtwPwP1dzy78E7BNcPn/FX5Z8A5/RdYtBpJaEaIS2OgR+L0RHQPA9F9LSEFC5D/xe3ye0NSHwucCA0LG/gOppH0AdEBKEqkFTBSZ/tTFu152N0iEwZJJUDI5WVRWvv/46WltbMXny5JjPkywMDkSUkfTpWgODQrgAoT8HhB9IHfi8/9wRBlNTfKwfN6HTNtXtqzSGWxcjkAZAag8GqiogKe3/Z4oEfbp4obRXtjXJf1Rgi4Tm9W2VQrry6IEiMC4EtjoEkmUJkhLcohApUADoFCoCjw8sS8fX4bsbxTMwAF2HhsB+34GV/cDnwgWE0P301oJOoUENCBPtAUF/TnW3d3tSO1obhCo4lqgbDAex6W1wsNvtQdvNZjPMZnPYY77//ntMnjwZbW1tKCgowFtvvYVRo0ZFX+gkY3Agoozlb33oIkAA0bdChNvvwv3fRyzL2mFj2SoRgb4ityzL/sp2IF+FsWcDE2XIEErnP/Cq2tHKgPZ+9nLAa2kAJEUG/KFBat/afl5ZgqofH8Lr9HacO7AsAd9LSkfLgGKUg1oRwgUK/bnA/ULDQFcDmTvv17MQ0V3FqHNw6NxNKfjrjgCgz0YTLjToz2nejhAQGA70FgShBocJADjnu809uq5cwmCQnqqrq4O+X7hwIRYtWhR23xEjRuCbb77BiRMnsHz5csyZMweffPJJ2ocHBgciynhaQMU/sIrVKUSEHBf6PBA+SPQEQ0PX1g4b6/9aD2UisILf/r3q6tnKsvo5VLfWUYlXO1ocgJDKrRpaodbCBgNZkfwRQg8AgVSP7254uGM7Xtt3DZIswau0h4WAMKG3UHQ1/qJTNyWEBJ+AqSLlMOXoLjxEupMaOg1ld60Mgft3ankICAVnfLoBAPDl5DP9xwi1c6gIDI0cQxSMISF5ersAXE1NTdAYh65aGwDAZDL5B0dPnDgRGzduxB//+Ec888wzXR6TDhIaHH744QfcddddWL9+PdxuN0499VQ8+OCDmDp1qn+fAwcO4JZbbsFHH30Eq9WK6667Do899hhMJlMii0ZEWSowRCAwUBglqKHdl0JaHgAE7aPvt6YieJaLaXXbsKZidNiuTBcd2tqr8qe7D/uP6fG+/pAQ+L57JQhDx9S3ckCck4wSVKcWMbjp5+jJa/dEpBXAQ8ON6uxZxSJ0AL//mgNaXDoN2m4PG76vI8+GFGvfaqF2voZOwSHg+9DX8YeGgH0CW4uER0DzCvxj8KkAfK12H/Yf4w/q+v/x9IbtMZU/2UIr713NUhSPc1Pq9Larks1mi3lwtBACLpcrpmOTKaHB4dJLL8XJJ5/sDwVPPvkkZs6ciT179qCyshKqquLSSy9Fnz59sG7dOtTX12POnDkQQuCpp55KZNGIKMdoIZXR0Kqi2sU6DuGqlKtLfU3JgVWvaXXbelfADBLaStOlcPt5BYRBguSVoFjlTl2T9Apnd2QEv/c9fu0uqO1ni2ZMi6dZjXyMs+PL4CmE1U5TCocLFUDnYBGqp5WcSItaiTDPhwaBoOcC3l+9K58eKvXnAn8mVtpGYoZ9R4/KqutuRqBk6K5C39uyMSykJ00V0OTog0O0i8b97ne/w4wZM1BdXY3m5mb87W9/w8cff4xVq1ZFPjjFEhYcjh8/jt27d+O///u/MXasr5n64YcfxtNPP41t27ahsrISa9aswfbt21FTU4OqqioAwOOPP465c+di8eLFaTddFxFlj9AgAYQPCV0FCgBA+4JymXLXNJJwLSuhQltU9BAVTlcL7mnwvdd6q4HUPkZF8/oekVocVI+A5I3foOCuWpsiER7R82PaQ0RXgUHfJhm1oO91PWlB6e5962nY6+ococdPq9vm/79fXToKmld0Gwx6EhrSpTIdTTlWGEakLNhQ/CVrVqW6ujrMnj0bR44cQVFREcaOHYtVq1bh4osvjvq1ky1hwaGsrAwjR47Eiy++iPHjx8NsNuOZZ55BRUUFJkzwzaSxYcMGjBkzxh8aAGD69OlwuVzYtGlTUJcmIqJECw0TuVQhCBcAQreFC0j6tpW2kUHb9QpoaMuAXhlWrHKnfb12NarWjHjNehVtYAB81+FxRN8XWu8+p4/miLSwYTRdrkJFCmA9fq/DnPN96ykd52nf1pMFx6KRKT9/sbQ+BO6bLoGJkue5555LdRFilrDgIEkSPvjgA1xxxRUoLCyELMuoqKjAqlWrUFxcDACora1FRUVF0HElJSUwmUyora0Ne16XyxXUByx06isionjIlEpLvHQVAHoq0h1lvaIpWWVfF6UwldZIrQ2aR0DJk4P2704sg9yjIRulsC1X0Qg3JicoVDg7H9Pr10mCWO7Ep/pnLlUV+O6um6EiuYSIcXC0iOEmQoaKOjgsWrQIv//977vdZ+PGjZgwYQJuvvlm9O3bF5999hmsViv+8pe/YObMmdi4cSP69esHwBcwQgkhwm4HgCVLlkR8fSIiik20/dB76hLnzrDbw9257o4ay13+DJXsyn68hav0xhIOoq089/Q14lUpT1TgYWhIvlQsAJdpJCHCrC/fjePHj+P48ePd7jN48GCsX78e06ZNQ2NjY9BYheHDh+Omm27Cb3/7W9x///1455138O23HVOvNTY2orS0FB999FHYrkrhWhyqq6vxmjwUeZISzaUQEUWU6rugmYKVHEqUTPoZ5M9B1xxCxSxtD5qamtJuDKvdbkdRURE+OXcSCgzRd8Zp8Xpx3qdfpuW1xVvU7055eTnKy8sj7udwOAB0nuZOljtm0Zg8eTIWL16MI0eO+Fsg1qxZA7PZ7B8HEaq7VfiIiOIt1TO7EOWKdPkZY+U/d7HFIbKEjXGYPHkySkpKMGfOHNx///2wWq149tlnsW/fPlx66aUAgGnTpmHUqFGYPXs2li5dioaGBtx5552YN29e1ic2Isos8R74mW1menexwkW9Eu/PT7ifU35GiXonYcGhvLwcq1atwj333IMLLrgAHo8Ho0ePxjvvvIPTTjsNAKAoCt577z3cfPPNmDJlStACcERE6Spefbezjf4esHJG6UAfoM3PI/VUb1eOzgUJXQBu4sSJWL16dbf7DBw4ECtWrEhkMYiIEo5hwoeVNEon/DxSNIQqIKQYuipFuQBcJktocCAiymU9qbRkW7jgHV4iylRCBbSYgkMCCpOmGByIiFIo3aeEJCIi0jE4EBFlAd7lJyLqHSFinFUpupUNMhqDAxERERHlPE0V0BB9CNA4xoGIiIiIKHcIVYOAFNNxuYLBgYiIiIhyntBinFUphxaAkyPvQkREREREuY4tDkRERESU8zjGITIGByIiIiLKeUIVEDEEBy4AR0RERESUQzRVQIthalUth8Y4ZHxw0OfOdYjcGdFORERElEn0elourXmQjTI+ONTX1wMAbhD7EEPrEhERERElSXNzM4qKilJdjLCER0DInFWpOxkfHEpLSwEABw4cSNsPYiay2+2orq5GTU0NbDZbqouTNfi+Jgbf18The5sYfF8Tg+9rYsTjfRVCoLm5GVVVVXEuXfxoXgEthuDArkoZRJZ9M8oWFRXxl0QC2Gw2vq8JwPc1Mfi+Jg7f28Tg+5oYfF8To7fva7rf4GWLQ2QZHxyIiIiIiHpLU0VMrQexDKjOVFwAjoiIiIgoyZ5++mkMGTIEFosFEyZMwGeffZbqIkWU8cHBbDZj4cKFMJvNqS5KVuH7mhh8XxOD72vi8L1NDL6vicH3NTFy5X0VHi3mR7Ree+01/OY3v8E999yDLVu24JxzzsGMGTNw4MCBBFxZ/EiC82IRERERUY6y2+0oKirC65ZhyJOUqI93CBVXt+1GU1NTj8eATJo0CePHj8eyZcv820aOHImf/vSnWLJkSdRlSJaMb3EgIiIiIuot4RExP6LhdruxadMmTJs2LWj7tGnT8Pnnn8fzkuKOg6OJiIiIKOc5oMW0JpgDvq5Kdrs9aLvZbA7bvev48eNQVRUVFRVB2ysqKlBbWxt9AZKIwYGIiIiIcpbJZEJlZSXm1u6L+RwFBQWorq4O2rZw4UIsWrSoy2MkSQr6XgjRaVu6YXAgIiIiopxlsViwb98+uN3umM8RrtLf1WDy8vJyKIrSqXXh6NGjnVoh0g2DAxERERHlNIvFAovFkpTXMplMmDBhAj744AP87Gc/82//4IMPcMUVVySlDLFicCAiIiIiSqI77rgDs2fPxsSJEzF58mT8+c9/xoEDBzB//vxUF61bDA5EREREREk0a9Ys1NfX4w9/+AOOHDmCMWPG4P3338egQYNSXbRucR0HIiIiIiKKiOs4EBERERFRRAwOREREREQUEYMDERERERFFxOBAREREREQRMTgQEREREVFEDA5ERERERBQRgwMREREREUXE4EBERERERBExOBARERERUUQMDkREREREFBGDAxERERERRcTgQEREREREEf1/Dfdazve5KL4AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 6 + }, + { + "cell_type": "markdown", + "source": [ + "## use the `convert_longitude` to convert the longitude values to range between -180 and 180." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "new_dataset = dataset.convert_longitude()" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:37.199547Z", + "start_time": "2024-12-06T22:28:37.182305Z" + } + }, + "outputs": [], + "execution_count": 7 + }, + { + "cell_type": "code", + "source": [ + "new_dataset.plot(\n", + " band=0, figsize=(10, 5), title=\"NOAH daily Precipitation 1979-01-01\", cbar_label=\"RainFall mm/day\", vmax=30,\n", + " cbar_length=0.85\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:40.889878Z", + "start_time": "2024-12-06T22:28:40.688072Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZb3/36dN3Z2tye6mh5JOCYGEBIRIi6EJIgpyFVC5oogXQRRFBSwgFoTrpYgi4FWEe0G8iiDtR0JvoYUWAulls9k6s1NPeX5/nDlnZ2ZndmdbdpOc9+uVV3ZOfc4zZ855Ps+3SUIIgYeHh4eHh4eHh4eHRx/Io90ADw8PDw8PDw8PD4+xjyccPDw8PDw8PDw8PDz6xRMOHh4eHh4eHh4eHh794gkHDw8PDw8PDw8PD49+8YSDh4eHh4eHh4eHh0e/eMLBw8PDw8PDw8PDw6NfPOHg4eHh4eHh4eHh4dEvnnDw8PDw8PDw8PDw8OgXTzh4eHh4eHh4eHh4ePSLJxw8dgskSUKSJGpqaujs7Cy6zdVXX40kSfzsZz8reZyHH36YT3/600ycOBG/38+4ceNYunQpt9xyC7qul9WWOXPmIEkSM2fO7HO7u+66C0mSOO+88/rcbtq0aUiSxIYNG8o6f384xxsqTvuvvvrqvOVOP991111DPkcpzjvvPPc7d/4Fg0FmzZrFN7/5TZqbm0fs3INhxYoVZX3X5bBhwwYkSWLp0qVDPtZQGc7rGm7WrFnDr3/9a8466yz22Wcf9z7p795ob2/n8ssvZ7/99sPv9zN+/Hg+/elP8+abbxbdvti9WOzfpk2beu37yCOPcPzxx1NdXU0oFOKAAw7gF7/4BYZhDPq633vvPc4880zGjRtHMBjkgAMO4Ne//jWWZRXdfuXKlVxzzTWcdNJJjBs3DkmSmDVr1qDPP9ba4eHhsWtRR7sBHh4DobOzk1//+tdcc801A9ovlUrx+c9/nvvvvx9Jkli0aBFHHXUU7e3tPPPMM6xcuZKbb76Zhx9+mKlTp5Y8zquvvsp7770HwAcffMDLL7/MwoULh3RNHqU54ogj2G+//QBoaWnhxRdf5MYbb+Tee+/lhRdeYNq0aaPbwF3IXXfdxfnnn89VV13VS8wNlquvvpprrrmGO++8c0yKg7649dZbuemmmwa0z/bt2znyyCNZt24dTU1NnHjiiWzbto2//vWv/OMf/+Cf//wnxx13XN4+Rx55ZMnjrVmzhhdffJGpU6cyefLkvHXXX389V1xxBbIss2jRIsaNG8eLL77It7/9bZ544gn++c9/oqoDewW/+OKLHHvssSQSCRYuXMi0adN4+umnufTSS3nuuef43//9316TBv/xH/9RUhQNlrHSDg8Pj1FAeHjsBgBClmXh8/lEJBIR7e3tvba56qqrBCCuu+66XutOP/10AYgDDzxQvPvuu3nrOjo6xGc/+1kBiGnTponOzs6S7fjGN74hANHU1CQAcfHFF5fc9s477xSAOPfcc/u8tqlTpwpArF+/vs/tysU53lDp7OwU7733nti5c2fecqef77zzziGfoxTnnntu0XO0tLSIQw89VADijDPOGLHzD5R4PC7ee+89sW3btiEfK5PJiPfee09s3Lgxb7lzP1111VVDPodDf9/lcF7XcPP73/9efOc73xEPPPCA2LRpk3vfb9++veQ+J598sgDE8uXLRXd3t7v8/vvvF5IkiXHjxolYLFZ2Gz7zmc8IQFx55ZV5y19++WUhSZLQNE08+uij7vLOzk5x1FFHCUD87Gc/G8DVCqHruth3330FIG644QZ3eSwWE4sXLxaA+MMf/tBrv8svv1z89Kc/FY899ph47bXXBCBmzpw5oHOPxXZ4eHiMDp5w8NgtAITf7xdf+9rXBCC+//3v99qmlHD4y1/+IgDR2NjYaxDsYJqmOP744wUgLrzwwqLb6Louxo8fLwDx+OOPC0CMGzdO6LpedPvdXTiUYjSFgxBCrFy5UgAiEAiITCYzYm0Ya4yGcNid6E84bNq0SQBCVVWxYcOGXus//elPC0DcdNNNZZ2vq6tLBINBAYj33nsvb92XvvQlAYgLLrig135vv/22++wwDKOscwkhxP/8z/8IQBx00EG91jkD8Xnz5vV5jPXr1w95wD5W2uHh4TE6eDEOHrsV3/ve9/D7/dx00020t7eXtc8NN9wAwA9/+EPq6+uLbiPLsuv2cNdddxU99qOPPkpLSwtHHHEExx13HEuWLGHnzp08+uijg7yawWMYBtdddx37778/gUCAffbZhx/84AdkMpmi2wsh+Mtf/sJZZ53FjBkzCIfDVFZWsnDhQm655ZaifsmlYhyKMW/ePCRJ4oMPPii6fsOGDciyzP77748QYkDXWsj8+fMB2/2stbUV6PFDX7FiBY8++igf//jHqa6uRpKkvJiYf/zjHyxbtoy6ujoCgQAzZszgBz/4Ad3d3UXPpes6t9xyC0cccYTrpz5jxgwuuOAC3n77bXe7UrEAufEgL730EsuWLaO6uppIJMLxxx/Piy++WLSvCmMcli5dyvnnnw/ANddck+db78SaDPQ7njZtmuvyd/755+cdc8WKFX1eF9j34G9+8xsWLFhARUUFFRUVLFy4kFtvvRXTNHttv3TpUjeW529/+xuHH3444XCY2tpazj77bLZs2VL0OxguXnvtNQCmT59e1B3R6e//+7//K+t4DzzwAMlkksMOO6yXr/6qVavyjpnL3Llzqa+vZ+fOnTz//PNlt/+hhx4C4NOf/nSvdfPnz2efffbh7bffHrZYqbHeDg8Pj9HBEw4euxUTJ07kggsuIBaL8atf/arf7VtbW3nllVeQJImzzjqrz21nz57NwQcfTCqV4qmnnuq1/r//+78B+Ld/+7e8/53lu5Kzzz6b733vezQ3N/OJT3yCAw44gBtuuIFPfepTRQfm6XSaz33uczz22GOMHz+eU045hUWLFvHOO+9w0UUX8cUvfnFI7fnKV74CwO9///ui6++44w6EEHz5y18ecuB2LBZz//b7/Xnr7rnnHpYvX048Hmf58uUcdthh7vkuu+wyTj31VJ5++mnmzZvHSSedRCaT4Sc/+QlLly4lHo/nHSsej3Psscdy0UUX8dZbb7FkyRJOOeUUqqurueuuu7j//vvLbvPzzz/PUUcdxZYtW1i+fDkzZ87kiSee4Oijj+bxxx/vd/9PfOITHHHEEQAcdNBBnHvuue4/JwZkoN/xpz/9aQ466CDAjiXJPWZjY2Of7TFNk09+8pN84xvf4MMPP+S4447juOOO4/333+drX/saZ555Zskg2VtuuYUzzjgDIQSf+MQnqKio4N577+WYY44hmUz22xeDxfl+a2pqiq6vra0FKNsP/09/+hPQ8xwYyXPlbnvIIYcUXe8sH+k4grHSDg8Pj1FiNM0dHh7lQtZVSQghtm7dKgKBgKisrBStra3uNsVclRyXon333bes8zguBoWuUI5bgs/nE21tbUIIIdra2oSmaSIYDIqurq5exxopV6V77rlHAGKfffYRW7ZscZevW7dOTJo0SQC9XJV0XRcPPPCASKfTectzYwZWrlxZtP2FrjHF3Fs6OztFKBQS48eP7+U+ZBiGmDhxolBVVTQ3N5d1jX25Kt12220CEBMnTuy1PSDuvffeXvvcd999AhDz58/P6+dMJiP+/d//XQDiW9/6Vt4+zr3w8Y9/PO8+E0KILVu2iFdffdX9/NRTTxX9rp2+AsT3vvc9YVmWu+6WW24RgJgwYYJIJpPucseN4+ijj847Vn+uSoP5jvtzVSp1Xb/85S8FIA444ACxY8cOd/m2bdvEzJkzBSBuvvnmvH2OPvpoAYhwOCyefPJJd3k8HhdLliwRgLjjjjuKtqMc+nNVeuyxxwQgGhoaiq6/7rrr3O+qvziHLVu2CFmWhaqqedfv4FzPrbfe2mudaZqui9Nll11WxpXZ1NTUCEC8+eabRddfcsklAhD/+Z//WfIYw+EiNFba4eHhMTp4FgeP3Y4JEybw7//+78RiMX75y1/2uW1bWxsA48ePL+vY48aNA3BdYBzuv/9+kskky5cvd2cLa2trWb58OclkkgceeKDkMe++++4+0zhu3LixrLY53HrrrQD8+Mc/ZuLEie7y6dOn84Mf/KDoPqqq8qlPfQqfz9freq+77jqgfBeNYlRVVfHZz36WlpYW/v73v+ete+SRR9i6dSunnnoqDQ0Ngz7Hzp07ufPOO/n2t78NwFe/+tVe25x00kl89rOf7bX82muvBeAvf/lLXiYmTdO46aabaGxs5Pe//707S759+3buuusugsEgf/zjH6mrq8s73sSJE1mwYEHZbZ86darrYuTw1a9+lUWLFrFt2zYefPDBso9VipH+jnP5z//8TwBuvPHGvN9WU1MTv/jFL/K2KeSb3/wmxxxzjPs5FApx2WWXAfD0008PS/uKsWjRIgKBADt27OBf//pX3jrLsvjjH//ofs61ahXjz3/+M5ZlsWzZsqLPlqOPPhqwf/uF3Hfffa5lpb/z5OK404VCoaLrw+Fw3nYjxVhph4eHx+jgpWP12C254ooruP322/mv//ovLrvsspKxCyLrtiPK9Kt3tit0p3HckT7/+c/nLf/85z/P3//+d/70pz+5PuiF7Lvvvn2mdLz//vt7ucmUQtd1XnrpJWRZLupjfPbZZ7tuQ8V44403eOyxx9i4cSOJRAIhhDt4Wbt2bVltKMWFF17InXfeye9+9zvOOOMMd/nvfvc7AC644IIBH/P8888v2q/nnnsuV1xxRa/lp556aq9lLS0tvPnmm8yePbto7Y1AIMChhx7KQw89xNq1a5k5cyZPPfUUpmly4oknMmnSpAG3u5AzzjijaOrNs88+m5deeolnn32Ws88+e8jngZH9jgE2bdrEpk2baGxszBMADieffDLV1dWsWbOGnTt3umLc4YQTTui1z4wZMwBbsI0UkUiEiy66iF/96lece+65/Pa3v+WYY45h+/btXHnllaxZswZZlrEsC1nue07NcVMqfB44XHTRRdxyyy28+OKLnHfeeXz/+9+nvr6eRx99lIsuughVVTEMo9/zFKOUq1+5z7jhYqy0w8PDY9fiCQeP3ZKmpiYuvPBCbrzxRn7xi19w/fXXF93OERQtLS1lHXfnzp0AeTPMmzdvZuXKlVRXV3PyySfnbX/KKadQVVXFihUr2LJlS9FB5pFHHtlnsbQVK1aULRza2trIZDI0NTX1mlkGqKyspLq6uleRvEwmw3nnncdf/vKXksceyOxnMRYuXMj8+fN5/PHH2bhxI1OnTmX79u08/PDDTJkypeiAsT9y6zgEAgGmTp3K8uXLOfjgg4tuP2XKlF7LHIvOe++91298RWtrKzNnzmTz5s2ALfqGg1K1QRzrx7Zt24Z8jl3xHUNPW0vV0JAkialTp9LZ2cm2bdt6CYdiv5GKigrAjtMYSa699lq2bNnCfffdx+mnn+4uV1WVX/3qV1x66aUAVFdXlzzG6tWrWb16NZFIpKhQBdsi9eCDD/LpT3+au+++O8/ycOCBB3L44Ydz++2358VAfOtb3+pl6TzyyCP58pe/DNh91NHRUfJZkUgk3O2Gwlhph4eHx9jEEw4euy3f+c53+O1vf8vNN9/Mt771raLbOMGf69evp6Ojo2SwooOTDSV3YPqnP/0JYacu5thjjy26n2VZ3HPPPa4bzUhRyiLSHzfccAN/+ctfmDdvHr/4xS845JBDqKmpQdM0PvjgA2bOnDksM4Vf+cpXuPDCC/nDH/7gFhYzDIMvfelLg5pd/fKXvzygwmSBQKDXMifDT1NTU7/ipdAlaTgqcPfFcM7O7qrv2KGcvim2zUj3aV/4fD7uvfdeLr74Yh555BFaWlqYMGECn/nMZ5AkCSGEW1G6FI718YwzziAYDJbc7uMf/zgfffQR9913H2+99ZZbCO7MM8/kC1/4AmBnWHK4//77i7otOgP2KVOm0NHRwZYtWzjwwAN7bedkpSomngfCWGmHh4fH2MQTDh67LY2NjXz1q1/lhhtu4Oc//7nrW5vLuHHjWLBgAatWreLee+8t6hfv8O677/Lmm2/i9/vz0ig6bgldXV0899xzJff/7//+7xEXDvX19fh8Ppqbm8lkMr2sDrFYrJe1AXB96J2BZS7r1q0btvadc845XH755fzhD3/gBz/4AXfccQeyLA85a9NQcGa4Gxsb+7T85OJUAf7www+HpQ2l4lg2bdoE2HE7Q2VXfcdOW9evX19yG+e6mpqahu28w8kRRxzhZqly+M1vfgMUT6HqYFmWa9Ep5aaUS3V1dS/XQcMwWLlyJbIsc9RRR7nL+0tfetBBB/Hmm2/y2muvceKJJ/Za76SbLTaYHwhjpR0eHh5jEy842mO35jvf+Q6hUIhbbrmFHTt2FN3GcT/40Y9+1MsE72BZFt/85jcB23/emXletWoV7777Lg0NDRiG4Voecv9ZlsWkSZN4++23RzwFoaZpLFy4EMuyigZk33vvvUX36+joAHoGxLn8z//8z7C1r6Kigs997nNs2bKFyy+/nHXr1rF8+fJhiRMYLJMmTWLmzJm89dZbfQ52c1m6dCmKovDwww+zdevWIbfhgQceKFrbwPm+CgexxXBEomEYRdcP5jvu75jFmDJlClOmTKG5uZn/9//+X6/1//znP+no6GDmzJm93JTGKplMhptvvhnoOxbHcUmcPHmyGwA9UP785z+zY8cOPvGJTxT9rkpx0kknARRNA/z666+zbt065syZw/Tp0wfVrt2tHR4eHqODJxw8dmvGjx/P1772NRKJRNEMJgCf+9znOPXUU2lubua4447jvffey1vf2dnJOeecw2OPPcaUKVPy4iUct4TPfvazKIpS9PiSJPGZz3wmb/uRxJnB/OEPf5gXTLpx40Z+/OMfF93HCT697bbb8pbff//9edlkhoMLL7wQsDPuwOCCooeb73//+5imyRlnnJFXuM3ho48+4g9/+IP7ecKECXzhC18gmUxy3nnn9SoIuG3bNndmtRw2btzoFltzuP3223nhhRdobGzM87cvhTPTv2bNmqLrB/Md93fMUlx88cWAnSHJiQsCaG5u5vLLL8/bZiyxadOmvPaCbaX7t3/7N9asWcN5553HwoULS+7vWB/POeecfl3vVq1a1cs17PHHH+fiiy8mEAi4hSnL5fTTT2f69Om8+eab/PrXv3aXx+NxLrroIqBnkmQkGSvt8PDwGCV2bfZXD4/BQU4dh0JaWlpEOBx2c7Dn1nFwSCQS4rTTThOAkGVZLF68WJx99tli2bJlIhQKCUDMmjVLrFu3zt1H13XR0NAgAPHCCy/02b6XX37ZzclvmqYQYuTqOFiWJU4//XQBiMrKSnHaaaeJT37ykyIcDosTTzxRTJkypVcdh5UrVwpFUQQgFixYIM4++2w3t/+3vvWtAdUN6C/3vxBCLFy4UACiqalJ6Lpe1nXl0lcdh762f+qpp0pu8+1vf1sAQlEUceihh4ozzzxTLFu2TMyaNUsA4qCDDsrbPhqNisWLF7v9fOKJJ4rPfOYzYuHChUJV1bx+6a+OwwUXXCA0TRNz584VZ599tjjssMMEIDRNE4888kjePqXqOCSTSTF+/Hh33fnnny++9KUvieeee04IMbjv2KmJoiiK+MQnPiG++MUvii996Uvi/fff7/O6DMMQy5cvF4CoqqoSp59+ujjttNNEZWWlAMRpp53m/g4cnDoOxe7zUtfcF6tWrRKLFi1y//l8PgGIQw45xF32u9/9Lm+fO++8U6iqKg4//HDxmc98Rpx88smiqqpKAGLZsmV59TQKSSaTIhKJCEC8/fbb/bZv6tSpYtKkSWL58uXirLPOEvPnzxeACAaD4qGHHir7OnN57rnn3BoQixYtEp/5zGdEU1NTyT4XQojf/e53bn8cfPDBAhCBQCCv71atWrVbtsPDw2PX4wkHj92CvoSDED2DwlLCweEf//iHOP3000VTU5PQNE3U1taKj33sY+I3v/lNr8JZ//znPwUgpk2bVlYb99tvPwGIxx57TAgxcsJBCLtw2U9/+lOxzz77CJ/PJ6ZOnSquuOIKkUql3OMV8sILL4hjjjlG1NTUiMrKSrFkyRLxwAMPDLjgWDnC4bvf/a5b9GwwjIRwEEKIJ598Upx++umisbFRaJomxo8fLw455BBx+eWXFx20pFIp8etf/1oceuihIhwOi1AoJGbMmCH+/d//PW/w2J9wuPPOO8Xzzz8vjj32WFFZWSkqKirEscce6w76c+lrEP3KK6+I448/XlRVVQlJknr10UC/YyGEePTRR8URRxwhKioq3N+Q04+lrksIW1jfdNNNYv78+SIUColQKCQOPfRQcfPNNwvDMHptP9zCwWlbX/8K79233npLnHXWWWLatGkiEAiIqqoqceSRR4o77rgjrzhfMXKLCJbDddddJxYtWiRqa2vd3+i///u/i48++qjsayzG22+/Lc444wxRV1cn/H6/mDNnjvjlL39ZtM+FyC9CWOpff7+bsdwODw+PXYskhJd02cPDY/gQQjBr1izWrl3Lhx9+yD777DPaTRo1rr76aje71ECyQ3l4eHh4eIxFvBgHDw+PYeX+++/ngw8+4MQTT9yrRYOHh4eHh8eehpeO1cPDY1j48pe/TGdnJw899BCKovCjH/1otJvk4eHh4eHhMYx4wsHDw2NYuOOOO1BVlRkzZvDjH/+YQw45ZLSb5OHh4eHh4TGMeDEOHh4eHh4eHh4eHh794sU4eHh4eHh4eHh4eHj0iyccPDw8PDw8PDw8PDz6xRMOHh4eHh4eHh4eHh794gkHDw8PDw8PDw8PD49+8YTDKPHTn/6UJUuWEAqFqK6uLrqNJEm9/t12221526xevZqjjz6aYDDIxIkT+dGPfsTeHO9eTr9u2rSJU045hXA4TH19Pd/4xjfIZDJ523j92j/Tpk3rdX9eccUVeduU09cevbnllluYPn06gUCABQsW8Mwzz4x2k3Ybrr766l73ZWNjo7teCMHVV1/NhAkTCAaDLF26lHfeeWcUWzx2efrppznllFOYMGECkiTxt7/9LW99OX2ZTqe5+OKLqa+vJxwOc+qpp7Jly5ZdeBVjj/769bzzzut1Dx9++OF523j96jFaeMJhlMhkMpx55pl89atf7XO7O++8k+3bt7v/zj33XHddNBrl+OOPZ8KECbzyyiv85je/4Ze//CU33HDDSDd/zNJfv5qmyUknnUQ8HufZZ5/l3nvv5YEHHuCyyy5zt/H6tXx+9KMf5d2f3//+99115fS1R2/uu+8+LrnkEq688kpef/11Pvaxj7F8+XI2bdo02k3bbZg7d27efbl69Wp33c9//nNuuOEG/uu//otXXnmFxsZGjj/+eGKx2Ci2eGwSj8c56KCD+K//+q+i68vpy0suuYQHH3yQe++9l2effZbu7m5OPvlkTNPcVZcx5uivXwE+8YlP5N3DDz/8cN56r189Rg3hMarceeedoqqqqug6QDz44IMl973llltEVVWVSKVS7rLrrrtOTJgwQViWNcwt3b0o1a8PP/ywkGVZbN261V32l7/8Rfj9ftHV1SWE8Pq1XKZOnSp+/etfl1xfTl979GbhwoXiwgsvzFs2a9YsccUVV4xSi3YvrrrqKnHQQQcVXWdZlmhsbBQ/+9nP3GWpVEpUVVWJ2267bRe1cPek8H1UTl92dnYKTdPEvffe626zdetWIcuy+Ne//rXL2j6WKfaeP/fcc8UnP/nJkvt4/eoxmngWhzHO17/+derr6znssMO47bbbsCzLXffCCy9w9NFH4/f73WXLli1j27ZtbNiwYRRaO/Z54YUXmDdvHhMmTHCXLVu2jHQ6zapVq9xtvH4tj+uvv566ujoOPvhgfvrTn+a5IZXT1x75ZDIZVq1axQknnJC3/IQTTuD5558fpVbtfqxdu5YJEyYwffp0zjrrLNatWwfA+vXraW5uzutfv9/P0Ucf7fXvACmnL1etWoWu63nbTJgwgXnz5nn93Q8rVqxg/PjxzJgxgwsuuICWlhZ3ndevHqOJVzl6DPPjH/+YY489lmAwyJNPPslll11Ga2ur6w7S3NzMtGnT8vZpaGhw102fPn1XN3nM09zc7PaRQ01NDT6fj+bmZncbr1/75z/+4z845JBDqKmp4eWXX+a73/0u69ev5/e//z1QXl975NPa2oppmr36raGhweuzMlm0aBF//OMfmTFjBjt27OAnP/kJS5Ys4Z133nH7sFj/bty4cTSau9tSTl82Nzfj8/moqanptY13P5dm+fLlnHnmmUydOpX169fzgx/8gGOOOYZVq1bh9/u9fvUYVTyLwzBSLCiv8N+rr75a9vG+//3vs3jxYg4++GAuu+wyfvSjH/GLX/wibxtJkvI+i2wAb+Hy3Znh7tdifSOEyFu+N/RrMQbS19/85jc5+uijOfDAA/nyl7/Mbbfdxh133EFbW5t7vHL62qM3xe4/r8/KY/ny5ZxxxhkccMABHHfccfzzn/8E4O6773a38fp3+BhMX3r93Tef/exnOemkk5g3bx6nnHIKjzzyCB988IF7L5fC61ePXYFncRhGvv71r3PWWWf1uU3hTPZAOPzww4lGo+zYsYOGhgYaGxt7zS445szCWaDdmeHs18bGRl566aW8ZR0dHei67vbZ3tKvxRhKXztZPz788EPq6urK6muPfOrr61EUpej95/XZ4AiHwxxwwAGsXbuW0047DbBnwpuamtxtvP4dOE6mqr76srGxkUwmQ0dHR97seEtLC0uWLNm1Dd6NaWpqYurUqaxduxbw+tVjdPEsDsNIfX09s2bN6vNfIBAY9PFff/11AoGAm2Z08eLFPP3003l+5Y899hgTJkwYkkAZawxnvy5evJi3336b7du3u8see+wx/H4/CxYscLfZG/q1GEPp69dffx3AHUSU09ce+fh8PhYsWMDjjz+et/zxxx/3BgSDJJ1O895779HU1MT06dNpbGzM699MJsPKlSu9/h0g5fTlggUL0DQtb5vt27fz9ttve/09ANra2ti8ebP7bPX61WNUGbWw7L2cjRs3itdff11cc801oqKiQrz++uvi9ddfF7FYTAghxN///ndx++23i9WrV4sPP/xQ/O53vxORSER84xvfcI/R2dkpGhoaxNlnny1Wr14t/vrXv4pIJCJ++ctfjtZljTr99athGGLevHni2GOPFa+99pp44oknxKRJk8TXv/519xhev/bP888/L2644Qbx+uuvi3Xr1on77rtPTJgwQZx66qnuNuX0tUdv7r33XqFpmrjjjjvEu+++Ky655BIRDofFhg0bRrtpuwWXXXaZWLFihVi3bp148cUXxcknnywqKyvd/vvZz34mqqqqxF//+lexevVqcfbZZ4umpiYRjUZHueVjj1gs5j5DAfc3v3HjRiFEeX154YUXikmTJoknnnhCvPbaa+KYY44RBx10kDAMY7Qua9Tpq19jsZi47LLLxPPPPy/Wr18vnnrqKbF48WIxceJEr189xgSecBglzj33XAH0+vfUU08JIYR45JFHxMEHHywqKipEKBQS8+bNEzfeeKPQdT3vOG+99Zb42Mc+Jvx+v2hsbBRXX331Xp0ytL9+FcIWFyeddJIIBoOitrZWfP3rX89LvSqE16/9sWrVKrFo0SJRVVUlAoGAmDlzprjqqqtEPB7P266cvvbozc033yymTp0qfD6fOOSQQ8TKlStHu0m7DZ/97GdFU1OT0DRNTJgwQXzqU58S77zzjrvesixx1VVXicbGRuH3+8VRRx0lVq9ePYotHrs89dRTRZ+n5557rhCivL5MJpPi61//uqitrRXBYFCcfPLJYtOmTaNwNWOHvvo1kUiIE044QYwbN05omiamTJkizj333F595vWrx2ghCeGVw/Xw8PDw8PDw8PDYFdx6663ceuutbor3uXPn8sMf/pDly5cDdqD7Nddcw+23305HRweLFi3i5ptvZu7cuaPYahsvxsHDw8PDw8PDw8NjFzFp0iR+9rOf8eqrr/Lqq69yzDHH8MlPfpJ33nkHGNsV7j2Lg4eHh4eHh4eHh8coUltbyy9+8Qu++MUvMmHCBC655BK+853vAHaSh4aGBq6//nq+8pWvjGo7vXSsHh4eHh4eHh4eezWpVCovm+JAEUXqaPj9fvx+f5/7mabJ//7v/xKPx1m8eHG/Vdk94eDh4eHh4eHh4eExSqRSKSLVE9HT7YM+RkVFBd3d3XnLrrrqKq6++uqi269evZrFixeTSqWoqKjgwQcfZM6cOTz//PPA2K1w7wkHDw8PDw8PDw+PvZZMJoOebufQY/8HRQ0PeH/TiPPqk59h8+bNRCIRd3lf1oaZM2fyxhtv0NnZyQMPPMC5557LypUr3fVjtcK9Jxw8PDw8PDw8PDz2elRfJao2cOEgyXauoUgkkicc+sLn87HffvsBcOihh/LKK69w0003uXENY7XCvZdVycPDw8PDw8PDY69HkqVB/xsqQgjS6fSYr3DvCYcxRjqd5uqrryadTo92U/YovH4dGbx+HRm8fh0ZvH4dGbx+HRm8ft31SJI86H8D4Xvf+x7PPPMMGzZsYPXq1Vx55ZWsWLGCc845B0mSuOSSS7j22mt58MEHefvttznvvPMIhUJ87nOfG6ErLx8vHesYIxqNUlVVRVdXV9nmLo/+8fp1ZPD6dWTw+nVk8Pp1ZPD6dWTw+nXX4fT1Eac+PihXJUOP89zfjy/7u/rSl77Ek08+yfbt26mqquLAAw/kO9/5DscffzzQUwDut7/9bV4BuHnz5g24bcONF+Pg4eHh4eHh4eHhsYu44447+lwvSRJXX311yYxMo4knHDw8PDw8PDw8PPZ6JFl2A50Hut/ewm4vHCzLYtu2bVRWVo6JNFVDJRqN5v3vMTx4/ToyeP06Mnj9OjJ4/ToyeP06Muxp/SqEIBaLMWHCBOQxOtCWZZAHEeg8Ri9nRNjthcO2bduYPHnyaDdj2NkTr2ks4PXryOD168jg9evI4PXryOD168iwp/Xr5s2bmTRp0mg3oyiDCXR29ttb2O2FQ2VlJUCvohseHh4eHh4eHh5jg2g0yuTJk91x21hksKlVhyMd6+7Cbi8cHPekgRTd8PDw8PDw8PDw2PXsCW7lezO7vXDw8PDw8PDw8PDwGCqSNMjgaM9VycPDw8PDw8PDw2PvwXNV6h9POHh4eHh4eHh4eOz1yJKMPAjrwWD22V3Ze67Uw8PDw8PDw8PDw2PQeBYHDw8PDw8PDw8Pj0G6KuG5Knl4eHh4eHh4eHjsPXgxDv3jCQcPDw8PDw8PD4+9Hq8AXP94wsHDw2PM8ljD3AHvc8KOd0agJR4eHh4eezqexaF/POHg4TEGeObAQ/jYW6/x9Nz57jLLslj63pusmH0QQhd521uG/fnYDat3aTvLZTAD/oFQ2B+5PFo7p+S6Ze3vjkRzPDw8PDw89go84eDhMcK8tHih+7dl2gNeYeYPfGVF4rn5C5CUnlkLGZmn585HlmUszbL3yw6YZVXCMgRPTjsgb7l7HqP0wHqkZuSfmDhv2I/Zl0AYDI6oKOyf5dH3hvU8Hh4eHh67H7IsIw+iANxg9tldGVHhYBgGV199NX/+859pbm6mqamJ8847j+9///tuJwshuOaaa7j99tvp6Ohg0aJF3HzzzcydO7Izlh4eQ+G1Y48ourxQEFiWQNYU97OkOMLB6tnGFEiKhDAFiiwhrOwxFMkVGnI2c7IjIOxl2f0NgaT1CA6hC2S153PhIPmxhrl54qEc60Du8crBETaDYTjEwmDO/UhkNkIXnJh8n4eDszgx+f6Q2+Hh4eHhsfsgSRKSNAhXpUHss7syosLh+uuv57bbbuPuu+9m7ty5vPrqq5x//vlUVVXxH//xHwD8/Oc/54YbbuCuu+5ixowZ/OQnP+H4449nzZo1VFZWjmTzPDzK4o1lR/VaJqtKkS1xf1HO4N8Z3AurZ8AvTAGqjJXdxhET9jorzyqhZP0mhSKwTIGiKD3H8NvuTIom5Q+2CwbtueuP2/o2T0ycl2cdGKgoGAkGIxYGIw76Oo+z7uHgrLz/rTLbdrKxZsDt8dg9eEidmfe58Lvub72Hh8fugRfj0D8jKhxeeOEFPvnJT3LSSScBMG3aNP7yl7/w6quvAra14cYbb+TKK6/kU5/6FAB33303DQ0N3HPPPXzlK18ZyeZ5eLi8deLRQO8fvyRLqP4ci8EAzJG5YsH+LPL+t3KsEz3rLNdqYRVs71gp8vYzhb0+QNF1Dla2LStmH4QaUYoOoMsdiJczyO/rWEPdf6DHgv4H/4UDv/7YmwaGu9ugeLDf5UD2629bZ/1I99VInqfc/hjr94OHh8fwMqLC4cgjj+S2227jgw8+YMaMGbz55ps8++yz3HjjjQCsX7+e5uZmTjjhBHcfv9/P0UcfzfPPP19UOKTTadLptPs5Go2O5CV47EG8fvzHAFsMHPzo0+5yRzQU0ltE5IsGWel7hsHqVZg9X0jkuiXlOiBJsi0glKz7ErKEZQkkWUFYgqzRAWFaLHr5FXfP5xccWuKYoChKvpDIcXnKjZtw1w/SzWgogqG/cw6XSBgKe/IgqXAQWmrgOJAB9mj010CEwMnGmgELjb7OuasZ7vMOpi92lUjy8NgVSPLgrAd7UTbWkRUO3/nOd+jq6mLWrFkoioJpmvz0pz/l7LPPBqC5uRmAhoaGvP0aGhrYuHFj0WNed911XHPNNSPZbI89kNeOPcId+LsxBPR2Q3J++1JurIH72coTD278QT8CoucYcvYYPcd2HlBuvEJBS0qJiMOefqHX8ZesejXv83PzF+S11Qm8FqZwY4wsy3LjI/obmPe1frCCoRyB4uw/koKgL/aEAZHjduXQV18Ox0AaRr/f+jp/7jUOpJ2D3W84GM1zl4MnIDz2BGRk5EGoALnXROGey4gKh/vuu48//elP3HPPPcydO5c33niDSy65hAkTJnDuuee62xUGlQghSgaafPe73+XSSy91P0ejUSZPnjwyF+CxW7Bq6ZKS6xaseB6AQ558ruh6x/LgWCPcgXuBKBCWyA74TSB/RsLMNyQMCkdMuCIkJzB6/uPF2w7wylGL3fZBvjuT00bnuJZZ5ox9wWB+MG5NwyEyRksoOAzXbPRYRNakEenf3WXQONh2jub17YpzD8ZtayD77y73h8feixfj0D8jKhwuv/xyrrjiCs466ywADjjgADZu3Mh1113HueeeS2NjI4CbccmhpaWllxXCwe/34/f7R7LZHqPMy0ceXnT5wmdfLLp8wYrnS+5TuNw5hjPgBpBlyRUYq5YuyUuJKqyeWYRiD4Zi1obBPkAK91NkiQMeWgH0uFMVxkUompxniXAsFTIWFrZ1IVeUWEXiHtwZ/ZwBfd4AfojxCuUeY7SFQiEPqTO9gU4JSvVLKXcnrx93L/r7vgbrxub9pjzGOp5w6J8RFQ6JRKJXbltFUdwBy/Tp02lsbOTxxx9n/ny78FUmk2HlypVcf/31I9k0jzHE8wsOBWxXG+fvgWIkjbzPUgn3oRcWHsbil1/B0k13mUVPrQVJkVm4Ildc5DgPFcY8KBIHP/qcm5q1MAZiKELDEQyF2yg5VgQUCVN3rsCWDBb5rljkfLZMgTBFnmBwBvTFxEPu8kKGM9XqWBMMeyK56XodlOwyM9G3yayY5aWUIOjvs8fuR7HBfn9Zpco5Zl/H8/DY07nuuuv461//yvvvv08wGGTJkiVcf/31zJzZ89so5Xnz85//nMsvv3xXNbUXIyocTjnlFH76058yZcoU5s6dy+uvv84NN9zAF7/4RcDulEsuuYRrr72W/fffn/33359rr72WUCjE5z73uZFsmsco89R+B/LxD99ixeyD3GW5fw+Ep+fO56h3Xs9b9syBh/S5z6IXXs6LAQBncG7lCRmHFxYe5g76F73wMmBbMxyLhrOvQ67I6NeCYYo8QXHgwyt7tTfX7agYtiCwMyw5KV0tPT+1q2VZrlgoRzT0OscwDvB3F7Gwp8yQFitw90hkNmC7LUHv7yT3unPFg5wjQpzYCUmTvCJ6ewiF9/xA7//c7YsJij3lN+WxZ7Kr6jisXLmSiy66iMMOOwzDMLjyyis54YQTePfddwmHwwBs3749b59HHnmEL33pS5xxxhkDbt9wIgkhRuwNHovF+MEPfsCDDz5IS0sLEyZM4Oyzz+aHP/whPp8P6CkA99vf/javANy8eeVVoY1Go1RVVdHV1UUkEhmpS/EYIANJ5VcYuFms8JYzyIHigyCnIjDAsvZ33b9LFTc7Ycc7eeuK1TIonKV1tsldnmtRK7Ry5IoBqYSQcFickx2pL3ItMsISrhUBKCoMcv932F0G7WOBvWWAU85v0GPgfHD2J8jE02TiGfSEjpEy0VMGQhd8/MO3Rrt5ZVPMQlDK6jQScUF7y++wkD1NZI3l8ZrTtjO+8Taaf+A1xPR0jAf+c96gr23nzp2MHz+elStXctRRvWtHAZx22mnEYjGefPLJAR9/OBlR4bArGMs34t7GcL4w+pq1kjXJre4LPYOcwsFPfzj75YqSQnIFRZ5gKLG8v3XQuzR9obWkHJ7a78A8QVDMejBWYwd2J/akl7bH8NLyzsuoRgrFSKEmupDTCaRMChHvxopFMdo7SGxvJdOdRE9kMFIZ9KSOntQxdatoZrSxxlhKDrA7/RaLiao9TQQMhrE8XnPa9ulL3h20cLj/xjls3rw579rKjcv98MMP2X///Vm9enXRifMdO3YwadIk7r777lH3yBlRVyWPvZPhyEbT1/6WLvLWOw/kE5PvD0sRp9yHe54YSdr/SZqEmbP98uh7rsWjcF3xqsw9Wxy39e2y25tLqdlKRwSV6zYylgYGHh5jma1r3kLkpGn05ayThAVCgGna/ywLZBnFr6FZFlN/++AuaeNgYwd2h+fAWB1454qEUrFApT479GXB8di1DNVVqTDL51VXXcXVV1/d575CCC699FKOPPLIkt42d999N5WVlW6x5NHEEw4ew0Y5frEj9YLqK8f5YAP3TjbWFJ+t10VJP29y4gRkVcIssr9jhThhxzsDalc5DNTPfKjpF/d0vJf53kvspYcwtQCmGsBUfCiyiqH4EEhICBRLRzYzyHoaKRUneMIXR7vJLuXWsPAYGn2JhqEesxjec2jsU8zi0B9f//rXeeutt3j22WdLbvOHP/yBc845h0AgMCztHAqecPAYdvoabPUXODdQynmQ5g6Oi6WJHEw7cgWFnFNALdc1yTJEUYtD4XZjAU9AlMZ7We+lvPI0vkglcmUVorIKM1RFuqIeQ/UjJBktFUXJJAkfMXozgOUGMu/uv+ux+hss1veDrazuPYPHBkNNxxqJRAbkhnXxxRfz97//naeffppJkyYV3eaZZ55hzZo13HfffQNu10jgCQePIdHXQ66/B2B/loHhflmUyi1f6oFdaMUoJogK4yyK4bgx5QZte4x9xupgZVcxULe3PYmXFi9EC2loQQ1/ZYBAdRh/VZjKmfsgV1UT+NQlo91EoPg9uicOPIu5KY0F16Vilu6+3msDmejyGB0kWeqVer3c/QaCEIKLL76YBx98kBUrVjB9+vSS295xxx0sWLCAgw4aXObJ4cYLjvYYEsP9khps4aFS+5bTvnKtDoUCw7E0ONaDcjIz9cdIuC8Nhj1x8FEu3ot772SgEx0jcc7+LLK7IoPR7oJc5Nmaawku9n0VJsLoK9vccHzfnttRPmN5vOa07axvf4BvEMHRmXSMe38+o+xr+9rXvsY999zD//3f/+XVbqiqqiIYDOa1q6mpiV/96ldceOGFA27XSOBZHDwGzUi8tB5SZyJr0oAzAQ3lhToY0eAgaVIvwTAUNyQnRexYERB7C3vjS9zDZiwIhtzlpc5XaoJjOP3rxxKyJvX7LO2reGFuYouSkzuq5Gakc8LehzMLXV/uR14RvL2bW2+9FYClS5fmLb/zzjs577zz3M/33nsvQgjOPvvsXdi6vvEsDh6DYiRfVIMRDjA0s33hy7ccX2HnxSar/b/gBstoCog9cTBSCu+lvXcyGqKhv/MOdxzYWKXQYlA4uO/vmdpftfvc45USDrlprHultNbFkL7/kUpPvjszlsdrTtvOvmLtoC0Of/nZ/mPy2oabPcbi8NTMRYRlZdDpLT1GhoHOhhUzP5dLsdm6cgLOSqXRK9eKMVTR0FdF5tzCdpYhxry/eX/uAx4eY4X+nktDeRYN5JyF53k4OKuo28yeIiJyrzfXYls4CVNMQBQ+K3OLXLrbqL2FQ+G5nO0VTbKPqUpIzrGy5yknVmFXfSdjIZ5jb0FGQh5EOlaZsZXwZCTZYywOf2ucRVhW3OVjRUCU46e6J1BOTYSBvKgHO9gsN0ai3Ad/Xy8Px+KgBOWSM1nF6EsolNqvcJ9dUdl3oC/FcgZaY1VEjORvck9O6brhgtPsCuaGSbIjTiae4ZAnn2PF7IPItNsVksd6UoDCmCXoPRkwVMFeTAyU+r2M1d9IX7/vctpcLCas8G8lKCPLMpKSXa4Uz3AjLPt8ZsbCsqyihTCLFt8sEodWqnim8/9A6wPtCsqxrjuFUscKjzXMJW6ZfKp1zZiclXfGkv/2vY/wBQZhcUjF+NO1+47Jaxtu9jjhMJqCYSgPl7E+qBiuwU+pPhoO0VBIqSxK5bSn2HFy98n1vy0mHKC4CCg2Y1Zs3VBjPIYTx1e4WJtKDbbkHN9hh17XPgoDpL78xIebgWZT2V1Y/6VPun8Ly8LMGBgpne6dcYyUgZEyMRIGZtL2P1eCMuHGEIGIH39lgJn3PTpaTe+TR2vn9Cn4YfACoq+gXAfn9zBWrAt9CalyKBy8F1oQigoHTUHOigZJlpAUqeez0lN8T5gWlikQprCFa/ZvIE9IOLhxDEULcuZvV+i25CyDsSvqilFqYuu4rW/zxMR5u3ys9GjtHBKKNeaFw+e/v27QwuG/f7LPmLy24WaPEQ678ssaCw/1cimnENBgXlQDzURU7LwOhTNZI/FwHg6/4VJ9+VjDXDcW4clpB7jLi/ng5omDIj61Q2UkBqjPHHiI+7fzcobiL2h3XQnRkPti7iuwcVezJw3sh8rW//gsocY6AvtOB0tgdnVidMXIdEZJd8Vp+7CFdDRFJm5g6iZm0nL/QfFBsRpRCDb4qWyqIFQbQk/qJNoTWLrJohde3tWXOGiKWQ6guPtNrqXliYl2Ndj+fOph9IVD7qRIMTcf5/Ogj99H9rlCawP0FhAOVvZZlPtMciwRjpBQfLJrsTD13s8bYQr3OZYnEHL+du5r2D2EQzHB11+cR+7193UfDuXePNlYs1vEOHjCoX/2mBgHj+IUm23vq17BQI870O1ONtbkPXx2hWgo1o6hHiPXDJwbwFzoQ1uIM5jIjV04Mfl+XgaQobZxuAfBvrD9mMid8Vv47Iu8sPCwvBm/QkSRZc5L2kxaeS+pXY0nFPJ5YeFhqAGVUG2I8LhKMl3dKFu3IYTAiMVJtUfpbu4k3tpN18YYZtIqOdAqhTBFj2AwTCzdRAtprPnsMhLtCRKtCbSwxriZDUy/4/+G9fpeOWpx3ufBChZfrYqZtFjW/i6PRGaXtDRahshbv6z9XXeC4bGGufZAPLutlPWzH4mYioFSKBpy/1aCcl+7Dgl3kI6Zt7wvQQH5ufMlpbeFIjcnv5UVFcISCNMWA5YpsHQLU7Ywk3qve9phdxMMDo7VxzIEMrh/F1IoGqBv9+PBxC06FoexjiRJSIOIcRjMPrsre4zFYaRclXYn68LuyEi4KOVSWLhtOL9POWsGdsTAitk9xVnyZnByHtSOyHDcInJdH4batpEeDBcOvoQlMDNmia3zyX3ZW6ZAjxtkOnX0mLlLBYQnGPJ5eu581ICCv9JHoDpIsCaEryKAEvBhpjIk27uJt8ZJdiTd7yx3BjYXM2mV9ONXgjJqRHF92B0Un4waUDBSJnrKQAuohMeHUTSZ7pY4lm4hazKLX36lz+t4ODiL0DQ/vpCG4rOPnysMXj7ycMAeaApLsPDZF911jhtRYLyGGlKRFQk1oLgDTwdhCfS4jpmxMNNmr8rwxXzl3X4osp173ILtR9MSl5spDuzvzRm8a+GeeUbLGlwb+3LVLFxf2H+FgsYRE04chKRIKD4FRZXRQlrJCsCWkXVzsoTtaqdbWLpJ9/Zk3nPbuc/HgmjoS1T2Zf0plmHK+VwsLsRhOK45N6bF+c52hxiH865ajy8w8LZlUlHuumb6mLy24WaPszg8Oe0A98fx8Q/fGuXWeJRDoWl0OAb4uQPEwr+HIxd67sycc8/lPsAlTYLsbKIzTBppn9KR9t3X47o76+fgWBV6uRfkWCdyX96WbiJMYb/kg7L9klYFMDLuAJ5QKM5LixdimSI7QJbc78/MGGS6U9CdomN9G7EdcTfI2c1EU2Tm2ZnZlMn//ix34CIwomaeO1Ox42UwSLak3e3UiEKwzs/rx38MX9jH3L89WfR6Tky+z6avnoFlmGS6UyTaE7yw8DCMlMnH3notTyi8ctRiVi1dgq/Ch+pXmXH6voTqI/giYbsP0hkSO7vIdKfIxNPoSQNLN0GWIKyhBizMjOK6xbjXWsR1Jm99zmA7V3w5WYAUyouLco83AgNaS7dnpi1yBuiFzzZFQqa49aE/QdHvgLWE5crUBZJht0GoEpIhIVSB4lewAKXA8qD4VBRNRlaVXuLBCeY3dQthWViGLR5C423rg54yyLQbkBxboqEvgVDKpcwh93t0RJFZxF2u1DkHEp9WKBhy/5atsT8r71kc+mePEQ6WIbBkgZJz0zozwEIXgxYRuzrt2t5GMdPocLsVDff2xeo3OKbgvO2yAcLOwzo3IK0w08zDwVmDql9R6FqQOwtqGWLYgtqfmDiv6IwfZEWDnm1PdvZP8ZE3YyvLkusqkIsSlDGxegYFWZeNcvvBEwYD5/XjP0aoLsQBD60A4L0zjsPUTdeNyAlw7t6QzBswFA5cCq1pzjZKzmDD+R7NhEUx25SvTrXvgWSPn7lJ/qy7Ebb3DFQFif3Xt9G7oiRbOph40315x1IDGmZGQlZ7AmyFKXh+waEoPhlZ68m6Z1kCSZYI1lZQtc8EAtOmIFVWg7AQyTjaug0kd7QRb+lCWEkM7EBwBRlUGVkTWLqZ56Ina1nRoOVfY67YdtplhiyMlGkPtIM5M8OGQAnKHLthNY81zHVThULvgfZg692UQ+4g0yJbHM1PjytQgQXR3S/nKdiXiChlnSllcSDbhly3G9MVqzJCEb0mNSQ566qUFQ/OZ8swsQwFxWeLBsswkWQDX0gjk9BRTAWt0n6OZtqNURUPA3FfcwKh62bWEKq1LYdayI/sU1E0e6hnpnUSrVFizVHiLXFSHRmMqEmpb8oVIQUWM6WfdhUTnf25MnrsPuwxwgGyN2aw5+9cVxHHp9y5iQdaWGtvKcrj0Tf9+pEWzPYUiodS5Po5Fys8lBsT4rwglKBMsM7vumY4/rrO30bCsAdiSSsvpmIw6TEz7YbbTsffWdKsolWzFU1x29QXjlVGViVEkSxM/eGJhsEx//Fn3L/Xf+mTyKpCujtDojVBsi3dY2EovF+z96eh2wP53PXlzIoWwwmqLvxtKKHsPW0IktvTZDp1Otd30fzWdleMTiw4lj3It2eTAde96fkFh9ruRRnLjccxdZPubXHiO+NkulNEOmIE6qtRAn4AjEQSPZEmE8+gJ3U3sFYu4voCxa0MpfztJUVC9QskRbf96zMWltbTB8duWO0GU/f33BgpnMG5KxpyA6ML4wrkntgBFMkVEsWsErliYiCiwV2WfV44osFM2sJLMiVkDVcgyIqErPZYHHItD/bfsnufCMuyl2VdnSzdQtJsq4YaUeyB9Sh8B4XvmkK3o0KUoExofICpS+cR2H8/xPiJGMEIphZASAqypaOkE1R3tmBt2UDsgw10fLSd6LYosU2Jki6IvdrVTxxfrmhQgjKK3+5bYQrSOtBcZgeMEqVc3MrZb29hjxEOM06dQViW3Yd9OpYi2Z4i1ZGBwpkLVeKp/Q5E8St5PrZHvL4qb7snJs4rmp7NozxGOztIXwwmJ3kxn03nM5RO9XfshtX9tqdYmsfcDE0V+wfwhTS0sIbqt83w/T3gHF9eM21gWb1nSAdCaJo/z6e4GLnZT5zZ3cKBlqTIKL78/YRafrD0cImFp+fOd/9WA/ZzYNELL/PS4oUseuFl1yfebaOZ/1LdnTIB5fL68R9DWJZ9D/lUzIxB+/pOMu1GWQOkUuvd5QVior8YJjNh9Uob6bgu6TETI2qiJyz0qD3Ii5N2930kMhtfrUqwzo+/0ocWsqf69YROJqHzzIGHYOr5do7CDFCZdoOudXFkdQtQ3KqSu9yJ0bAsCyPbplz3mmLPAjWiEKz2E66vJFRXAYCRytDd0o2e1AEdK2W5Ir+/1K1DGcQ638dgjiEpEoom97Le5Lps5QYdO2Iqd72CjClbSJqFSRHBmBNTATlB0068gdHTz+7AVFOyv2HFfS4637skG3nHz826ZH+2srEOPe2VNRkNFVm2ELqOGlFKipyRFBRWQcB84W/M+d1olQr+Oh9Vkyqpn9mEf/GRpKsa0LUwpqIBEiAIpDqRLBMUBaW2jshshVBTPXU722l+YwPx1gR63HATWOTGkeRi6iaZdqOEs1o+kiahhVUCVQFCtSEqEbB2YJO2uxpZsv8NZr+9hT1GONjuESpqQMNXYaAFNdc0mUn0BPQV5ouWZHuGJFc0PDntANd8Xpj/Wcq+1HLFxFhKKzmWGO2UgiO9b26e8lJ+pUvfe3PQ7cj1/dYCqv3CdjKEmL1dowDX/WT1yUvtmTZAaAqSZaFockn/6/5Y+t6bvHLU4rwMJZZuYmaK3/si6wpiWcLdR5alrElcRlIEsiUhTNnNpCJpUt7A02G4LQsrZh+UF6BrpEwUn8wrRy1GC2m8sewoAhE/siojyXKeH7SwLIQp3EDxw55+YVjbNpJs/MrpVIyvcGfR0+0JMrEM6R160cDmoWLlDHD6285xfegvDsgR0667jppzP2YDXk3DwtLt7ylX7BaKZvf5nnWPyj2u89tzBqjOb13oAhM7MNoJ7M+91lyc5AmSJmGGLNKxFJZhIqsKlmFipA3MjC3mhZ7/r6/+HCzlPtdyvw+w+0DSeiYM7H40XStKngVCtmM/ZKyi7i/CyqZINe1BqZk2kZyJvSAE6/x52zoCxIrkiwxnUGuLGBnFp+RZG9x9ddMVBs790btN9r1iGhbCtPLittSI4lo1hC7yqksDvWJ6hpu+ju3Eo+gxE8gQU7qR1R1Uvv0G/rpa/JoPLBORTGLGuomu3Ug6msBI6b1iPOKtCdvSokhoPhW50u5H1Z8/RDQNCyNp12jJFX69rA+GQKiOi1LafsZqMlZg7A85PYtD/4z9b7FM0l0J5vzP42y5+Eym/vZBwB48aWHNNpOF8gvFmLrJx94qPqhzTMW5AXqlAsWELtyZsbEQSOUxNNFQLsXckgab2zw3G1MhbhyBk4vcsO9JSZEQVv46gLdOPJoDH17JAQ+t4K0Tj8YyRXa9nOeiMhRyRUNubnTnhS1MCTUo521faHmQFQlh2hYKZ2CyfBdWGLYsi6Xvven2fSZuoGgWIqiiArKiuoMQlJ7ZVVMHsMqabRtr5Lpo6EkdPa6T6si4s/nlMthCin1hJix3AiZ3xt2p3OtQOckOYBam7eJjpEzSXRmSbWl8Ec2dedbCGlrY3s4J1HcygNmD//5m8q088QC2SPFX2eayTEJHq1TQY2bJiSNLF0iaPdDMJGx3J0VLuzO4rpuSZbkpXC1j5DKMFc5gl0LOCiQpawEqZUm1rQtyrwGT87yRsS2ejpuKs05YwhZygOJX8Ff1uAkFqwPuNq57mCK5mY+cOCl3MiJr+XDcjXIrTVuGmZcq2nVNcgvF5VtEHGuJlH2O2eeRXdHguG1ZgOKIyH76dKTHBJYuQLdr4ugxk2RLGiP9IoFI1uUubWQ9MDLENibc/QrHMbkTq2pEwSdryAEVWVPc78N+5psYKTMvJqnQUuz2R9b91IrZ27frnej+sf/k9IRD/+wxwmHf3z8AwKTf/K+77ICHVvDKUYtRfNmHS/Zlk9F112e7FMdtfZvHGua6vuS5M5R5+HFNzMVmSz12PeW+IId8nqwf8LE7VttWqiLnzBUFxawPZYmGwsJHln1eYZrZl5y9XJJlTEvw+vEfQ5IlDn70aQDeWHbUsIgGZ3Z9xeyD8ixuhYWh7BiH/EFFYQ5152WuBmz3gqFYZgaKIxhykycYuoHwK5i6hRlQMNImWtByX8C29bJHhAlzYIPt0WbtOcsxUjqpaJpMd5p0VEePG667zVDoTzQMdPBUOKB36iE4GZYUn4ykyK441eOGG5dBnc91lZNlCVQZyyo+09wfThCoY22QNInKpgp8YT/pWMp18XIoFazsWDZk1eyV9aaw+NZI0993URirkju4zLVymllBIFNcPORSzGUJ6HEvUm3XJ1/Yhy/sQ/HZor3XcbKz4457Uf464S63LQtWXtrVXLSQhqlbSNlUrI5gcESIpNjCxsxYCEVABjswXLMQao/VgRKCKtedaSiuYQPFTNiD+bY1HfnB7QXpZYG8RAW5A385GzdiRvL72NJtweAGU+cWMiwiwJ3rzo3/M6ImSUUfoav32JXsMcKhFM5g5+UjD7dNq0r5sQq5AdRPz53vzlI+td+BWIZwfdfd7BceY4KRFg25/sy5D1Chij6tDs5ANXeQnDvrnUsx0WC/uO0XtYU965ZXNTUrJACEZfuzz3/8GVdADBfpHfbD37G65F6zrEqYmpX1hQZh9rQ9t1icU7EVKDsobzhxvoPcvjfT9sBOmAIjZWIk7UGh4zft+kJbFgtWPL/L2zxY3j7140S3xvItrumRFwxDOebJxhq3KKIzswuQVjOoIdUddEqK5NYXsP3dZdfC4IhVI2W4s/tmume2tPC3mpsNyj0vFgRllKwgHjdnMhXTJyFMk+ALq2mvbiOxM+VanQtx257sOxZqV9cM6Cv2JDcLjlB7ZtpNTISZk2bZjWeyB9qO61Jh9ebCApGOVSC3/oLqtycQtJAffySUPb7iugtCfjyCpdvuNkZKd3+TboYkw8RI9zxTes6lIKsKql9FWBZG2sBIm05COPwVtjXJsW44mbOca5GRsTTLFpNq70BlZ5CuZAffwx3YXm6xVDNp2W5CyfzlSlDuVbCx2KDf0k13MtRqyLpj66abTrk/kZub6S+X47a+TTQahaqqfq91NJEkCdlLx9one7xwcMjN4+2QaxIvFpyay1HvvO7+/fEP3+Lh4CweDs7ixOT7eW5KfWUX6S/IzfnBjWZF3d2dXVl91blnHq2dk83C0VOdc7CUmnl/fsGheZ+FleNnm1ukKs+P2+K1Y4/gkCefG3R7irGs/V03S5PjI+5gYg+MMkEdRVfyBEJeUaUixfHGAo4PuyMgku1J1KCKotq+8sPdlyNBx88uwkpniG5qoXNTO4nWBNGPEgQn+vBX+tzvROTEcJXLrkh4IGsSj9bO6anzkTPYsQcuOpmo3svn3YkDcnAKFOpxAz1u9JrZL8wO436mZyZVxg7eV2plwuOCqCE/ViaDmUzZLjeagqRJJV1V85Y5gb4MLUh5uOnT1aYgu1JuZWdJkzB10FCzboeiV+KEYqJB1mRXaBRua2c3UlACGrKmIWuqu0wIAZaFpRuY6QxGIu1m0RIF9QEk3UJWQZKFKxa0kA8t5EcN2VZEkRUeRirjWjLMjGELCllCyro2SRkrpw+ybfbb7o55qYfBFQ3DSW4RxWKB44WF8kq5lsmqlBebYfZx7znWiyTpolmUctuhFAjiYlY1sCdYD1879mPCJGmQrkqecNg7yBULzuxsKZ458BCSO9Jk2ow8Re3Mijk4ZrpiP97Cx4miSXlZRdzA7VrZfcl5sRPlk/sCLHfwXviw61W0JsdknisecymV3vSp/Q7M+1ysloizTWF7c7P+HPXO6yxZ9SrgCIgeX1z3OopkOip8MQ8nzjXn3v9WzsBoIH7zo5lWdVe6SI0kuel6nQFG7kBZ0iTSO2wXTTNplZ3QoVRa4JHE0gVKNq22rEpFXUJ6iU5DkCLTs0/u8QorOBeJU8udSS0sYGfpJnrUJLk1Q7L9dbSwnb0p1ZFGjxuuG1W5mcGc444mfWWOcwek0BPkmuydTU7GjlFwXJikHKsDgOrPPkedlLTZZ6nqt2f+C5FkCTWgoYb8aBUh5EBPvIMwTTBNuwZDRrf/6TpGSsfMGG48g7AsJFkmPK4SLeRHCwfQKsNoVZUo9fVQ10iyfiqWoqEYKbREF0rXTmhvJfHhOtKdMTLdKfRE2hYVacOtQVOYPcpJf21mLNeVyUzaKaqdGJrhyIDluEuXKu4G+cHiakBB1hS3AF5uULvTR0batqhmEjpG1Cxar8LShTvecdrgq/ehBhT3N+CkF5ZyYvGc8wrLIhPPkOpMk+7KoMdMntx34aD7Y1chSfa/wey3tzDiwmHr1q185zvf4ZFHHiGZTDJjxgzuuOMOFixYAIAQgmuuuYbbb7+djo4OFi1axM0338zcuXNHuml59CUaNn31DBoPaCDeFCfRmiDRnOrxGyxh7ssNroP8WS0lKNsB17JMfHPKPk5OgaT+Uhh69GagoqEw2F1WJRS/4lbSdbJ0wOAz5+QOWHJTsjqZYY7dsLrnvsiuy3WdcUTL03Pnu6LFERAOz823f0eW3ju/OrvAD38o9+feVofhndOOBShZ/XgwFA7knWeP46aQm8JxoHfDUL6fQgFTSkgW+906LhW5z0znN6pGsvFqub7mWdzUnSXuycIChu5+ak9NADMb+F7MGgzQ9X7cbWOwyZ9XvG5PI9c/HSgaw2VZFr6A5qZotd36ZNc9SFadAaXsDmDVgGYPaNUeVySn1oIa9CMpTkyiidAthGlixJO2pSFjWxvMjIGRypDpTmGkDTeYWlgC1a/gjwRR/D60yjC++lqU8Q0Y4yaTqJrABmV/UqaPYDBDXWUb1aGtBDUf6vbt7rHNjIGsWki6iRbS8qwmbqCwYWdgcoK/i90DQy3S58TWQP4kV945soLBTYetZS0sQRXVr7r9WxgHYmf2shMlxLR40fotSkhGq1QIjvdT2VRBqK4CfySIZZiko0ky8bQbSwK4mZgcYahoimulfXLaAcjpXe+WOlDkbL2Vwey3tzCiwqGjo4MjjjiCj3/84zzyyCOMHz+ejz76iOrqanebn//859xwww3cddddzJgxg5/85Cccf/zxrFmzhsrKypFsXlnsuOIL+KvCKD7VVe/JtjSUkQHD8XPMRQnKBMf7qZ5aTUVDhERrjI4NnXStjbuzgHujWBgOF4iBuAjlFlHTAqo7S+Ov8LkvM1mRmP3AE4NuT6n6Dbmm7MLBjmT0zCpZWs92jgWi0OpRWHvEERJOOtRCoTHcjOVaHWON7h2xYa3/UKrfh+P5MVjR4AgGNaJQPa2ScbObCNRU8NET75JoSZHeoRdtn1Qwu5pJGvmFFcm6imTFtInZy/Uo1ze/2LOglBuhXX0YyGYRsn+f+c9iJ3uNg+0HnnLPl7vt7kxhYon+io4BeYNVe7bZfn4qWo9ocDLVSLKMGtBQfHYdEcXvs12RsjPUZOMXdLOnOJswTDKxBHoik2ddcLKD5WZccgb1RkrHTGfsYyoKwhfA9IfQ1QApw0dSV5ElC13xIWQle+0Gpm64z06n7ZZp5lsbilTEznXH7FXxeojiwRHMTgr5vL7PqZ2Ta2F2A8k1gST3Dh63B/h+/JX28XxhH8mOJOlYpifRABDZL0z15CqqptQTahqHWlWJHAhgxrpJtbQS395OqjOerUdit6fUO/PYDat3ixgHj/4ZUeFw/fXXM3nyZO6880532bRp09y/hRDceOONXHnllXzqU58C4O6776ahoYF77rmHr3zlKyPZvLJo+Nkfafneue4MiSTbL5ZyXYiKPXhlTSZUV0HNnH2oD4eoXrOOtal3ia5J9NrfqaDqHGtPeDnl4gxQyhl89uWLOxDR4Fh9tLCKP6KhhTR8YR9a0IevwjaPT/vd38o+3kDJDbo/buvbeVWdJcOuouwMZpzrcl5MhYHUha42uULCEREjzUC+w72ZdHT0M4qUY83MfeYMFEmT8DdoTDl8CpWXXclp303DFvjh7Yez8F+X8tptT7vioXCA6s76FwjrPEtBbrIAIz9TDAWuS84+DqYukAzJFgiUrsosaRIKco9gKRWEugfW7yn2jHWsPYVuMmbSQsnaSuWsMFB8anbGWUbx9QwvnIF3j4DI1lxQFWS/z54RN0z0VMq2NDiDXMN0Z7ed+AP3/LqFntTdwpaWbrmDYi3U7aZflTUNfzCIT/MRMQ2mVyuggWamCMQ68bdtgeYtpFo7ibd0kepKuEHYpm6R6U7nFbRzE1A4rj+myHN3KxbjMNCYlkJLnOJYcwrcU3OtPI6gEaYoGovl1J5RNNnNXjXjL/8C7KxrWlAj0Z5A0dKYuoksyzTMbaRmxmT8jeORKiNImgayglxdg1pTg696B/HNzSRaY+z33/8s69rGOpIkDSpewYtxGCb+/ve/s2zZMs4880xWrlzJxIkT+drXvsYFF1wAwPr162lubuaEE05w9/H7/Rx99NE8//zzIyIcct1EymX8tXez5eIz0RNpkp2pfoslFcsqIGdzGusxk0RLiq4tHVRO7iKgqaTau21f2ZyZCSUkUz2rgrp96xCWILo9StdHsaK+iLsz5Q42BxO/UPQ42UG5FlYJ1PgJRPz4KwP4KgKuf23TL/486OMPhML4GMgRDjn/98pcVJCq8Om585EUiY+99Vre8kJrxEgzEOvD3uamBKVjZHJ5ODjL/X2PRB/19+xQQvaM/4rZBw0q/kPodlyWmTFoDUwGPgTgup+8xv/M6CbTbuTVZXgkMrtnQqRATDjiwkxYiOwz1R/x9VQnLqziWyRFZG4gMgBJXD/0XFfSXGRV6jNwdHelP9HoWIugdwaoXP/63Bl152/LEijguiepAXsSxi2emDFcMWBbDSyMlI6eSOdlTjJSmbzsZc6+mXg6T3yYup1BSY/bFgdTz7dAmRkLf8R2pTFSGSrSGXw7W1Hr6hgX2QBCIFIJRCqF3tFJuq2D2LZ20rEUme4MRtpwxYKRMt0sZIXVlJ1EA73iaKBXbI5liEGlbBd6Vpwo+cJF9asoWSuPYyERlnCLgBaSbEu5MRCHPPkcaz67jI/OPdl1KzIzBnpcx0jYcVBqBDtOpLrKFg2BEMKtaaMh1fjwB4NUXXrjgK9pLCMPMqvSYPbZXRlR4bBu3TpuvfVWLr30Ur73ve/x8ssv841vfAO/388XvvAFmpubAWhoaMjbr6GhgY0bNxY9ZjqdJp1Ou5+j0eiA2nTshtU81jCXJybO67dK6Y4rvoBlmhiJNKnOON0tMeLNtlWg0BLgUBhcCz2iQcZ+eGTaDdrWdGCm30VSJKLbunuZ8CP7hqjfv57w+Ko802l3ME58Q8/1F2OkM3b46lSCDX6EKdDjhjtLOFIWkb4yVbnb9JNTO/c70SoVwuOCBKqDBKqCWdHgQ9ZUGn72x2FufWmcAVTuYNvJdpE7M+q8gErVdcjNJJOLk4lppN2VciknmHZvFA3lUj2ngtj6RMmA+5HGSUFqRE1eWryQRS+8zCOR2ZgJi5ONNf2KQ0u3J0f2//MjADz3j4n84f8JzjbvZt3NW5i8tJHnFxxKJqGT3qH3mvHvKyc8gB63rTbCtFMBi4JMMZYhXGtdnptRLrpA5PjuF3teS5rUY7XImQjaHa2+uck3HJRg8SKWakRx6xY5zxnZDW7uGZw6g+rcZ5GwhB1MnK2MDWQFQsYVC4W1FhxyYyAcTN10K7Y7QcoOThFKJ7i3MEtbpt0gU6vbRQLTJpnuFMHaCvwtbciaiqUbGOkMVsYg050i050i3trtBg2b2crjlmXlHVcm60Jq2c9jq4jbUq8g8mwfD/YdaSYtksm068an+JVsLRMpLwDaSBslRQP0TFy8sewo3jntWLSg5gq5ZEeCeGvCDWJ2zmsZJhVfvc49RvKR3wEQXH7BgK5hd0KS7X+D2W9vYUSFg2VZHHrooVx77bUAzJ8/n3feeYdbb72VL3zhC+52hSYeIURJs891113HNddcM6R25bqK9IXtV5kmHU26fntPz51PcGLPS8ShmIlSyfrMKv6eDBJORgJLN0nHMixZ9SqPRGb3CkjyVfrsB3FKR5Il16QI5L3Ic3lInZn3knUsGI7IKce0niuIig3GfbUqvkq7QqtlChSfjB60CzCVCiwcDMNpYcg9jqxKqCGVioZKgrUVaBUBFE1FUhVkpXemj5HgIXVmycFzYfEcC5AMgeZXXF9WyA+ELmVZcASFMwAcDXKv03Nl6p8lq15l01fPKGvbkYgvcWb+hS6IkeDJaQf0SlWdW2PB0kWvduQ+Z56cdgBLDmvk1TVtJLakUCOKO9DLyyhH6VlwwHVj6t6YLG8CQZXcqs2l0qQ67krubHF2IG1m3aOUoF01OPe4TvzD7iIelJDck60vmPN3tthZ4fPEKa5XmI7SyZ5jD6YdF52e79nSTTK6iZFW0JM6ql8l053CMrMWhpxCbE5gMZB3DMdHX5KlPPcjM2P1+PHniBczY7lZwvLexXqOeGjvJj0x475Lk+3dAD1pV9MmZtrOLpSOZYqmOM3FmQAEW0A4rnRutq7sflpYzQaM56eeTUSSeW0udR8VS2qgR828GKJAVTatrGVhWvQpGgD3uVK7zzh3P6df0t0ZjJT9uzxhxzs8MXFeUa+MPVkw7Gquu+46/vrXv/L+++8TDAZZsmQJ119/PTNnFn+mf+UrX+H222/n17/+NZdccsmubWwBIyocmpqamDNnTt6y2bNn88ADdpXnxsZGAJqbm2lqanK3aWlp6WWFcPjud7/LpZde6n6ORqNMnjx5uJsOwOSb7++1LNfdIDe3vrDsdIC5MQ1aWEULq6gB1Z0Z0IIawZoQ/kgIX2WIth9/pd8aEoWU2r7UYPS5+QtswRLSCFYHCdZWkOqM0/x2S14VSPdasjMshcuVoExoXMC+PkVGUXryciuagqmbrvVhoLMrxWbFihXXcf7OpViVU/e4BeJH0uwXUHh8BF9lCCknLaBlmrRd0/NgrLvqd2W1faD0FxPgDGpcS4MqFX0JQY/fKtjZn3I/O5VQhSV4afFCLFOw+OVXhvlqysezNPSw8Suno4X8KH4fvqoKZE2l6lv/CcCUWx8o+zi5g3ZZk/DVqrZVs80ouk0xnAmG3LSLSlAumj4YeurfOL/tYsfOXfbhlk3u34XZlQqDjkvhiJFiuZnKsUgWo9i5c4/vDLoLU2EO1uVkV5HbH1ql4s5SqwEFNaii+hUqxtvpStWA5mbcsQzbxQxyLAW63e92QceebDlgP1f0RJqODZ1kEnrecx/sSabclNa5s/fFAtgL02BbluVaPpxKzmY637rQ13vGWRbfkCa+oWVANX4KrU/u7yIbU+BkkdKCWrZ4ndLTj6Zw3/eKT7XdfUJ+tMoQ9Vf/vuw2FOMhdaZboG3BhvKLUG775lkE6yIlq24bKTuVsePu2p83xp7MropxWLlyJRdddBGHHXYYhmFw5ZVXcsIJJ/Duu+8SDofztv3b3/7GSy+9xIQJEwbcrpFgRIXDEUccwZo1+YOFDz74gKlTpwIwffp0Ghsbefzxx5k/384ak8lkWLlyJddff33RY/r9fvx+/0g2u2yKuYA4xcBO2Po2K2Yf5AZQOaIhUBUkUB1mwq/vpf2nF6KGgnT98hvuoGEkOOL1Vbx85OEYaZNEW4JUNE2mO91rtqZwoF5YEdhXa98u+TNSMjKWnZVIkZBlC7BfPibWgF+wuebzQoFQ6gXhDLJLZVPJvTZZldBTBl2b2wnWpGwXpdyUgJrm7tP87c/T+PP/HlD7B0K/bh/ZKqRgB9TnpojNxckznisaHJwiWMK0A/0G67vuMXTeO+M4JFli1v8+TqozQTqaRJIlfB0xpv72wWE5R3C882xM9WtZdVItNsyvx0jbAalaUOt35nJXBgUPqCZCgVtTufs75LokmQnLTZGdWyHdSZ09FilVsdcyBIof1KBKIOLHF/YRqq9EDQbcdKmmbmDmuBQZqQypqB1XEIj43ZgFSZZcgWEZZk9tAL13ditndt7EzJv0cS3z2ZTBrhuYIxyMnsrMTsG5PJFQJJalHAqLtBYuz+tLZx05Bc6ymaK0sIa/woe/MkBFYzVaOICkKlgZAyOZtmMFsnUg9ES6p6+MoafHHujky7ZvnuVmoVKDlm1Zl2W7yJ7fR/W3fwNA45Bbtuewq9Kx/utf/8r7fOeddzJ+/HhWrVrFUUcd5S7funUrX//613n00Uc56aSTBtyukWBEhcM3v/lNlixZwrXXXstnPvMZXn75ZW6//XZuv/12wFZol1xyCddeey37778/+++/P9deey2hUIjPfe5zI9m0ESPXN9kZmPsiFuH6MMGaUPbhK7P98nPAEiRbOph4030j3q6Fz77IitkH5fmDFgZ5Ow9L10yf87esSvgrfaj+/FvGyu4pZ+tq9gxsjay/dPn0l4e9L7OupOX76xbLeZ27Pt5qp5DTglqPn2hBXvHBVI8sh1xXpVLWB9fq4LhKKKXbY1ml+sXEzFiuWd+ZrfMYHZwZ3g0XnIYkS+49GKwO8N4ZxwG4wmIg9DWYcIKti4lUM2EHCdtW0DDpWIp4a9xd3/XLb9C5dnNJUVPs3h1KfNVwxGYNZF8touBv0OznWkBFliVMwyLRlqR7bcrdLrfGzlgk1x0pL4tUNsuPFrQDYoPVAcLjKglUhwk21CH7NKyMTqYzhpnKYKR0298/nkFP6EiKhL8ygD8SxB8JoYUDmLpBJmqnRo23dtvpO2M6eswsOgFVLIC9MJA4t+BcYQC2s845/nC4iA30GEIX7nNYytYp8IV9+CNBQk31aFURJE3FiMZIt3YgrISbSCXVlcLSLQJVfhasKN9CMBS6brgEYZiY6QxaOIiRzoAlkFQFrSKMWlmBUl2FVFVD4un7MIIRIoct3yVt2x0YrQJwXV1dANTW1rrLLMvi85//PJdffvkur23WFyMqHA477DAefPBBvvvd7/KjH/2I6dOnc+ONN3LOOee423z7298mmUzyta99zS0A99hjj+3SGg6PRGYP2F2oL3JfpE6WEqfo0/bLPgeyZOerzjEN7wqcmeYVsw8iPC6EpZt0b0+6gdlOPIRWqeCv87kmWS2kIckyodoQ6VgqrwIlOYNWWbEDFSWldyag/hjqC0HoIs+1B4qLBscMbiQNhGlXtlRU2a1+6WSocALO1nx2WV76wJFKOVfK+lAsL3h/OP7HRsoWDoUBfuUkBvAYfhoXz0MKBMCyMDq72PbCu8S2dZOOZorGrgyFvGxF9OEWZwhiO7rxV/jQEzqJtqRbcDAT7e4lGnKP83BwFicm33efcVOOmkCwtoL2da3sfKs9L2W1EpLx1apu4C3guqLkFq9ystjEN6dGfGY/NClA9ZQIFQ1VBKrDKH6NdFeclne25QmHsYycdUdy8vw7tROc4F4trBKsCRKuDxOqj+CvqUSrCKFWV4EsY3ZF7QQg2QrMwhK2e01Qw1cRIFAdRg36UcP2yNlIdtkz6Unbjcnxi++LXNFQqlBebkBxYeygY83YlXEljuue814RejZQ2szWiUjbReIynTEs3QDLItOdIBO1LYmJ9gTpmB03UJjtbqSRVRWh2LUxLE1F1lTMdIbgxEbUpomYtQ2kKurI+CowFR8TZh60S9s31hnspKGzT2HCnnK8ZIQQXHrppRx55JHMmzfPXX799dejqirf+MY3BtyekWTEK0effPLJnHzyySXXS5LE1VdfzdVXXz3STSnJ8uh7fQaslkvhy9nxGdYCOd0sS0iSjJCtXWJpKMbS995k7TnLqZ0xiVR7lI71LbSubSfTbuCrVYlMqKBmWj3+SBCtMoSvOoIwTIxEko61W7MvDh0j3RPg5lSOdHJdDzeFZvhiRZdyXXvy9i0QDU4mEMsUYJqYmZ75RCeGQMqaK+Ws76oz4//2qR93UwfC4KsAl3O/OVWAJU3KBgj2DlqEnhzpzvfguMfligaP0SV5/w2IQ49G0lMo7c2YcTs7W6ZTd2eGoXT80kBwkiTkBh2XsmwJXRDfmSC+M+FaIx0Xp3E/+kPR4zuxFPXzall7znL2WT4FfyRIw1lnIFSN2tWvEap9k+1vNZPYkLYnJIIywTo/WlhzA20doZ6bjtMp6pXp1N32jVSmttwsPpKiIPuyFY01ZchFu3YFjmDz1/ns+IWA6lqEnQDkYHWAyMQaKibU46upQg4FkXw+O++/aSIHAgRqq5AkmVRHzD12bopO55mjx5NuBqJM3A44VgMKRsLIy27lUMp1NDeg2Pk/t8q4Rc+EiRtvNwrfRc857SuTNAlDNpEU+950UsoCrpAw0oYtwHemSsYIjSStV38ZLVJh+9tbFgjhFrZTx41Hb5hKKlxPRgthyD6EJLPhww+Ytt+MXd7WPZXCmNurrrqq3/Ht17/+dd566y2effZZd9mqVau46aabeO2118ZcjYgRFw67C0MVDU/tdyBaRMlz/5E0qaif8Uj6zZfL/n9+hO7n/0a4vZmKD94nWPMheiJNoDpM5aRxBKdMtGdHFQVME5FKocS6CdZ2kY4m7WwZuoWwegbduQVx+ppdGii5gdNSzixQMaHgvHiKBkXLPSnsClOaOoLHNLODdXe93jMbnJP1w5nVf37BoYNOd1queDCidtrBwgqhhUKhULwVpgp00gIDPNYwt+zsYh5DJ/jpS0n932/ANLFiUfTOKMnOJHrMdGfWRyJ43K2KXIAzqRGaFCDdlnHb0VcA6cPBWciaRNOR45h8xEzCc2cjBYKIVBKEhRTtwNi8iR2vvEfX1i67QFjQrvksq5Kbn5+sRU/1K3ki3AncFGbPwNJ2gLQZzsGjpQvi21JkYjqx7d0EqlvRghpG2iS2rXtMiwbneeirtZNv+MIqWkhDC9r/FJ+KZVjoyQyKphAaV01ov32gth5Jz4BpgqIgqSqyaaLU1aK1tWPp60m224XTkkkdy+hGC2pUNlUTyMZ+OZWfw/V2ytVUNE06lnHjFfKe+TnP4MJ0qe61ZEWDk2LUlC3AxNRFnngYTZwJHPezZVtalFiGZEcyL/uTmTbRY+aoPVu3vPABNdPqUAM+t3Beoq0bI20QqKsmEAyj+sNktBCWlM2sJcayI96uR5bsf4PZD2Dz5s1EIhF3eX/Whosvvpi///3vPP3000yaNMld/swzz9DS0sKUKVPcZaZpctlll3HjjTeyYcOGgTdymJCEEGP3CVkG0WiUqqoqurq68r6skeSZAw9xB5/OIE1YAj1l+/WPxkzDYLn/RZN9ajvZL/oqyhvP0v3hRkITxqMcdChC9SGZOlKiG7q7sKJdZHbsxEim0GMJEq0xultibqn6wlkiM2mVnQLWMbc72TTMpJ1qr5jfbDkU+vy6M1v+4ilXy52ZLxakV841lhoUlptOU4soBJv89kAhpCEpUtZVwMgTDrkWn8IiRdB3dirPfWlkeHLaAShBmapJEer2G09k+gSMRJL2NVvo2tpFxxrbtO3EFRlRc0h1HJx7qjANc3CSj8mLJ1Kzv52ZIzixESzBO398sqx0ve+feTymbhGoChKqj6D4Ncy0jpnR3XzwgBsUGqgOE5nWiK+mig3/epno1hhqQKFmWi11sybjq6mic80G2j5sIbolhh7vcdt0rB9ykcEn5IuIwomFXMp9Bo1lcrMkKcGsK2mVj5pp1VRPG4+RypBojWEZJr4KOyZBVhWMlE50azta0EegOoQky2gVASqnTyJ2zNk0y5PQZJ3JXavR3nmJ9LZmYhubSUcTtkuqYaH4VKom11I5fSJKOESmtZ1EcxuJ1hipriSpaJrYlnivjErlCK/C7E+5lcMHcpxdSbEMXsXaOloZ5B6JzM5LHZzbJqf+UmVTBbX7jCuZva39pxcCUHvlbcPevtEYr5WL07bv3NaKPzjwtqWTUa6/sL7saxNCcPHFF/Pggw+yYsUK9t9//7z1bW1tbN++PW/ZsmXL+PznP8/5559fMm3rrsCzOAwAxwUgNM1WkLIl9cqh//Tc+aPRtEHz6cMVvvhji9lzj+fUpbOZUnEviTVriU08BFNSqYltJiC2Ixs6cjqNEvAjKfZMoWWYpLoS9mxLsvfAW1alfoMKc310tYCanc2XkWX7eE6l7MJZx74e4KXM46aeX2ujWBravgRKMV/dwbzYBpN731erEqwLEKwOoAXtTFCWYRfocQolOWZyM1MwUNJAWLJtkdDoVWjJERxPTjsAoQtPQAwjudXBM+3tdK7vwl+10Z5dzWRnLoMyFU1BqqfUEB4fwcwYQ6q9IWsSwYk+qqZWYuoWrW904qtVCdT40JM6Xet30LW5g0xiNYtffoVFX+3Z96n9DkTxK1Q0hpi0aD/GX3s3W//js5gZA19FAMuwyHSnSHUlkRUJxaei+OzfbaKtGz1pUNkYoXJCDf6aSvx11SiRCIEq20c+139YDgUJjqsm1N5NOprKqRNgF6Bz6+Bk3VjMpL089zeqBOVsymuFUH2IQMROfSnJEmbGIB1L0bq2nfQOvVcq2LFOMcGghlRCtQHC48IEqu2UjU4q1VQ0jZ7UsQzTLnZWFabGZ7/ibRcsFa0yhBKJ8FZqNv/4fylef+od6idP5aZLpzH+mXvoWLPJFQTCEvjCgnQ0ib+9CzkWJ97cTryly87O15UmE9PzJngGk+XIqRsy0P1Hg9w2j0VKiQaATJuBETWJrU3Q8kYbm19cULQGUO2Vt9H+0wtp/+mFmMk0219bx4EPr9wl7R8LSDLIxcy0Zew3EC666CLuuece/u///o/Kykq3IHJVVRXBYJC6ujrq6ury9tE0jcbGxlEVDeAJh37JLXTkzGwtfe9NVsw+iI+91TutZW6dh92F9W99RLI7xaTxkxg3+3Dqzvo2b7yVRJUFvlASLR1DSsbB57N9ZNMZhGUhybJdQCfTWzQoQRmh9s7cVIikSagRxZ1FLxUjUaqirDPYz/OF1gWE8qsuQ36mjpIBfQXVZPPOOUTB4DCYwl2hcQFqptYSqq9E1jR38GWZ9mBIZNP9mRkjmw7Qznpiu5PlWCFkiUDE3+NuZQn0hG7nYU+bJTNaeZRPqe8202aQaTNIapm8rGUVk2zRULNvI/76GqyMjp7IDPr8Jybf5/kFh2ZjCGDKMRNIdSZJtKeIbovir0xhGnag5wsLD0MNqHYBr7jhuoyofrso4vbLz7ELTOVU/nWKeilhH5WT6tDCQZI7O4m902wHy+r2hELEsEh3xGx/ektkXYHsKrUdH24j2B6179VswbDc+iTOJIKkSCg+BSWbNjSTsH3K5Wx2Gy1ku+YommwH8gbsOAXHBSpYq6NoCrG6bjrXxvLqW4xlnPgFrVLJq8GgBTUqGyNUNNWiVYYQpomRyiCrCsKy0BMmgSqBv6aS0JSJIARmdxxLt2MV5EAAqTLChhYfrz/1IgCtm5u55cmF/KixjkRbN7Ht3STb0siqhFHl1HWwnzPx1jjJjiR63CDTqee52g2FsS4YBkrhM6AwxmikLBLBJr8rvIt9N7nxTn2Ra20YN+yt9AC49dZbAVi6dGne8jvvvJPzzjtv1zdoAHjCoQi5s4Rgv4gL2ZNy4c9fegBzZoaY07ATtct2Vp0QaidmhIjLEQLhesKpbuREDNnns7094wlSnXHS0RSWZbkDIcjNy933y0CLKPhqVfyVPvyVPoQpSMcyts+oZZUe3OdQykKQW3U517e/XIptvysye5QKAg/WBKnZbwK+mqq8onVIsv1ZkpCyla+tVBq9s4sdr60l2ZnC0u2Xvp3tyq4n4gysbAFon8/xVX6swU775sVAjAyFz5MVsw8iuj2KkTbwV7aihXxIsjSo+JlHIrNRgjKBeh+J1gRaWKN2n0r0pI6pm/jCdgCt6lexwtnq9GnDFv+msH204wZmJoqsru91fOe+8YV9VDRWE2oaZ6f07LazECmaTKorjWlYKFoXsR3dSLLkpj02dQszbRBNd9LdEnPPD6D6FddP3x4IO26gluuK54/4bT97v4qs9qRRlmQJLeS3g3odZ+Ns/ZxgbYVdjEuV6Vgbda2YY4FShS+VoIwvohGo9rt9pwU1tJCfUH0EX1UYNRTETGfwV4VRfKqbNjU8qQGtqQmqapBME2lnM3pbO0YyjS8QAFmhocZkxqGz+ODV96mf3Mjnj+ki8T/v0LU5SrIl7VpmzaRtFUt2JFF8CnpcJxPrXextb2AoNUKceDZn0mg4krEUY9ysOkzdJNbcTXxrMu+d5RXgLA+JQRaAY2D7DCZKYDTjGnLxhEMBTgE3h+FM0zpWueGiMO9/uJm61FYQ9gtjY/c4dnZpQDXT6muYW5Um1LnTvtktgZXRie+M2a4WmtLLBcYyhVu8pxROPxspE2Gm3UxAQF5BoWL0VwU0tw5CoQjIDRgtV1AMVTQU5rrPbX9ucTpfrYriV3oCoWUJNahSM30cwelTkCsqe2yiwrKD1yUZoflA1UBWUPQMSmcblc1tQDupaBrLMHPSzRYU8MtmklE0BREUkM3y4wVQDy+F96xzT/jqVMxkN6nONP6IDy2oFdu9Fx0/u4j41hZaP9jhzggrQRkzaRHfnMr6/KeINyfs2cds3FCyNo2iKa6ISLal3OxOzoDRCJrsiLfaA9iQXetA8avIir1eTwqMdCvxlijpWIquLTHXd1oNaG56T8sUpGMpEq0J9/ctKVI2oLcnkF/RZHxhH8Ea2wVH9ql2LvqsBc1J/yws4aZGzk2T7KRQzhUNjgUu1Rl3g3iVoIwaUfJSxe4qCr9/x7ffV61l3a1UN5Nbbp84rldgCzcjlUHqimMm0yBLaJEKgo3jUCorkCZOITV+OgYy/u6dyJs/xIjG0LsTCMtCCYfQx0+hNpTmnNOrSJ28hPpQgv02P0Rnuy0acmsyODFdKS3jTsDkxbLtRcLBsXI7DDTz1mBcVAfK7Aee4KNzT8ZIm6Ta073O74mH/pHkgbsdOfvtLXjCIcszBx6CkTBQgjLL9kIf71n7TebRN8azM+njoz/rXHWOD4CPnfYsh3/iEKYdU4+6bh3JHW3uSx1ADSi9feoBzP7dlIQu0GO2SbVwxq2cNHyF1ob+xEQxyrFGDMcL0mmbGlHcwfiT0w7IC+hUNIXwuKA76+qPhAhUh/HXRgjNmYOorMJSCwaVztNKkhCyPeCQVA3ZMgg11mGk7HzrerLHvcOpFuu2LZtpStFkTE1CMrJpPL1icYOilCta5f4hKhrCvZYbURMjag/shSlIRzN2ZiHFtjo4FFofOtZsItHWTXRLjEyn7v5ughN9aAEVPWWQ3JrJc89xCj/KqkQmoqAEZZJbM0XcTSw3riDTbmDUmwTrAllrhUImmqbjowT+Kh+RiZWEagO2G83URrRIBWYiSSbajT8SJNUZJ6p2oSdtN6NAxO9avizDJBPPuFV4fZUhlKBtVbAyul2JN22n/nSEgZUVEwCyKqP4NBS/hhoOIgwTPZ4ik0iQ6U6hJ9LEdnSjx/NjfyRN2mV+6o5VQQnKrmVW6ILgeD++Sh+VDRWE6iMEairQKsNIioKl65jZwl1gW11SHd12ys+U3jMR4FNRgwEkvw+5bhzJ8dNpq5wGQB0WWscrxDdtJ9UZxx8JYsYTyEaGGfIaqravRkrGEd1RUhs2EW/pctuc6/a5e0WGjCyOeBjLgkmSs89zv+Le5yMpGN5YZlc5PvjRp0fsHLsSWZKQB2FxGMw+uyt7nHBwKrA6zH7gibL229VFWsYiyw62g76POOV5rjrnaACe+duRALRdcyPdnTEC9dVolRXIoSD7z5mBlcmQ2ryN1fe+7JqunZnLUg9X58FrGcKNKSj1cnIywzj0VUCo13mKxCnkMlwxC73Omx0kVEwNEplYSdXkOrSQ3y6YB3bVcGDOmQciZQf+siqjBAMEp0xEjlQjKiJYoQimL4ilaDjlqISskPZHSPiqSIsgAgkZE1mykBAIJCwhIyEI7XckNdEtjG/fCtFOSKcRpoHV3Y2lGwjdHphlot0kW6N0boy6A1iw+9QrFjdwiokGJSTnPWNy3SGde8+JgYCewWbFtCDjZ49j5n2P5u1b6n5VQjKZdgO53r6vcgerziy7DEhBGaEL/ON9MNGucg+902M6yJqMLEtoQZWa6eORfSpaOEigYRyS34eVSGLEutGj3SS2t+KvqUTx+2h7bzOZeIaGAyeTiSaygdQysk8lUFtFYMGhGJFxZEI1WLKKLx3F174Na/N6rO44ajhj11gIBJADfiSfH4SF0HWsTDa1KCAHgzy/4Ap2dPlZPOEj6h+6lY8eeplkexJTH7msSsVcjSBbUyYoE54QsAO360IEqoIoPtV1wwo3VFM5/0Bicz7Gh9JsdnSHsASMr0hSqSWpULqpyLQTju1Abd9OYM27pNs60GO2KLIMw3ZRmtiEFAqDsPBHW6gDJGHh37mRzc+8SdfWLjKxDHrKwEy+g9AfxletEajxo6gyliUwUobtoraXuR8NFl+dPXQaDctVf3SsbyMdy5BqtTMdjrSVoT/B8PapH2fe35/indOOpVsf+zFGo1U5endijxMO5QoFj9I894+jey1LtHQA4KupQolEbBcZRUH2B/CPS5HcmhnwzHzuC8qZkSuZfrHI7HfuLGkxN4BSBeEccTNShaWUoF0lt3afGiKT6gjURpB9mp2NSlVQAv5edk1JU5EDAWiagpEVDKYawFI0LEnBklUsWSGthNiUmsiGzUG6E1ARAlUBVREoskAICUkSqIqgsSJOsqaCmkAVwYpmlO525FQSKRBA0Q2EoaOkUsiqQiaaILnd9m12BkIDrf7tYZNrcSj10nbiHIoVjXSquMtAJqqTjtmycd35p9C6dmefghzs+zu53XZTcH5XQhd2umO1JxmBsASyIuGv9LmfAdc9zhf2ISuSHQORHXy7M/9ApqsbM5XBV1WBEgpiZXRiW9tQfCrVB8xA2m820+bMQd+8CXXefMxgBUpnC9aWjVjpDGpdLanx0+kOjaeN8aRMH6FIisZANaEP1xD9aDPJ9m6CtRVUTG1Cqa/HapqKZGSQEzGkRBzStruONWlfrrryJQD+Z3IjN156IftrKs0vvM2217a56ZadgXG5g+Pc50phvxdaEnJ/L7JsZ3uqnV7rpkhV/D7MdAYjpSMsi0BDPcaUmbyUPIT//ftOfL4UBx5cz8SIiSLZgshQ/GQCEeSKBEooiNwZxUjppKPJrOuWRXL9JtRwEDkQQE0mCWRSYBiIHVvtQp0pw81+5EwK6DGTVGt+AP6ekLp2pFFCMuHJAYJ1AWRZomNttOwA8ZONNXkTBiPlOuSr8CFryqDrCw038/7+FGAXS33ppN5jC4/djz1OOHiMDI5vsTpxku1Tn05BOoXR3kH7Ox8N6IVj5czyOwMlLTvYVjTFDdIkablVRGVV6nOw32u5k7a1RHakkZwlkjQJf5WPUH0lWjhg53aTpKwftork8+Xle5MkCUnTIBDE8gWwtACm4sdSNAzFhylrZJQguuQjYYZoT/jZsNVgw4ftSLJMdW2ISMRHVZVCOCjhUyX8msAKy1hCxlADWJofRdFASiGpGkK2A0qlTMYNbl3W/q6dchjcbFTHblg9Yv20J9PfgKAcf2crm474wIdXsvrkpciqQjqaP9hTQrLrbqcEZYyoiW+8hr/KTjhQ2RRB8amkuuyBpi/sd+MFottj7oyzpZtIih2AG6oNubUAzIxBoq2bdCyVdXnT6dq0EyBbOVijSpZQKyvQ4ym6tnRQNakGuaKSRN1UgrKC3NoCQHf1JEKqD629FXn6/nROOogd8kTaUhXE0ho1wQy1vk4US0fv7GLjsx/RvSVJ/bxqKiY3kNz/UNYHD2CitYHIjvdta51hIJIJkHsSBkyfNYGK1DuuOHdmXvOyqpX5+3eEARSfXXYEthZW7WxUAQXVr+KP+AnVVVDRVJtXFdsyTPREGj2RRv5gI/UN7zLrsHmcuGwKYb/FgVVrqO1YZ7sdCgvJMt1/ZjqDHk+RbO8muj2KpZv4I2m33oKdKW0NvooAvspQNjbEsl0R/QpK0HInY8yEJxIGihKSCU70UTmhguoptQjLItGewjLSZfelcz+ZSatoYcah8PTc+Sg+mbr9ajngoRXDfPThYfZf/gFVVaPdjD7xLA794wkHj7KRZInMhg15Li5dG1rYuaZt0MfMfRErmoKs2NViJU3CivXUZRhsnEGu281I5grPdVlQgtnigJbAMixk04Sse4LIulYUZm0QloUECEXDkhWEoiKQEJJCRgkSFVUkdT8Jw4490VSJzp1RWjZuA6Bpv8lMn9nIhAkB1AoJTRVUanECJJGE5cY/FGKlM9Rd9TvqyB/MWoag+B4eQ6Uwa1t/ImPF7IPQAiqWKUjusC0JcjaNsZPbXw3Yv52udXFbuFb6qNt/POMWH4RcGSG66k3UoJ/QvtMQuk77a+9g6haRiTVkuu0Bv+pXqZ5aT8WkceixBEYyjbAs0rGUHVjss0V9+7oOkm1phC6o2reSujlTUSKVJNvWIMkyqa4knaveJBKLondF6VizidpEkogsIe3cjtnVidI0hWCilboKjXA4TptWQ43WRVPbO0imjjJ9Gv7KN8jU6oyb1YTvkEU8Jy/i0acspk2Zz5lTDSo3rwZDx4x1I695k5t/9XXq2UHknz/kw/942XbXaE8PKQWr0AVyZY81VI+Z7nKwnyuSJrmiQQtp+CsDBGtCVE1rRA0HyXTGMNIZzFSGdDRJsiNOoj1JfGccWV3FJFmiadL+SCkD+cN1GC0tKKGgPZkgSdl4jwyJLc3Ed3TYxdmy6XPNTAI9qSNng6dNw0JRZXwVPrcSdi6yKnkpl4eAmbSygf7ZdOQJY0CuXUIXmFgjEljuxDnN+t/Hh/W4exuyLLm/p4Hut7fgCQePsnCqTK4+eSl6UkeYdhrFxE7bTWko5GeqkAGLTLQnw8tQ2BUFewr9nIUuMFJ2RhdHKAjLsgOYhUBkMkjBoO2vDXYmGFVDCoQQqg9L1hCSjKlo6IqfOBVs664mkVGQJZAkQX2twqR9G1zhsP3DzaiaSlXVBL55qgooQCNdq95CNg2UVAyyLgyBT13S5/VYeo+L15PTDgA8y8NwcmLy/ZJuCg+pM4nMDHHUO6+7fZ9pN0irOv4GjcqpIeJqEj2WLRw3IUykKYKvIoCsyoTHdRKZWMu4Y5ZAdR16dQNy5w5iW9uomt6AME30jk4y3SnGzZlEsHEcm/7f65i6RcO8RuqOOxrRHaXjX88SGl+FlDHQgpobrO0L+/BH/Bgp29XF0k2iG5pJt0dJdcZR/faMe6q9m/TLbxPb3knL2220rW2h/t11rpuT+tFmO+tRIk2kLsKkY49Br2lCev1ZrFSazNJPMuf7DYitG5HHNbB+ylK2b/UzbpxFQ61FMN6K2LGV9LZmUu1dJFujVDx1Hjubo7z7VnterEgxBhLg6mSkcrIgOThWHqcAnRbS8IV99r8K29KYiXbTvb0dwC1Il+xMkepIIykSnRtbkX1vENqyFUmSSHbFSOzosFPLarYVwTIsjGSKrs3tJNoTOfEK2QxYKdPNwmZls1TZQk/OPocs9LhhW1q9hAeDxkxYpHXb5Sv6UcK1gg8ESxd576LhclfyYtGGD8/i0D+ecPAYEK3vt+el5Buu4DBJk1ADCv5KH3pCt4N0dxNTemFwpGUIMlHb/SdQHXaDou2Vlh0jUjceEY5gqX7bGiArmKoPUwtmYxoU0mqYTmppS1aysUVDVaC6wqImpFM7IU1DTYiujhl89PoHyIpCfWMVk5sU3lzbwvTOVfD8E1jJFFIwgOWzLRWUOSvifL+OOd1LzTq8FA4WHg7OQtIkgpN8VE+NEP/d95l4WCNtH9pVjy3AF9IIVAUAiG9NEhofIFQbIlAdwl9VgRAWUw/YH+mQJbSMm0VlfAdIEj49TXRbJ7HmKIF3NlG9TwMTTv8EsX0WoL75FKnOJP4KH5X7TKJ59nHU73wPf2QVwjBRfCqBqqCbESlUV0HdAftSNXkLXZvbiO+Ms/6pde7A2hfRqJpUCYCRNuhuiZNpN0hE7IFvujtDqjNNoNpPzdRaFJ9KbGsb5sP/QgsHaX1vM7KqMG7pJ9k8fSmTjSewWrZRO20b85r8LK9bS3jHh1jrPyC+YQupjhjJ9m5i26PEdsQxomaehSH32eRYaZyYj3LqOTgDPRPbVcU30f4dCV24NWLsY9v1JBRNcQveGfEksk/FVxEgHU2gJ9KkYyk7w1PWEtC9I4ZlmPi3tLnVrvWk7qaZBdvFyUibxLZ1u2lz7eU9rldOdW0HUzcRXdlrzNmusE88BkbuwH8g2aZGMkD5g7M/QWR6xYgd38OjEEkMpgrFGCIajVJVVUVXVxeRSGS0m7PXMdy5qZ0ZQkmT+hQOSkguae4d6XR5smbXW/DX+VADil0gaUe613ZV+4QZN6uBmhmT8Y2rQ66oRIpUkWrcl2Sonja1gY50JQndTrGqyhb7hLZQE92IJCzeDy/kgx1VbG+1sCyojshMa9DZp3I7kzY/R/yJx8nEEgTqqwk0jUcZ3wiqavt9x2N0vraaZGuUfe78R5/X01eWntyCdE7wpycghodHa+cAuIPu3CKKSlAmvcMerJcKyvXVqihBmWC1nylL9qNi+iQ2LLuUfZ+/nee/9z/4qjUaD2ygZv8JNL+2zs7t3pWyZ6F1E19Is/9Om6RadGRVwt+goQV6ZtBVv0q8NUF8axLLEGiVClVTKwnVhvBVBAiNq0aSJaKbd7LukY1uHJKvTiU8wRY5ZsYiPC5IZdYy4q8O44tUYCZTRA5bQGKfg7nuhUN5/p+vALDguPlcP+F3GDt2kGreydZXPqLjo06qplaS6kzb1dCzRSKdgGcHp+4A5CdfKBQQ/T1fiqGE7DgsN7lCdgJF0iQC4zV8lRpa2LY6BCJ+2+oAZLpTJNoTpDrTpLsyrgXD2bdYRiZnWa6FoK/nHeRPYOyNdRbGMruqcvRYZyyP15y2/fi/OwiEBt62VCLKDz5fMyavbbjxLA4eYwrnhS6TU1m6ykcmoZPYkMbSBYEGjap9K4lu6i46uBrJl6USkonsG6JqcgR/ZYB0LMXOd9vcrDVOkCSA6lcJVIcJzF9A19T5dPtqMIVChdkJgIaOX9ERSPgVnTqtg4bn7iXT3IJ/v32pPnAWmhpBliXa29N0d8tYwkeVv4bJeoaujS34KgIofh/CNDFbW5CzlgUrlUILB2n6xZ97XcNz8xdwxOur3M995bR3C+kBqPmDW4+hsaz9XVe0yeD6Pjv1E0rhuJI59R98IY1EaxQ98RET2n6AmNhI/bxa0lE7Y1ZwYiPVbVFaP9iBMAWh2gCmYR8/k9Cpn1XLlpYd6FETPWr2EouOGHAGqKZukexMkYlnkFWFQE0l/kjIbZuDIz7sQb5AT+r4I0FUv8924dnWTqBhI0FD58LjJzFhwseojUgsmbyR7jvfJr6jg0x3ClmRaDxoPMHaCra+upnEllRRlxs7uULP4FkJyvirfCg+mdimhGthKHQXKRczYZEhvyaGgx4zbdGSsTAzJmbaIBVNu5WxM7FMXnG1wjoJhdmbBjKb7RxLBjd+wRMMY4e9VSTsrjiFJQez396CJxw8hkSpYleDJXcW0N+gUb9/LfGdcUSXcCu+mkmL+E57ICBpEpF9Q1imoOvd+LC1oxhaRCHY5CdQ5c9WcNWJ74y77gCyKlHRGMJfGUBYFlWT66hZchhr9z2ZFzeMp63DQpLg4wdEGKe1EjJjhOUoASNGaMdGxAdv8+GDz1A9tR7/wfPpMipp6ZDo6Miw7r1mUok0H4T8tMyfRP2SpTQuehcrlUIJ20XFjM4utzCfME2EYbL9ss/R9Kt78q7jiNdX8fTc+Rz1zutA8eroeYHSbiBo+WksPcrDiXfIHczK9D/wy51Z7lobp3vLegCmHDWByRMamPG549B3ttL+3kZS21uIbu2wU4BW+6lsjBBrjpJsT9luRNUJwL6/HcFiJiyUkIweNd11wSY/tftW03TYDDo/3Er7+jba1+2kZpqdXal2XhXJthTRNQnMpIXqV6maVIMkSzS/tZ2dO1tJdSapTun4KgIEqsPEN20nkEwx0f8I/7bPAkzFR2XzBras3Ubbh21kEjqRCRWE6iqQZIn6GfVAK3rKwIiabrCykxJV6AIz62Yn5YgLJ4i5nL7tC+f55Fg15WzSBUf0CV2gxw1Sato+nyxjWVZPgb8SVoDhGOh7YmHsUUo0DDW2IXHn1YTOv3rQ+3uUxotx6B9POHiMSdSIHYS48902JE0i3BgimuzOzhia7oAGINWRwUxahKf50WPmkLKo9IWk2WkXAba+0Oym1YMeNx4nODLVlaR69j4kZi6iOVFNe6fF5k0xErEUR8ypIEg3/lQXgWgz0uZ1xNd+xM7VG2h5s43afcfTPWEOa3ZUs7NNR9ctIrUVKJqKotgz/hICtaYGszuGHAiQ3LCZTDSOrKmo4SBg+0YDbPzK6Uz97YPudTxz4CFYljXggLpCtxCP4SHXjcFJr6oEce/x3JSrzsDT9XN3/K0TFlpEoW7mJJS6ekQwjLFhM+0f7aTl3e10b0+61gxhCtKxDLImUzEpyJQl+9F4YJJMd4pUV5Lo1hjJljRNhzVkU4sGqZzSgJXO4B9Xi3LI4TTUvYriW4OeSBOotqsdTz9mLsmdnXRM3Ukqmkbxq2ghP2bGINmWJtNuZ6DJJHQqG20x4K8Ko9VUYdRPpNk/jZTlp2mcj0B1CElpRwuoBKuDdgXo5qjr/++v9AGZvN+fLMuYmG4BSqEL0qqduKGwv4aKVTizrwtEEUuRGlHceCHPdWjvopyUzIMRD+9+uI3p4d4V6D2GB1kqOxSw1357C55w8BiTOG4Yzos2uTVT1CdZ1iR3QGImLTvLSUTJG3QN1wvbiJrENtrZNHLFScX+AYLVfixToCcNQnUqNdPHoc6YxYbgfqS7FOprZJLJEIkKH5JkklECaGoSLBOzO4aRSKOF/DQd1kDN/Dm8Kc9l3RYDWYLJkwJ8/pguUlYFATnN1K7/h/rsSxixbtQ5B5Gon0ri5RvRE2kqmmqRNRXF78NKZ7BME8uwWLV0CYn2FIomo2i2+DA1q2TQs2de3/WcbKzhqf0OdFMHOwGvsmrn4ZcUe9Cf6dTzAnuVkMykoxrY51NHYyWS7HzyWVo/2EFsW7db1M/ZVosoxHbECY8LMXHBVLRwEGFZVFRX2umWu+KEx3USrI9Quc8U5IAfY94itFg7YuNath/1Bdr0GuYeKDG+osKu3CzLCF0HWbaFa8hPdFMrrR+0Et0SQ1Ik16XQTFosfvkVXj7ycIy0SbC2EiUcJh5poDUdIW2oBML1HPDbB5kKdPzsIpRggI5319G6tp10W8btl9yCZpImYaZNN37AmWAA3MJ3QpUQWUtB4f09HFbTYs8YI/sc8gTD3kVfz8+BWul3fv98MrEEE2+6D4A5+02A/S4fchs9PAaLJxw8hsxwuytB7xdtYZVox9feiSsw0yaZdoNggx81oJBoSeGLaJi6vXw4rBCWLvKO47SjYc44AtVh9EQ6W4RJIMkyUjpFY3oDekTDoopESiMQUNjSIREL7UOlP82UidWMSyUJJZJ2kPPs2ejjp1Dr62TBrEZCPpOAkma/TY9jBitR4p3ob79JdHsr4UkN0NZMaPsmoimd+gP3Q9I0ZL8PORjETGfsAlCqTHhc2E6jmTbtWduUgTAFMDLWGY/B8fEP32LDBaeRjibp2toFZCs5+1W0oIoW9CHJEh0b2ulc040SlJly1CQmfOOr/MM6heOf+Aqbnl9P1/vxXr8hJZStcCzbhd6kbGrU5jc22LUHaivsrD6JDAHDZPuzbyDJMo2pNImWVmSfht9M8NwH05gwaxaBJ/6FkUhTNX8uct14dj7yBN3NnSTaEsR3Jkm1ZvJm+mVNci1cC599EYAdV3wBqTKCL9nJfOV5/B3bCR78ebfNgcmTSG/dRtuHLXRvSAJ2elrnmA6ui1VBkUgn8NzBqdidy3A/u3LxBINHMQYyMZPqiI1gSzwK8VyV+scTDh5DZiRfvMWo3D9E7T41bPp/2+wc99nZTIDY2oT7ss6EDHy16rC6LmkRBX+Dhr/SR7AmSLg+TNNR85HmHoK8YY1drba2HqOmERHvJNy2gUn1Mps5BNMSBAISXXGJbTtVLKHydmgW9dUzGH9CiqCaYUd3BQdXrmHqa/cyuauLdEsrwRn7k9m8GSujI0LBbB9MRQ4GSX20jnR7lKYzTkQEKpDiXQhVA0lGi0YxEkkkWUYL+VF8KlrQ4uBHnx62/vAYfnZ+604msokJj/43mY4unMR3wrBrgyg+FTWgkexMuzEnyrp3OXVyiudvf4FU9veghGSq9g9T0RBm67MtbqBzyshw1DtP8/Tc+WQ67W0j0+0Ygro5UwntNx2h64RbduI7ZBGW5iPcuh2jeTs1K+/lU0v/jTbGM+mM84m0bYRkHHP7FiRZwkgbpGMZMp266/PviIZig/Zb5vye7e/GeOf3bxOpr+HXV87EKY+34YLT2Llmh5sEQdIkwpMDqAGFdFeG5NZMnqtWMcuipYuiFrXBPLOcoHEvralHKfoTBFpE4dHaOZhJq+jv4fXjPwbYdX8OefI5ACbffP/wN9SjJJIM8iBygEh7Ud4QTzh4DCtOEGVyezovDmE4MRIGqU579jE3WNHJ0Z7eodt+4AmLZGJoxekcZE0iONFHuDFEuD5M1eRazIxBsC6CEolgSTLUjceqrMHSAiAEa6ecgCVkxottzK7ZSnVgHLJkkTZVTEtCkQW6KRNNqkRTPioqU9QGU1TGtmFFo8TWbqT1/S0YT79L40FTqZg2gcwRJyFbOkp3O6TiGAcfi4ogKimMn7sQgNjLDwOgdnfhSyRJd8TY9+6HhqUfPEaefVOr8cdasGQZX00Vkt8HlkDv7EKPt5PqiLF11VYSG+wA3E1Pb6G75SFq9xnX4/OfTRFa2WTnd3eChgGwfzpucPyjtXMwkoZtLTNNhK67NQTE5o+wuqIkWtvpWr+Djo3tzOiKUnXsJ1H0NFIyDrFOrO64nWGpKkiiLdEre1CxQRLANV/wccQpthXikTsPzFs37Xd/Y1q2ff4GjWCd381YtqvJzXqUKx48PBzKtSI4VjEnpikwXmPcnDosw8LSTRaseH6EW+rRF57FoX884eAxLDi1DWpnVWHqFvHNqRE7V3xDmlSLnue+5LgRDXcNBycw1d+gMf2ofUi0xvBHgvhrKkns6CATS0DNOJJVTVDVhC/ZyYdVC6mV29gcraUmkCKYaUfxZXgnMYlEWqauUqcuGKdKjdKpR/CrARRJsDlaxdRIB0omSWrhMqob38bSV2CkdDKxBGpjEylFQxImcjoBssK4eYf3arPhs60SyrgJVH36UqqGrTc8BkPyibuxgpVYioYa7yT+zEpW/efzLGt/t+j2gTdWIFfXoEycBJrPtiB1tqF3dmFmDFKdcbo3JHuKkyUsdsTaaX+/yxUOuQP1xxrm9vpN5OaTj+wXprKxAi3kR1iW7WYXrqR19Qukut6he0cMI2Wip+xYoh2rPqByxx/wV1di+X10b95BOpqwg6A7EnStiw+oRsJz/zi6z/VOP7127BGAXRU5NwjZmTSomRlh5ysdRa+1cFA3WPdKL8DZo5ByBcOT0w4g2OQn1Zpx4/eELtBjJon2JAuffZHn5i8Y4dZ69IckSUiDUAGD2Wd3xRMOHsOClc0c0v5+V8mKrEooG5Q7DBWhSx1juF7qsiZRsU8Qf0QjPC5MeFyE6plT8UV2ooWDBCc20r21DWHpmOs/JKwovDHpU4yvbSWe8uPzV1IVSNHg3wl/v5/IwiW8ufVg3l+9lf1mN/DJJVBhdFIhdRLO7MDQQihyCv9H62nZ72OMf/0f6FNnU3vUEoyWZhIbtxJ/5z20desAMHw+Kr/xy6Jtrzn448PSBx5DI/7s/cjJbqRYJ7KsonRvB2Hhr6+lZk6EVUuXULvvOMYffgBIEskt20ns6MAyTGrn7Ytv/xnodRNpq5tBw8aXSL+2mq7NbUS39vZ5dlx1is3sF3PVcwQxwOKX7cJrmy/6NGooiFRbj/7/2Tvz8LjKsv9/zjb7TJLJnjZNuu+0pZSlhdKyyg4KivoioKKvLIqoCCJS3FDccAFeQMUV8aeyiZSdUrCltKWl+96kzd5kksw+c7bfH5OZJmmSZk/ans915Wozc85znjM5c879fe7NX4KvNJ9o035CB6KZJG1DM3H6PXhKixHsNiS3G1tLiEQwSqw5ipbQULyp3AlRFjIlkweDk9/4L6vmn0KsKYGzwE7ujBy0hEa8JUH2OB+TPnkhaw49nen3MphYYsGiv7zin5HxhituORMeCKnrSgvqNG8LAnTor2NhMVqxhIPFoHG0XALJmTJWBkM4HI321ZTSYQadu8d2ZQykm8658h04c1Ir97mTi5HdDrRIjJwzFpCoqEBrDVJ8+XmEJi7ADB9ic/aZiBgEtBwSuszBUC5F7iCFDZsJNbXgqKlgfKlMVaWT4kIbihBEMEyyN7+B3tiI0RokdqiZ/ZsOYnM/Tdwu48pbg57UyD91Fp6PXIyx/UNqV27AU+LvsrGbxejClBSCY2aiSXYULU70bz+kaXcDiVCScFUqXijemqC1qploY5RkNJUXINklwvWtjInGcE6NURALEnvvv1S+s5NwbYxkQOuy90Z7XnJOy1QTklxilyF9QIeSvKUP/5PAD/4XDBM5GuRfZ/2eT171Gtm/f5xwXQu6mqrQ5S7JA1FEDbQQrawm1hQkXB/EU5jqDO2foOIuzEH2uMi56+FB/UwXrl8HwOZLl+DISn0/PQtyCOytJz7zdPKnvk5VfW2molJPDEVRB4sTi96UXE0/f5IBDd1vpJoFdmpYenGsa++jxfAj0s9yrIM+k9HLsAmHBx54gG9961t85Stf4aGHHgLANE3uv/9+Hn/8cZqbmznttNN4+OGHmTlz5nBNy2IYSYcSpau7aEE9Ey882Ct66QZW9LHh0vRPTEeNJjA0HdlhI7D3EC0VDeRMLMZVXkpw6kK8vhx0dzYHC+YwtuIdhHAL00WJGv8sCkO7CXpKaMFPnlFHdf48ij/hgGAjl2WvZOJHT2Yy6/BVbMZwZ2OEguixlBHpKs5jjF1BiyVS4SKShCNHxojFkSNBzESSRCiOXtGAsuzz5C377aB+ZhaDi+eMK5CefpDgSUtJKi4attfR8F5z5n1REYjJCdR4KsG/fQnhZMshooEYjne2IogCTXubU7k7Wu+a8Hknu5hz49mIp52NZ+GVrJg+h2hFAkiF25hyykPYue+A/57/y/w/610DKRnDW1ZM1qRSJK8HM5lEC0eJ1x0iVN1IsKYVl9+FzW1DlCUUtxNPaRGSy4naGuzT5/WKfwZAtyFc7Zn94gr+O28+jix75rXAL35Gw5ZDXeZWdVcz3xIPFkejv6Wp09dV+9LACVXNPHusktejEyvH4egMi3BYu3Ytjz/+OCed1DH57cEHH+TnP/85f/jDH5gyZQrf//73Of/889m5cyder3c4pmYxzBiqic0n4RnrJPBhqNtOru5yO7JLHlA36N56NtIrQs4xNlyFOQR2VmHzOCj86CUUSRLx9esIHahHLJ+Ct3Y7ht1FOHsstfF8iry5yA3VGCtfRrlqCvvccznYmkVlnUQwlMvMiQKxbCdSls644CZ8ShTf+rcQ7A5Ew8QUBCS3Cz0WoLWyDv/sSUg5OQgOF5GJJ2OLtRB35+HZvIJkcyuOLBd6UqNlby2t119qJT2PcrY/8TzTb4Jt8z5PTlkOLbtDGc+cvVDBO9aNFtOIaYeT+PWogR41UEOtmdf6Kq5zyrNQ5pyCc+GVACzZ/iGQNmY6li5Nr4oKitDBk/HJM0V2ffJRssoK8Fx6Oa35k8mu2862O35KMqqiBXUkp4hsl1CcNmo+qKL09HLc48cil4xFtjuIvfp7nBd89oj51W3/AHuilfATD1Pxzr5MqVVTNXnJOa3bZOr2xJuTCKKAf9o4Qgfq2faXHT1+RgPt1mtx4jGQ66V9Y8f0MyZ9XVtidfRiCYejI5jpWn9DRDgc5uSTT+aRRx7h+9//PnPnzuWhhx7CNE1KSkq4/fbb+eY3vwlAIpGgsLCQH//4x3zxi1/s1fjBYJCsrCxaW1vx+XxDeSoW3TCQm2BXYUTp149mKKXDkWSflOoc3VaqsXX30ZMz08nc3nEu/BNyCTeEARh7xmSClQ3kzZmE5LCTXHgx72iLWCy/wyHvBEpX/wUcToIzzuKvu+azaFoQAZP9gSxaIwKiANt2RjF0gxnTPagqOOyQ69OZktOAQ4iS27IPwdCRY0FMQURqbcJ0ODGrK9FmLEB1+BD1JPYP36H61dXkTB5D5YptVrWNY5DYXx/AHDseBAF903qCuytp2l2HIAq4873YfS6q11cSb04Q3hfr8prvq/GyfslC7D47NrcdQRSY/Nfl3W673Dc90wG983fmUm0nb5TPZtyiseTOKEOy29BiCQ5t2kfkUAQtoSFIIu48N97ibPJOnY0+4xSC2eOQ9QS+mm04z7uePXv305j0U6g0kNe4A6V2P1pdLbHaeuo37icaiBFvTmT6PqQ7XKfDqeDIRmppoWPzy0hOsdsGkT3R/nO1DDmLrhio0EyLBskpYmjmUUMMj3dGs72WntsvnmnF6e773GKRIF/96Og8t8FmyMOybrnlFi655BLOO++8Dq/v37+furo6Lrjggsxrdruds88+m1WrujeQEokEwWCww4/FsYur3I5ngjOTOJ0mnZvgKFS63TdTw96ZKmlnGAbhqlivDAjPBCfFCwrJn1ZI3uwJxFvjtFYFqftgH5FDIWxjxyBNmEKlayZ1AYm4I4ecWC3a5DlsP+l69jKN6yeu5qSq5wmrDmIJgXDEJKmBz2cj2Bon0GIQiRk0NBlIArjNINmhamz7NiNvX4e6bjXGhjUkd+/EqNiDPv0UNMWFnIxgW/sGTe9vwtAM8pb91hINxyp2O6YkIzRUYySTKG4H/okFZJflIcoSsUCYeHMCNdJ1flB3hktPhq4gCcRa4tRsrGXPvyt6nN5Fwe14y1x4yp3YcuUOZUch5ZVo2NZA5YqtNGzYTbyxhazyAgpmluCfkIuv2Isjy8m4R/+FmFdAxFcMQNae96n58z+ouOlKcqI1FCoNFO96k/hLz1L30ptUvvI++9/cRqwljqkbSDYxkwMlOUVsfhnFK6F4U3kanROs0+WWE/Uq0YpEhxwOC4s0g+ExGCiGaqIG9WHJ7bMYOKLY/5++8MADD7BgwQK8Xi8FBQVceeWV7NzZ8Zp75plnuPDCC8nLy0MQBDZu3Dh4JzoAhjRU6emnn+aDDz5g7dq1R7xXV1cHQGFhYYfXCwsLqays7HbMBx54gPvvv39wJ2oxIAYSJxyrTmaqu3RF5xjs9qRXHxP1KrJPStWq72H7NIpPQpAEHFlOZIcNU9fJm5yHd0weruI86t7fTnTnHuwFuYxbew9TxhTROP6T8MSDKGcvojhrLDn73sOUFVrK53P/tz5AttuIh6M4PC7i4SgAojCD2XPymFqq4lJUNNGGPdSAHmgivPcgeiKJb3IZypTpEAwgtjaghIPEd++mav0uIo3hTBMgi2OP9UsWMu7MqXhPFjH9hdg0jWRLEMlhQxBETCOKIGrYfUqXwqGz4dLb75iuGmhxLZWM2Qtj5Yz31/LOSSdnvoftj3tB/VZWTJ9DvDWOzW3D7tNw+H3IzpQ3I9p4uEeI47KbyXr19wBotdW4CrKwZ3tx1u/BFVhF85oN1G+pIhGMkwiqJFtUbNkKkk1ETxodcjfSYsFsq9bWXahW+9eUtqRvNdSzkWaFKx3/tA8T6s9+Q4UVLjf6Ga5QpbfffptbbrmFBQsWoGka99xzDxdccAHbtm3D7XYDEIlEWLRoEddccw033XRT3yc1RAyZcDh48CBf+cpXePXVV3E4HN1u17n2rWmaPdbDvfvuu7njjjsyvweDQUpLSwc+YYsRQY8a4EqtMHbVrC0dRtHZaEgnWKfjxfWYkQptiHHEdo4ChVh1MjOep8xJ+eJJiLKEqzgPQ9NRXHa8U8qpe2cDRadOJ1bfRMuqTakOvQ0B8id8gF5WArKMp+Ughi+H72y5lGmyC01diaam5pEWDQCfusLDDPkDJF0lYvezpWU8ntwmfJPiCPurCFY14SrKRRYFotMXAiD+5ykaN+8jGogSb0kM2ud8PPPWpJNYumfTSE/jCDyFqTwttaYGRVaITj8dr8eHVn2AWHUd8YMRWg62EGtJdHmNp2nfc6H9/7sjGUoSb072SkSnidUnMrXlOxs37nwXzmwHrtxUd+loQzN6UkONJgg3HC4Ne/CWq3HmZyMIAqLdhm/6JARZJr7uffa9vIHIoRjxxtT3MC0IDM1EcooZ0W9oZqbDNbHU97r9Z6P4UqVeuxIThmZiHEU0WJzYWOFpFkdDFPpZVamP+7z88ssdfn/yyScpKChg/fr1LF68GIDrrrsOgIqKij7PZ/bs2dx6661cd911uFyuPu/fE0MmHNavX09DQwPz5x9uaKLrOitXruQ3v/lNxiVTV1dHcXFxZpuGhoYjvBDtsdvt2O32bt+3OPYw22pZp0mHGwiK0K1BlU4ghZQYaN/NtX1+hB5NGR7ZMzy48lwozlTok6GljhfcX0MsEMZdkAWiiH96GbbJU7FN1JE/3EQyGEa64Su8GZ/HaedMwIy3Up09i/I1f+Lis0RU/Uix48nJYvopEzktuBwMHTEewbZ5I+cW5GMkk+D14VtyNlrsVcJVDcA6XOUNCG4vFet30bCtkXhjkgvqtw7eh3wc01k0LPdNB8j0HRipuOLi02dgmibh/VUIB2pRxs9F8xchNjWQbE2JhuD+cMZg7kx3jcuORqwhJUT6ct49lVJesHI1AAe+9DFMwyTaGESNqSTDSUL1EZb7pmOqJrlzfdg89Riqjt1nZ8wZ05Ecdpq2VlC/JtAhPwHINMBKV1dLkxYAXXkZnMV2ZIeEaZjEm5OZLvEwsP4wVnWlY5+evhu9XeUfbI9A5xw+y9sw+hmox6Fz+HxvbdbW1lQxDL/f3/eDd0F+fj5f+tKXuOuuu7jhhhu4+eabmTx58qCMPWTC4dxzz2Xz5s0dXrvxxhuZNm0a3/zmN5kwYQJFRUW89tprzJs3D4BkMsnbb7/Nj3/846GalsUIcLQKSe3L1aV/B1JdcbvYvn1deiCTeAZkEqVpG8NRqOCfloVsl8kZn49v4lhq/rsFxe3ENA08pYWIcj2K20Fw+x7iX1yG44PnEOwOIjWN+GdPIgrIkknC5mG3OJM8IcBXDnyBOTkOAi1HzjB/bD4bVmxCzN0J/jyM6gOINhutm3bgyMvGXjIOIRknFghjGgaxwD5cNYcQRJHqtXUk6tVeVZWx6Jp0Uu1IC69EUwvx5hDB6tQKffnr/yTeGqJ5dzWNuxsJVUY7lCTuTNrI6Kuxke7L0B1HM5C7Ot7+z12BoelocZVQfRg1opJoTXbo4N6yM4ygRDBVM5W0rOzC5nHQXJkSDe2bzhma2aFUclfhwe1Fg9TmlfQUpVbOEqHk4dyHPlSbOppxaYmHY5euvHH9yREaDPGwYvocEvXq0Te0OO7oHAFz3333sWzZsh73MU2TO+64gzPPPJNZs2YNyjzefPNNtm3bxm9+8xt+97vf8etf/5rzzjuPW2+9lUsvvXRAYw95VaX2LFmyJFNVCeDHP/4xDzzwAE8++SSTJ0/mhz/8IStWrOhTOdbRnKV/IjKcD972AkJyiSheCbXTSqXik8ie6iFvSgFNexsJVUXQgjqzrpuNFk/SejCAKIskI0nsXgf+yUU0bq+m6OQJNH3mfkK6h3H6HpRklMvuhV/9dDY5P7qe+D2PcfuyOiKtHbv4OjwuFpwzi4rdh3jygrcAaHnlVRq3V1Ny2lQwDGSvG9nroXHdVhLBGE17m9DiOnafjeZtwV7Vsbc4NnjFPyPTdTntWejNynhfDZfORlNX38OewjT6crz2+6aN7c7/plda5bbQIlM1O3gG099Te6GSEXrJgJbxfKSrJjkKFDwlbpzZDiRFInwoQuRQlFh1csD9X7o6Z0s4HN/0RUj09TsY+f19GOEI8rQZ6Ht3s/nJ12nZEe7wfT/RPQ6j2V5Lz+2RF/tfVenmS7M4ePBgh3Prjcfhlltu4T//+Q/vvvsuY8eOPeL9iooKxo8fz4YNG5g7d26f5xYKhXjyySd59NFH2bVrF2VlZdx888187nOfIycnp8/jjWjn6DvvvJNYLMbNN9+caQD36quvWj0cLI6KqAgoXgl3qYPwvhhZk9207o6kwlMAm0/CXeLA0E1ERaJhez2mbmLzKThybMhOOy2VjYTrU16Q3Em5ZI8vpHFHNbGWOLLTgSgYKIKGkozS4h3D/359IhEtyoSv3MFBU2LC7HIioTj7PtwNpPJ1Hlw2EUUMkru4BT5sQB0/C9lpR1cNki0h9KRKw8ptCKKIt8hHvDVGpDqGHjMIa7FeNfeyOHboLALfmnQSeszoMYG3v0nRfdm2v8mjRztu+6ZXcLjpIxxZ6EBQBGw+BUlJCYd02JKR7vhOutdEqmM1gBpRe5303ds5W5zYDNZ1INpsNG7dhPHhbkK1LQT3RCzRcAwy0BwHn8/XJ1F022238cILL7By5couRcNg4PV6+fKXv8zHP/5xPv3pT/PWW29x5513smzZMr74xS/yve99r095EMMqHFasWNHhd0EQWLZs2VHdOBbHDsPl7jfaVi0NLdXHQYunVjCdpQ4EScDld2D32YkGYqgRFdMwkR0Skk1EtsuEawPUbWxAC+roMQNHtp3s8YVM+J9LMKMRahb9D0XNO9ifNY//tC7mmqrHWDxVo5UcNpqn8cD9O47wNqSdd396zYPTncPd5dsw33mFaH0zEz4yH2VMCWp1DXte34UeMwjsbkkZStrAY7Qtjg3GLCghGojSuCVw1ByEwfwedWe0DIYxc7RV3ItjO7oMI0l3ijaN1PWfzlVpLz6SAY0QUaKH4oe/J0dJ+u6uN4zFicdAru/uQpZeLZx5RBhk7I0/owWaadxZT9P21h5zhixGN8NVVck0TW677TaeffZZVqxYwfjx4/t+0F6yevVqHn74Yf75z3+iKApf+tKX+MQnPsHzzz/Po48+SnV1NU8//XSvxxtRj4PF8clgiQdREVKioG0VsjOmaoIzlQTrzE15HsL7YtgLlVTYT0UrnkI3kiyiJTRsHjvh+giJoEr9mj2ZcQRFQHEqaLEE0e07ObByG7lnXM3y5PlsWaVx9rwE2rZKYtPc/PRPBns3HFleOM2Xv57K6/ncVxenavcnksRbooinL6Ehbyraf77eISQDDjeyU3wSalC3SvYdx0z528sEf/k1PAXd57AMhfDu7prqz7XWVchTd16SnvI02ntj3iif3aVBZqgm8Xo1U/DgaI0h0yFOqVyK7itVWRz/DNU91FmYCjtZNf8UskqzKLvgFKScHKrf+ZCWilCHQh8WFt1xyy238NRTT/H888/j9XozLQqysrJwOp0ABAIBDhw4QE1NDUCmqFBRURFFRUU9jh+Px3nqqad4+OGH2bhxI2VlZfzgBz/g85//PFlZWQAsXryYOXPmcMstt/Rp7pZwsBgSBkM8pBtCpUnnKzRtDGK0dYwumJtLqDbMzBsvZH3LC0Sr4jhz7SmxENUI1YSRbCKCKKREQ1My5aloS9b0lDvJn5qLKEs0729gwvxZ5E8LUKGOZcPWBP+ztIVJ25+FkhIe/ncWezdsOOq8S6eP51ORR4lMOx2XNxt/LE7r00+htUSoeLsSLah3MIDSsd5mW6MgSzQcv7Q8eBuiImPzOHj/zNNpXN8yosbtYF1rnfMeejN2+1wIIFMQIC2g25P+jI72WaVDnCzf3YnNUHjSVkyfgyvXiaSIvD5mFoIiEK6qI1zflsu2M3zEdTuY87EYHgTBRBD6fk/u6z6PPvookMr9bc+TTz7JDTfcAMALL7zAjTfemHnv2muvBXqXcD1mzBhaWlpYvHgx//rXv7jiiiu6bHUwdepUIpGuC9d0hyUcLEYtalA/4kacjGiZSipaUCdUG0aLatSuWIe32AOkGmDpmkHOxGySkSTObAc1qxowNBNPuZOxC3PZ9+JBAOw+G5FDEZJRlaLZJRxceD3bp5fw3N8bOf+8QsbX/Ret6iBvLfgeH/y252ZsX/rGYhaO2UvWUz9g92M7Kb93HIlNG3GOKaJ6zbs0bglkysuKioB/jhdHth01qmLz2Gna1mw9YI5zKt74ENkuEWuJE6rq2816NNI+V6I31Wy6orMYEBThqJ6Fo45neRosBpEX5alILjFTKan9c+lQU2uP+1r39GMLoZ85Dv0JVToaN9xwQ0ZE9JWrrrqKr3zlK8yePbvH7U477TQMo29LLcNaVWkoGM1Z+hYdDYqBeCBERWD8xWM58FZN5qade7KPWf9zNkrpOD74/p9w+p0EdrcAkDPRhzPbSTyYaqJWMn88ok1m05/WogV1JKeILVth3MIy8k6eTuuOfQRv+zlPr8rnq7NW8raxhAfvP3rXZn9JAXd+uZRCRxP7QsUseP4WDry7g/JzZiNIEqu///oRuQvOsbZMnHba27Bk+4f9/mwsRj/paz8dSjPQikD94VgwYKyEZYvBZCD9G0Zb1+njgdFsr6Xn9ttXWnD1o6pSNBLk8xdmj8pzG2wsj4PFkDJY1VsM1ewgGgDigQQH3tyAGnuflm1hov54pvNsuC6KrhpIikjkUAzX2CIqXn6fZEDDUaDgynfQsjNM/ZYaCj92GbljxpK98nFef/YcXv+Hgs2xjtlnzmbzu5t7mBX8v6tWcdBxHv9aP5bbGr/F/rW7ke0SFW9upmF9U8d+E225DOnKSSPdZ8Bi6Ol83Y/kariVO2MxUNqHlrUXvu1f7/zeaKerZ1NfqpNZ36vji+FKjh5ODh06RCwWO+L1cePG9Ws8SzhYDCsDyX1oLxokl0isOklldTWCIpAz24unwE3DliaSgVQ4U7IlRMGcXGL1Cbb86S1adoQzOQ1Vq2pxFtsxdJPklg8RzzwfRTvcsCcZTxxVNDz682m0al5KN/yLz89YSOiPVXiLs8n77I1s/sr3cY11dGh6lxYResywejUcQ3SXANzb/UYTA6lXPxi17vs6vsXoQVSETM8NQ2vLJWkLu2zf+dvsRRL7UJOe03Lf9KNWL+urp6E/3dwtLEaC73//+/zqV7+iqampy/d1vX+J/JZwsBgWBvvm2j7Uw1moMPWK+RxYuQ1XgYNEfSgTixprjjHnxvnUb6ok4o2RaEpSu6GesiWlGJpB7vRS1I98khXhU/nFk+8yYc7kTF+G7rju1sVcW/Am9orlVIw/H/GDD3G3NPP+s5spmJWP/70VRKpjqKGOX8r0qpwlGo4tjnfDoDcrpt0ZU10lRVscnwjtKlYJmomOgZSpYEWmXO5w0pUHRFQEbH4ZQUk1XeyNeGhPd40Srev7xEAUTMR+JEf3Z5+h5Pe//z0/+tGPuOuuu/jOd77DPffcg2ma/PnPf8bpdPLNb36z32OLgzhPC4teMRg34ParWaZq4py/gLwphdhcSuZ9QzUxdJNQdROJcBI9ZpAMaLjyHeTPmUTu9FLci5dijzQxPieV4JaMq10eD2D6aTP41U9n8z/e59nrmsebuZ/GLsTY8fwmVt/3LHrMoG5jA6u/9wrxerVDmJKoCNgLFVzlPXeQtDg+ONZWz3uab2/P5UV56lG3TW/Tebtj7fM6ETFVEz1moMeMTLilKB/2QrQPwxwOb0Paq5ARNO1EhD3XhjPXjiPPhuKV+n2MrBluwBINJxLpUKX+/IwmHn74Yb71rW9x9913A6lk6e9///vs2LEDr9dLY2Njv8e2PA4Wo4KBhDAZmsnBP/6DRCiOp9CLsFBAS+i4/E4qXqqh6YMgtlwZQzOx+WWyxmZhH1OC3NrCodKTaTQLeODRFgCqdlZ0eYyfPjiPubX/RmvN4Q3bpfz87jVoqsbvfjEBNaIRr1dxFCpHdLUVFYEpV0/Eledl18vbrSRoi1FLd6urff1u9kVoWBw7pPNzzPar/ICgmRlvw0AFw0CKB6T68YgIioA734nNbSMZSRJ3JPo9n3FnlLGtovueKxbHH8dLjsOePXs4/fTTEcWUsE8mkwA4nU6+9rWvce+99/KNb3yjX2NbwsFiROjKGOlvInWySWPXP/YDh13XgiLQqLZkttFjBopXImeyj5yJxWye/79MTG5lVcNU3ng7QPnkQmr3pEq0zj5zNgd21XDLLVM59+D/EVq/gdCDPyX61W+StHlorJb4zrKTOW3195C3jeHZBzfy+U2fZ92v3kOPGhlXebwtXKrynQOIskCkov8PMAuL4cQy6i26o4NBr5rddrzv2IwvRVoUdNf9O7O9LCAoHb3KXWGqJpJTxF6oYHMpCJKAKAn4SrLJmVSCku1Dj8aouu0axv76H30+16Y9DX0Kc7I49hHpXznW0Ra+I8sp814QBHw+H1VVVZn38vLyqK6u7v/YA56dhcUgMFiGSuah1ulBkzXZzdhTy9C/9iOUSC2VzVlsji5ifEGciZNz2LUjQF5pESedNp48v8L3L9nJ3psWsfpQPLOaNu0uHzsSk5lSFOGsmR446YcA3A3w8Se56Pup80h3u03PJ1aVHJRzszg2sIzu0ctgVXmz6B2i3C4voi252lRNkgENIJNU3V4YpEOfJFLeZFM1MehePKQxDRPJJmL3OXDleRFtSqbhlWRT+jX/k984ekluC4vRyOTJkzl4MLUYumDBAp544gmuuOIKRFHk8ccfp7y8vN9jW8LBYtjoqknUUD3A056HdIdop9+JMz8Lz9p/kZxyMmdlb8At1KAvf5WcK+9j4thcZuUnmT7J1jbCGeStfj8z3nLfdJIP3ssZn/kkQu0BmHlnl8ftLrGu/WtWvOzxQX+rLVmMDMN177E4jKGZSG2eB5tPweaWMXQz43mQ7BKGYWRyJxSvhOySESUBQzfRVT0lMjTziMpN6YpOmWPpqZw2u8eG4nYSb2zBbAiQDMcpf+K5ETh7i2MRAROBfnSO7sc+Q8nFF1/MypUruf7667n77ru58MILyc7ORpZlwuEwv//97/s9tiUcLEaUoX6A23JlFK+EIAqooSi1r/6XrD378S45D0NxIJ19IRNCHzCtegvh5Vvgu11/mdq7q2u+ei3Oa49+7K7OzZZrfeWOJTo3MOy8Yj3QplEWFscrhpoq2apjIMqpECJRkbB5UsJAT7Y1wTRERNFAlHUcfjvOHCeSIqKrBrHmGFpQp7uikTa/jD3XhuxIJUBLNgnJJiN7XMSbQzhyvPgmlw3PCVscFxwvOQ7f+c53Mv8/55xzWLVqFU8//TSCIHDJJZewdOnSfo9tWTEWw0ZXK7NpY6xzYuZgNIwDUg+dmEGL0ooaU4m3JKjdWMPEUBT3uGKaL7wRuxom6+o7cF7du7FLfvF0v+YkKgLeMle/9rUYOdpfi70pS2oxOrG8fcNPRjzEDNS4hqi09YHQTUzDRBAFZIeE4lZQnAo2tw1XrgfZoaDF1ZTnQTXQY7FMyGimopMiYMtW8BS6cee5SYTi6KqBntQIbK/EVZCFd8HJ6P6iPs97w/lnATDvtXcG54OwOGYQhX7mOIwy4dCZBQsWsGDBgkEZyxIOFiNOV6UZB8sTkX5wJQMaifpWZJ+E5BRp3FGFIy+bvOoNuJZ8asDH6Y7OjZC0eP8arliMHF2Fn1mx8oPPcIQPWeJh+DFUE0FJ5TXoMSOTwwAgKRKyU8aZ7cCd7yVv7hQATF0n0diMFk8SDyYwtGiHHId0mJKeSN1PbR4HpmESa4mhJTSiTQFsHgeOK27r83zfOelkJEVk4fp1AzxzC4vjE0s4WIwo3eUEdH7AD8SgMFSTZJOG5BIzFT7qNzVSv2kF5975636P2xsuju3IzN1QTWL1hysrvVo4MxXb21aVxDJoRh89dYm1RMPgM1ziIX2srl63GHz0qNGhz0M6WVpXdRLBJIpTwZHtxjauDNOXgxCLINr2oUbixFtjiHIQvYsSrcmARlOsmVBNGMUtt/XxkYkcilH68D/7NMdXC2diqqbVoPMERxBMhH40c+vPPoPN+PHjMwUBesO+ffv6dRxLOFiMGjqv4rYXD4NhUOhRg3iDiuQU8Yx1Yvfajr7TINB+7u3LEF5QvzXzf8toObaw/l5Dx3AlLndVrKG7bay/98BJV1VS3DKKW0Z2yGhxDVM3UZwpU8SMRhBMAzMRRwtHMDQd0+jeIDM0EwnQEzpqREN1a0g2kcVbN/R5fpZosIBjO8fh7LPP7iAc3nzzTerq6li4cCFFRUXU1dWxatUqiouLOeecc/p9HEs4WBwzSC4RR4FC/oxcnDluqtdVE94XO2qjILHtgZUu7adjEGsamZ4K3dU8V3ySFUZhcUIzEtd/T8e0xMLgku4yLdlEvEUe3Pk+IoeCJIIJFKcN0zBJVNcgyBJaKEKkLkCkobUtVKnjPT7dIwJADaXy2AzNRAv2PxTUEg0WACImYj8qJPVnn8HmD3/4Q+b/f/7zn/nvf//L7t27GTduXOb1yspKzj//fM4+++x+H2e09aywsOhA+4d31mQ3Uy+bwcRPXEDe7AmZShpHI73S5S51YPPLmKpJol4lXBUbqmkfQXfGyauFM3mjfHYq98JlfR0tLGDkw/a6ak450nM61kiXShUVIbN4I7tkZIeE3etAcdkQRBGbx4YgCuhJjVBlLc3bK2jeU0NLZSPBmiDRpliHTtLpsdK5EqZqogZ19KiBGtRR24mH9888nQ/OXTT8J29xzJL2OPTnZzTxox/9iPvvv7+DaAAoKyvjvvvu40c/+lG/x7Y8DhajnvSq4ML16zj07Rtp2biFA+/u7rXhb6pmZlVKjxmZB1D7UKHhoCvDI+0BSc/F8jqMfqyV6KGjr9e/5BK79eINFp1DJvs7xomE5BJRvFKHSkiCIiApIu58N4rLjp7UkO0yotuGKEvEWyIkQnG0hI4aU0kEkySDapddptP9IYAjPM7pv9Eb5bPxFDtRO10fB2+5mtKH/0n07adxnd2LutoWFscge/fuJSsrq8v3cnJyqKio6PfYlnCwGHV0FVOcfnjnf/9J/jtvPsG90V4bDIZqgmp2Wwt8JNFjBkaw44Ovc2lai9HDiWYAjgQ9iQfFJyH7JERZQHbJ2H021IhK647IUUMWezreQObUG06kPIl0SKkr34GeNDANM1WKVUyFKXkKs3AX5oAoIDtsaPEkyXAqCbq1KgRwuPEboHilDiFI6Up5mnrkHb19npyoCF2KjlggDGCJBouu6WdyNKMgObo95eXl/O53v+Piiy8+4r0nnniCsrL+9zexhIPFqKSncpeLNqw/bh7C7asudcYSDRYnMl3dA7zjXRTOKsJT7Ed22hFtCqIic2DFJipfrh3S+Qy0U/iJIB5ERcDml3EXucgpyyEZSaLG1NS/ERVRkXAX5mDzZ2EkkmixBGY0gRZXSYRTHgZTNTM5C4pX6tAxOk1XIrHz3yVdTa8zU/728uCdsMVxx/HSx+Guu+7is5/9LKeeeiqf/OQnM8nRf/vb31i/fj2//e1v+z22JRwsRjXdCYiB1tFXfL3Lj+gv3c0rndSX9paIitBlZZcX5akDNlQsBpfj3egbrVyq7eT1MbOwZSucfN+NRMfNIubMQYm34Gg6CE11lJ0rDblwSDOQ7+Xx2P8jXeZacoq4xzixuRQku0z2+CK0WIJYIESwphUA2S6jJZKoB+sI17WQCMVJhpPEW1PFKtJhpenQJkMziVUnu/UmHe1voPgkK+nZok8ImAj9SHTuzz5DyQ033ADAt7/9bb72ta9lXi8uLuaJJ57gxhtv7PfYQ5qN+cADD7BgwQK8Xi8FBQVceeWV7NzZ8YtumibLli2jpKQEp9PJkiVL2Lp1eGPPB4vHXjXZuefASE/juKS7B0RfH96KTyJrhptp1wzdg7unUCNDNTuIBle5nfVLFh4xhtUvYHRh/Q2Gl86f93nVW1DcMmrReKrc06hjLCFXAYbdCaaBnkhaxQVGCMUr4SlzkjfLT/lZk5n68bMoPXM6oiIjKjKCKCJKAkLbkmxrRQP1W6qp39pAy4EgyaiKI8uOb4wXuW1Bx2jr+dC+z02adKL60e79oiJYosHihOaGG27g4MGDbNu2jXfeeYdt27ZRVVXFZz/72QGNO6R32rfffptbbrmF9957j9deew1N07jggguIRCKZbR588EF+/vOf85vf/Ia1a9dSVFTE+eefTygUGsqpDQkfK3mPcfteB2DzpUt4a9JJIzyj45u+GnO2XJmpH5vCvP/7DgVnnULjss/3+9iNyz7PlsuX8vqYWT3OIx0b3dXDTvZJFM0qoGR+eZfXSvt9XvHPYPOlS/o9XwuLY514IEHClUNj3EdCVwAQ4xG0unqadx5bCzaj1YvYn3nZc224C9z4J+TjnVKONGEKrqmTkJwORFlCssnY3DZku4yh6oTqw4TrIySakpi6ic2l4M53k1WaizvfheKVEBWhwyJLb8VC+/PoKsTJwuJoHMtVla666ir++te/0tramnlNEASmTZvGokWLmDZtWp8axHXHkIYqvfxyx1jCJ598koKCAtavX8/ixYsxTZOHHnqIe+65h49+9KMA/PGPf6SwsJCnnnqKL37xi0M5vUEnb9YZMOsMAGpWNaDHDCvcZAhJxwz3NnZYcorYfS7qCueQu/K1Ph/v/TNPRxAFRFEgGVUJVUa7jKE9WjhC+v2NFy4mZ2IxtiwPOROzecU/A0EROlR7WnPGqYBVY3wksbwNI0PnhGRPiRtJi5PjiuCWIvgb92BU7uHQhp007j6U6Uo8HBzr9/PBnL+kiEhKag3SiMaQGusAUh4GUUCyycgOGxAnEUoCqeRnySkiOyRsHhvT/pG6H9cvPgNDO1x6dSDzvCi4fQBnZXGiMlydo1euXMlPfvIT1q9fT21tLc8++yxXXnll5v1wOMxdd93Fc889R1NTE+Xl5Xz5y1/mS1/6Ug9zEPjCF76Aruucc845XH311VxxxRXk5ub2+Xx6Ylh9u2kV5Pf7Adi/fz91dXVccMEFmW3sdjtnn302q1at6nKMRCJBMBjs8DMauTCwjYtjO0Z6Gsc9fXmwJAMae17bgfNXd7Hv5Q1o0b41gWveFqRxYwuNm1po2RHuUjR0nltP85v7ykpktxM9kcTldzFuaQmLf3sL8ZceI/jLwzGJhj66YictLEaC7NJsbKFGivVKipu2Iu/ZTGD9Vuo21dKyO9Tvqkp9ZbCM7q7GGQ2CpK9z0OI6yXCSaGOQUEUN0f0HSDYcQk8kwTAxDSMTpqTFU52gJUVCdslINpHZL67IjKVGUsnRVt8Mi5Ei3QCuPz99IRKJMGfOHH7zm990+f5Xv/pVXn75Zf7yl7+wfft2vvrVr3Lbbbfx/PPPdzvmM888w6FDh/jzn/9MVlYWt99+O8XFxZx77rk8+uij1NYOTh7YsCVHm6bJHXfcwZlnnsmsWbMAqKtLrUwUFhZ22LawsJDKysoux3nggQe4//77h3ayg0jn1WfrZjj49HZFWI8ahHZH2avvYv5XL4Vpc9i2p4YZk0p6tX+683TnuuADIffex9j96Yto2ttE/tQCXi76Aq0RicvOXsmBL32M01a/P2jHsugfx2NC67HI5L8uJ7b8CbzsQ6zeT8sHm6n54ACtuyND3sthqBitz4O+VICKN6a8CMloqnqSKxDG5nEgOxS0uEosEEaNJTFUHUFqawrXlvPQ+f5m99qIOuMs9023PAYWI0J/w476us9FF13ERRdd1O37q1ev5vrrr2fJkiUAfOELX+Cxxx5j3bp1XHHFFd3u53K5uOaaa7jmmmtIJBK8/PLLPPPMM9xzzz3cdtttnH766Vx99dVcddVV/S7JOmzC4dZbb2XTpk28++67R7zXOebKNM1u47Duvvtu7rjjjszvwWCQ0tLSwZ3sEGI1+Bp8+vKQM1ST4M4o7//oeXImvk2s+ce8Whk9ajO4nsbv7d8z+uQyXDcuO+L1yX9dzuS2/0/KvHo2/kcPt4Rv+t4XcS5eSmvhNFrlXCrChRS5Wpm25a84Pnp7r45vYXGs47zoJqpuu4aDayoI7ol06BI8HBzL9+6+zr23gjnZpKEFdQRFIChHkH2BTFfndC8GAEeeDbtPweaxM++1d44YZ9PFZzP5p/chrl1BxfL3+jTX7nhr0kn4xnqYv6LrCAYLi8GmcxSM3W7Hbrf3eZwzzzyTF154gc9+9rOUlJSwYsUKdu3axS9/+ctej2G327niiiu44oor0DSN1157jWeeeYYf/vCHfO1rX2P+/Pm8/37fFyeHRTjcdtttvPDCC6xcuZKxY8dmXi8qKgJSnofi4uLM6w0NDUd4IdL0948wGjiWHzqjnb7WSI9VJ4lVN2TCG15yTgPoEF62/3NX0LCtlpad4UGZY1eioSfCq55DXfkaFW9sIhaI4Vu7C09hFjm5PsZNnwSGgZZMEn70bjxfemBQ5mhhMZroaqFl7K//wWbf9GHzMhwP/ReG+tnTvsmmHjMyicnpv5HkEkm2qEg2EXd+12aHrhoo+zYRCzQz64W3BjynF+WpuMvtKC5lwGNZnDgMNMeh80L2fffdx7Jly/o83q9+9Stuuukmxo4diyzLiKLIb3/7W84888w+jwUgy3LGy/HYY4/x1ltv8cwzz/RvrH7t1UtM0+S2227j2WefZcWKFYwfP77D++PHj6eoqIjXXnuNefPmAZBMJnn77bf58Y9/PJRTG3Ys0TD09NXzAKnyrPbC1IMlWpHIdBwdd34xE64+By2+inBtLNWQaAhiqF8fMwtDM8mblc3Y0yZR8MM/Hp6jYkeUJZLhBC3bwrTujiA5G3CXOCg51Iq7MBtHvh/E1Ore/s9dgRZPIohiJlQg3hJhwpP/ZvenL2LyX5cP+vwtLIaarsI8hzs06Vi+fw907n0VTmkR0Z50fwZI4PQn2XL50iPEQTKcYNsjzwLgv2dAU87cx21eBbvXQd2d11H04J8HNqjFCcFA+zgcPHgQn8+Xeb2/C92/+tWveO+993jhhRcoKytj5cqV3HzzzRQXF3Peeef1a8w0oihy7rnncu655/Zr/yEVDrfccgtPPfUUzz//PF6vN5PTkJWVhdPpRBAEbr/9dn74wx8yefJkJk+ezA9/+ENcLhef+tSnhnJqFscpfel/ICoC9kIFb6EbXTPQgqlKHyfffA6f2fMlGv9RxzMzdwNVQ5Z4eV71FlZMn4PNbUMQO9Yq8C24CBZcxGlfP3w+etTggvr1XY4ltFUwEWUJURYxDZMJT/4bwBINFscVx4MXYDgYLYInLSZM1SRyKIapm2y8cDFzX1mZ2Waw87kkp4jiVrB5HDjysgd1bIvjl4F2jvb5fB2EQ3+IxWJ861vf4tlnn+WSSy4B4KSTTmLjxo389Kc/7bVweO655/jrX/9KZWUl8Xi8w3uCIPDhhx/2a35DKhweffRRgExyR5onn3wy09XuzjvvJBaLcfPNN9Pc3Mxpp53Gq6++itfrHcqpWZwAHM24MFSTZEAj6VWRbBKGZjLl/MnYiov436XjWVr1Btt/tb9DnO5QsGR77768RzMCyp94rsf3o3/8Lq7rv9PbaVlYjCo6hy0NtXgYLUZ3fxmN8zdUk1h9qpqd7JBYv2ThkOUfyD6JrDFZ5J40CemURUNyDIvjj9HQOVpVVVRVRey0mChJEobRO2/rT37yE775zW+Sn5/PpEmTcLvdgza/IQ9VOhqCILBs2bJ+xYBZWByNoyX4aUGdSHUMW7aCKAvsXr6L+q01jPO/xvrKFlp3RHr0NozGh3N3uK7/DvFnHjqhk6k7h71YxQqOXYZKNBwP18NoPgctqBMjgc0vY6gGG84/q8tk6YEiygLekhwiF17HHzfP5q5BP4KFRf8Jh8Ps2bMn8/v+/fvZuHEjfr+fcePGcfbZZ/ONb3wDp9NJWVkZb7/9Nn/605/4+c9/3qvxH3nkET772c/y2GOPIUnSoM5dMHtj3Y9igsEgWVlZtLa2Dtg9ZHHikDY6REXAOcaGPcsGwML16wbNIBmtD+8Pzl3EyW/8d6SncUxhhcWMHjp/rwbjbzPavqv9PaehOo/28+lLOGhPiIpA3vxsTvrmZ2ievJB6cQxzp+QPaJ7t56X4JOZ+4RQO3PhLFkzNGZRxLQbGaLbX0nN79f0q3J6+zy0SDnLBqWN7fW4rVqxg6dKlR7x+/fXX84c//IG6ujruvvtuXn31VQKBAGVlZXzhC1/gq1/9aq+6P/t8Pp577jnOOeecPp/L0Ri2cqwWFqOJnh6wgxUCMVpXs2vebuTkkZ7ECNKdEdSb7S2OP0bjd7SvDPU5DMX4nglOJl44h1jpdPYaE9lZ7WHulMEbX3KKuMcV896ebH72uwM8/eC4wRt8kBmtz4oTkeEKVVqyZEmPUTlFRUU8+eSTfZ5HmkWLFrF9+/YhEQ7D2jnawuJY4Xi+iUsuMVN+1sLiWONFeeqgeRlG6/d8tM5rMJFsIvbcbOKOHJqjTuKJIThGTg5vv76fSGtk8Ae3OC5Jl2Ptz89o4qGHHuLhhx/mhRdeIJlMDurYlsfBwqIbjtfKLcdql93B4kQwyk4E+rtKa/39Rx7JJeL0OzA1HW+ggumFWXgchYBr0I6hhnSa39/Ilz9/Gys32XnwXzpvPL+ZcHMr//332UcfYBixrkmLwWbSpEmcd955XHXVVQiCgMvV8bslCAKtra39GtsSDhYWPdDb7qkWxy/Hq4A8Hujt3+VYNMxG+rrrqn9GZ/o7R8Ur4fK7MJJJ7HUVFJsGrryJwJz+TvcIRFkgXNfCvPBbuE9eyIfVOYSb+2coDSWv+GdwYWDbSE/Dog2B/oXi9KOC65By55138pvf/Ia5c+cyffp0bDbboI1tCQcLi17Qn4TA0WysdBZEo3muFhYDwbq2RydaQiNa34TocCAnk+SEmmHq4AkHQREIN4Qw/vs6M6bXIk28kt8N2uiDR7rLtsXoYKCdo0cLf/jDH/jmN7/JAw88MOhjW8LBwqKPDEVVl6PROaG38zH7Yhx1roVvYXE80N9rOR3y1Nek+eFgpL0OR/sceroP9TTveL1K9bv1BPa2oLh3IdkkTN3gtI98bmATbiP3ZB+yQ8bldyF7PRjeHMojm/i/n8/k9u8cZNFlbzNz4Swevzt3UI43EC6o3zrSU7Box2jo4zAY6LrO+eefPyRjW8LBwuIYZrQYOMc7I23AWQwu7T1t6e/QsfpdGsl5D+R7oQZ1DC2O5BQRZQFDGzzDK7s0i+n/eh2A2Bt/JubJx1Wzgwm+Zh7//skY5GOYEWDkhYPF6OJ48ThccMEFvPfee1Y5VguL0UhXD09xgO7nnh7G7d87WqjRK/4ZqEG9Sy/JsWooWVj0hWNd8B0rorXzPa83+WF61ECPGgO+X7Zn7eIzWLBydeZ357nXsX9PDXllTlzBWkre+zsAWlMTdVX1FD3450E7toXFaOHee+/lE5/4BG63m0suuQS/33/ENl291hss4WBhMQgM5sO9P+O03ydntodFG9YDqVW9/o5p0RErUX5001XIkUX/6OtnKCoCF8d29Pt4hmoO2kKGt9DT4ffQ+y+h55xMo30sxc4IwXUf4sjLxtR0DFUdlGNaHD8I9C/saLRlqsyZk8oXuuOOO7jjjju63EbX9X6NbQkHC4shYs0Zp3La6vf7tM9gGD3x5iRbrzyXA2/WdLuN5W3oP5ZxOno5Xv8uw33N9eX+ICoC9kKlx7F6mvtg3ou2XnkuotTRhJNiQXKyGxENHcehSg7VteAszMVx5hJsTh+x5U/gvOimQZuDxbHN8RKq9J3vfKdXHab7gyUcLCyGCEM3j3Cbw9BXMkoGNOo2NnTbr0FUBF5yThvQCuGJjiUejn2OF/E80mGH9kKF3Kk5bP/YeYQPRY6430H33rrBnPerhTOBI5ONXWdfS9XeSkor3yX89tsIooAWjWFmFVPpmklBVg1jBm0WFsc6x0ty9LJly4ZsbEs4WFgMEp0fgv+dNx8NjdWnLiARShKrTnYw5ofK8NSjBrFox06RoiIg+yRM1TwifOl4MaCGG0s8WIwk6e/tct90lvumY6rmiCwG+MZ5KJhRgt2fRW4sftTtB/t+s9w3HcUrIcoC51Vv6XKbKRPLYGIZa2/7KWpE48B/qyjcuJ/yM6bjGF8OU08a1DlZWBzPWMLBwmKIMHQTQTQxDZNEvdpBNKSNzrRBr3glBEVIbRczMNTBWb0QFQFBEXCOsaHHDBLBI2N63yifzbkVmwfleBYWFsOLu9TBuIVlOHK8gz52bxYXwjURGj21eAojOP09z2GwRcPaxWdQcHIO81es6nG71acuQI1o6AkdLahjaCbNFa3I9t0UAs5BnZXFsYyIidgP70F/9hlq6urq+Ne//kVlZSXxeEdRLwgCv/zlL/s1riUcLCyGiLM2fZD5/3Lf9Mz/25d/fGvSSYw9bQyKyw5Ac0UTdWsaYRCEg+KT8JQ5KZxVRPbEYipXbKO2qqnDNrZcmZL5hTR974vk3vvYgI95omF5HY5NjkUvW3dzLjuzHPmO+1kXnk7JriZOnjK4JUaP9lklAxotlUES4SQFtuE1KQqmF/Vqu+bNIQAkp4h3vAvTSN1fA/uaUWPbCN9yNaUP/3PI5mlx7CDQzxyHUSYcXnnlFa666qojBEOagQiH/nTWtrCw6AddPYAlu4Rkk5EdCjaPA5vbhigPTkKTa6yD/Gn5jLlsCZ45J+HKdaH4JByFClkz3Cg+iezJXsqvuQD7uRcNyjEtLCyGl+ypZfx23XQe/s12XlqfNahj90YYXxjYhp7QUSMqsUCY2m98elDn0BPecYV4xxX2uM2L8lQM1cTml/GUOckqzcI/IQdHlp1oXZymvc007qrv87FPpAWDg7s65o384oWu8+eOB9I5Dv35GU184xvfYO7cuWzcuJFEIoFhGB1++ltRCSyPg4XFsHBRcDtwpHhYvHUDW688F0EUUVw2kpEkemxwbsqSIiKIAkYwiOh2I9lkcmb4kO0Soixhc8uMWziZbfM+z4HWLGburUzFAlv0CatM67HFseht6BHD4IKTY1y+oIRx8feAM4d9Ckv3bGLlzHk0V7YQDyZo+dh5mQZsQ4m9MB+pZCyRd/+J+8yre9w2nf8Q+MH/ApBsjZBVGiDeGmXWC2/1+djHwnU0WInzpVNmdvj9q5cfv2vOx0ty9N69e3nmmWc46aTBz9+xhIOFxQgz87k32HHN+RiaTsv+1kHLb0i0JmmubCbxwrsYmkFgfwuSIuGekIMaU9GTBqZpoJsC2/ebKFIJ3h0bKZ42d1COf6JhCQiLkSC4v4bp/76H1r1VhAyT3CcGVzj01vCMHIyjeCXUiIY738mG889i3mvvDOpcOiP6fDROWsRLlTNZ90ATj999OExrxfQ5hHcfGaZhy8lCUBRseX4cednE6puO2OZ44VgQNxZDw7Rp0wgGg0MytiUcLCxGmP/Om48jy46nUKRkfjEHY9XYshWCO6MDGjcZ0DC0CMH9YdRQyi2ZPc2DoelEGiKIikjTzhpmrnqI8IK7ME0QTIPte6q59d4a4uEoxZNKSUQTBGoaUnP999kDPl+LvtOVAWAJlL5zPBpSh3bU0rSngbmvrBzS4xwtUfqi4HZelKeixwwEScBT6Gb7EHoe6u/6DL5zllBvlrBte5hd63fx6btL+esDYwFw57uIVScz3t40npt/TPTJZWCayB4XxXf+ekjmZ3Fscrx4HL773e9yzz33sHjxYgoLew7n6yuWcLCwGGEWbVjPG+WzaakIkahXMVSTeP3AO5qqQT1TetWWK3PKl89i79UPkPfbWylZ4EKLJfjgkbUceO3v5C94lVn33Yzu8iH6NJZ9ewYbK9zkZ5tc6H6bPc65TIxtYs2OFp583uDnRb/Bdf13BjzH45H2hlVXxv3RREBvjVsrMbtvHI+iAeDkN/47rMfrqRdD/oIsnDlObG4bZR87n6oFH+fNzTHOmT3wukVN999EYFcVpmEiyhLugizUnGIimp3cPDtT5k/BZj9s0nTVTyKN68ZlHX4PP/JNPDf/eMBztDj2OV4awF1yySV88MEHTJw4kblz5+L3+zu8LwgCzz//fL/GtoSDhcUI85JzGsCghSh1RnKJOPJsaJEY01pXk/R5qF27i8bdgUyJ2FhTHJrqkEwDt5ZkjrOZmWMc6LKdKvt0EqpMwpHF5MQmfnihSfLVQwTvvI6iB/88JHM+XmgfvtST4dpfo/ZSbSfLfdMzCfUXBrZljmdxmONVNAwnvRGqp61+n73XX4ogCghOJyHdS1PYftSx67etpXDGgh63cZSW4AlGSASjiLIEooCoJdFNAcM0ScZVZEXq0zllEI7fmH2LvnG8eBz+8Ic/cN999yFJEvv376e6urrD+wPpKm0JBwuLEebi2I5+G3qikvryC8rhm4CpmhiqiagIqX9lAdkhEa4NIL/2Avte20RgS2vGGyG5RCSbCKqGEA0jRcNIzQ3YZBk9K5943lQmswNR07EH61FXryR2KADG6LpRjmaG0nDtHIph0RFLNAweXYmHdD+a9s3nTMNEPXiQ4qkHaXB6AVuP4yYUT4/v79m7n+Kpc8h2uUnW1JAMtGIaBmIyhgioSYM/3N+70qztiT/7KxxXfRktFO7zvhbHJ8eLcLj//vu57LLL+MMf/kBOTs6gjm0JBwuLEaY/okFyiZiqiXOMDU+JG2e2A0eWi+bKAOGaCLHqw52j9ZhBMqpyaEc9h3bUE9gayngaREVA8Uo4suwYsSjEomgtrajhKIIk4RhTxDRJQWmsBjVJZNNm9r62GUkW8RR6KR60T8FisHi1cGbGkLM8DxaDTXdFAN6adBJL92xi4h9fZMc159O4YSeF3heYe6oBnJzZLv78r3FccVuHfcdNnk5PbAmUEitwUuIrxOXfibRnJ2prCCEWwSZpRKMmcHTPRmdMXQMg28pzsDjOqK+v57bbbht00QCWcLCwGFH6athJLhHfRBfuAjcOn52s8gJ8U8Yj5vgRHC7GREOENm5hzytbCe2PYqg6hmoSrUig+ds8DE4xE9oiKAJqSEfXDKIHqokdaqVpTwPx1jiSTcJXvI8yp5NkXT3NOyqoXneQ1t0RnGNsSHbr9jEauaD+cM31tNfJwmIw6ClB2tBM1i9ZyPwVq4gHExza2USotoXSmjrie2ZhKnacH/kcZizW5dhferCZR+88bOQsuuztDu97c7O55rqFnD2xhDEAe3dDUwOOCUlk2d3nc4m9+nucV9/R6/OzODE4XjwO8+bNo6qqakjGHhWBfY888gjjx4/H4XAwf/583nlnaEu4WViMBvoqGhyFCsVn5DP21HGUzB9P/qxysmZNhRknE5t8CtGx09HKpuM9aSb50/KRnCKSS0TxSdgLFWzZCrJPIv8kPwXzc8mZ4cNb5sI/04vNbSOws5pD22tpWN9E8+YQTZtaqVpVy6GVaznw1kb2vbGX1t0RFK+U8mJEkmy8cPEQfToWg4G9UEHx9TPu+zjAMgAHl54+Tz1moCU03j/zdCINEUK7ozR82ETNmp0EV68hvmE9AM5r7+xy/0fvzDlCLLQn1NTC7x9ayX+2ldNYfhrS+EmE5ywlachcd04rkXf71vnZecFnO/z+in9Gn/a3OD4ZrgZwK1eu5LLLLqOkpARBEHjuuec6vH/DDTcgCEKHn9NPP73X4//sZz/jwQcfZOPGjX2aV28Y8SXDv//979x+++088sgjLFq0iMcee4yLLrqIbdu2MW7cuJGenoXFkNC47PMUnJ5DtClGMqCRbNJ63D5rhpsJSyfjKspFctgxdR1BkmhYdC0Pvz4WWRa54HSDecYqEjt2EdjXhKvIQViLYapmW1M5DbNt9Tl7nB+7z4kgipiGgRpNsOeVPSQD2uEwJlKriLuX70KPGamfaOpHVAQS9S3IPonXx8zKNFeyGD3EXv0945eW48zz0bi9mmQ4STQQp3VbZKSnNmRYQmHo6fwZtxemLTsP5woYqoktW8HmtqHFEmixBOFbrqb04a4N/Jt/2gIc6WnozP97fCVbzpjJxefdQL4YJU9uoTC8B7HuAE3f+yK59z4GwHLfdJxjbORPzaNw7njylv0WgOjbT4NpICTjHcRDOufL4kTHQKA/TVj7tk8kEmHOnDnceOONfOxjH+tym4985CM8+eSTmd9ttp5zhdpz0003cejQIebPn09xcXGXVZU+/PDDPs05zYgLh5///Od87nOf4/Of/zwADz30EK+88gqPPvooDzzwwAjPzsJi8Gld/yrKZR+npKmVynf3ocl6Jsm5u7CS7HE+BFEAQUBPJInVN+HIy2bFwcms+k+qfvvcGWeh6M0cXLeHpo1Bis/MR3ErNO8MpgSDMxWmFAvE8BZpCLKEIIho8STB6mZsPgUtqGO2hbcYqkmyScvkU7SfW/r/eszAetyOTn5Q/WkKr76RT5Svxfmj+xFEAS2hofik49JIskTDyGBobfcFzcwsTKRJtqhEGiNM/utydn/6IpKRZBcjpBDF3ld5kWUJ3QDdSIkWU5AQbHYke8qwen3MLCB1f4q3xEg0h4g88W3E0vHg8oB5pMchMw+l/9VmLCx6y0UXXcRFF13U4zZ2u52ior4n/QPk5uaSl5fXr32PxogKh2Qyyfr167nrrrs6vH7BBRewatWqLvdJJBIkEonM70PVGc/CIs1gx73K8TCB/KlIsoQa10gGNGz+1FcxGUh5HjoLiGhTFKgjO6khO2wkw3GyTyriiZ8fbvo0t6CKll//k9q1hxAUgcJZY9DiKoaqEzoQxeZTsLllZLuM3efEme/HNAyih1po3BEgUpGgK9IeiO7eExWBl5zTOlRVsRheKm66EoDyJ57LvOZwSLQGdURTR4snsXsd+Mb4KZihkQhGibXECddHjmsPhMXQcbRO6ZJLJBnQaNrZzKr5p7Bw/TpWzpzX7Xjjyjxs6OWxi8Z40A0BzRBImHZUxYnj8ltwXJ56X48ZmKqJFtSJtyYY88u/AxB/8f/QFQeeM644Ysyc2anKTkIfBIzF8cdA+zh0tkntdjt2e98T9wFWrFhBQUEB2dnZnH322fzgBz+goKCg1/sOFSMqHBobG9F1/YiudoWFhdTV1XW5zwMPPMD9998/HNOzsBgSQs8/iyfHy6739hGrTiL7JOQ2d7+htYUVtQkHURGYcGkpdp+LvS/vJdwQwe61EW9JYM92Y3ddTCIaI6sgl3EH3qGiqonsyV4cPju+yWVo4SjRxiCJoIoj207JvHFkTZuAXFpGsrAMJRTA3RJCDe3r9/mkRY6VWDhytBcMab7ufgzT5SH01JuE6sOUnj6JrFNOQnC40BsbCO/aT2B3DeGKWI/i8FjAuuZGlq7KtJqqiaAIJOpVkgHtqDkEd35MYvnTdpLxrhcw0oybMQF/toxhmMQ1mZDqxGvvWDlGjxmZhYwV0+ew9cpzmfncGzgu/d/ux104HjWaYMKT/2brlecSrg/Rui9CsknrcH7WtXZ8I5gmgtkP4dC2T2lpaYfX77vvPpYtW9bn8S666CKuueYaysrK2L9/P/feey/nnHMO69ev77cQGSxGPFQJjmxEYZpmt80p7r77bu6443AlhGAweMQfysJiMEk/NPrT3bczL8pTcY5NudOTgVTOgeQ/XKNA8UpITpEkGpMuK2fslecRn3wyji2raNhWS2BrCFEWMDSTfcYO/vZXgcc3LiISUdlTmkf5N3wAiLqKoKs4GmvxHKyjubIFu8dG1rQJmPPPIuTyE3Lm4XEFcI/fis3/4VHzLPpyjmmsh+zI8Nakk8gq8yLbZZp2NSO7ZEzTAJ8f3ZuDGGxBjcRQY+oR4SXHGtY1NjroLB4M1cxUXzFVE70X19nUU6aw+d3NPW4zcVoBzja7Ka6KiIKdkOLrsE26r81Lzmm4yu0Yms6hb9+I99RTcFx+S5fj+udOQ2tNrRbPfO4NAFafuoDmYKjDebUXEMfzvS70mzvx3vrgSE9j2BloVaWDBw/i8x2+Hvtr5H/iE5/I/H/WrFmccsoplJWV8Z///IePfvSj/RpzsBhR4ZCXl4ckSUd4FxoaGo7wQqQZiNvHwmKgDMbDIVGvZlbpJVfHwmayS8aRbafwohJsX76H9/VpqIbIvJMUJl18gI21q4hVpeKEW3dEcLz8V86/aAp/WQ4vbshn3pQLcStJ7JJKvtxIVlYtWVVVhGqayZlYjDRxMoYax5YIojuLaHEU4p4xj6JZa9mz+8CAz60zx/ODdTQTqUgQb1CRnCJaUMfmNwjsrsNVvBnRZqPqnQ9p2H4IU0+tCoscvXO5qAgIioDkTF2z6aT7kSz3al1To4PuOqN3vjaO9vdaelY2B3bl0trQ1OX7S646nbElNuwKCAKYJmi6yJzJh8M3DnzpY9j8Mq8WzsReqODMtqM4FRAF0NRujy2WTyLr/Bsyv9fdeR1nvL+WFdPnkKhXj7jW0+fcVUO8wbwuV86cx+KtvQ3iGjxORNEAaY9D3z2waY+Dz+frIBwGi+LiYsrKyti9e/egj91XRlQ42Gw25s+fz2uvvcZVV12Vef21117jiiuOjEG0sBgpBvNBYLQLQwJSCcmqieQUKTgpn7G33cT6nIsIxVKeCVEw2aScTOEnJ7Bo3gvsf/KfxFpi+CfkYy8vZ1psLV++YjIHIzbeXCey4tlU2cOb7ljMxIJi5i1oxr5hJ5JDQd+7m+jBGiSng1xRwDRMoqqKK8/XY83/9gKnc6J0b7Fc/cNH2qBJhyAlAxoNWw4Rb3mfxk0tqMFUQr6r3I5vootwZQzoaBiJbSIh82OXEKRUF/I0WlwnWhUfkWRr6zoaHbTPdejKkG7P0RYSPrFQ5ORCD2/tm0lTs4HdJuB2CeT6UtexaQqIooGmC5gm2GWTy07paMbYvC5yJvrQVQOHz46nMIvxv3u+y/l8sKuJk6fkAuBsJxoAih78M7G//IAl21OVZ14fMws1pB9x/+vKI93VZ9Cb6zX+70cww0Gcnzyc97l46wbWnHEqp61+/6j7Wxy/NDU1cfDgQYqLR77t6oiHKt1xxx1cd911nHLKKZxxxhk8/vjjHDhwgP/93+5jES0sjgfSrnwDIGZgaCaObBf1xXNRIyKSaJIOtUxqEk0JH85p51L2lRyEZBzD7kK1ObEHqhl3cDu+KYt4uu5wCePn/7WH2744lvgr/2b/WxUo7iocOXZKT5uAPS+HcGUtVe/vZ+yp48meMo6c2Qdo2RHOJDwLioAop/5VvBI2r0K8OUmivvtVu97QnWFhGYKDS2cjTo8ZBKvCGSNfUAQkRUJURGSfhKGZHTwP9kIFxS0j2URERUSUBARJRJJFBCkleiWbjubX+uR5UHypcDxDMzONCNWQ3qc8C+taGZ30RjxIrlQDyjfKZ3NuxWZWTJ+TMc4BSmrWcka5g/g4OyImomCgmRIJXSauKcRVCdMU0Q3hCNEQ+tXXMVQVUZZQnArOHDeObDeNyz6fKcfanrRoSFOz80NkLYGsxVESYbz/cw8Aa844NRP+1Pk6720/nlf8M7gwsK3HbRyX3dzl67JdZuXMecQbkx0aPFoMPsPVAC4cDrNnz57M7/v372fjxo34/X78fj/Lli3jYx/7GMXFxVRUVPCtb32LvLy8DovsI8WIC4dPfOITNDU18d3vfpfa2lpmzZrFSy+9RFlZ2UhPzcJi0LlU28ly3/QjjCRDM0EziQXC5Efq8NlzCSUdJHUJ3RAQ2yo2JLET8ZchGhqGKCNgIsXDoKoYokTltsPhRg2VNdikImrX7SFWlSShqBjlqZ4NSl4uHsMgqyaAaJORPG6yS7OINsSJRZMYqoniFLH5ZSacOxE9qRGsaSUZSoW/yD4h09ehvzjH2lKN5NpyKyyPxOCTNuIM1cxU7EojOUVkh4Qa0TJeL0h5GpxjbLiLXBmRIIgigiikxENb1RnTSG1v8yrEFTWT0N8TtlwZZ6GdvMl+XHlebB4nWjxJpKGVwL5mAh+GenVOFqOPzgnEnQ1qURGQfRJZE9woLgW5rfN8/tQ8Nl18Nie9lOrf4D7rGpQ9BxEkExETAwHBMBGllLAVMDFNhWQXTq5oTQPRxhCmYSLKErJDQVRkRKV7U2fLnloAnEIMSXKiiTZExYVTlIi9+Vec53ya01a/z6uFM4/IB+prE8/4Cw+j5Y3BlFLz8Z52aa/2m78iVWXy9TGzWO6bjqmaVhW7IULA6F+oUh/7OKxbt46lS5dmfk/n7l5//fU8+uijbN68mT/96U+0tLRQXFzM0qVL+fvf/47X6+3z3AabERcOADfffDM339y10rawOJ5Y7puOp9xJaHc0s3KVrj4CENjXTOm61xi70EOFPIGkngoLEQRQRB1RMDAFEVNsq8IkSOgOD7K/EEOQmDS3jA/fPrx6N83Ywu6Gw+U2taCOoemI3ixsThfFgKGlnsC6qiPKQiZkKd30LWdaOYmmFloOBFBDOr5JbmSHjMvvom5jQ4emcWnSq4o9rUSXzC8ksK+ZZFOqaVS6v8Bgxwif6LQXD2kkl4i7xIHdayNUGc14IURFwF6okFXmxZnt7HFcQzcxdBNRSYUyHU1EioqAZ6yTcQvHk3f+EgxfDoKug2mQZ+iUHapnzfefJrw73uO5WIxeuvr7iIqAzS+TNdFL1pgs3AVZmfKocDgRuT3TJqUKnuzeW8HkieUd3lu1LSUuZV0COnZFb95bS6g+jKHqKM6UeSOIKeHb8uBtZN/56yOOJZHyaKgoGIKIKQhMmZhauIy8W5vZ7oL6rX0WCh2O4xQxXW0lX3UNBIHQmhdBEPGeenGvxkg32nzJOa3f87DomeHyOCxZsgSzh+pNr7zySp/nMFyMCuFgYXEi8KI8FcklkmhKreincxyEdg2HQvujVL3yHmX5hbROzyWi2jDNVH6BJBooZhLBTK2ICICgJxG1JGgJsgL7ufGyMfzddQqrl6/jO987HeOpLxCpjmUe3r7xHjxj8lBLJhDzFGCbOAclEUFqqiXWEj/C0E8GNGpWbUFx2QnXRbH5ZXLKsin72Pk0z7sQ70PfpWLlPsL7Yh3O1eaX8RQ70eI6wb3RLo3KA2/VtHW0BkehwsSPTGTHP3ahRw1LPAwh6dwFQRTQVQOtU36CI8eG3evA5nEAKc+CaRht/6auDUEUEDQdQxORbFImYbqnY7rK7RTOKiJv6SJCE+YTcfgxEVCMBDY1itcwyR6XRbQiMaIJ1xaDQ1qE+idn45+Qh2dsAbYsL6KrZ0Hans6iAUAWNc49qetV12n/eA2Ad046mdNWvwWkkpxNw0CQJFp/fjtZdzzUYZ/pk8Z0e3z3mVd3+97RQrI6Y8+1gZpEirZi2hwYsj2V3d3HthHLfdMBrN45Fkcwfvz4biuSdkYQBPbu3duv41jCwcJiGNGjRgd3t+QUERQhlXDX1sOhZn0trrw3KfUXEcpbSli1oxsisqBj16JI+uHuq659G0ns3QOiiK2khBlqnFsvmMPHls5jznsPUFcbyBh1giLg8KW6q6p2L62OAtyyHY+hQzKOoeroMSNj5LnzXTh8dkovOA1xbBmughXUflCBpyibyKyz+DA6nSXnLuLQ9tqMcEiLID1mYPc5mHD+JCpWbKd+VeCIz6J9Qm28Xs2IhjRW6NLg0dnIMVWTRGuSZLRjvorkFFHcCpIiIsqHV3MNTc+IBtMwEMTUNSXKBpIsorhlYnTfFdhVbid/ah75J09FHTuFkDOPsOHFMEVcUhRnohWzoQY1po4K0ZDuPJxe4bXoO2mjtvlHt2AvKUL0eEGxYcrKgMY9dVrOUbfRoofD8vREEkO1Z67ZgdD5XnS0JnjtidUn0HbvRC4pQcjORRAlEARMUyC4djmCaR7V87By5rxUOW445ssoj1bSC3P92W+kOfvss3stHAaCYPbkKzkGCAaDZGVl0draOiQlsCwsBov2D5f0qm/7jtFpQ1rxSSnDu1ChaG4B3uJsck+ejmCz0fDuB0QOhXDmuHAX5lD57i4SwSTufCeeAi9ZZQXYsjy07Kmm4u396DEj01wuvbovOUXyJvvJnVqSmoskoSeS7Hp5e6bs4IRLSyk58ySaLvlf/uerNQDc8e0zmZ1XRdK0YZoCmikz5dBKDvz8EQ68VYOhmSje1NzVoI5/jpcZnzgDyWFHmnMKu374CFVv1Pf787MExMDpKu4cyHjAPBOc+MZ6cfldKC47QlvlLUgJhvYYmoGe1Ii1xIg1x2j6oGPHVMklZq7xcaePo2DBDISTFhAomE5AyEc3JXxSkKxYPd79H9D0+tvsfnWHFap0nBJ6/yXMdkaNb8FFBNcux7fgokE9zutjZuEqcuDKczH3lZWZ15u+90Vy731sQGO3zy/oySvanZAoXOhn3MLJ+GZPh8ISDKcXQ1JAlDKfjWCaYOiIahwx3IK6YxvR2kbCtQGCNS1EDsU4a9MHXR5vtH8/RrO9lp7b9vWr8Ho8fd4/FA4zff7CUXlug43lcbCwGAEM1URQUh6GdIWZNOlSmYl6lbqNDSRCcdwlechOO6HaFpr3t2L3hUgEY0SbYiTqVUzdJHIoRqg2iM1jI1QbTuUnTPbhLU7dxJr2NhFtiKfCj9Y0EKoL4yvx4Sn0IYhiJtdC0AS0hEa0uoH8137PkquWsX3DQfzuBCIGNiGJLKgoegKp9VAqplgzMVUTNaTjLnVgaHFC+6M0bNjN2I8spOa3f6Z+bSOS6+ix8N1hhS8NPu1D5oBUBSXp8O9p0QB0WLFNeR1SidJSW8WldG5M+34PNr+MM9uOd0wekj8XTUmFPzmEOKJokBOpxtFai15XQ7QxmBG3Fscf6dX04Nrlh/8VRILrXgHT6CAg0iKjP6LivOot7PzEhZlQuzQDFQ0AFwW3D2j/wJZWHL4D2LK9OF1uBMWOIEqY7XI1TEFAECXcZ10DgF5xN5JDQXYonPzGf3sc37pHDpyBdo4+EbCEg4XFMNHZrZ02tLsyltIGmB4zMHUTxePCNE1ku4wgCehJg8bdAbSgnhIehkHsYJJkUMU71o0gCXjHuZh06SnYJ0zATMRxvruOqrWV2L023HkeBFGgZMnJmKpGy/Z9xKoP5140V7SSCCYoMQ2+ffIvYJGIsTqI6HKDPw8tdwyGJKNXH6RldygjBkRgzCljaMkPEKwKk4wk0ENhZIeCHjPwTHASb0xi88tIikTrtsgR524xdHQVl90+NEgQBURZzFROSr/WXkCkXhMRRDLVa0RFSoWptYlPxSsh+yTsXhuuXBe2bC/IMqIaxxNtwE1jquRlYxVmQw3h/QeJNEas8IsTACkeTq2wixKm0NZMUJIJvf8SohoH00Bsez3yzj9wn3UN0RVPUVt6OvWJfBbO8LJ2ZzOm2X3Y0tS/D31iaefmnb1BDerUb2jE5t7DGJ8HyelGkG2YUvfhW54vPYAHyO9h3Pbfa0s8DIxjOVTpwIG+NXEdN27c0TfqAks4WFiMEIZqgmpiKl3HJBpqahVfkASkLB9aSyuCKKBFNcINKqZq4iq3ozhkBFEgIaskAxrCOAG714auGii5fkxvNsRqUaMJZIfM1GW3U1V8Gg4zwlutk5nr24mt6seHu1k7RWL1CcIVMYJVYeaPLaJ52z6C1c04spzYfS48Y/Ox+XOoXbUJrc1Dks7XcGS7Kcp2E2/dQ874ApSSEg79v3cQFAE9oWPzyyQDGorX7LHpnMXwYxomkiJ18i4c+fdJi4l0iVZJact5SPf8yFaw+xScOU6cOW4ERYFEAilQj7OlEQwdM5lAq6sj0RggUt+CoenIPgmpjz0djidOBKPPfdY1xP/9CEgSpiiDYsNwuFMhO6aBYOiAjimIiGqS2P/7CYKu4ymYTEj2Al4WTD16nkPkt/diqhqeLz3Qp/l9cO6iDiv7zQ/cjGkY+O/5vw7b9df7EK9Xqd1Uh923kwKPB8HhBKWjd6S3VZba01k8pF+zOHEoLy/vU46DrvevcaclHCwsRpieDGfJKWJz2xAEASORRFeNTBgIbcVJfGO8ZJflEZ0UomlPE2Jb+UEtniSytxKXrhM9UE391joi1TF+uPtyVjz4XtsRGrj0ujO5ffZ0YA1ApvEbTpFYdZK1v3gVLagjtFVmMlUTm7cCp9+BIIoYqoktV6b0zGKcfg/+Ky4n+cEa8qa04D9jPmY0gigKzL1pHluf3oQRSgmiqZfNQIurbHqi5wTUdKx8ut+DxcDorhqMoZokQ6lk6ZQw6Ml4Pyws0uUuIXXtyD4Ju0/B7nO0CU0npq6jt7ZAOAS6jqnpGJpGvCFAMhTF0HRcfheCKGL3xmnZEe53h/JjmRPF0Gvf6Cz6p+8hZWUjZOenyky3hXyk6+ILih1TjWCPt5Lta6bntffDuD//vV5t1/rz2zGSKjl3PQxw1HCgo9GbROnw7jgHlQPYs93kZGWjO30IiJk8h/7mfvTUS+NEubYGynCVYx0Kfv/73w9LcrQlHCwshpnelvFLx4oLoogRT6BFYqgxFVFsq5vfFuIk22WyJpWSd0YeWZt2sH/FDtRIDEeOnYYtB8gORYk0tBIPJHAW2Il2qqTz0lOr+fLXJmUafwmKgM2loKsGSadKov5wpZu08R5TkqjlWqaUpygLuPK85C+cx4FxZzEuUM8Yl5N/lXyDPJ/KhOJ3QBSIt3WdFhWBuk0HUaNH70JtqiaSX0TxSUfd1mJgxBtUWg624i3SUZy2TMhSx9AlEUE0O4QwpUKcUtuIooiopDr3yg4FySajRWLosXhKMLStcpmaTqI1gqHpSDYZySbjyHZjGiZ2byPhuijBndFh/gQshhvXZ+7t8Ht0xVMIaS+XaWA63eD2IOoqrkQLB3dtJSk5iRhuWpNubJKGS4rjFYI41LaeMGoUW6wFpakavaYKraU11b/GlgoJMrWOK61GIsnaxWekSg7rBqetfj/zXlfehsEgtDtK8aa/AqCtfh5TEjvEyYfWvHhEg7j3zzydU999j97QVRfvE8GjNVCO5VClG264YViOY1VVsrAYIXoSD+nQH8kp4h7jZMa1iwhs3U9g7yGigTjJYCosyVRNnGNsjFlQgrsgi0M7amne20LOxGyCVSEiB+OZcSZdOIm86z7Nc+bHeOTBVLWRO759Jheu/xZNH+5CcdlJhuM0VzQhiAKeAi/FZ5+M6PGy5y8vYfc6GHP+aYRPvxRHrBlh5XL2vPg+OeV5+KeXYSsqRGtpJd7QiHfBKSRKJmE/sIMD/+8lFJed4isu4M1P/LrPq8hjlhagJTQWrFw9oM/b4jBHE67pGvyKW04lTCsiskNGFAUUl9IuMVrK9IOoXl2H4pVw5Ttw5jhxZDlRXHYkm9xBeHSu0iTKErLLjj3bi5LlQ3K7EBQFPRgkuLuSqrUVNG8Logb1Phk9lpF0YrJpdz2aKXPylNwu32/9+e0ZISvIEvnf/f2Qz6nz982WK3NB/dYjtguvfj6V9yEIiFoSqbkBx6X/y9Yrz6X1YCsL168blOOP1PdiNNtr6bntWfNWv6sqTTpt6ag8t8HG8jhYWIwQPXkeDNVEcoKhmSRCSRKNzajRBLqWSpY20/kPioAa0jmwsgrZV5sy5BQB2S7hKXKRbFFRQzqmaqLFVaRAPQfiKYOteFIpZ7vfp+Ll94m1xJn+ySUAhOvfo7milWhjFDW6mqxxeagxlbLz57PpjK/xzNsyalLnuotPoaTqVpyFqQd0wzvrSIbjlF57Gbdvu5YflG+n/v+9RM3GWhJtfRrSydf5C3LQ4toRJTy7ovbdQ1ajo2HGUE0S9SpJRcsIz7SI0BIagiQiySKCJCDbU4+RdIUwLa6jRtWMRyLtTWjvvUh5LcTUe3YbituB4vUgeT0ILjeCJCEJIs6CEC5/PS1KqM/nYImGE48PdjUhIKGbIh/ubmDO5IIutxNEgYIf/nHY5tXba9FzxhWEVz2XEg6xEMahOnZccz7BmiDRuni/xbDleeg9AkYmTK6v+402dF1n+fLlbN++nVisY5NWQRC49957u9mzZyzhYGExStFjRqo0alAnUt9CvDVGIpgk3pjMhCmlk0glv4zda8NT4CarNBfFZefQ9upMmVRdNTnw3wPEmv/JrfeU4b/tEjxOcG/8G60Hg2SXZSPl5yM4XJQujhBrWUusKU7j7gBqLFXuVSku4tmVCqv+8z5zzp7DlNb32PDydrwlHtx5bpx+D94xeWi5JQTqW3FtX8WOHYdIBjSKT8+ntSqUqaKUU+YnEYrTvDl0VA+EJRpGhkzyvpoqG5yu4CX7JEQxJRpMPfW3Mwwj02gwGVIxdBMtoaEldBSnjCPL1Vat6XDFJlEWkew2ZJcdyelAsNsQ7A4EOZUkiyQh2m0oTltmbMvgseiJtJdhw65GJOHIxM/Y0w8O95Q6sNw3/ahJ1Z6FVxJ/4WHQVML7D9C0J0CkJj7gHK/OVf2s79LxTVNTE2eddRY7duxAEATSwUXtcyAs4WBhcQzSnddBbEsytbUJAgDJJqdClDo9QERZwJFjw1vkYcwZ07Hl52LEExxYtQfFK6F4JZIBjVh1koMNdZQufpXPzKrH1J0Et+zEkWXHmZNKTMVMVWIau2A8oZoA8dYY4foIWaVZxKecwu7fVuHNzeb6SyH46B9Jtqg01DbhGhuh9DQHOTNLSHjy+NVNzdQ+uJLg3iiSU8SV66GlMuVdMFSTvf/Zn/m/xfDT2zwb6Fj9S48ZKUHbrtt5OolZ8UnoGJiyAGjoqk4yomFzy5iGic2dDltSEOWU10GURQRJQkh3qTYNTF0DQ4e2XAjJJiM5xUwFLsvgsTga86bkHfFadMVTiDYbWXc8NPwTamPaNVMIP3r3USs9OS6/JfXvR2HtT6Zl7pODcd0f7bt/wldkMskk6Pd5v1HEPffcg8PhoLKykrKyMtasWYPf7+f//u//ePHFF3n99df7PbYlHCwsRhmSS8RRoGDPsiE7ZWxuWyqxTxIyBpSgCOhRIyMwHFl2vMXZOErHIHh9CK0tCJKI7JKRlFSZ1ES9iqGZNG3dT2F2FpI/F2dxPv6JrZiGQfPqtSSDUfJOmUnOolPJARBE9v/lBSSbjHPfh9z+v6fhUhJM+fd32LJyD+MWj8XQdOq2NLD/rX3oSY1CQUQ6/TxCSQ09aqBHDXY/vw9TNXEUKjgL7DRvDvfqszhhH16jkLTxYqh6l2V00x4ysy1JOu0tSwZV9KSB4k7g8Nmxex3YPI7DeQ+GgZFUEaQEghhGkGUQRUxdB8PANFJipSeR2ZuVXIsTG9eST/V5n9WnLsCd5yKr1I89y8OOf28iWpHo0gv6knPaUb2jLd/8Heua/FzThzl0N2b75Oe+3id72v5Ev+cey8nR7XnjjTe47777KCkpAVJFKyZOnMhPfvIT4vE4X//61/nb3/7Wr7Et4WBhMcK0XwES20qeOvx2bC4FUZGQ7anVWFGWcOU6M6EjetRIeSV8qe1sPhfYHZjJJEZbPKOu6pi6iSimQkwUt4yn2I84thwSUUxVRZRFQrVBYs1RvMXZSMVjSRRPQJfsRFx5yI7lBKtb2fOH55l92g70RJJ9q3fjynOR/81vYv/wHWItr6ElNHKmjEXKz0fa/QG+0nw8k2vQYwaOnFSFntxJuTTuahypj9pikOjKiE97JnRSuTminBK4ZswgHIshynFi2XEcOXHceW5cuR4km5JqIqfrqXLD0RiCJCEqKfGgxRLEW2OZ6l0wMMOmN8adhUUaURIoPKmMwh/9CYAPfzsDgFcLZ5I7PYv5K1bx+phZJANar7ynt35tK8WTSklq4/n0WQMrmym5xD6Jhr4KjBPVs3csl2NtT1VVFeXl5UhSKrQ0EjncbPWyyy7jU5/qu5BOYwkHC4tRRLpHgygJCNLhyjWSLRXuoThTHZiTAQ3JJZI1wY3iUog2RtGiCbTaWlp3V9K4q56mTa2ZTrw2v4yryIEj245n2iSERJTYtu0c2rSPaCBKMpJEEAXGLJxBy8QFuMINyCufI2/2XGpkCW+xj3BDiIo3N2P3Ooi3xtHiOo5d6zj03ofEW+OoEY2aNTthzU7c+T7iLalOwN6xbkpPm4CoyNiyvSQjCZx+B3WrmjIPW+dYGwWzcmna20wyoJFs0k7Ih9bxgh410DncXVcE4k1aKmTOmSAxNomhtQtFsh1+FImyhGRPCYpYU5Dm/a2owZ4bFV0U3M6L8lRERehWGGy+dAk2v3zCGkQWfee01e8Te/2PhH5zJ+H9Vcg+KdPnRpAE9lx3Sapjeh+wO2zML64CSgc0t7562AbTK2Ex+snLy6O1tRWAkpIStmzZwuLFiwEIBAJoWv9zZizhYGExCkjfpF9yTkML6uguA9lugpwyrNzFfjBMDE3nkBbIrO7mlPsZe9Eimk+7gipzHK7kFpIbfkz92tSqfvtYdN8YL0UnT0QPhmha8yENW2uItybIKvUx4eJFfJv7SMY1rkx4KMlu5u0pH8FuwsdvH4sSbUWsraBl9Tp2vrSVRL2KoAi8960/Y/MqJEMqseoksdoE/llZlF2wgPD+KkRZompNDevfWw+kDMmuugLHqpLUBBswNNMKORliepvbMBik/9btzX5DM4nVJ9DV5kzVJbFNJAOZBGo1pqZEbYvaITSqO8O/J0Mn9rcfMeHKs8ibvo+Dq/dangeLXvGKfwaeMiezP7MY/YvfYuElHyKEAmjVVRxav4OqtQczhSp6w09+fDJz1/6CPV9+g//Whlm0Yf0Qzt6iX/QzVIlRFqo0f/58tm7dyiWXXMLFF1/Md7/7XXw+HzabjW9961ucfvrp/R5bPPomFhYWw4XRFoaUjKokoyqmkWq0JUoSiEIq16DQDoDikxhz/mkkTjqTA0Y5DWEPBxzTKLnsXHJm+LD5ZbImu8md66N4QT4Fs8Zhz/NjxOPEAmFERcJd4Mad70OZOoOqPQ3sXLeLAleICa8/xMxxcf74q5XYm6owNrxH6/sbqN9SRTKgoccMbH6Z7PFZQCq+3TnGhn9WFs5sB2prkHBdM4H9gQ4P1q5EA4CjUCFnhi9TPcdiaBhO0dAVhmqmvBFtVZoijVESoThqTEVLaOiqgaHp6EkNNaaSDCUxtJRgEPu4spsm+uQykKRU3oSmo0ZUKynfIsPBW67mJee0I15fv2QhzmI7hbOKCF18I/vU8bSUzGTPzKuJLb4Kh99DuCIVRteb62nRZW/THHcQqzhIdlke0648eShOZ1AZ6fvFiGCa/f8ZRdx6661kZaWez9/73vcoKiriM5/5DNdeey2SJPHLX/6y32NbHgcLi1GGoZkkAyk3oigJGH4X0LHbabpBl+jxIGlJdJtAMCZxgGx8cy7npK+JGKFWzGQSLRjCSKooPg+Cw4EejaW69PpSAkQQBUyHE6fHQX08wW1f24LNcQWF+w8BEF+7hqZtlajRpeoJ8AAAS+5JREFUBLHmVO5Euru0zW0j3hrHnmvD5k6NqcY0dr/4AcmIRqIp2asygpJTRHEqOPJsg/pZWoxO9KiBKAtEqmOo2Rp2n4LiUlI9IWwypmGQjCSJNycz/UoA6IfBH62swlFcgBpoIbC3nkhNfJDPxuJYJLriKTR3Dv5507H5d7DjmvOZ9o/XAGj+0S0IksCYU8YQvOcP/OZlOw/MfIZo/ng2NszhvPxa4oFwJhS0q2IBnfnvv89m0WVvY3fdRDIW58yTF/DOZW9n3rMYHRzLydEvvfQSZ555Jj6fj/POO4/zzjsPgPz8fDZs2MCWLVsQBIFp06Yhy/03/63lPQuLUYYeTa3GxqqThGtjBGuDNO+poWlnNY27GohWxTOeCb0pgBxuwqdEkUSTlrDEgVgRLdPOpOW0y4mdfjHS6UtwTJyA6E411kp37IWUaDA0HTHUwuKlY/jW/Qvx5GSRjCcwNJ1r/3cxkZpDSDaZloOtxAMJPGOd+Ca60OI6RfMmMPuhe8ib7Cd0IIooS+ROKkBPGkSr4hkB1BnJJaL4JByFSua1rLHZLN66Ycg/X4uB09/V//aoQR1DM9ETOrGWBLFAnHgwQTKSREvoJILJ1GquNrCVvPqN+2ndtpembZU0V7R2SLS2OHERAw3E3HmIE6Yx5vQiTMNkz3WXEF35d0Ifu5VEKEmsOcLWulymTfVg7NuJq3o7S4q2krX5DZorGslfkEPe/Gwuju3odU5AIhrDNE3eeeH9IT7DgZEOCezKG3M8I5hmv39Gmssuu4wdOw6HYBqGweLFi9m9ezeCIDB79mxmzZo1INEAlsfBwmJUka6wlM5hSKgqrWqIWFMcPaGTDGiZRNFkQCNWW48nP5/ivP00Z3mpbXUQV2UCjiJkQUWSvZgIeJtqMGPRjDvVNEx0VcfQDLSERnLPbj4z648khFJ+2NzWCVg3uHDaAexrvCTDh4gHEtizbJz0+fORyieQ2LwJx4yZrMs+l6zEQ6ih1Lyyp4yjcVcdIaLdrsLZ/Kna/O58F2qoBYffjmmY1N15HUUP/nkYPmmL/pIWDel/BxL2o8cMTNXMhKgZuokaUVHjGol6NdMzor+85JzG+IvHEq5roX5LA+F9MStM6QRnxfQ5+Eo8jD9/LlkOJ3pNFYIo0LCtkeK5RcSzinli1UQ+XuDGNEzOy99ArTQO3HNJrHob+a2VVNcGCNdFOfnWjyAXFrJq/iksXL9upE9t0HnJOc0KHz2GMDuJF9M0effddwmFQoN6HEs4WFiMMtqXZzVUk3i9mlm5b2/0mKpJuLoJUdqOOxRk3qxmvPmnElHtGAiYpoAhiIiGhhmLYCYSAGjRGGo0gZbQ2wSEQfW7m2n+yzuUPfV7oBmAj39iPIZZjXLlpyiMNBOu/w2JcBIpLw+zrhrJ5ST03hrmR0Os2tJE6ZIiSk6bSmDbfgI7eq6EkwxomKpJol7FXeqgaHYJskOheW8tRUP0uZ7oDFa8cmdDXqT/4kGPGpiKkPI8xAwkp46gCB08Vel+Jb1luW86klNEcooUnuZn7NlzAQjXryLe2LvQOYvjl+xxWZQtnY1jbAmtK/9L895aWqtaCe6MEm88gGn8kDsXncSaDakCE+VvPM308gmYsoKtqADZ48KRl03TnkMkFl1CnXsMeVNePmrjtNgbfwbGDddpDph0hbI3ymeP9FSGF9PoX6LzKAhVGi4s4TBKWHTZ21aco0WGzg+fzkaf5BIRZQE9qRE80ECo6hD2bbuZNmst+tR5JMw85GQE+75NxHfvIRyJpZJOE0m2/b8tqXKuThF7oYIz246W0Bi3cDyuWBNP/6yAvIMf8FCVySXCB3zr/aWsf30Djqyf8uz5T1H13OvsW14JwOnfvoDqf6+g/OwyCuZPI3ywFv+M8cSf7LkykqmamRKxidYkB987QNmZ5Uz/V/+7WVoMPaIioHiljHhI9xSBnhu09UT7/g/dic3edM5Nl2PNnuFh8iUn4fzI5TQWzOAgHorDO8lau52m7a1ILtGq3HWC0f7+edaDF/H6op8xyd9E5BcXE/gwtRorKqmGhXv/U0nT3ibcY5zEAwne/da/cZc6mHTBVGxZHtRQlGBVE1pch2f/iDeWoKo2iLvcjhrSWe6bTtZkNznl2QCZe9qBx//C67d8nP2TLqIqkotuCHz/O6uB0fn8H2zR8KI8lag5+sMEhyvHYeXKlfzkJz9h/fr11NbW8uyzz3LllVcCoKoq3/72t3nppZfYt28fWVlZnHfeefzoRz/KNHQbSSzhMEoYbTcNi9GNqZroqkm4IYTDZ0dXDdRoAoe/Dnt5BMHtR0rGMCNhjKSa2scw0eKp7tGGaiI5U6EiSUXD1FUad9VjPvEwh3bUkvfZS8kvFJH2bePUeZdTWnoWzz35Dt9z/oB7T7mHqjXV2LwKga37cRdkEQuEqHx9PVmluSRbe3aLOgoVvONcxFoSaHGdeIOKHk2wJ7KHsuH48Cz6TbrPiNTWlNBoy5cxNLNfict9obcx5LJTxlmUT2vuBFqMHHRTShUQSGq9roBjcfxS+foGFrfcRLS+mUN1hxPl014qNaQTqoziLLRTMr+YyhVVxBuTbH92K44cG8mQihrSEWWBypXbMHWTeGsilXPW1pgzXBUj0ZqqCDYdeH3MLPSYgex4lvDeJ5gyvYjc2ZNYft/5PBu+gMd/tnJUiodzKzYPyjjpfIlgMAhtlX5GK8PVAC4SiTBnzhxuvPFGPvaxj3V4LxqN8sEHH3DvvfcyZ84cmpubuf3227n88stZt67nkDhBONI729VrA2HIhENFRQXf+973ePPNN6mrq6OkpIT/+Z//4Z577sFmO1w55cCBA9xyyy28+eabOJ1OPvWpT/HTn/60wzYnGr9/0+Sz5wzuH9ri2CZtNLUPYQJo3tuWH6CbSDYR0zAZW1KEQ0wZdlqgmWQ4ipHUMmUu4XCHaptXQVRSDeeyx/lpqUy55yufe5OrF9TQsLeKy2d8HXXpVaybWs5154YIP1JL0ZwCbB4HzRWNaIl6cifmMW7pXLRojNq1u7s9D8kl4iywp5KnKxIYqpkJQ4lVJYfmw7MYVCS7hOxIXV+m0ZaboJndltodKH1tRKUndfR4AlesiRy3jSby0WUbnqJsBOUAl1r9G05oqt6qp/rdhg4VkSC1iNL+OnbnOxl7/qkkIwlqVjWgY9BaH0FQBPSogeQSiQXihCtjmX456X21oJ5Jwn/JOS1zv9717F4kZ6pPiWSTsdX8lWs+0sTjjBnuj6HXHC0Eq7f7Hyseh+Hioosu4qKLLuryvaysLF577bUOr/3617/m1FNP5cCBA4wb133I29KlSxHFjnkpZ5111hGvCYKQaRDXV4ZMOOzYsQPDMHjssceYNGkSW7Zs4aabbiISifDTn/4UAF3XueSSS8jPz+fdd9+lqamJ66+/HtM0+fWvfz1UUxv1WKLBojva5z8AxBtSHgRRFlKN2CIJYhUHcdlsCC43wZoGYo1BDM1AlFPCAsisGqcNwNxJ+eR99kYKdn3I1t8tp25LAw3bGpEdEoF9jUwSBK688kG+dMc7wJcA+NddXooa99Lyz3/SUtlIormV1v311G1s6FCeUGxbpZZ9Eol6lXDl4ZKuqCY5s72EKqNcUL91GD9Ji76S/jsqbhnZkXp0pPuMmKo56LkDfTVUJJeIzS8TqoxSt2Y7Yxx2CiZNZV/JtYRdBWRPLsM5xhINJxqdwzzToXHQ8d4Uq0pC20KG4pVwZjvBNMkuy6PlQJBYfaLDvgDx5mRKcATNI4/RBXo01f9GtsvUfHAAgLGxBHDzIJ7x4HLCdZAepTkOra2tCIJAdnZ2t9tcf/31QzqHNEMmHD7ykY/wkY98JPP7hAkT2LlzJ48++mhGOLz66qts27aNgwcPZuK2fvazn3HDDTfwgx/8AJ/PN1TTO4LuupFaWIw22ouHTIx5u8oXscYWJGc1zTsP0FzRiK4aiKKAqEgZI09yiugJHS0uYuip7r0H8hfgyZuC/e9vEDkUpXhuEcWLTmLn/3uHytfXc/m8f/GHnMmEm1OrFB+7MwQU8OoVU6jfUsWBlTtw57vRgjpTrp5I1bqqjPt+zBlFZJflseHhjRhqx34UkerYsH5+JyqdRWdfkZwiilfC5lKQ7Kluz7pqpK4pwyTuUgfN69Cfe7GpmhkBU7WmBjWWxDdmD9lfvRwApbSUvMn+QZmfxfGD7JNw5NgyHk9BERAUgVB9mOCOfQDY3DIJuaNHVI8aJNSemwl2VXnMVE3C9RG0aKqR5q5D2/nOP0/nT38/NNinNqj010Zqv88xEarUz9Kq6X2CwWCH1+12O3a7fUBzisfj3HXXXXzqU5/q0S5+8sknB3Sc3jKsOQ6tra34/Ydv3KtXr2bWrFkdkj0uvPBCEokE69evZ+nSpUeMkUgkSLRVh4Ej/0gWFicS6X4Ooixg6CbJSJJYIIwgNtCwrZZwbaxDhRpRbnuQaSZG6HAFm2hTGAmdnMBenKdMZOwiG4Frv8l/6stYsPYKqtdX4/nTX/nFdx7hpq8edm8+9fNCDj24mbLFM3CduZi9Zecx5o5P4S7KJm9yFGeOmz3/3kfrwVZaDx7pFvVOdjHx3Cl8+LsPh/7Dsui3eJBcqVVZmzfVqE2URQRRRJRTwgFA8SYwVXPEcgjSFcggFfZ2MFCHKNezeNFjkFeEGYvhyvWMyNwsRobeXOumamLoZsZLaqomWlAnuD9MRXI3oiQQa0kcsV9vmr51RTKgoYZ0FG/K2xtvUCn6xnn8oDyXjRcGaDnQypLtx9f98JhamDXNfnocUtdCaWlph5fvu+8+li1b1u/pqKrKtddei2EYPPLII/0eZzAZNuGwd+9efv3rX/Ozn/0s81pdXR2FhYUdtsvJycFms1FXV9flOA888AD333//oM/vmLmoLSw6ke7CKyki3iIfebPG45w5E/9lF5PcuJ7KNz+kbn0jySaN9hGm6SoizjE2xiycwfdf9bN6uZfzrvk/Xv/Hary7gzw1+Wa2rq8mXBFjb3Av3u0f5SFRwFfsI2/GOLZeuY54YxJ3yUHGNTRjC/yVhGFyaGsVseYY1e/WowZ1Ah+GcJcfueoSroix7f9tsarcDCN9FQ+2XBlnoR2bOxVi0R5JkRBEEUkR0cZoQCxjvPd3boOFHjXQgQ9+9gyKWyERTHLWpg/6NdZA47wthp6+CuK0N0AN6aihw/09DNXEUHXUYKpvTjqnofO+qf4GPVcT6+q9TBWxqIHik3COsWFz2zi45gCt2yKZc7HlynjGOoelP0S6ydvF7fJ/Ohv76WZwF/cjR+iY+t6YZkYE9Hk/4ODBgx28AgPxNqiqysc//nH279/Pm2++2ecoHNM0Wbt2LZWVlcRiR3r2P/OZz/RrXn0WDsuWLTuq4b527VpOOeWUzO81NTV85CMf4ZprruHzn/98h227yvY2TbPbLPC7776bO+64I/N7MBg8QuFZWJyIKO5UF2Y1FMHe3ERw8hm4PX7G22zYvZup39JA5GA88xA0VBPPZAclc4sRz7mUq90a351VR0NJBa//A0JNLVzW9Em+H12Fc4yNsaeMJWdSCclghINr9lFyxxXMu/ByIs/8Pyrf2Um4roXAvmaK55ZQsGAGclExNf9+gx1P7z6iNn9mzu1Ke1qMPtr3TxCkw03awECUweBwiJyhGt12Cu8tQ7EyGamJI8pHrhgfbR5w2OA5pgyfE4D0dTKQ0Lt0QrN5NMO/G+O/fchlf1GDOnrM4EB1TYd5iIpA3qxsxp83Z8DH6AtH+/71RzScaPh8vkEJs0+Lht27d/PWW2+Rm5vbp/137drF5Zdfzu7du49oDAcp23vYhMOtt97Ktdde2+M25eXlmf/X1NSwdOlSzjjjDB5//PEO2xUVFbFmzZoOrzU3N6Oq6hGeiDT9iRcbLjfZMeWOsziuEBQBLa4Rb40h17cgyBUkFrowcsaRU1JC9vgGDE1HkAKZVS3JJVJ6ail851d895VCxo1zESu/jG9/dW1mXG9uNoZm4itxU3TmHARFoeaZt/EVe5F2fMBbs+/m7Ct1nFt+gc3jINaQoHl/E/4vX4AQDiDZZIS2ZMOxC4upfKO6Q63+gaxOW/Sf3hpd6dANXdXRkzqCKCBoeqaakiCmHkhaQidSEx+xMKWeziWdtG3dm48fOl+/6SpxeszosfFkZ0ZDad7OydqGaiIoAjnleThnzRqWOVwc28FLzmmIitBBNJ+InjaBfvZxoG/7hMNh9uzZk/l9//79bNy4Eb/fT0lJCVdffTUffPABL774IrquZ6Jw/H5/r6qO3nLLLcTjcf7+979z0kknDTjPoj19Fg55eXnk5eX1atvq6mqWLl3K/PnzefLJJ48oB3XGGWfwgx/8gNraWoqLi4FUwrTdbmf+/Pl9nVq3DNdFfyJ9uSxGD2Lbylk8kMDUTWItcZorGpl+5ioQJRL79qPFEjiy3WSP0wjtjgLgLnVQePpsbv+bl+1r1rFWkfm72nHF+H8+exKxvySRnFFMVSN09seZNG4CGDr1/3iBkzddj5qfw9hF06lcsZWCOblklfoRV7xI064D6EmNceeUEGmMkDOxmMihCPVrAtgLFRL1PScWWowO0l2dTZeZ6TQuiqkVV0FKeSTiLYkuqypJrtQ9P+3lEtsST0VZGNISrgPFupePProSh5JLxFRN8hfkMOXK09AiMXY+tz7T1K0nRuu1B6m57X5xDzUfVLHosuGpuHRxbEeHz3iwOs0fcwwwVKm3rFu3rkMebzqS5vrrr2fZsmW88MILAMydO7fDfm+99RZLliw56vjvv/8+TzzxBFdffXWf5tUbhizHoaamhiVLljBu3Dh++tOfcujQ4YoBRUVFAFxwwQXMmDGD6667jp/85CcEAgG+/vWvc9NNNw1rRSULi2OZlPFtZJLuRDllnDX9ezmSTSFc14xpmIiyhM1tT1VUihlINhHJ5yN+MIkoSTh9HsKB1g5uzd/9eg3fHmsjUa8SrzvEm4fm8My/vdx0YymzXa9Qt+kgUz81BW32GUwrL6PyuTfZ8Y+dlJ0bpuyj5xLevovi8yaDJGGMncDkwv+iJf6Lp9CLKAlUv1fHedVbRu7DO4HprddBjxposo7mTq3kCpKAqberEmOYxBq6Th4V5dRKsBrSM0n8UlsFMIlUqFoyoHUQkEPhubWEwPGFqAi4yu3Mu2kpzdsryJ0zhd+O+xFup8C1vq+z8msvjvQU+0X770GySSPZFOaN8tlITpFJ501h7K//MaTH79wv6ET83gxX5+glS5Z0GUKUpqf3eoPH4xkyO3rIhMOrr77Knj172LNnD2PHju3wXvoDkSSJ//znP9x8880sWrSoQwM4CwuL3pMWD7TlPwmKwP6392LqJoZhpEpo2kT05GFXfqQmTv2KNdx/1yf4xfOz0TUDj89Oc2OE7Wu2ATD1lCnMmfn/27vz+KjKQ2/gv3POrFkmJASyQFiUHQRZlCIq4gIXQW3ptS4tH1DLW66ttvVVbykqtBU3tNde75XXWq91qdZbqWhRFq2AgmgpbiiLsklYkkASMlkmM2fOed4/JmcyM5lkMpPM/vt+PvNhcuacOc8ZJpPnN882FYfe+QJNJ+twVnEjqg4dw96jQzHwcA3K/vN32No6Dg0tJlyt/QM1e05DMktwnmxE096v0FJdD+HdB8eUifBs2wxzYQFKxpWjZm8VWuvdDA1pQnPp8JxRodnbu4HoXt/nuDnXBGtfS4duIsZ7MqefDaWXDcChvx+Ep84Lk0OBNd8Ck80Eb6sXamNT3Fedpsyh5Miw9TdjwKRymCedD4erFZ76BvzbkN9DwIZDmz9NdhF7lbtaRd5ZdhSMHJqwcwYGiGwMD5ngpptuwksvvRS0LEJvkURPY02SOZ1OFBQUoKGhga0UlDU6+6bYGMxqDPyL1BXI7FAw/JqzkXfnvXhk61jsWB88g8cd91yIWTuX4vXxD6O0jxtnWsz4j5XbMG/Bhbit/l6YSssASYZWU4WvL74dOmSM2fsSDj67FrIi4ejmExhyRQVGvrKxdy6celVPuiMY/coLzs5HXr9c6JqA6lKhulTIsgRbHzvshTnoM2wA3rhgNb7jeBstf34OdV9XQeg6hC5wcuepsF2cYqmsdHUtrPykt8D/W7NDgWKXkVNqQ8m4UtQdrkX1B3X+bnBAanVDks2SbyrjIhOavm6N+XnsAy3oN6YI49/a2oulS6xUrq8ZZTux6QU4cnOiP765BeWzFqTMtf35z3/GsmXLMHbsWFx11VVhB1fPnz8/pudO6DoOlL7OPHIb+tydvat5p5KuKkj+oBDFN7jH/nEMQ/7rYSy847/x5c5COE/X+x/77f3bMPk/fojVP38Pdy+fjrlNL+L8356PWlEP5dhYiNoqNH32BVy1Tox0/BGSyYwzH+5C8+lm5BbnYnbdnpivk1KfZJYgyxIUiwkWiwm2ArtvEL4sQ7H4/ryc+vwwrpm7BZYvd6Gursk/pavX7VsAKxS7KVFXLEUm9BlagKbqZhx+50jQe8hSZILFYfZPAJEKFLsMe4kVOUU2tBxxxzyuy3XMgzr7GXxyxUVobWjFtH/sjHwQRa2nC8ClihtvvBGAb9D1unUdu+5JkgRNi21mMAYH6haGhswjmyXkDbbDVePGoS0HMHH4Q7j3rt/grn+vD9pP0VX89eEcOD5+GGptHazlY9AkKqDZ86AfO4amk3WwFeVBb2iAOvkSOJoacf4jLyTpqigaPZ3SEgB0XfjH0ACAJEvQPF40n3Ki+VQzvK0acp95EpUHa9BU3YzS8WUw2Sxw1TVBNkno+aSWlE0UqwJ7HxtcdcFrhuiqgKcufBhNJs2lw1XthrvW06PJIMwOBZpLR1N1M0w2BWc+fgd9Jl3eiyUlAICu+26xHJdCNm/eHLfnZnAgylK6KtCwrxkFo3Jhybfgq7UfYdKQZzBhxiJ8ttW3cqktLweK8KJg33YIiwWyxQKT5sEo6QsoLU40V9fi1P5qnD27FHJeHmwnDsBdcyrCmSkTGKuWq80qvG4vLG2LMgtdwN3YiuZTzXCdcUOWZZz55jTcTR4UDumDPsMGoPX0GQhdh6XIBN0ruAAgdSkw4Dr3t6C58ljY/bQWPaW6KQFtgSZMd7xoGWs+eJ0aTA4FTc8+xeAQDwmaVSneZsyYEbfnZnAgymK6KuA82AJzvhuFwx1o2bsP//a9VjyXMwUNZ1wYOboIVvcHWFd+GzRdwr8c/Rk8f/xvaB4Vx/ZVYdTiq4FtX6Hh0AnYL5qB2jWvxX3mD0odXqcGV60btj6tMNt9CxD6Whua0XLK15/b2s+MvJICOAYUAQCajp1Cc00DXGdcmHng814rC2eEyVyhrWKpFg4SxVh4LmegDUc/OIyBkQ8h6nUMDkRZzviWzjNAxbHtezHY+gDuu2QuWu2FyGnYhl3yLPzHym0AgOmP/R8UbX8VUBTUHazBqc0fAgD6nz8OK/Z/B488cWMyL4WSwFPnRZ3agNYzbmiqDm+LF601KoQqYHIoMA00QTYpkGQJzuP1qP26Dp4zKkwOJS7lYWCgdGMs/NbdffNKcmHJjbwIGMVA6L5bLMcl2c0334x7770XQ4cOxc0339zlvpIk4ZlnnonpPJxViSjNxNIn3ZhtCeh8tVSzQ4G1xAxZlmF1mFE4pAiDbrwalWOuxMBDW9BYPgYH5VEY4d0NSdcgCQ2f3fAzKGYFilmGY0A+jrx1ghW3NNNbCz0Zi70Zs3kpOTK0Ft0/q4xo69oU+P7je4W6K9L7tPCcPIy/aSZMffvi7wv/mJhC9VDuECv6jijE8W01EVtRzA4Fktm3DooxAFzJkdOqm18q19eMslWt+0PMsyqVzvthUq9t6NChWLt2LSZMmIAhQ4ZAkqRO95UkCYcOHYrpPGxxIEojsYYGKSA4dDbjkmSWoJgVFA8vQvn0cbAOGw6tqBQDjn2Ilg93wF64B4Ou+AE+cE/FRe/+HLaRI6C5dDjK85BbnIec4nxY+tbEemmU5kIrPkZokMySv4+3bJai+naVyBBpIL/m0eGuO4PGw+HHP6Qiyeybkaw7Xa+MhTs9Li/c1Spks5RWoSFtpHGLw+HDh/33jxw5ErfzMDgQZSi57dspqW0FX8ksQXPpna7vIJt8KwK31LbAVVULxW5HzWsbUPaD7yFn+NlQT55E0cdv4dKm/8XHL26H0Lbh/Dtmo/bK/4PSz98CFAUV//1qEq6UeqI3ZlbqjK6KoKDKwEDx4tzfgk+f/jDZxYhKyxE3jtdVdWvfwBmkDG/ZR+FK177eLlZ2EyLG4JA9n20MDkQZxggM9jIrFIsMXWv/QPNAhdcZfgJMtdG3XW32orVhD4A9aPrGBVf9H6G6VOT1z4fQ96FmTw1c1W70P7cvTGPOQb1eBIy/EoVvPAlbIi6Qel08wwNRb4n0PlUbNSh2OYEl6pmezLhkdAUkSjQGB6IMYykyIXeAHRVThwAAWk43oqWuBZ5mD4Qm4FI9/nChe4VvLn2Xb4C0aPtG2F2t+r8dPrzuWNsqwXXQvQJCFRh82QD0X3YPcGAXvBUKXt09DHfe8XiSrph6Q7zDgzHOxnhfcXwD9bbAz7DQ91s6M9Zw0AOuTagi7r9D60wjs+73NFMWgAOAF198EY8//jj27t2L1taOq5ZzATiiLKfkyLD1N8OSb0bfs/ti/+LnUWhrwbCGf8C0ZycavtiPo9u+BuALF9a+vlk5ZEWCp1FFcxermuqq8DeV5w23QegCDU/8FtVnmjHon5/izoeeT8xFUlzFvdtSwHmIeoOSI8M+wIKmr30VI2NgPuDrfqmr6b/EoGSWIHmlhHf7y8rf0wxZAO6NN97ATTfdhEWLFuHjjz/GzTffjNbWVrzxxhsoLy/HDTfcEPNzMzgQpYnQCl3oIFNLkQlqo4Y+QwtQ8d1ZuGnZPwAAjuIBuOhfrsD8H53EqLLH0HLqXfQdUYg+g4thK8yDZFJw/KMDcB2v6dYfI3sfKwbNmYaaHZ/j+IdVGL3mnd69UMpoWVkZobhQcmRcsGI2Prz0YdjmTobaqME+wAKzzYSmb1zQvan3LXAsPLVeX6tvXxOEKqA6NVj6svoWFxmyANxDDz2EO+64Aw888ACeeeYZ3HrrrZg0aRKqqqpw0UUXoaKiIubnTp/OgEQEwPfH0uxQOlTyXcc8EKpA0VnFaBh7iX+783Q9nE4Vf9xcjNprfgJTjgnuJg9yS4uQP2YE7GUlGDzznOCZl8KQzRLKZxQjryQfn61ejxMfH8Plx7+IxyVSEsWzYs/QQD0V+B7SWnS8f/d6qFPGw1Pn9U3woAo0feOC5kqtb4B7yhgPoTo12ErMvbIaNWWu/fv34/LLL/dPyer1+t4vpaWluOeee/Db3/425udmZCVKI0a/XaltWsviyX1gybXAZFWgmBX0HTkAebNm46i5H+64ZwK2fNCMrz87jL59rZhwtoqyrzbjTD87copyYO1fDK25GSfe+wQNxxtgzlc6n3GpbVpNd6MHef3zYetjRVNVS6IvnxIkHl2WGBqotxjvT0tfk398lmSWkDfYDs2jQ3N5OszolUns/a380iZe0ng61kCapsFisUCWZeTm5qKqqn32rkGDBsW8hgPA4ECUVow/hsZsGsPmnIucCedCtLagadQFuO35clQ+dhhF5U147t+24cLZOai9agC84hTOrtkO78Gv0W9UGUw5VrRWn4La7ELtwVo4DzR3ORuJsfDQmX1NkBUJ/UaVYNLftyfqsinNMTRQPHhqvbD0NSG3wgaTTYGm6tDcWo/6/3f2Xk3krGORBnbX725KWFmyToZ0VRo6dChOnDgBAJgwYQJefvllXH311QCAV199FWVlZTE/N4MDUZoyOxTYykuh152CGDoK21rOQ+XebQCAuhM1OJY7Cmed2oF89aDv25DDX0H3eKB7NZw5VA1dExC6DqEJKHYZnjpvp3+ohCrgVTVIZgktp1px1o6/JfJSKcE4NSulC69TQys8sJdYAQCWfDOa4e7WsdEE2sB94/374e82GvB5HLgSu7XEHNfzZzUR4+DoFGtxuOyyy/DOO+/ghhtuwE9/+lNcd9112LlzJywWC/bv34+HHnoo5udmcCBKQ3LbYm6VG3agaOQA5PUvh0cJHqNgl12Q1VZIxw7DW18PT30DhKZB83jhdXvR6nRDVzV4WlSojV1/S2c8ppglzDzweVyvjTIHWxoo3oy+/55aLwrG5MIxID/iN/I9fV/Ge+ri0PUZAtds0FWBy47sjtu5s16GdFVauXIl3G5fgL722muhKAr+9Kc/QZIk3H333Vi0aFHMz83gQJRmjDUYVKeGhuMNcAwqhn7sCL414yv8P5sVnlY3Zs7/FgYcXwup5jhaDhxCS009ZJMCk92KgrPKkVvigruhGa66JrjOdG/lUgCY49wbxyujVNEbFSOGBoqHrt6XjV+3wFXddWtDb70vE7loouBUxhQlq9UKq9Xq/3n+/PmYP3++/2chhH/gdLQYHIjSQOgfKMkswVZixqALhiOnrBie03XIee5hvDzUC0tBLnDiZchFY6GVD4WtdBBssgJ3bl/oJgvMf3/V3xSrebxQzErQH6Zw+Mcq+4RWjPgeoFRgvA/DVdp1VWBW9ZeJLlKXZeoNqbxoYsZ9RmTIGIeuvPTSS/j1r3+Nffv2xXQ8gwNRmjGa5mWzhNqvTkBzewAAZ745jVP7T0OoAsWjijBs8nlw9j0LzeYC6JBR1VoMs6zhrJOr0VxdD2+rCtWlQmjC16c2hf84UXLwvUCpap53P96yj0pqpTqR4x5SVeAXDBmx0nSaLwDX0NCAtWvXorq6GiNGjMDVV18NWfZNfPLXv/4V9913H/bs2YPBgwfHfA4GB6I0pasCtV/XoaWuBbqqoeFQMzy1Xig5MsQIAQgdHsWGGncxvEKGJiSMVT/Hga37oHl8H3LeVg2eM2rEFgciolRzpSu2b0zTUdpXyNNFAlscGhsbce+99+K1115DTU0NJk6ciN/97nc477zzoj8/gAMHDuCiiy5CTU2NvyvSjBkzsHbtWtxwww3YsGED+vTpg0ceeQS33XZbTOcAGByI0lrTIReaK1uD1l9Q7DJy++VDzy+EIrwwK16cqHegySVjcn4zAMDd4IHaqMHr1AAET/uXEd8aERElSby7LqWa0FYHYxt17Yc//CG++OILvPDCCygvL8eLL76Iyy+/HHv27MGAAQOifr57770XTqcTK1aswJQpU3Do0CGsXLkSF1xwAfbs2YMf/vCHeOSRR9CnT58elZvBgSjFdfXHJ3SRIyVHRvG4Pii5YDwOlFyMk8198P7HAlte803TemD+JVh2+3w4P9uD6s+/wckPT0FtCw9ERBSbbK8oJ3KweFwJEeOsStG1OLhcLqxZswavv/46Lr74YgDAihUrsHbtWqxevRr3339/1EXYunUr7rnnHixdutS/bdiwYZgzZw6WLFmCJ598MurnDKfzFZ96kdvtxrnnngtJkvDpp58GPXb06FFcddVVyM3NRXFxMW6//XZ4PJ5EFIso5UX7QWwpMmHwxWPgvOQ6bD/YD+vedWHLax/6H9/3+XGowycib8RQFJ3dH0XjCqDkJORjgIiIYpAuoSRdytklXcR+A+B0OoNuxpSoobxeLzRNg81mC9put9uxbdu2mIp+6tQpTJ8+PWjbhRdeCAC47rrrYnrOcBLS4nD33XejvLwcn332WdB2TdMwd+5c9OvXD9u2bUNtbS0WLlwIIQSeeOKJRBSNKKXF0uTtPtMIi9qCs0pVFOblo7jfBdj/RRUURcbkb5WhMb8J+Q1O1Ow5AU+jB5YiE1wtnqDzERFRz/Sky1K6fxaHXnPaXE8P13GoqKgI2rx8+XKsWLGiw+75+fmYNm0afvOb32D06NEoKSnByy+/jI8++gjDhw+PpeRhg4jxc35+fkzPGU7cg8P69euxadMmrFmzBuvXrw96bNOmTdizZw8qKytRXl4OAHjsscewaNEirFy5Eg6HI97FI8ooskmC2+lC0dHPcdbIcnjyLBjWz4bLJhXCK2Qokgte2QJzaQlyinLQVNUCzeX7wEubD3YiojTS2exL4YJFOn8OZ0RXpR7OqlRZWRlUdw1cSyHUCy+8gJtvvhkDBgyAoiiYNGkSbrzxRnz88cfRn7/N/v37YTK1V+01zdcVOdzUq5MmTYrpHHENDtXV1Vi8eDHWrl2LnJycDo/v2LED48aN84cGAJg9ezbcbjd27dqFmTNnxrN4RGmhux/GZocCW5EVskmGqDuN/s4D0GUzAMCkuiB5PYCsIH/slcDwX2DUDb/AqHgWnIiIgoQLBsb4AIaG9OdwOLr9pffZZ5+NrVu3orm5GU6nE2VlZbjuuuswdOjQmM/f2YrQCxYs8N83ZlwyQkW04hYchBBYtGgRlixZgilTpuDIkSMd9qmqqkJJSUnQtsLCQlgsFlRVhV/N1u12B/UZczqdvVpuolTS3Q9j2SzBUmSCvdAOiyMHemsrbEe+hNC80M/Uo/V4FTxNLbDk5QDnXxnnUhMRUVdCZx8K1yqRzkEiUFpdRxIWgMvNzUVubi7q6+uxceNGPPLIIzE9z7PPPhtzGaIRdXBYsWIFfvWrX3W5z86dO/HBBx/A6XQGje4OJ9yS110thf3ggw9GPD9RtlHsMmxFVjjKC2Dr2wcQAlp9LfQWFxoPHsXxXd+g6UQzLPlmTF+e7NISEVFnZLMUNEV2OuhsPEdahQagx2McorFx40YIITBy5EgcOHAAd911F0aOHImbbrop+vMDWLhwYUzHRSvq4PCTn/wE119/fZf7DBkyBPfffz8+/PDDDv27pkyZgu9///t47rnnUFpaio8++ijo8fr6eqiq2qElwrB06VLccccd/p+dTmeHwShE2UYyS7AV2GAvdkCx2yC8GoSrFe66M2g8UY/mUy1oPuJGM8LP8EBERIljVKjfGTAOrdVqUAXb5FDgqfUmq2jdFqlFPO1CAxA0Q1LUx0WpoaEBS5cuxbFjx1BUVITvfve7WLlyJcxmc/TnTyBJiB60r3Th6NGjQd2ITpw4gdmzZ+PVV1/F1KlTMXDgQKxfvx7z5s3DsWPHUFZWBgB45ZVXsHDhQtTU1HSrn5jT6URBQQEaGho4mJoySjR9RpUcGXlD7MgpskGxmqCYZZyzbkv8CkdERD32ln0UFLscdj2dVK14xxoYUrm+ZpSt6un74MixRT4g9PiWVpQu/nVKXltvi9sYh0GDBgX9nJeXB8A3GGTgwIEAgFmzZmHMmDFYsGABVq1ahbq6Otx5551YvHhxxr/wRL1FNvu69XlbvGhBKxSzDEmRsOP88yA0AU3VcdHnsc/SQERE8XGlax/eGTAuIxbiTNWgQ70rqSs/KYqCN998EzabDdOnT8f3vvc9fPvb38ajjz6azGIRpRVdFRCqgObSoakahC6gqzqEJiB0AVkJP16IiIiSTzJLab8QZ8aEBhHj4m/x6byTkhKyABzgG/cQrlfUoEGDsG7dukQVgygj6W3BQbHL0M2+sCDa+lxO/2RXkktHRESdKRlfDE+zB3X7GtBarQJIzYp4Vky5msDB0ekqYcEh0TJtOjPKLrF8QGsu3RcerAJQJAYGIqI0MO6NzTh8yzXQVB2XH9+R7OJ0kBWBoY3QdYgYFoCL5Zh0lbHBgSjb6KqAp843E4fJoSS5NERE1F1Dn3kdsS/7FR8ZOWsS9VjGBge+oSmdGSuJRktXBVqrVSiN6T/QjoiIkiNrQ0MSFoBLNxkbHIjSVazNwrJZwpWufb1cGiIiyiZZGxqAtsHOMXQ7imXthzSV3sP4iQiyWULuECtDA1GUtk+cjO0TJye7GEQpJaODQSRGi0MstyzB4ECUQqJtbZDNEvLOsmPg1AGo+eVCNPz2Z/EpGFES7Lrkgrg+//RPdnESAaIwOgsPmR4qjMHRsdyyBbsqEaWQwA/lrkKEseibfYAFFd8ahP7TxkPpXwphz4XrnecguZphu+rWuJeXKJ4mb/kg2UUgynqZHhYoOgwORCmmO60OuiogmyUoVgXeVg+ExwMAEFY7NGsukFcEW7wLSkREGSsrA4OxoFssx2UJBgeiFBJtVyXFIqO1wYWG/UeQ1+qGpawRpsJ+gIWxgYiIKBpC6BAxLOYWyzHpisGBKI1pHh2eJg/OfHMaA373SrKLQ0TdEPoFQVZ+s0uUitjiEBEHRxOlKV0VaK5sRf3XTjRUNiS7OEQUA4YGygbZtPp0pmOLA1EKiXbhN61Fh1AFLj/+zziWioh6E8MCZZt53v1wOp3JLkZkQvfdYjkuSzA4EKWY7s6sFLovERFRT3xyxUUAgIlvv5/kkiSH0AVEDN2OYjkmXTE4EKU4Y+pVg672/AOq6u4FADoO6Cpb9acePzcREaWnbA0MfkKPbeXoLGpx4BgHohSm5MhQ7L6byaHA5FBgdihQcmTIZimmfqMn7/o+gOyaBYKIiCgSIUTMt2zBFgeiFGbrbwYASCGtDkIV0L0Cnjov1plGRtVlia0KREQUjU+uuIitEQSAwYEopYUGBiIiokTLmtCgx9hVKZZj0hSDA1EKk2UZesAHkmgb36B7ff/KJgkioMsSB0sTERHFhoOjI+MYB6IUdvGXn/jvizCDohW7DEuRCZa+JpgdCjYWjcF6x+hEFjEutoyegC2jJ2DzsPHJLkrK2VQyNtlFICLKTEK0T8ka1Y3BgYhSxCV7P8Mlez/z/2y0NgDwD5w25/sGThs/byoZi41FY/y3dGNc88wDn+OdAeOSXZyUMqv6y2QXgYjSxKezL052EdKK0eIQyy1ax48fxw9+8AP07dsXOTk5OPfcc7Fr1644XFXvYlclojQx88DnANDlt/CSWYIM4PLjXySoVPGXSddCRJRI5258L9lFoDDq6+sxffp0zJw5E+vXr0f//v1x8OBB9OnTJ9lFi4jBgSjNGAGCiIiIeo/QdYgYBjpHe8zDDz+MiooKPPvss/5tQ4YMifq8ycCuSkREREREuoj9BsDpdAbd3G532NO88cYbmDJlCq699lr0798fEydOxNNPP53IK40ZgwMRERERZT0h9JhvAFBRUYGCggL/7cEHHwx7nkOHDmH16tUYPnw4Nm7ciCVLluD222/H888/n8jLjUncg8Obb76JqVOnwm63o7i4GPPnzw96/OjRo7jqqquQm5uL4uJi3H777fB4PPEuFhERERFRr6msrERDQ4P/tnTp0rD76bqOSZMm4YEHHsDEiRPxox/9CIsXL8bq1asTXOLoxXWMw5o1a7B48WI88MADuPTSSyGEwO7du/2Pa5qGuXPnol+/fti2bRtqa2uxcOFCCCHwxBNPxLNoRJRFol1dm4iIslCMMyQZXZUcDgccDkfE3cvKyjBmTPCMh6NHj8aaNWuiP3eCxS04eL1e/PSnP8WqVatwyy23+LePHDnSf3/Tpk3Ys2cPKisrUV5eDgB47LHHsGjRIqxcubJbLz4RUSQMDUREFJGIceVoEd0x06dPx/79wX+XvvrqKwwePDj6cydY3Loqffzxxzh+/DhkWcbEiRNRVlaGOXPm4Msv2+cg37FjB8aNG+cPDQAwe/ZsuN3uTueydbvdHQafEBERERH1RKLWcfj5z3+ODz/8EA888AAOHDiAl156Cb///e/x4x//OE5X1nviFhwOHToEAFixYgXuuecerFu3DoWFhZgxYwbq6uoAAFVVVSgpKQk6rrCwEBaLBVVVVWGf98EHHwwaeFJRURGvSyAiIiKiLGFMxxrLLRrnnXceXnvtNbz88ssYN24cfvOb3+Dxxx/H97///ThdWe+JOjisWLECkiR1efvnP/8Jve1FXLZsGb773e9i8uTJePbZZyFJEv7yl7/4n0+SpA7nEEKE3Q4AS5cuDRp4UllZGe0lEFGCrDONDLoRERERMG/ePOzevRutra3Yu3cvFi9enOwidUvUYxx+8pOf4Prrr+9ynyFDhqCxsREAggZ/WK1WnHXWWTh69CgAoLS0FB999FHQsfX19VBVtUNLROBzWK3WaItNRDFYZxoJ2SzhSte+mI7n2AIiIkoXQggIEf3g6FiOSVdRB4fi4mIUFxdH3G/y5MmwWq3Yv38/LrzwQgCAqqo4cuSIf/DHtGnTsHLlSpw8eRJlZWUAfAOmrVYrJk+eHG3RiKgH1jtGY45zb9A2VvyJiChr6DEOjo7lmDQVt1mVHA4HlixZguXLl6OiogKDBw/GqlWrAADXXnstAGDWrFkYM2YMFixYgFWrVqGurg533nknFi9ezBmViOLsi6tnwnWmFZ5GD1rrPRBq9nxjQkREFCqWgc7Gcdkirus4rFq1CiaTCQsWLIDL5cLUqVPx7rvvorCwEACgKArefPNN3HrrrZg+fTrsdjtuvPFGPProo/EsFlHWcr24EvYfLAMAjHtjs3/7OwPGQVdF2HEIbHUgIiIiAJBEmnfMcjqdKCgoQENDA1spiLpp1yUXoP5rJxS7DN0roLl0eGq9HfZjaCAiot6QyvU1o2xf3fY95FvNUR/f6FYx4on/Tclr621xbXEgouT71Z9UmE0S8vMUjBzowQUf/gq5/XJx5kgjmo+4YR9oAQDIZgl6W3clBgYiIso2sUytahyXLRgciDLY9Ku2dtj2P/+xBIML+kA2vYvKHcdx2ZHdSSgZERFRauEYh8gYHIiyRG5BPs46Zwg8wgP79XdjxPV3w3zLNckuFhERUUpgi0NkDA5EGWb+bQf8iygOHDkE9lwrHEU56NcvBwNKFdjkb/z7Dn3m9SSWlCj5OluYkN31eibwdY3lteREDUSpicGBKIPc/ZQLf31iGH7xtAs2mwk2m4wcuwxHLlCQq6MoxwWr7kLdp1tRdO6MZBeXKCm6s4p5Tyu+mSr0dVlnGul/fTp7Xbt6vcO9tt19np7+v3T1f9yTle7T4f3y0bTzoWsC0/6xM9lFSSlCxNhVKb3nGYoKZ1UiSmPv7nZBkQRkSYciCUiSgATfr7Qi6zhvZGGSS0iUHEbFz6jcxlMqVhTjfc3UM7JZAgBIbf+GLr6ZaFtGT8Alez+L6zlSub5mlG3P4muQb4lhViWPijFPv56S19bb2OJAlMbK7aehSBoUeKHoXkgQkISvr6UvQDA4UHaI5dvueJ87kt4IHAwI6U82SdhYNAYAMLtuT5JLk904xiEyBgeiNDZqWIX//ukvdkDSNV9wEAKy8AIYB+c/N0LSVEiaF3kXfDtpZSXqTdlcYc7ma88Eoa0NBsksYVPJWADArOovAfgW5wzcL3AWvM3DxmPmgc97pUzxbm1IF5xVKTIGB6I0ceDgYcjQoOheKMKLgSPGBT2ueFsh6RpkXfMFCE1F8/a/Qmn7OWfG9UkqOVF40fZZZ4WZr0G2eGeA7/M9NFz8fcg5kE3t2zYPG++/31shgqgrDA5EaeDo13thExpk0RYMhIbTX+yA7PVAFl5IuuYPCP6b1wNJ0wDdC+gaXOufhuRVYbvq1mRfDhGAjuMPAsclUDAGhswWGBACg0E0Ng8b3yFoAGxNiAa7KkXG4ECUQo4c+AqS0CFBYNDw0f7tVrUJkhCQRXswkIUXstcDSdcAIdq2+0IEdA2S6gE03zZoGuD1QmheuP70IOzfX5rEq6RsEkuFNxsqyZ2Fo2y49mwmh6nYx9uW0RMAMEB0B7sqRcbgQJRCHM1VvhAAHWc+OQFJ11AweRZymk75woDQ24KC3taq4PW1KAjRHhJ0AegahMcNCAGhaYCmQWi+AKF7PGh68t+Rd+vDyb7cjBRuiseuuuR0d9pPVigzH/+Ps0doy4BQhX+b7hUxtzoIVYR9fqA9QHSXLMu4+MtPYipHumJwiIzBgSiFmN1NQNvgZmOQc/P2v0LRVN82TWt7XPcFCa/qDwoQui8g6L7HoHr9YUG03aAL6B6P7z71ms662ATOcR9u/+5up8zG//fsExgUot2vO8Giu88fyXtjJ3bYlm1hgoIxOFBGa3nvlbDbhawAkgwhyYAkIW/aNQkuWXj551+Jlq1/bmtREO0hwev1bRN6UFAQqi9Q2K/9v3C9/BCgC19YEALC4/GFCE2D8Gq+hW00Dbrbk1X9MRMpXAWQlUIKFNgKlYg1Jii16KroVnelwHDQWyEgGrIsJ/R8qYJjHCJjcKCM5NrwDCBL8H/USgEfgkKH1BYcIMkQsoSWLS8h55Ibk1HUDozZj1r/9qSvC1JAS4IwftZFe/ejtjUc7Tf8Ak1P/dL3mNChq15fS4O37VhNg9CFPzhU3b0ApY+8kMxLJco64QaDEwFdB4TQx+LZ6tBVaMj01gZ2VYqMwYEySutr/wkAkGTfh6Xtmtt829/47+AdJckfJiQAtnlL0PrWUwDga4UAYJ+zGADgWv902zEdP0zt/3JL7GV9/QnfnbaKvm3+z+D6y2O+bW3hwH793QCAlud/4wsIRnjQfd2Ychffj8b/uhuN/3mnLxi0PaZ7Neiq13ff6KLkbQsOquq//82PvoPBT70W8zVkK1b4iChWRquDUbHvrHUhNByECw9A17Mw9XZrxXtjJ2Z0eBC6gK4xOHRFEkKk9dWm8hLmmWj/dbMhyRIkWcLwP61PdnH8XC+uhP0Hy3z3X36o/YEwlf0gcsAHalu3pVBSN5psjWZK+7/e0XkZ/3eVPyTA+JBpW+XZKHvLsyuCgoHQdeT96AE0Pfnvvg+mtuDgG6/gCwjGfv7uSG33da/RyqD7PgzbwoLm8frvD3vhzYjXRj4MC0TUm0IXggsMAJGmZw0XBroKENGGh85aHXoSGlK5vmaUbdd3L0OeOfrv1JtULyav+Xu3r2316tVYvXo1jhw5AgAYO3Ys7rvvPsyZMyfqcycagwMBAD6/cob/W3pJljDujc0d9vnqhn/BiJc3BG07dNNVAICznv0b9l17BSRZ9gcLSZYhm+Sgf4MfU3xPIkuQjG//ZQklDz2PU/fc5K/US7KM4hV/iOm6Gv/zTv/9zt7qUmBYkNvLEUnYbxgC+jn6z9e2LfBn41jRFhCM+0HhQG8PGEZFX7SFjtAwYPwcuC30MU1tCw6qjnM3vhfx+rJJpJmNGBqIKF7CrSTdWYgIfSzc4+H2ibR/qHhM3ZrK9bVEB4e//e1vUBQFw4YNAwA899xzWLVqFT755BOMHTs26vMnEoNDFvnHhd8C0F4plmUJkiL5v1H3b1ekoBDh+9e3j2KWg342Hte9GlSX2uEYxdwxMBj3ZZPi32YcF7iP/zxt98tW/Smm665buaTDNkmW/a0EHVoUwrQ6hBXyqxM4OMofKsIECSMQGPu3hwjhn+2oPQj49tG9elA46BgcArZpvvu6V2+73/aYJqDrAue9t6N715dFugoODA1EFG+BA6a7EyB6oxUi3DHxXOshletrRtn++Z1LYw4OU157t0fXVlRUhFWrVuGWW2LvAp0IHOOQ5sL1N3x//KSgn0023zf7smJ8QPgqyjoA6AKy3F4BlhQJuhdBlXffsUYFVuoQJgBfRdfr7jjFpyRLHYKIJMuQlcDgEBwejO2B+wNA5Y//Nehn43F/WYz7UtetBt1pTeiuwFaH0BYIEdglCQgKCiKo1SG4xUGEhAojIIQeawQE/z4hIUHz6hBa2/+bJjDtHzt77bozDRfjIqJk0tvWXzDGPgAIO/4hcLsh3OP+5w2zXyChCsw88HlvXkpaS8bgaE3T8Je//AXNzc2YNm1azM+TKAwOaWL7xMlBP2ue9m+yw82zHEi0DfTRNAFJkXyrCKM9SAgloCKuG60RHcMEENrSoAWEER+j1aF9H7Q9n+R/LuN5fK0RnQeKwO0AIJvCt3Z0vB8uWPT+VHadhYZwLQmBj3UWGIxtgT+HCweB+2lqQMDQ9PbHNV+XJOP/PpMHs/UUwwERpYrQABEuJIQGhM4eD9wn3H7UUU+Dg9PpDNputVphtVrDHrN7925MmzYNra2tyMvLw2uvvYYxY8ZEX+gEY3BIUVtGT4Asy/6KdiBfl5Puzxks9MCWAeGvRIcGCaA9TOgAJCNQ+EOD1PZIexDQgA5l9Lq8/vuhjwUGDUnxBYfQLlNGoAhsTTBaLUJDQ2eBIVC40BDzGIZOHg/XTamzMNFe+e8YMEKDAQB/FyMjHABtgUILCROaYEAIwVBAROnIHyACtgWGiM4CQuhMS5FCxGVHdndZjs3DxrNFIgoVFRVBPy9fvhwrVqwIu+/IkSPx6aef4syZM1izZg0WLlyIrVu3pnx4YHBIIZuHjfffN37BRcC0YEYlXAvTJagzklmC5tGDK/BtzykrUsfuNVpghVoPOq9BViQExhZJCa6w+7vNGMEkDF+A0NoDgNLWpUmR4XW3hwmgvduUrASHhdAuU6GtH3rAdYbqKjhECgyhU7WFHdsQcD9w/9BAAAB6237nvbcDH007P+gYoQWHivZjfM8Rz/6o6YhBgYgySbguTACC/gaHCxGBrQvh9umubAsNPV0ArrKyMmiMQ2etDQBgsVj8g6OnTJmCnTt34ne/+x2eeuqpqM+fSHENDl999RXuuusubN++HR6PB+eccw7uv/9+zJw507/P0aNH8eMf/xjvvvsu7HY7brzxRjz66KOwWCzxLFrc/X3IOd3+JfWHhMBffK8EYQqef1lu++5BMkvQXHq3nt94nkjn7q6uFoYJDAlCE9DcGjRX5F/A0DIodjnoXMbzBo2VCNjm+znybEix9kE0vuUPFBQGOgQJ0eV+ga1Fxv+h7hX4+5BzcNmR3XhnwDj/NmOf2XV7Yip7MkSaoag3npeIKJvooX/vAwKFFtqqECY0aGHqC5JZwqaS9hl8ZlV/CQDYVDI2bFemy49/EXP500VPuyo5HI6YB0cLIeB2u2M6NpHiGhzmzp2LESNG+EPB448/jnnz5uHgwYMoLS2FpmmYO3cu+vXrh23btqG2thYLFy6EEAJPPPFEPIsWd0YFMDT1hxVuH6+AMEmQvJK/Ih1a4ezOc8sI/maiW+fuggY9qr6RamPbeIqujnGFnMNlnEPrMIuEf77rMKHC0Fl46M6HQaSFX0JDAoAO3caCvhUKeX3DBQOg/QN7vWM05jj3RixnoHhV1GM5f1ePxVo2BgYiovBCA0W4r/a0ThaBC913Y1F7Fxnjr5rxtylb6JqALkcfHKJdNO6Xv/wl5syZg4qKCjQ2NuLPf/4ztmzZgg0bNkQ+OMniFhxOnz6NAwcO4H/+538wfryvC85DDz2EJ598El9++SVKS0uxadMm7NmzB5WVlSgvLwcAPPbYY1i0aBFWrlyZctN1GQITuiHcL1dgOg/8hQzV2dLxOny/2IEtBkZrg+4V3Wpx0FQBydt7g6A6++aiK0IV0R3jCj/tXPAiOR1DReA+3SlTON0KelE8x6zqL4P+7zcWjemy9aC7oSFVKtPRlGOdaWRSgg0RUbbo0DLRJppAAQDwiqi/xMoEiZpVqbq6GgsWLMDJkydRUFCA8ePHY8OGDbjiiiuiPneixS049O3bF6NHj8bzzz+PSZMmwWq14qmnnkJJSQkmT/bNELRjxw6MGzfOHxoAYPbs2XC73di1a1dQl6ZUEq7CGFg5DFcxDNy23jG6w3OFtgoYFWGjtSFwf69Ti6qCG3nd4+6LNjTIJglqS/T9BRFwHmNER1eL5ETb5SpUpBAWzesd+Jxv2UcFP48qevwtfGhlPZ0q47GEB2P/VAlLRETpJjBQpNPfjEz1zDPPJLsIMYtbcJAkCW+//TauueYa5OfnQ5ZllJSUYMOGDejTpw8AoKqqCiUlJUHHFRYWwmKxoKqqKuzzut3uoD5goVNfJcLsuj1Blf9oRUrxb9lHQbLLUOxy2Aprd1obdFVAyZH9+3cllgFT0ZDNUqffgkTD/xxdhIpeO0eCGJXhaD7IU+FDPxmV+EjXzWBBRNS1VPj7kcqEiHFwtIjhC9I0FXVwWLFiBX71q191uc/OnTsxefJk3Hrrrejfvz/ef/992O12/OEPf8C8efOwc+dOlJWVAfAFjFBCiLDbAeDBBx+MeP5EiGcT3pWufWG3G99ed7dyq8XyTX+aSnSFv7f1RitCLBXn7pynNyvk8fijxcBARES9IRkLwKUbSQgR1dWePn0ap0+f7nKfIUOGYPv27Zg1axbq6+uDxioMHz4ct9xyC37xi1/gvvvuw+uvv47PPmufUrK+vh5FRUV49913w3ZVCtfiUFFRkZJLmIfDSg7FU7p8m8TfAyKi5Er03wun04mCgoKUrK8ZZdt68VTkmaLvjNPk9WLGex+l5LX1tqhfneLiYhQXF0fcr6WlBUDH6TtlWfbPQjNt2jSsXLkSJ0+e9LdAbNq0CVar1T8OIlRXq/ARZYNUCgcMAERE6SmWrrKZji0OkcVtjMO0adNQWFiIhQsX4r777oPdbsfTTz+Nw4cPY+7cuQCAWbNmYcyYMViwYAFWrVqFuro63HnnnVi8eHHGJjYO9KSeisd7J9wfDr5HiYgyX7Kn9Kb0ErfgUFxcjA0bNmDZsmW49NJLoaoqxo4di9dffx0TJkwAACiKgjfffBO33norpk+fHrQAXKZjgKBUwvchERGl86x9vaGnK0dng7guADdlyhRs3Lixy30GDRqEdevWxbMYKYuVNSIiIkpV4eopmRwmhCYgpBi6KkW5AFw6i2twoK7N8+5neCAiIqK00Z16S7qGC6EBekzBIQ6FSVEZExw2FE5CjqRE3C9d38xERERE6SBcuGjJptp1BsuY4NBd/IafiIiIiEIJEeOsStGtbJDWsi44EBERERGF0jUBHdGHAJ1jHIiIiIiIsofQdAhIMR2XLRgciIiIiCjrCT3GWZWyaAE4OfIuRERERESU7djiQERERERZj2McImNwICIiIqKsJzQBEUNw4AJwRERERERZRNcE9BimVtWzaIxD2gcHY+7cFpE9I9qJiIiI0olRT8umNQ8yUdoHh8bGRgDATeIwYmhdIiIiIqIEaWxsREFBQbKLEZZQBYTMWZW6kvbBoby8HJWVlcjPz4ckRT/3bqpxOp2oqKhAZWUlHA5HsouTMfi6xgdf1/jg6xoffF3jg69rfGTa6yqEQGNjI8rLy5NdlE7pXgE9huDArkppRJZlDBw4MNnF6HUOhyMjPihSDV/X+ODrGh98XeODr2t88HWNj0x6XVO1pcHAFofI0j44EBERERH1lK6JmFoPYhlQna64ABwRERERUYI9+eSTGDp0KGw2GyZPnoz3338/2UWKiMEhxVitVixfvhxWqzXZRckofF3jg69rfPB1jQ++rvHB1zU++LomnlD1mG/ReuWVV/Czn/0My5YtwyeffIKLLroIc+bMwdGjR+NwZb1HEpwXi4iIiIiylNPpREFBAf5iG4YcSYn6+Bah4drWA2hoaOj2eJSpU6di0qRJWL16tX/b6NGj8e1vfxsPPvhg1GVIFLY4EBEREVHWE6qI+RYNj8eDXbt2YdasWUHbZ82ahQ8++KA3L6nXcXA0EREREWW9FugxrQnWAl9XJafTGbTdarWG7Wp2+vRpaJqGkpKSoO0lJSWoqqqKvgAJxOBARERERFnLYrGgtLQUi6oOx/wceXl5qKioCNq2fPlyrFixotNjQtcfE0Kk/JpkDA5ERERElLVsNhsOHz4Mj8cT83OEq/R3NrC9uLgYiqJ0aF2oqanp0AqRahgciIiIiCir2Ww22Gy2hJzLYrFg8uTJePvtt/Gd73zHv/3tt9/GNddck5AyxIrBgYiIiIgoge644w4sWLAAU6ZMwbRp0/D73/8eR48exZIlS5JdtC4xOBARERERJdB1112H2tpa/PrXv8bJkycxbtw4vPXWWxg8eHCyi9YlruNAREREREQRcR0HIiIiIiKKiMGBiIiIiIgiYnAgIiIiIqKIGByIiIiIiCgiBgciIiIiIoqIwYGIiIiIiCJicCAiIiIioogYHIiIiIiIKCIGByIiIiIiiojBgYiIiIiIImJwICIiIiKiiBgciIiIiIgoov8Pt7XdvgJbzDoAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, - "nbformat": 4, - "nbformat_minor": 0 + { + "data": { + "text/plain": [ + "(
,\n", + " )" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "source": [ + "print(f\"Min longitude: {min(new_dataset.lon)}\")\n", + "print(f\"Max longitude: {max(new_dataset.lon)}\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:48.073999Z", + "start_time": "2024-12-06T22:28:48.067906Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min longitude: -179.75\n", + "Max longitude: 179.75\n" + ] + } + ], + "execution_count": 10 + }, + { + "cell_type": "code", + "source": [ + "new_dataset.to_file(\"../../examples/data/geotiff/noah-precipitation-1979-corrected.tif\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:28:49.476849Z", + "start_time": "2024-12-06T22:28:49.443316Z" + } + }, + "outputs": [], + "execution_count": 11 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/examples/notebooks/04datacube.ipynb b/examples/notebooks/04datacube.ipynb index d951917c2..48310f4e3 100644 --- a/examples/notebooks/04datacube.ipynb +++ b/examples/notebooks/04datacube.ipynb @@ -1,4241 +1,4267 @@ { - "cells": [ - { - "cell_type": "code", - "source": [ - "import matplotlib\n", - "from IPython.display import HTML\n", - "from pyramids.datacube import Datacube\n", - "%matplotlib inline" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:39:52.946622Z", - "start_time": "2024-06-20T20:39:52.914238Z" - } - }, - "outputs": [], - "execution_count": 10 - }, - { - "cell_type": "markdown", - "source": [ - "# Read multiple files" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Reading multiple files is being done on two steps\n", - "- First use the `read_multiple_files` method to parse files names and construct the array that will later have the\n", - "values\n", - "- Second use the `open_datacube` method to open all the raster files and read a specific band from each file" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "# read_multiple_files" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The given path points to a directory where all the raster we want to read exists\n", - "The content of the directory is as following\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "# NBVAL_IGNORE_OUTPUT\n", - "import os\n", - "path = r\"../../examples/data/geotiff/rhine\"\n", - "os.listdir(path)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:39:55.716706Z", - "start_time": "2024-06-20T20:39:55.709456Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['Qtot_1979-01-01.tif',\n", - " 'Qtot_1979-01-02.tif',\n", - " 'Qtot_1979-01-03.tif',\n", - " 'Qtot_1979-01-04.tif',\n", - " 'Qtot_1979-01-05.tif',\n", - " 'Qtot_1979-01-06.tif',\n", - " 'Qtot_1979-01-07.tif',\n", - " 'Qtot_1979-01-08.tif',\n", - " 'Qtot_1979-01-09.tif',\n", - " 'Qtot_1979-01-10.tif']" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "execution_count": 11 - }, - { - "cell_type": "markdown", - "source": [ - "We need raster names to follow a certain pattern in order to be able to read them with a certain order, in our case\n", - "there is a date in the file name and using this date we will read the rasters and assign the values of each one in\n", - "the right location in the array based on their date" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Regex pattern" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "the parameter `regex_string` accepts any regex string and apply it to all file names to extract the string that is\n", - "needed to order the files, this string can be an integer or a date\n", - "here are some examples for how the `regex_string` should look like for different file names\n", - "\n", - ">>> fname = \"MSWEP_YYYY.MM.DD.tif\"\n", - ">>> regex_string = r\"\\d{4}.\\d{2}.\\d{2}\"\n", - "- or\n", - ">>> fname = \"MSWEP_YYYY_M_D.tif\"\n", - ">>> regex_string = r\"\\d{4}_\\d{1}_\\d{1}\"\n", - "- if there is a number at the beginning of the name\n", - ">>> fname = \"1_MSWEP_YYYY_M_D.tif\"\n", - ">>> regex_string = r\"\\d+\"" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "cube = Datacube.read_multiple_files(\n", - " path, with_order=True, regex_string=r\"\\d{4}-\\d{2}-\\d{2}\", date=True, file_name_data_fmt=\"%Y-%m-%d\"\n", - ")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:39:59.810707Z", - "start_time": "2024-06-20T20:39:59.776858Z" - } - }, - "outputs": [], - "execution_count": 12 - }, - { - "cell_type": "markdown", - "source": [ - "Now the `Datacube` object is created and we can check it by printing the object" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "print(cube)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:40:02.547581Z", - "start_time": "2024-06-20T20:40:02.542505Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Files: 10\n", - " Cell size: 5000.0\n", - " EPSG: 4647\n", - " Dimension: 125 * 93\n", - " Mask: 2147483647.0\n", - " \n" - ] - } - ], - "execution_count": 13 - }, - { - "cell_type": "markdown", - "source": [ - "# open_datacube" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "To read a specific band from each file and assign it to its location in the array we can pass the band index to the\n", - "`open_datacube` method, (the default band value is 0)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "cube.open_datacube()" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:40:13.368895Z", - "start_time": "2024-06-20T20:40:13.350787Z" - } - }, - "outputs": [], - "execution_count": 14 - }, - { - "cell_type": "code", - "source": [ - "# NBVAL_IGNORE_OUTPUT\n", - "print(cube.values)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:41:35.947968Z", - "start_time": "2024-06-20T20:41:35.938185Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]\n", - "\n", - " [[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]\n", - "\n", - " [[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]\n", - "\n", - " ...\n", - "\n", - " [[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]\n", - "\n", - " [[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]\n", - "\n", - " [[0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " ...\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]\n", - " [0. 0. 0. ... 0. 0. 0.]]]\n" - ] - } - ], - "execution_count": 18 - }, - { - "cell_type": "markdown", - "source": [ - "# plot" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "To animate the `Datacube` use the plot function" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "source": [ - "# NBVAL_IGNORE_OUTPUT\n", - "cleo = cube.plot(exclude_value=0, text_loc=(1,3), color_scale=1, vmin=1, vmax=100)\n", - "print(cleo)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:42:20.689614Z", - "start_time": "2024-06-20T20:42:20.442589Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAMWCAYAAAAAnRWLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABb+0lEQVR4nO3de3xV5Zn3/2vvnZCQkKQgJRRhjLUCQQQVW/EYFZ7WWBz7tNWZnsa2T2WwVjvWqZUOHWrLlP7sUduOjNqO/bXWaX3aR6eMcTogxCMqIFAgHoaHUDCSgIEkJNk5rt8f/Drzsl7Xgnt775Xcyef9evnPd++97rXXXnvn5nZd10pFURQJAAAAEKj0UO8AAAAA8FYwoQUAAEDQmNACAAAgaExoAQAAEDQmtAAAAAgaE1oAAAAEjQktAAAAgsaEFgAAAEErOJ4nDQ4OSlNTk5SVlUkqlcr3PgEAAAyJKIqko6NDpkyZIuk0636hOK4JbVNTk0ybNi3f+wIAADAs7N27V6ZOnTrUu4HjdFwT2rKyMhE5+uGWl5fndYcAHx4df5bzay47tDkPewIACEl7e7tMmzbtv+Y+CMNxTWj/eJlBeXk5E1oEoSSVcX4N5zYA4I+4xDIsXBwCAACAoDGhBQAAQNCY0AIAACBox3UNLZCU1QUzvGwnU8K/1QAAGC34qw8AAICgMaEFAABA0JjQAgAAIGhMaAEAABA0JrQAAAAIGl0OhljDhxaq+a6H95qvWdT/kppbHQKs54ekuLJQzUsmF6t569YO5zHqyqvVfKBrUM1HwnEdrUbydwUARiNWaAEAABA0JrQAAAAIGhNaAAAABI0JLQAAAILGhBYAAABBo8vBELO6GUxdUGm+Zs2Js/O1OzmzqsZ9yTb3OeVxx2/f2mY1t7oZVMwqVfORUCkf97llSvR/7xaWZdTc+iwsrt06cmG9BwDAyMKvPQAAAILGhBYAAABBY0ILAACAoDGhBQAAQNCY0AIAACBoTGgBAAAQNNp2DbFcWheVVhXla3dy5qs9ktU6y9r+mc/+XM1fOOfj5hjWtsyxC4fu332+WoPl0grLOh5WXlxZ6GWf5m3/pf2ie25X493rX1bzrv1ZL/sUUis2ABiNWKEFAABA0JjQAgAAIGhMaAEAABA0JrQAAAAIGhNaAAAABI0uBwHKtvSpua9OA5a4Svmep3aqecn/mK3mlRufVPOxab0qvVi61PyFs/5czS/5+efUXERE+vXjt/kf9I4JrVs77G0p6sqr1dzqDhDHtaOFNXYurPOpsCyjP3+s/vyqmpPVfOLcU9V8y9WfNvepbWenmk+pmajmrp8dACBMrNACAAAgaExoAQAAEDQmtAAAAAgaE1oAAAAEjQktAAAAgkaXgwBZ1fJWVfr5V9Sr+bL6JWpePKnQeZ+Kzp+l5qVbN6t589lnO23ftUPAmg/eaT5mHaf33HyBmj+z9XGn7VScWqrmPW295j51NvaoudXRwuo4sWD1LfoAhw6o8cDhNnOfeloOqnnn/lY133bPdjV/reJVfZca9e1bnQxERIor9XMze1g/fq4W9b/kZTsAgGSxQgsAAICgMaEFAABA0JjQAgAAIGhMaAEAABA0JrQAAAAIGl0Ohqm4amurwt21E4D1fKviPhftc8/yti1frPe97WfPqvlp18xU874u/Tjt+rc9TuPGcX3N2kW3q7nVkaGwLOO8T+Unj1NzqwPBQJ9xnh3oVnNrX0VE+joG1Ly1uUPNK2bpHSesTgrWd4vuBwAwvLFCCwAAgKAxoQUAAEDQmNACAAAgaExoAQAAEDQmtAAAAAgaXQ4C5FpxnSmvVvMVtXer+bL6JWqeS5W+L1YFvVX1nsu+Wt0ddjS+6LytUFjHz+e2MmP7vY3h+rkeadQ7KVjoZgAAYWKFFgAAAEFjQgsAAICgMaEFAABA0JjQAgAAIGhMaAEAABA0uhyMINZ96C1L6xaruWv3gzhWVXqmRP+3lPn8sfrzs819zvsUEl/dHXx2qOjv1rsWWGNY3SOs91Y8Sc/jtmWx9oluBgAwsrBCCwAAgKAxoQUAAEDQmNACAAAgaExoAQAAEDQmtAAAAAgaE1oAAAAEjbZdo4DVIquwLOO0nRU1q5zHtlqDWe2UptRMVPOm+oNO41rvOW5sX05veFjNxwxkzdcU9OuPZfr1NlVFRw6o+bqL/+4Ye/fWtW7tUPPSqiI1t1ptWa3HrDwXtOcCgNGBFVoAAAAEjQktAAAAgsaEFgAAAEFjQgsAAICgMaEFAABA0OhyMIJYFd115dVqnm3uc9q+1bFARGRl7d1O27LcUPIN/YFaL5sXkfj3oTnlxcfUvDDVq+a/n3GZ8z65Kq4sVPOFv7pOzddcfVc+d0dERLItbudTLt0m6FoAANCwQgsAAICgMaEFAABA0JjQAgAAIGhMaAEAABA0JrQAAAAIGl0OArS6YIaX7ZRWFXnZThzX7gcrGm5Qc6uCPpdKeWufxo2vUPNfdryo5k+++7POY/tidah48oZ71fySu65S88HurDlG/Rd+67RPuXwWAAD4wAotAAAAgsaEFgAAAEFjQgsAAICgMaEFAABA0JjQAgAAIGipKIqiYz2pvb1dKioqpK2tTcrLy5PYL3hkdUUorixU8+Vn/UjNl9Ytdh7bGsOq0velYlap+diRxm41d63Sv/iJ29X8+U98Rc07G3uctp+EqsunmI9lCjNq3nOkV817O/W8v7tfzVu3dqj5ov6XzH0CgHxjzhMmVmgBAAAQNCa0AAAACBoTWgAAAASNCS0AAACCxoQWAAAAQSsY6h3A0OnrGMj7GPnuZlBaVaTmbTs7vY2RKdH/3bf+wlvUfOFvblTzNR+809s++dLfY58DjY80eRnD6nQBAIAvrNACAAAgaExoAQAAEDQmtAAAAAgaE1oAAAAEjQktAAAAgkaXg1FsoGtwyMa2Kt9duyJ0NvaoudWZQCT/73vdx3+o5pf+5OPma6Ie/X08fvOv1dzXe9i3ttl8bNL88WresuGQ0xhJdNMAAIxurNACAAAgaExoAQAAEDQuOQAAAAhANpuV3t7eRMccM2aMFBcXJzpmLpjQAgAADHPZbFbK33ai9PW0Jjru5MmTZffu3cN+UsuEFgAAYJjr7e2Vvp5WOXvBryRTUJrImAP9nbJx7dXS29vLhBYAAAB+ZApKpaAwmQltSJjQ4rhZrbZE7HZbFbP0L13bzk4v+2Tx2ZrL2pbVGsx6/mOf/rnz2Bd8471q3td+RM2f/ebTzmNY+rv7vWxnKNvDAcBIk0qnJZVOpqY/qXF8CGdPAQAAAAUrtAAAAIFIpVOSSqcSGysUrNACAAAgaKzQAgAABCKVSksqldA1tAmN40M4ewoAAAAoWKEdxU558TE1XxVl1HzJF35kbuveMV9X84Ov6A2gS6uK1HygW6+It7ooDKUkqvef/PLv1Hz6VSeruXVcOxt7nMfuadPvRmN1u3D9jBb1v+S8TwAw2nENrY4VWgAAAASNCS0AAACCxiUHAAAAgeDGCrpw9hQAAABQsEILAAAQiHRaJJ1QsVZAC7RMaEeS1QUz1Pz0hofV/PczL3Xa/rIS+8z+TM0qNV+6c7HTGEnIGO8jia4Fripmlar5yw/uVnOry0EurM4IdCcAAAw3TGgBAAACwY0VdOHsKQAAAKBghRYAACAQ3FhBxwotAAAAgsaEFgAAAEHjkoMAWd0MrAr3cdnXvYybSxcAa5+yLX1OY7huJ05I3QzadnY6bcfqTFBcWajm2Wb7+NHNAACGn1QqwRsrUBQGAAAAJIMVWgAAgEBQFKZjhRYAAABBY4UWAAAgEOlUWtIJXdua1Dg+hLOnAAAAgIIV2gBlSvR/h1gV/5n+bD53R0REltUv0fOaVWq+tHGxmvuq9re6Ioj46wRgfQ6WuO4KRxq7nbblKq6bwWhkdQqx0PEBwLCR4DW0wjW0AAAAQDKY0AIAACBoXHIAAAAQCNp26VihBQAAQNBYoQUAAAhEKpVO7Ja0Id36lgntMOVahS1iV90Xdh5yen5cNb7F9TUT5papeevWDuexNbP/cp752JHXWtV8sH9Azdv26cevbY++r1YXhTi5HHMffFbvW+es6xi5nPu+uHauAAAMD0xoAQAAAsE1tDqWIwAAABA0VmgBAAACkU6nJZ1O6Na3CY3jQzh7CgAAACiY0AIAACBoXHIAAAAQiFQqJalUQkVhCY3jAxPaYSqu1ZHV1shq/bTu4r9T84UP3aTmaz7wvWPs3VtntedybSV27lcuUvNnvv54bjsWiOLKQjXPjNWPn9VKLIkWWT7HsN53trlPzV1bhq171xznfQIADD0mtAAAAIGgbZeOa2gBAAAQNFZoAQAAApFKJ7dyGtCdb1mhBQAAQNhYoQUAAAhEWtKSTmjpNB3QuicT2gC5Vm5bVeabl9+r5hf/4INqvv6G3ziNKyKytG6xmq+svVvNl9Uvcdp+Zmyx8z6FpGJWqZq37exU8yk1E9V8oFvvEtHXMWCObXWWcDVhbpmaW50u4ljdDKwxXBWU8JMIACEKZ+oNAAAAKFiOAAAACARtu3Ss0AIAACBorNACAAAEghVaHSu0AAAACBortKNY1/6smg90d3sbo7iy0On5VmX9hbfXqvkTt9Q571OmRP93nK+qftdxRUQqTtW7GVidAE67Zqaav7blVad9yvd7FrHfg9WRYUzpGHNbjY80qXnbK3rXh9du/qiaN2/fp+YXbtus5lanEBH3riMA8FakUilJpRJaoU1oHB9YoQUAAEDQWKEFAAAIRDqdknRC17YmNY4PrNACAAAgaExoAQAAEDQuOQAAAAhEKp2WVDqZ9cikxvGBCe0oYHUayDb3qXl/h14xngtrjGX1S9R8Re3dal5f8m41/5/bvq7mZYX2e9g37xLzMU3NU99R89TggJo/8b5b9e38UK+4FxGJenrUvGuP3rXg2W8+reZD1cEhF031B51fM/2qk/X8gUfVvPUf9PPstWcOqPnBE2c77xMAYOgxoQUAAAgEbbt04awlAwAAAApWaAEAAALBrW91rNACAAAgaKzQAgAABCKV4I0VQlqhZUI7CvR16NX4lj2P71TzqsunmK9pfKTJaQzXqvuaz52p5q3G89uMan8RkVNe0CviC6NeNW/45CfUvGXDITVf8Lu/V/P1H1hh7pOvLgSu27G6IoiInDCnQs2t9+2L1ZVDROTlB3er+bRP36fmTy9fp+aL+l9S87ryaqfnAwCGBy45AAAAQNBYoQUAAAgEbbt0rNACAAAgaKzQAgAABIK2XTpWaAEAABA0VmhHkNUFM5yeP6Vmopp3HuhW89YX28xtWdXyVtW99fzbNl+v5str71bzpXWLncYVEdl15mVOr5kwt8zclmbj33zHeZ+GStw+Wd0MTrlymprvenivl33KNveZj1XMKtUfyOidEVy7E9S2Nzg9HwCSlpaUpBO6tjUtrNACAAAAiWCFFgAAIBBcQ6tjhRYAAABBY0ILAACAoHHJAQAAQCC45EDHhHYEsSq615w4W82trgWZsfrCfV/HgDm2awW/9fwkOgE472uf2/PbdnaquVmhLyL9Xf1qnm3RK/6TOE5WJ4rit9nvw2U7ubyHTKG+rcExRWpudf5w7X5QV15tPkZnBAAYekxoAQAAAsGtb3VcQwsAAICgsUILAAAQiHRaJJ3Qta3pgJY9A9pVAAAA4M1YoQUAAAgE19DqWKEFAABA0FihHUGsFkVW26TCsoyaD3QPXUut4ehIY7eX7VjtvIYr6/Pe8dMX1Xze5+ep+aY7Nnnbp3f+/J/UfN3pH1Vz1/ZcFuu7IuKvNRgAIHdMaAEAAALBjRV0XHIAAACAoLFCCwAAEIh06uh/SY0VClZoAQAAEDRWaAEAAALBNbQ6JrQjiFVVbVVhW+IquvNtwepb9AcWLVbjlbV3q/nSOv35uQipu4PV0SKJ97DlnhfUfM+/6l0RLjq1Wc0LUgPmGNtr3qfmrh0FrO9EaVWRmi98dbvztnB8fB0/ukoAoxsTWgAAgECwQqvjGloAAAAEjQktAAAAgsYlBwAAAIFIpVKSTiV0yUFC4/jACi0AAACCxgrtKGZVvvusiF/wi8+oeaqkTM3XLLrdy7hWtb9I/iv+rUr5bEuf+Rpf+zSuaqyat+3s9LJ9EZH6H+rdDIqK9O4YC26cq+Z7GnvUfCg/u4IS/SexrrzafA3V9W+Na3eW4spCp+fz+WCkSaUSLApjhRYAAABIBiu0AAAAgUiljv6X1FihYIUWAAAAQWNCCwAAgKBxyQEAAEAg0umUpBMqCktqHB+Y0I4CrlXEubjkrqvUfP1nfqLmvqrVl9UvUfMVNavM1yytW6zmVnW9ta8Vs0rV3GdHAVelbze6HIj7Pj301SfV/AOfO9NpO9mYrgWafHcyEBGZUjNRzZufb1Xz2vYGc1tU1781rr9DmbFu51Muv3Mj+bPz+btvGcnHD8MXE1oAAIBApFKpxNpp0bYLAAAASAgrtAAAAIFIJ3jr26TG8YEVWgAAAASNFVoAAIBApNJH/0tqrFAwoR0Fkqhq7e84oua+KtZdOxBYnQxERFbW3u009reablbz1q0dTtuJY72/wrKMmmeb+9TcqtKfuqBSzfetbTb36dCBdjUvrSpS887GHjVPomtBXXm1mlvdCd5xxklq3nmgW83XvWuOObb12dH9ID+yLfq5P2FumZqXTCxR87hz3/U3czh+pr5+963zW8T+bvsaezgeVwxfAc29AQAAgDdjhRYAACAQtO3SsUILAACAoLFCCwAAEAhufatjhRYAAABBY4U2IUl0GnB12jUz1TwzRj8tSidPMLf19Ff/3cs+WXxWyv+g68tq3lR/UM2/aHRFuG3/9WpudSCIY70/K7c6DSyr/oHbwLX2Q7f97yvVvNN4f8WVhWqey/GwWO/7kv/cpuZrTpyt5md99gI1v3DbZjWP+/76qsQeysp6144MSfyeuXY2sbqOlF+udz/IhXWOJ3E8XD8L1+OXy/c3rgOCy9iWkdBtIh9SqaP/JTVWKFihBQAAQNBYoQUAAAhEKp2SVELXtiY1jg+s0AIAACBoTGgBAAAQNC45AAAACEQ6dfS/pMYKBSu0AAAACBortDny1abFtbVKHKvtyp9dNFXNd/z0Raft9HUMmGP7bKvlYtL88c6vsdpzWR6Yeqeaf0R+5LSdpXWLnZ4vYp8fVnuuZfVL1Nz6fCbMtVsatTq22/LVnss6/0REOht71PyJOWc57dOYCfp5s+5dc9Q8rj1RXXm1mrt+J1xbIFm/QXHfiZ72XqcxrPeWBOv4uR6nqRfordsaH2ly3idXrm2k4o63a2s11zEyY/XjGvd9XPjqdjW32uXVtjeoufW9y7bo319rO6MFt77VsUILAACAoLFCCwAAEIhUWiSd0HJkKqBlz4B2FQAAAHgzVmgBAAACkZIEr6EVrqEFAAAAEsEK7TG4djOIqwjV+KoMj9vWkZYOL9vxyapULp6kH7+CEv1UbdlwyNs+VX/sVDXfdo9eySu1emx1M1hZe3cuu6X65p6b1LzNsbJ+oG9oulOI2OdALudf285ONb/0sa+p+abP/T9qbnVRiPtee+vuYJz7VqV31eVT1Hzv+v3mGFbnAOv9DeVvwbiqsWp+9rKPqHnUqZ8Dj137gJpbx09EpLfTrRtEU7Nb55RcOhZsXnC+mlsdPvq7+tXc6hBgbaeqZpq5Tw0fWqjmVvcDq5uB9b1z7eCA0Y0JLQAAQCBS6eSKtSgKAwAAABLCCi0AAEAg0qmUpBMqCktqHB9YoQUAAEDQWKEFAAAIRCp19L+kxgoFE1qJ72RgVb537G9Xc6s61mc1vqvsYb2CdChZ1dZWtauIv/dgVTc33P+KtzE0VveDXLQZeWlVkZpbx9XqDpDLtlxZ50AurCr9KJ1Rc+t95/KerSp9X+9v5lXT1XzHT1/0sn0RkaITxjg932f3A+s4nXGP3qHiqQ/e6mWfGh9pcnp+HNdqfOt8ffkjl5mvOWvtU05juLpw22Y1f/22a83XnPzje9T86Xlnq7nVscM6frl0g8DoxYQWAAAgEKzQ6riGFgAAAEFjQgsAAICgcckBAABAINLplKTTCbXtSmgcH1ihBQAAQNBYoT2GfFe+W6zKaRH36umu/dm3ujvDVi4V5q73aQ+JVUWcy3Hy1c0gCWevvkPN1737s07byeU9u34fL7y9Vs2797+u5hu/+5zzPlkmzC1T89atHd7G0OTyexZl9E4AVjcDq3NAX8eA07hJWPjqdufX7LpmkZqf8tPVau7aIcB6/gXfeO9x7N0bWeeT69jQURSmY4UWAAAAQWOFFgAAIBDp1NH/khorFKzQAgAAIGis0AIAAAQilU5JKqGl06TG8YEVWgAAAARtVK3QDsdKSqsyN45rda7P+65b4qqYNdZ7sLZTPMmoeDaq+kurisyxm+oPHmPvjs/SusVqvrL2bjVfVr/E3JaviuuhrNxOwtm//4WaP3n6R/M67oJffMZ8LMrqXUQGO7vUfP0Nv1Fz1+9QLqzq86kLKtV839pmL+PGnZfztv9SzZ9b8HGnMXz+ziXxWbiyuhns/l9XOm3n+ZcOqfm0hifU/LWUfVyfdOykYBmOxxvhGVUTWgAAgJDRtkvHP4sAAAAQNFZoAQAAAkHbLh0rtAAAAAgaK7QAAACB4Bpa3Yic0FrdDHK5n73F6k7gWmk7YWaFmsdV4vt8H5pc3ps1trWtwrKM0xgVJ+n3oM+2tBp5/js7WKzuByuM7gdxrxkJXM/X0xseNre1sdqtotvqOGFZ+9cNar7uo3eYr3Ht2OG6nSRY3QymX3Wymvd87T41L0gNqHkm1W+OveOi96t5Et1ZLNZnMWn+eDW3/uZY1f6uzxcR2XfDVWp+8o/178veL3SqefNpZzmPban62afUvOufv6rme1Y/qea17fr37rkL5qt5XXm1msd9h3J5fwjLiJzQAgAAjESptEg6oQtGUwFdmBrQrgIAAABvxoQWAAAAQeOSAwAAgEBQFKZjhRYAAABBY4UWAAAgEKlUSlIJLZ0mNY4PQU9ordYnllza61ScWqrmrVs7nLZljW2155q6oNLcp4Pb9VZVFtd2QJmx/hbu+zr0Nj5W2y6rLc6Y0jFqnkuro3y3PfMp3/sad+67fl+s51u52VLrC3oLKRERcWzD5doObYHo21+aw/EejueTxfpMH/9fdWp+Su1cNR/o1t+z9Tsgkv/j5KvFoohIQZH+u+XaEsp6vtWOSkTkzCVnO43RP6h/pj7bV439yK1qbv1tnnPtbDW32nO958kNah53nDB6BT2hBQAAGE3SkuCtb5MZxouQ9hUAAAB4E1ZoAQAAAkGXAx0rtAAAAAgaE1oAAAAEbVhdcuDatcCVVe06cfYE8zX71uoV1z4rZzVWNW0cq3OAaxVxQYl1WvSYr/F1PN5Ve4aab/7HJ522E2eoqs+X1S8xH1thVO+7VulbzI4CMVY03KDmnY32eeAytnU8hrI7wG2br1fz5THHz9dn5Mr6zsV1KbE+uxU1q9R86WUz9e0cY9+GgnU8lp/1o7yPvcyouq9tb3DaTtzzDyz7lJr/22b9N7boinfrG3p1u9M+5cLqpGD9ja/+2KlO2w+pg0g+cMmBjhVaAAAABG1YrdACAADAlk4f/S+psUIR0K4CAAAAb8YKLQAAQCC4hlbHCi0AAACClvgKbb47GYjY9yWfPO/tat7fY99n3BwjppLYh/IT7c4LjY80qblZ9WwcD6srQttOvYZ50vzx5j5ZXRnGzh+r5n92mX7v7sdv/rWaW1Wt1nvLpQq2tKpI35Zxf3rXDg4+K3Nduxbk0lFgmTWG423Uv9V0s5q3DsNKZesz/XX1veZrPiRuHSoqZpWqec/rvWre16H/PuXSUcU6b6x9dX1+EqzvvNXNIIl9tbqUrLiiXs2tfbK6A4iILH/b99T88vfMVvOFxrbqPHVkELH/nlvvw7X7QfehS5z3aTRIpxK89S0rtAAAAEAymNACAAAgaBSFAQAABIKiMB0rtAAAAAgaK7QAAACBYIVWl7cJrVW1aFWoxrEqsV3vZW51BzjvNruScvpfXqrmj137gNM+uVYkpwvs42RV41v3abdYx9XafsuGQ07bFxG5aMOdav7cX35Rza3OC9a++uwcUFCifx06G/N/5/p8V5m79/EQuW3z9WruWk0+YFT1W+J+I/J9D/d5n5+n5hu/+5z5mmUlG9Xcqnwfyg4Broay+4Gv39IkPPXbGqfnn3+FfvxWGl0RRNw7I7h2IMiF9Rn5snf9fqdxF766PZ+7g2GOFVoAAIBA0LZLxzW0AAAACBortAAAAIHgGlodK7QAAAAIGhNaAAAABC3xSw7iqpQnzC1T89atHWruq9r16eXrnF8zb/sv1TxboFd0Z6VEzXfN1LsoZMbY1aNWNwPXe8Rbx8/avtX9QERk9kN61e5T533KfI0m31XsIiJTaiaqeVP9wbyP7epzX7pQf6DOz/bjOgpY58c399yk5rc6Vr5b51O2xf5eW/vret7MuXa2mm+6Y5PTdnIZeyTz9fmI2Odf3O+Qi6HspmF1RagrrzZfY3XNyBivSaL7gdVRyJXrvta2N6h53PGzXhOiVCqSVCpKbKxQsEILAACAoFEUBgAAEIhUgm27KAoDAAAAEsIKLQAAQCBo26VjhRYAAABBy9sKrc/7RVusCkhXcdWuZ1x7pppvmv0XXsaYsvNpNf/59vHmtqrv0Cs523Z2qvnUBZVqvq+52WmfMqkBc5+21y5U86GqAD/lymnmY7se3pvgnhyfyh0b1LzqiwvUvN2xI4gl7vOx7pdunWdyktPQZjcDn+eM9R46W9q8jeGLzw4B+WZ1rrAq8a3n58LqwiJGgbt1DvR12L9nvlh/o3L5rK3OCOdfsUp/gWP3g1y8fdYJau76t9napyQ6NYSIFVodK7QAAAAIGhNaAAAABI2iMAAAgECkU5GkE7rhQVLj+MAKLQAAAILGCi0AAEAgKArTsUILAACAoAWxQuurPdek+XorrJIJY83X7PiXbV7GttqxNM06T82NDjQiItLwqwb9NVfrryooyuj7tGGHPsB1enuYzsNGuxyxWzBZLXOyzfrzfYlrzWW19Dpp0QVqniotVfO1H71Xza2WPFWb15j71HiWfh5Y5411XCtm6ftqttqKke+2RsWTjHPDOJfiuLa26jnS6zyGJa7tn8vzh2N7Lle3bb5ezZcb7bxE/Lb00kyYWaHmzc+35nVckWTaTrm286p13P7LH7nMfGz2v65T8wPvmqPmA91+zvHR0p7LwgqtjhVaAAAABI0JLQAAAIIWxCUHAAAAOLoSmU7oUoCQVj1D2lcAAADgTVihBQAACERKIklJMjc8SGocH4bVhNaq/HStIh5XpXcteH1bm5q3dB0yt+U6dhL6+91OsP/zl/+h5mfOP03Nm5z3aOi6GVimLqg0HxszrljNH7v2AacxFv7qOjU/OHuhmr9ymV1f7KvC/Uhjt5rnch772qczrtMrnl/8jd6tI47rPlmdGg5u1yvcc+kS4bpP1vNXxnQC8GVZ/RI199XPIonvu/VbY2mqP+i8HdfPtK5c7zDjuh1fHX1ERB596jtqfv4V9WpudZuYc+1scwxf++trO6O9+8FoN6wmtAAAALDRtks3/JYfAQAAAAes0AIAAAQinUqwywErtAAAAEAymNACAAAgaMPqkgPXCkWrMjKX+9ZbfFV6u96/Pa4Cd/XPnlTzlu9vUvP3f/EMNc+aI7izqsl9sY7fCXP0+7TvW9scs60DXvZpzdV3qfmca59Q887GHnNbrl0ihqp7hIh7x4SWnbn0zfDD+n5ZuXVcre4HIvbvjdVRYIXRzWBFww1qHnfeaBasvsV8bG2dn98zV1YFvYjd3cF6zfKzfqTm5vEzxvX5HXL9HbfGjvvdP/9nS9V8cEyRmq87/2Y1n/ed5/V8+jw133SH/nclCa6/+6NFKhVJKpVQ266ExvGBFVoAAAAEbVit0AIAAMBG2y4dK7QAAAAIGiu0AAAAgUhLJOmEbkmb1Dg+sEILAACAoI2qFVrXTgM+uVbBWpW8IjEVw3V6bHUzcK3AjZPvY2htv333EW/bcjX9qpPVfNs92523le8uEbmwvi8ralapuXVeWj0O4iq6h5v+rn7n11jn2Q+6vqzmzS1+qu7XLrrdfGzBLz6j5us/8xM1T+K38VtNejX+F43uB9bxazK6QQzl775r14yzv3Ojua217/2al33KZPTjMZTdDCw+f/dHEq6h1bFCCwAAgKAxoQUAAEDQRtUlBwAAAEFL8MYKwo0VAAAAgGSwQgsAABCIdOrof0mNFYqgJ7SL+l9yev7qghlqnku1ta/7gFvdDHze+9zi817m+WZVKifxHqbUTFTzlx/c7W0M14pr63hM/5+nqHm6IKPmhSVjzDG23LVNzR+ae5+af0DczsuiE/Sx+zq6zX2y+OrYYW2n06igz0XnAf39JVF1v/aj96r5JXddpebrrnswn7sjIiI9bb1qvqLtBjVvc9y+z+M6af54NW/ZcMhpO6d//Hw1f+qT33beJ1fFxf7+7A9VB4mQ/nYhOUFPaAEAAEaTlESSSuiGB0mN4wPX0AIAACBorNACAAAEghsr6FihBQAAQNCY0AIAACBoXHIg8RWTVoV7U/NBpzF83rfeqhr31f0gF67Vrq7P91k1a409rmqsmjfVu33WSThhToWaN9z/itN2rGMhIjLv8/PU/NlvPq2/oPaTauxaGR63TxarY4JrNbTP6mnrO9+2s9PbGK6sY/vMVx9S8/Nuu0TNn16+ztcuSbZFP+bFk9w6TvjqdBHHOmfPufU8Nc+MLVLzJ7/8O+exXX8zN/7zdjU//1OzvYwbN/ZQdT8YLVIJ3lghsRs4eMAKLQAAAILGCi0AAEAg0hJJOqF2WkmN4wMrtAAAAAgaK7QAAACBoG2XjhVaAAAABI0VWomv4rQq3KcuqFTzfWub1Xz5WT9S8yQ6EPhSMavUfGwoK7c1uVTKD8fqc6vzglVtbVV6Z8bq2y8osX8CXn/lNTW3uh/Iy3rsep/7uEpo144JQ2k43m/etYtIb1v+vxPW2EPZzcBSdfkUNTc7f3jk2iGgtDST93Gtz2LyvLereVdrt5p37u/Sx+7Wxx6O360k0eVAxwotAAAAgsaEFgAAAEHjkgMAAIBApCSSVELttJIaxwdWaAEAABA0VmgBAAACkU4d/S+psULBCi0AAACCxgqtxLclKa0qUnOrPZfV1sW6DMVq1xS3T7m0pHKRRGukwjK3ljKuLWtcn58L69zItugtZeL2yXrsSKPe5sbi2s4mU2I/P1Oon2eNjzSp+T9d/lU1/+vau9X8ts3Xq/mEmRXmPjU/32o+lk9WeyIRfy2EXH8LcvntcPXCqo1qXv2xU9W890hWzQ81HjbH6GnrVXOrbVdfx4C5LV+s3/G96/d72b712xGnqGKMmheM1f+MT/rueWq+54kGNR97YbWan/uVi8x9GuzrV/ONd25Q8yR+l0cDrqHVsUILAACAoLFCCwAAEAhurKBjhRYAAABBY0ILAACAoHHJAQAAQCAoCtMxoT0Gq9LWqlL96+irar6sfoma51L16atSdErNRDVvqj/ovK0Jc8vUfKBP39e2nZ1qbh1X63Pw6Zxb9arg/m597NdfeU1//il6FXZvp17NLSLSvvuImvuq6Laq9DNj7f9J07q1w2kM8/2V6PHys37ktH0RkaVdi51fo7GOh7VP1vfXJ+t7be1r0Ql61bv13fK5Tw33v+K0nbiqfuu7bb3vfHeVELE7efgaI5ffs05xe43VqeHScc+oecHttWr+xC11TuOK5L8TD6BhQgsAABAIisJ0/DMKAAAAQWOFFgAAIBApSW41MqA737JCCwAAgLCxQgsAABAIrqHVBT2hXV0wY8jGXlb9AzW37k+fTeAe1kvr9ArwlbV3Oz3fqlB9x7lvN8d+7ZkDaj5U9+62KqRFRM767AVq/vTydWpuHQ/rvbk+PwlWZXhcNbLVucK8d/wsvapaGvXY9fwTEVlhnMu+WPsUN675nfdUjT9hZoWa59KNxJLvczaXqn5fx29R/0tetiPi/jfH9fhNmj/efKygKKPm6QI9tzo1vGvx79V8TQ7dDCz5/q3z+Zli5OCSAwAAAAQt6BVaAACA0YQbK+hYoQUAAEDQWKEFAAAIBEVhOlZoAQAAEDRWaOUYVdU1q9TcqobOetmjeNb+nvOlGjVfutyt+8E/pb6q5r7ubx6nqEK/P73rfcznL7vCfGz9Db9x2pZrxa7PCl/rsy6epHdxKCjRv9JtOzudx27d2qHmc66dreZb7tqmb0i/RXxOlfXL6pc4vaZiVqmaux4Pa1wRkeXGb4TrvlrGlOrfiVxYx3xwvf7ZFRcM6BuqPVuNfXUmyEVpVdGQje3K2teWDYfyPvbzX9Z/9y/+wQfVPO730ld3DNftWN0mRkv3g5Qkd20rN1YAAAAAEsIKLQAAQCC4hlbHCi0AAACCxoQWAAAAQeOSAwAAgEBwYwWd04T20fFnSUlKv2/0n8ql+tG1QrG4Uq/0dq20zaUqPd/3Prfem4jI7I+dqeZPL1/nZey96/d72U4urMr6KTUT1Xz6hy9Sc9dOBsOVdT51NlpdH/Tcuke8dX94EZHxVfox33bPdvM1Ls5colfKb/zuc+ZrXL9fPa/3Oj3f17i5vkbz08v/Tc1n3DhWzQtifqKLCvU/TmXvqVZzq2tL5Y4N+vNPm28PnmcD3f66i1isv1FW1b31d8L+/rpz7e5gdfiI+vS/m3F/i6y/ta5/y9ecqHdOqW1vcNoORjdWaAEAAAKRlkjSCa2cJjWOD1xDCwAAgKCxQgsAABCIlCTYtosVWgAAACAZrNACAAAEgi4HurxNaK17zcdVd1qVouYYMdWXGqvi9JzH9Xuxi4jIV/S4sEwvJfZV2XzywirzsbgqcBff3HOTmt9q3Js+jq/71luan29V85O+v0jNqy7Xq7BFRBofaXIa21c3jaH0+rY2Nbe+pyIiTfUHncZYWavfI/62zder+cY6/fjN+/w8c4wd/7JNza3Poq9jwNyWL0vrFqu5dTxOv+B0NU9n9N+nyz+ndzWxzsu49+z6fbTGaDa6Gcx86VE1f3HGZU7j5mLhq366b+TCtfuBxfobJWL/zbH+prp2P8i2vK7nCfzODeVnh5GDSw4AAAAQNC45AAAACASXHOhYoQUAAEDQWKEFAAAIBCu0OlZoAQAAEDRWaAEAAAKRSiV4Y4WExvEhbxPabIve6mPS/PH2zhTpbUms9kFFJ4xR8/Me0HttDRYWq/n6s/W2OyIiS418udGSx2rh46r7UKeX7YjY7VvadupjLN2pv4e4NjDLjFZfvtp5nfHcA2r+zOy/cNqOiH0O9rT3qrl1nJIQ18ZHYx1XK49ro+eLa9ufjia9RVvctqzj5KttXC6sc3+F6N+VH/UaPQIXVKpxx2tH1Dzb7O98df3sCgf18+mcW88zX7P9XzapeRLnZr65tvOKO1+tx6zWatbxmzC3TM37u/Xnx/0GDeX3C/hTrNACAAAEgmtodVxDCwAAgKAxoQUAAEDQuOQAAAAgEFxyoGOFFgAAAEFzWqG97NBmKS8vf0PmWq35+rY2lyFFROTSez6i5umKt6n5mkv/3nmMoTKlZqKa7990wNsYA91ulaiuVbMiIksb9c4IKxy7QUxreELNd//l5WpuVex27c+quYh9Dua7YjeuS4TVFeSU95+k5i8/uFvNrc/Okhlr/5u2oET/ebj1pO+pua8OHwO9/e6vGYbV1q77tG9ts5dxk6hKX/CzT6n52uornbd12jUz1XxH44vO2wqF1f0gjvW31rUTRcFY/Xu96Q692wSGH1ZodazQAgAAIGhcQwsAABAIVmh1rNACAAAgaKzQAgAABGNQUpJU3cDwq0+wsEILAACAoL3lFVqf96o+47o5al7/+V86b8uXuIphH5rqD+Z1+yIifR0DTs93rZqNc9vm69V8udH9YEXtQjW3OjVY+zoc7z9eOrnEfKzipIyaW90Mpl91sppnxrh9pRvufyXmUaOrhd54QSbNH6/m/d1614KBPv1z2PXwXnOPpi6oVHPXDgFWx4m4Th6uVhrn+LeablbznpguGBqrM4bP87vmu1eo+VN/+3M1t753cfu046d6N4NTrpym5nHnB/6b9Vl07u9y2k4uHRmAocAlBwAAAIFIpSJJpRIqCktoHB+45AAAAABBY4UWAAAgEKkoklSU0AptQuP4wAotAAAAgsYKLQAAQCC4sYJuWE1o+7p61TzfVelxFfEralapuXXfeqv63KpWT4Kv45dL5wCrC8H3v613tGg+zU+V+VB2wLDGbtlwyNvYu/5tj9PzC8v0LgqnXTPTfI1VfW55fVubmlvHo7iyUM3jzjOrm8GUmolqnj2sn0+tWzvMMVy5dkLxOXa+DWT145cZ6/aec/k+9hzR/x5Yx9vqrDNSqvRd38eaE2erudXJY6QcJ4xeXHIAAACAoA2rFVoAAADYjhaFJdNPnaIwAAAAICGs0AIAAASCojAdK7QAAAAIWt5WaK2KSasSVST/9/S2qmPHVY112k7ctqxuBtZ7eHXDfjW3ugOI2NXhfR0D5ms0VuWx9d6sSvm4bVnGFxxW8+ysUjVv29nptP0kWOfNcNxXy4GX9K4BIiIra+9W8x/1fkXNe+dUqLnV/SDuHHfVVH/Q27bw37qbX1dzq1LeYv1midjnQdfBLjVPooMJMJylZDC5a2glnO8bK7QAAAAIGtfQAgAABIJraHWs0AIAACBoTGgBAAAQNC45AAAACEQqSrAoLKFxfAhiQtt9uNvLdqzq2Niq9JPctmWxOjJMmj9ezYtO0O9jLuKvit6qPLaqjqddPNnc1oGdejV01aO/VvMdMy47xt69keu+5sIao2RysZq3bu3wNrYll44T6nbG6ttp2XDIflGtHne8dkTNrfPSOsdjxw6I62+B9Zn6qt63tp/LGJvu2KTm1R87Vc0b7n9FzXP5nlrfr4qAOqEMJZ+/jUAIgpjQAgAAgKIwC9fQAgAAIGis0AIAAAQiFUWSihJaoU1oHB9YoQUAAEDQWKEFAAAIBF0OdKzQAgAAIGjDaoV2Ss1ENW9+vtXL9kuritS8s7HHy/ZF3FvyJNG6yNonqx1V+cnj1LzxkSZzjAWrb1HzgQM71dy19U4SLWis1lZW+6ChbEfl63isrL3bfGxFww1q3mZ8X6zvl3U8kmi/ZJ37xZP0Fm25/Bacs+Wnar70jGvUfIVxzJfVL1Fz67dj6oJKNd+3tlnNfbLacyWxT/1d/U7PX10wQ80X9b/kY3eGrZH+/oA/NawmtAAAALDRtkvHJQcAAAAIGiu0AAAAgaAoTMcKLQAAAILGCi0AAEAguLGCLm8TWquyNE7ngW41t6p8nbdvVDDHVXovrVus5mfs/LWa7/7wX6l5EpXbFuv4WdX7lgtvrzUfW7vodjW3Kt8HuvP7vzGscUXs88DKrWr8gqKM0z4VV+qV9SJ21wLrs7O2ZW3HOse/d+hL5j61GMfDOv+s42ftq2u1epxzbj1PzdOF+k9cZqze4WPM5Elqnp1zkTn2oW+tOMbeHR/rs7a+d607duv7U3XYHMNnRxeN1c3A6ggiItK5v0vPHb+nrh1mAIwsrNACAAAEIiWDkpKErqFNaBwfuIYWAAAAQWNCCwAAgKBxyQEAAEAoIhFJqlgrnJowVmgBAAAQtsRXaOMq9H12Asi3LbM+pOYXPP+Pal6QPaLm6y+8xXnsE+ZUqHnLhkNO23GtCu7vcP98si1u1fu+xFVzW10LjjTqXTas8zIzVz9+U2omqnlT/UHnfbLGtroZxHV30PR3u3cacP3s+joG1Dwz1v3f0/M+P0/ND+16Tc1fflDvBODu5+Yj06862csIl9x1lZqvu+5BNa/+2KlqHnfuD1UnANffJhG7O4Z1PtW2NziPAYSIGyvoWKEFAABA0LiGFgAAIBApiSSV0MWtSY3jAyu0AAAACBortAAAAKFI8Bpa4RpaAAAAIBl5W6Fd1P+Smq8umOFtDNf72efCtSr4mZrPqfnFDy3ztk9WxfBp18xU833P71Vzq6rfes/PfP1xc5/O/Yp+r/u41wyVsneMU3PXLhutWzvUfEqN3mnAqtAXEdl0xyY1nzC3TM3bXtH31axwr9Zj6z2IuHdecDXQ7f4v/y33vKBvy/g+nnLlNDXf9bD+nbB+U3LpyODK6mZgabj/FTW3uh+IiAz06l0tfHWDcO1MIGJ/dj5/xwGMfFxyAAAAEIooSvDGChSFAQAAAIlghRYAACAQ3FhBxwotAAAAgsYKLQAAQCBSUSSphK5tTWocHxKf0FrdD+JYnRFc72e/rPoHzmMXlmXU3KrMtfK17/2ami+oW6rmqZ6svVO9+mMH1z2l5plCfSF+XNVYNe95vVfN4+733tuuV767domwPrtsi/5ZW9uxxhURqZw9Vc0nzz1JzcdU6NX+Ty9fp+ZN9QedchG7A8LeZ/+vmr/j3Ler+fVjvq7m9xp5z4JKc5/2rW1Wc+szsjosxJ03rqxtVV0+Rc2tbgbW+WH9pljdJkT8dQjwxep+EMc6fr2d+m9B9rD+WXft13+b4s4B178JPjvlABg5WKEFAAAIRTSY3A0PuIYWAAAASAYTWgAAAASNSw4AAAACQdsuHSu0AAAACNqwWqF1rV61KpWtbgZL6xY779P9X3lcza/+zsVq7lrRvbZ2pesumaYaFeutWzu8jWHZdMcmNZ9z7Ww13/fcHjX3ta9WBwcRe19dXfCN96p54fgKNU8V2F+3tnM/oObTrtWf/+Evtqn5bZuvV/NdRvV+HOt8srofDKX+ngGn57t22fD5HVrRcIOaL6u9W82tz9TqyJCLxkeavG0r33LplAOMJCmJJCUJte1KaBwfWKEFAABA0IbVCi0AAABi0LZLxQotAAAAgsYKLQAAQCC49a2OFVoAAAAEjQktAAAAghbEJQdWe64VNavU/KGVeuudwq/9o5o/+e7PmmN/6OsXqflvv/msml/xtXPV3LWdVxzreFjtlCbMLVPznrZeNc+26O2AcnkP+3//qpq3vdLpvC0X/V39ed2+iMiTX/6dx609oKYrjVZO39xzk5q3Ga2ciisL1Tyu9ZN1Pk2pmajmTfUHzW1pfH4nBvvd2nYlwTrmnY09ar60UW8ruNw4Bx6ae5+a93fr2xcR6TrYbj6m6T6kf0/3bzqg5n0d+ufg87MGRr0oSrAojEsOAAAAgEQEsUILAAAA+f9XaBNaOWWFFgAAAEgGK7QAAACBSMmgpBK6hjYl4Vz/zgotAAAAgjasVmgX9b/k9oLyajV+9gy3f1FctOFO87HH59+o5pffeo6aP3XPNjWff+0cp32K41ox3Lq1w9vYrjr3d6m59R6sDg6u79mqJM+Fr32ytiNid+z4wXdmq3nTLL36vLRK7/Dh83hkD/vblivrGHYe6Pay/VyOk7VPcR0kXLxz7qlqvvHODWoed15anRes7gSWwrKM89gAPOEaWhUrtAAAAAgaE1oAAAAEbVhdcgAAAABbKkqwKCypGzh4wAotAAAAgsYKLQAAQCiiwQRvfRvOCm3QE1pfFbXb//rvzMcWrL5Fzdcuul3NrW4GDb9qUPOiMSkjN3dJTrx8pv2gwqpstvi8H3u2xa3S29dnGtdRYOZV09X8xQdfdton14pxq5OBiMiy+iVqnknVm6/RuB7voWR9RsWT3M5XEZG2nXrXhyS4nrPWefObm55U849+7Vwv44r4+27nu0sJALgKekILAAAwmqSiSFIJtdNKahwfuIYWAAAAQWOFFgAAIBSDg0f/S2qsQLBCCwAAgKAxoQUAAEDQuORARAb67CX19Vd/W80X/uZGNV/zwTvVvPrqaqd9iutM0PbUTjWfdO279ecbFeClVUVqnhlrVCp328fJum99vqubpy6oVPOSCSXma3b89EU1n3PtbDUfU6Zvq3ji29T8/U98WM2tTgYi9nFKi55PqZmo5s3Pt5pj+NK6tUPNXSvczTzmPLPOTVfW98s6j3Ox/1H9PHutRe808MEvnqHmWY/fIdfv46L+l7yNDcCTKDr6X1JjBYIVWgAAAASNFVoAAIBQcGMFFSu0AAAACBortAAAAIHgxgo6VmgBAAAQtBG5QmtVWxeWZdQ8l/vAW90MFv7qOv35V9/ltP24auui82epeWbbRjWf8IlL1NyqVrcqwK37wCdh0vzxav7aMwfUPK6a2zo/dtyvd4+wtrWy9m5zDNd9skzuaVTzZ+sPqnnFrFI17+/qV/POxh7nfbL46miRS6cBq2OH9f6sMaztHPzZFnPsnr6Umld95HQ1n2yMnTW279o9Ig5dC4ARgGtoVazQAgAAIGhMaAEAABC0EXnJAQAAwIgURQleckBRGAAAAJAIVmgBAAACQdsu3Yic0LreOz4Xl/7k42ru2s3Ap3fe91k1f9ttn1HzZ/7mH9XcZ+W7K6vKvGXDobyP7drNYFn9EjVfUbPK2z5l+t0+C9eOHVYFvYi/74vVNSOXbgaWs+//hpo/+T++qOZTNtWr+b4OvZvGxKvPMMc2OymYr9BZHQhWF8xw3BIAjD4jckILAAAwIg0OHv0vqbECwTW0AAAACBortAAAAKGIouS6DwR0DS0rtAAAAAgaE1oAAAAELehLDlzvS+6zWjjqGbpOAPM+P0/NN373Of0FRn7pPR9R88Gs/t7W3/CbY+/cW+Srw0Jc9b7F6mawtG6xmg84j+Bu64dvUPNLH/uamj926d87bd9n5w9LZqzbZ2F1RRAROf++v1XzteffrOYzX3pUzV+ccaHTPmVzOJ98dS1w/Z0DMMJFgwneWIGiMAAAACARQa/QAgAAjCoUhalYoQUAAEDQWKEFAAAIRZTgjRW4hhYAAABIBhNaAAAABI1LDkSk6vIp5mOZwoyar7vuQTWfftXJar7r3/aoeS5tkwZ6+5xfo3ns2gfU/NyvXKTmce2Uss1+9sliteGyjl8S7ah8st6f1cYs1dOdz93xynoPFbNK1TxTGPPv7EMHnMZuvOgKNZ8wt0zNW7d2qLnP84k2XADeEtp2qVihBQAAQNBYoQUAAAgFbbtUrNACAAAgaKzQAgAAhGIwwbZdSY3jASu0AAAACBortCLS29lrPtZUf9BpWy8/uFvNp9RM9LJ9EZEXf9Og5qdcOU3Ndz2812n7z3z9cTWf9/l55ms23bFJza3qfYtrNblVKd+2s9N8jes+JcH1fad6smpudaKwulD47Fzh+llY+dlfeI85xtqP3qvmce9D07Xfz/EDgMRxDa1q+P1lBwAAABwwoQUAAEDQuOQAAAAgFFGU4I0VuOQAAAAASAQrtAAAAKEYjI7+l9RYgWBCKyLNz7eaj+VSRa/JHtbvZ29V3MdVvfd1DKh59+Fub2NorE4GIiJzrp2t5nue0rs+uB4/S8/reoeKqQsqzdd8qfJONV/20EfUXD/aIitr71bzf//yYTV/ot7+HyKun8WaD3xPzS+9R38PvQdeV/PXd+ifj4hI7xG9E4DFtZuGpb/bbVwR+zvhqrZd7yCyumCGl+0DAPKDCS0AAEAoosEEr6HlxgoAAABAIlihBQAACAW3vlWxQgsAAICgMaEFAABA0LjkQOIrzI806p0DXLVu7fCyHRF7f61OCq4V9JbSqiLzsV3/8Yqadzbq++TKeg9Wvq+52dzWjO+8U3/gIde90mW6j6h5YVnGfI2vz+jpZf9bzbPNfWo+YW6ZuS3rnC2uLHTfsTzzdfysbgaL+l/ysn0AeMuiKLkbHnBjBQAAACAZrNACAACEgrZdKlZoAQAAEDRWaAEAAELBrW9VrNACAAAgaKzQHoNVPe1a9ZzEveCtqnSrkt16fqZE/3dOXMcC6zX5Zo1bPMmuxC8q0k9767NeWXu3mi+tW6zmqb++Sc2tTgM+uY7R09ab9zFc9bT76SwSh64FAEIVRYMSJXRta1Lj+MAKLQAAAILGhBYAAABB45IDAACAUEQJFoVxYwUAAAAgGazQAgAAhIIbK6hG1YTWqmxOogOBZcHPPqXmg0eOmK95/OZfq7lVpW91MyitKlLzuG4GFmtsV772Ke755eVjnLblKurSj7dPxZV6F4e+jgE1tz6fbEv+Oy9YrM+6Y3+7tzHoZgAAo8OomtACAACELBoclGgwobZdCY3jA9fQAgAAIGis0AIAAIQiipLrPkCXAwAAACAZTGgBAAAQNC45AAAACMVgJJJUsVZSN3DwgAmtJNPax7Vl2Dm3npfP3RGR3Npz5Zu1T9OvOlnNX35wt5pbba1ERIqL9f8xsbL2bjVfWrfY3JZm7UfvVXOrRZuIyEv3PaLmXQe79Hx/Vs1d26fl0m7NV/s767POthwwX5Mp0T87X23jAABhYkILAAAQCorCVFxDCwAAgKCxQgsAABAIbqygY4UWAAAAQWOFFgAAIBSDUXLdB+hygLeqv9vuQOBa0T2UleHW2BWnljptx+pmYHU/WP0XetcAEZHqD1er+UNGlwNXZ1w3R83XfuKfzddYXRn6OgbU3PrsrONd295gju2La/cDn/vq2mEBADCycMkBAAAAgsYKLQAAQCCiaFCiKKGisITG8YEVWgAAAASNFVoAAIBQUBSmYoUWAAAAQUtF0bHva9be3i4VFRXS1tYm5eXlSewXYuy74So1P7znoJrvXb9fzV0r5ZPoiuDq8GMvqvkJi2aZr3F9HyuN7gdL6xY7baf6Y6eaj/Ueyar5rof3Oo3hyupMgJHJ6gbBeQD8t+E65/njfr36rRulfGxRMmN298iJX7xz2B0LDSu0AAAACBrX0AIAAAQiGowkSuja1qTG8YEVWgAAAASNCS0AAACCxiUHAAAAoYgGRQYTKtIO6MYKTGgDtLt+l5q37exU84pZpU7bt7YzlKzOC3Pf0azme4ZhR4aG+19xfk3V5VPU/FBjm5ofaexW8+HYoQL5YXUyyOU1dD8AEAomtAAAAIGIokiOo+Oqt7FCwTW0AAAACBortAAAAKEYTPAa2qTG8YAVWgAAAASNFVoAAIBAcGMFHRPaAF24bbOaPzHnLDXveb1XzbPNfU7jWp0G4ljV9da2CssyTtsfm9ar+nOxsvZuNV9at1jNre4RPrtE7F2/3+n5rt0M4iriR3KF+2it6i+uLFTzvo4BNR+txwlAeLjkAAAAAEFjhRYAACAUUZTcDQ9o2wUAAAAkgxVaAACAQFAUpmOFFgAAAEFjhXYEsbofWJXKVqcBq1I+roLeteLfdYzSqiI1H9fbau6TL1Zl+JFGvcOC9XzXrhIi7l0LLLl0lbC6Zlifqev5lEulfFxXBhfWvvravk8+OwpY5+CEuWVq3rq1Q83pfgAMnWhwUKKEbniQ1Dg+sEILAACAoLFCCwAAEIrB6Oh/SY0VCFZoAQAAEDQmtAAAAAgalxwAAAAEIooGJUroxgpJjeMDK7QAAAAIGiu0o4DVSsdniyKrlZNrOy+rnVJnY4+al3QePI69e2v6OgbUPJf2Zq5cW2FZctlX631Pmj9ezQuK9BZgrS+2HWPv3iiX89I6TsWTjBZqLXr7Kqs9nPX8ONaxdf1MfX5PrbGnvuckNe9pe0XNB7r97SutvgBHCd5YgaIwAAAAICGs0AIAAIQiGhRJ6oYHXEMLAAAAJIMVWgAAgEBECV5Dm9i1uh6wQgsAAICgsUI7irlWF9eVVzuPYXUzcK2UTxcYeV/WeZ9c+exaYPFZXe+L9b5bNhxy2s70q05W81wq4osrja4FzfpxsrpjnHLlNDXf9fBeb/tkHb/CMv1ctrief1YngzjpArfuIgAw3DChBQAACEQ0OChRQkVhSY3jA5ccAAAAIGis0AIAAAQiiiKJooSKwhIaxwdWaAEAABA0VmgBAABCMZjgjRUCuoaWCS2OW217g/nYunfNUXOrStqqlLcqtGvu+As1f+zCW8x9Gm4qZpWaj1ndIHyxjmtcBX0u1fKawhK9g0MurG4G1rG1jmtmjP7Tl8txct2n/q5+feyx+thWpwtrn+L29bzbLlHzp5evM1+Tb1a3C9cuLABGNya0AAAAgeDGCjquoQUAAEDQmNACAAAgaFxyAAAAEIhoMLlLAaJwasJYoQUAAEDYWKGFF1Y3A6vSO1Oo/1vq9GsuVvPHrn0gp/3SrKy9W82X1i1W81wq3zVF5WNiHjWq8T2NbSmtsjsQWJ+p9RqrGt/qKGApriw0Hzv/e9eoeZTNqvljn/65mr/84G41r/7YqWr+h6f+YO5TUYX+uQ706Z9RQYnj8Zik59bxjjNmwnjn17iwPruiE+xz3+r6sObE2U5jW90m6JaAkYZb3+pYoQUAAEDQWKEFAAAIBG27dKzQAgAAIGhMaAEAABA0LjkAAAAIBEVhOia0yKu2nXr1/tQFlWre8Ksn87k7IiKyouEGNV/m2P3AVUFRxnzMqg63Krctrl0R4irlrQ4V1mc6ab5eQb/tnu1qfsZ1c/R9+pvbzX1aO+My8zHNebddouZR/4Ca93Xq3RI6G18xxyidX6LmE6e/Tc0HevWq/l0P7zXHGG6s82zmB6vVvGVnk7mt1hfb1LyvQ/+MfHX4ADCyMKEFAAAIRBQlWBQWURQGAAAAJIIVWgAAgFBE0dH/khorEKzQAgAAIGis0AIAAASCLgc6JrTwwrpf+uqCGWr+2jMH1Lx4kl7tP2FumZq3bu04jr17o87GHv0BvUDbmzGl9v3sM2Pz+z9LVhodHB6ae5/5mp62I2p+8B3Nar5vrZ5btty1Tc1XNv7BfpFjJ4qnl69z2qdctGw45JRbn4XU6vGaG3ereapH78ggg3p3ABGRKNtlPqaxum/M/dS71XzjnRvUPK4zQWlVkZq7dvgAMLpxyQEAAACCxgotAABAIKLBBNt2JTSOD6zQAgAAIGis0AIAAASCojAdK7QAAAAIGiu0AAAAgeAaWh0TWgwJq43PQLeRl+T/f3vctvl6NV/u2CrKbMsU97tgtQzz1ErM2tcPiLGvcazuY0bbKVfL6peYj1nnjXnMhyHrs7AsND4j1+3k4t03L1TzJ26p8zaG1UYvU6L/D8Ta9gZvYwMYOZjQAgAABIIVWh3X0AIAACBoTGgBAAAQNC45AAAACARtu3Ss0AIAACBorNAirxb1v6TmqwtmqHlfx4CaZ5s71by4stB4ft9x7N1be41VWZ9E9XkS8v0+zM/O6GQQZ0XDDWpuVdCXVhU5PT/O1AWVal40Tm8H0WM8f9/aZjV37abh83NLFwzdnwiro4X122H91gAjDUVhOlZoAQAAEDRWaAEAAAIRDUYyOMAK7Z9ihRYAAABBY4UWAAAgEEevoU2qywErtAAAAEAiWKHFkLAqkuvKq522Y3VFyIV17/jf/fl/qPm66x502o5VtZ2EXCri811Fn0snCstAt9uxtboZWJ/dO859u7ktqzuBZdL88U7Pt1idHZYZn1ucNTft0x8Y0D+jU67cYjxd/z7u33TAHNs6D+haAMAFE1oAAIBA0LZLxyUHAAAACBortAAAAIFghVbHCi0AAACCxgotAABAIFih1TGhxbDi2gkgl84B59x6npqPPXGymj9+86+dxxgJltUvUfMVee5+kAurUt6144SVx3UymFIzUc2b6g+qeef+LnNbmuLKQn07RqeGpY3un8NC8fOZWp0JDrxrjvka6zNaXTDDaQwAoxsTWgAAgEBEg4MJ3lhh6NpNuuIaWgAAAASNCS0AAACCxiUHAAAAgaAoTMcKLQAAAILGCi2CMHVBpZpXTB2v5pkx9qm98c4NTmMn0XnBtRp/pdFpwGJ1LBiIeY01tlX5bu3Tqu/q1eoHa9+r5lb1fi5y+SxcZQ+77a/1/qxzIAljiovU3PW8zEVte4O3bQGjweBAJIPpZFZOBwdYoQUAAAASwQotAABAILiGVscKLQAAAILGCi0AAEAgoijBGytE3FgBAAAASAQrtMirNSfOVvOiE8ao+ZSaiWr+2jMH9Fz0PInqdp9W1Kxyer7ZtcB433HdDCwVs0rVfP8/bVTzpRdWq/meOn37pzc8rOa/r77S3KfSKr0aP9vSp+ZJnAcDffkdo68jl09PZ3UtSBdk1Nw6fov6X1Lz1QV6R4s4deX6eUP3AwAumNACAAAEgqIwHZccAAAAIGis0AIAAARicCCSwRQ3VvhTrNACAAAgaKzQAgAABIJraHVMaOGFValsVUlnm/Wq9CMl3U7bGY6sSvK4Tgb/evbP1fyZrz+u5r7q3q2uASIibTs71fyEcT1q3uU49vi2PWo+YW6Z+ZrWrR2Oo+SfdZyKKwvV3Dr3kzjHN676vZrfv+VTaj7Z6GZgsbof5MLqmOBzDAAjBxNaAACAQESDCd5YIaFxfOAaWgAAAASNCS0AAACCxiUHAAAAgYgGIokSatsV0bYLAAAASAYrtAAAAIGIBiSxGytEvlrqJIAJLbzw1XJoKNtzWe22LHFtuNTnN9xgPvZMnd4K65xbz1PzZ7/5tNPYloFu9+NdUtCr5q5tux6ff6OaX/zE7eZr1l94i+MobqxzIJfzsq9jaP4SxJ3HpcZj0cDQ/dWiPRcAH5jQAgAABCKKEryxQsQ1tAAAAEAiWKEFAAAIxOBAJIOSzMrpIF0OAAAAgGQwoQUAAEDQuOQAx82qRo5jVVwXTypU885Gvdrfdfu5GFc1Vs1vPel7ar6sfomaF5Zl1DybQ9X7kdda1by0qkjNXY9ftrnPeZ8Onv4eNZ/W8ISa762+0Gn7cZ0MFvzu79U81dWh5lHHYT3PZtW898Drav7MijXmPlkdEIaqY0fD/7vDfGz6h6vVfJPx/DN6r1LznvZufez7X4ndNw3dDAA30cCgRJJKbKxQsEILAACAoLFCCwAAEIhoMMFb3ybUHswHVmgBAAAQNFZoAQAAAkHbLh0rtAAAAAgaK7R4k1y6GVisSm+rGr9iVqmaW50GkmB1M0iiin3HT19U8+lXnazmu1r2qHkS+zompXdMsDpR5LJPa9/7NTUvrtS7ZlhdHFyff8Z1c8x92nLXNvOxoVA+zr362bXTQF253i3BOi+nP/Co8z5ZrN8nuiVgtIgGIokSWqGNWKEFAAAAksGEFgAAAEHjkgMAAIBADA5EMhglVBRG2y4AAAAgGazQAgAABCLqiyRKc2OFP8WEFnllVbhbrG4GPjsNWPt05pKz1XxjnT6Ga/W+67GIe01Xa5fT2LmwOgGcUv9/1Lzxstq875Olr2Mgr8+P62RQ/bFT1bzh/lfU3PpMx1WNVfO2nZ3H2Ls3Kh7j9PScWJ+p1c1gy/suMrf12jMHnMagmwEADRNaAACAQAz2RzKY0Aot19ACAAAACWGFFgAAIBBcQ6tjhRYAAABBY0ILAACAoHHJwShg3fs8CcWT9Er5ZdU/UPOldYvV3K0mPZ5VPX1o12tqXjGrVM1dq8/jqv1dOybsW9us5hPmlql569YONS+tKjL36cwH9Y4TT85cZL5mqCTRScHSfcjPeWCdT66faVFh/v8XoWunga6DelcOAO4GB6LEirWSuoGDD6zQAgAAIGis0AIAAAQi6huUKJVKZqxo6P7vlytWaAEAABA0JrQAAACBiPqjozdXSOC/qN/9GtrHH39crrjiCpkyZYqkUil56KGHjvma+vp6mTdvnhQXF8s73/lOWbVqlfO4TGgBAADgRWdnp8ydO1d++MMfHtfzd+/eLZdffrlceOGF8sILL8iXv/xlufHGG+XXv/6107hcQ4vjZlXii4gUPvmCmnf1Z9R82cVz1HxF7d1qbnU/8GnXw3vVfOqCSjXv7+pX82xLn5rHVeL7qtIf6HPbTmdjj/lY0aH9b3V3clJcqXfGEBHJNuvH1pXPrgj9PT57cLyZ1c3AOi/3FA6/a97O27TRfGzNibPVfCg7VwDDWdQXSZRK6MYKOXQ5qK2tldra2uN+/qpVq+TP/uzP5Pvf/76IiFRXV8vGjRvl29/+tnzoQx867u2wQgsAAIAh8cwzz8h73/veN2Tve9/7ZOPGjdLXd/yLGKzQAgAABKJLBkUSag/bJUf/T0l7e/sb8qKiIikqsvuYu9i/f79UVr7x/zhVVlZKf3+/HDx4UN7xjncc13aY0AIAAAxzY8aMkcmTJ8sn9+9OdNxx48bJtGnT3pAtX75cvvrVr3obI/Unbcj+eKnDn+ZxmNACAAAMc8XFxbJ7927p7e1NdNwoit40sfS1OisiMnnyZNm//401Gy0tLVJQUCAnnHDCcW+HCS0AAEAAiouLpbi4eKh3w6tzzz1Xfvvb374h+93vfidnn322FBbaRcJ/iqIwAAAAeHHkyBHZsmWLbNmyRUSOtuXasmWL/OEPfxARkaVLl8pf/dVf/dfzlyxZInv27JEvfOEL0tDQID/5yU/kxz/+sfzt3/6t07ip6Dh6MrS3t0tFRYW0tbVJeXm50wDwb3XBjLxu32rPNf7ZDeZrDp7+Hi9jX/zE7Wq+tvD9TtspvfIM8zFfrZ+m1ExU8+bnW9XcZxsiq7WVr/cWZ8HqW9R8YPd/qnlkVKkOZPWWYb//+VPm2FarNEtcWzJfrPOgqf5g3sd2dcqLj6l5z/UfUfPBfr0lmfXeFvW/lNuOKerKq9W8tr3B2xiAhjnPW7N+/Xq55JJL3pRfc801ct9998knP/lJaWxslPXr1//XY/X19XLTTTfJjh07ZMqUKfKlL31JlixZ4jQulxwAAADAi4svvji2f+199933pqympkY2b978lsblkgMAAAAEjQktAAAAgsaEFgAAAEFjQgsAAICgURQ2xKyOBVYVu0/ztv9SzQ8XvF3Nd83008kgF5n5pzk9v2TbRvOx7Jyz3+ruiIhd6T1hbpma97TZzbBdq/EXvrrd6fm5eHqefpzWX/1tNfdVfV75wmXmY9MfeNRpW9b3y7Uaf9275piPnbVW78rQ5Glsn1q31Kv5hH9/XM2t42ed4z5Z55OvzxTAyMIKLQAAAILGhBYAAABBY0ILAACAoDGhBQAAQNCY0AIAACBodDlIiFWZa8k293kb+9wXfqLmr91yk5o3PtKk5pkS+98/A12DTvt06WNfU/NnP/EVp+1YWmM6GUzZ+bSat13+5ntPi4hkW/TPwnrPba90Oj1fxD62rsfVldXJQCS39+HC+k5Mv+pkL9sXca98ryuvVvN8fw5JSUf9Ts+3jp/12VndIAa67eOXRMcOACMfK7QAAAAIGhNaAAAABI0JLQAAAILGhBYAAABBY0ILAACAoNHlYARZ8IvPqPnaMz/ttJ2qy6eoudX9II5VvZ8+fFDNOxt7nLaTS/V506zz1HzmS4+q+YszLnPafi77ZL3G1/3pc6ned61wt3JrO1a+/c/1bhMi7u/D9fj5/BxcX+N6/KznX/zE7eYYGz/8d2pudVVx/ewscV1eXDvA+PpOABhZWKEFAABA0JjQAgAAIGhMaAEAABA0JrQAAAAIGhNaAAAABI0uBzlyrcy1FFcWqvncT73bfE1h+Tg1X/vRe73sU3/PgJftiIhcsOL9av78sh+ruc9uBq4yjve5D0lte4O3bblW3bvqau02H/P5PjS5VND76k4w7/Pz1Hz/LZ9Q80vW/4Oal557pZqLiGSbb1Fz1311PU50JgCQb6zQAgAAIGhMaAEAABA0JrQAAAAIGhNaAAAABI0JLQAAAIJGlwPPJs0fr+YFRRk1H/u2sWq+9Z+fN8ew7rvuakrNRDXft7bZeVtWd4K+jiNq3razU82trg8+uxxY+zr49ZvUfEHdUjVfW7vS2z652v7nl6i51aHijH9/PJ+7IyL+Ktl72nvNx3xV3bt67oL55mPWd37L+y5S8zOum6Pm7/jOL5z2yep+UHrBh83X5Ls7wVB9PgDACi0AAACCxoQWAAAAQWNCCwAAgKAxoQUAAEDQmNACAAAgaExoAQAAEDTadh2D1YamYlapmrdsOOS0fauFlM82VZbs4R5v27L2d6DbbQxfLcniWPvaeySr5qkePfdp+lUnq3nDhxaq+ex/Xee0/c0Lzldzq82XiMjr29rU3Dp+vlo8lVYVma/x1f5p3bv01llFFWPU/LxNG72MKyLyxJyz1Hyq43aaNv1fNT9otHQTcT9vLHXl1WpOey4AQ4UVWgAAAASNCS0AAACCxoQWAAAAQWNCCwAAgKAxoQUAAEDQUlEURcd6Unt7u1RUVEhbW5uUl5cnsV+JsqqtRUSKKwvVfOGr2/O1O8cUt78a6z347Cgw59rZav7yv+pVz/nuZjBp/njzsYKijJo3P9/qNMbF935azXsa/6DmA912t4TnvvOkmte2Nzjtk6s1J+qfm0j+z3Fr7FzGtaruC8v0z9rne3Pt1nDJf27zsn2ro8DT8842t1UysUTNO147oub9Xf1q7voegJCM9DnPSMUKLQAAAILGhBYAAABBY0ILAACAoDGhBQAAQNCY0AIAACBoBUO9A0myqoUzJfa8fii7GVis6mbr/fV1DORzd0REJHu4U8+NbgbWMR/oGnQad8LcMjVv2XDIaTu5aPinh9S8qf6g87asThRW9b7FtStC3PntqwtBLt87121Z34kkWGPHdZDwsf0n5pyl5hdu2+w8hutn7dppZSg/HwCjAyu0AAAACBoTWgAAAASNCS0AAACCxoQWAAAAQWNCCwAAgKCNyC4HrhW4rpXhw5Xrvd1bt3Z4G7u3s8fp+a7dDCw9bb1ethNn0vzxap5LNwNX1rnpeo5bfG0nF7l874ZjtfxQHsOhMhw/BwCjGyu0AAAACBoTWgAAAASNCS0AAACCxoQWAAAAQWNCCwAAgKAF3eXAqi4urixUc9d70I8UVjcD6zj1dQyoeVxngv4e/TX5NtDtp1uCiEimRP/33evb2ryNYck29zk931eVeRLV6iO9It56f67dD6znW9vved1fhw/rOw8AoWCFFgAAAEFjQgsAAICgMaEFAABA0JjQAgAAIGhMaAEAABC0VBRF0bGe1N7eLhUVFdLW1ibl5eVJ7BeGobiqbatjQsnkYjUf6NO7E/R39at5Z2PPMfZu+Mil6n2kdwJActacONt8zOr04tphARjJmPOEiRVaAAAABI0JLQAAAILGhBYAAABBY0ILAACAoDGhBQAAQNCY0AIAACBoBUO9AxgZss19TrklU+Ln31hx2xno0luGuXJtaUQLJPjks9UW5yaA0LFCCwAAgKAxoQUAAEDQmNACAAAgaExoAQAAEDQmtAAAAAgaXQ5w3JKohLYqty1UZ2O0ss79uO8Q3xcAIxUrtAAAAAgaE1oAAAAEjQktAAAAgsaEFgAAAEFjQgsAAICg0eUAwwpV2MBbw3cIwGjECi0AAACCxoQWAAAAQWNCCwAAgKAxoQUAAEDQjqsoLIoiERFpb2/P684AAAAMpT/Odf4490EYjmtC29HRISIi06ZNy+vOAAAADAcdHR1SUVEx1LuB45SKjuOfIIODg9LU1CRlZWWSSqWS2C8AAIDERVEkHR0dMmXKFEmnuTIzFMc1oQUAAACGK/7pAQAAgKAxoQUAAEDQmNACAAAgaExoAQAAEDQmtAAAAAgaE1oAAAAEjQktAAAAgvb/Ae6bFR1+OOXmAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 20 - }, - { - "cell_type": "code", - "source": [ - "# NBVAL_IGNORE_OUTPUT\n", - "HTML(cleo.anim.to_jshtml())" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T20:42:17.139909Z", - "start_time": "2024-06-20T20:42:17.129508Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - "\n" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "execution_count": 19 - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } + "cells": [ + { + "cell_type": "code", + "source": [ + "import matplotlib\n", + "from IPython.display import HTML\n", + "from pyramids.datacube import Datacube\n", + "%matplotlib inline" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:00.375020Z", + "start_time": "2024-12-06T22:28:59.374690Z" + } + }, + "outputs": [], + "execution_count": 1 + }, + { + "cell_type": "markdown", + "source": [ + "# Read multiple files" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Reading multiple files is being done on two steps\n", + "- First use the `read_multiple_files` method to parse files names and construct the array that will later have the\n", + "values\n", + "- Second use the `open_datacube` method to open all the raster files and read a specific band from each file" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "# read_multiple_files" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "The given path points to a directory where all the raster we want to read exists\n", + "The content of the directory is as following\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "# NBVAL_IGNORE_OUTPUT\n", + "import os\n", + "path = r\"../../examples/data/geotiff/rhine\"\n", + "os.listdir(path)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:05.172869Z", + "start_time": "2024-12-06T22:29:05.164740Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['Qtot_1979-01-01.tif',\n", + " 'Qtot_1979-01-02.tif',\n", + " 'Qtot_1979-01-03.tif',\n", + " 'Qtot_1979-01-04.tif',\n", + " 'Qtot_1979-01-05.tif',\n", + " 'Qtot_1979-01-06.tif',\n", + " 'Qtot_1979-01-07.tif',\n", + " 'Qtot_1979-01-08.tif',\n", + " 'Qtot_1979-01-09.tif',\n", + " 'Qtot_1979-01-10.tif']" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 2 + }, + { + "cell_type": "markdown", + "source": [ + "We need raster names to follow a certain pattern in order to be able to read them with a certain order, in our case\n", + "there is a date in the file name and using this date we will read the rasters and assign the values of each one in\n", + "the right location in the array based on their date" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### Regex pattern" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "the parameter `regex_string` accepts any regex string and apply it to all file names to extract the string that is\n", + "needed to order the files, this string can be an integer or a date\n", + "here are some examples for how the `regex_string` should look like for different file names\n", + "\n", + ">>> fname = \"MSWEP_YYYY.MM.DD.tif\"\n", + ">>> regex_string = r\"\\d{4}.\\d{2}.\\d{2}\"\n", + "- or\n", + ">>> fname = \"MSWEP_YYYY_M_D.tif\"\n", + ">>> regex_string = r\"\\d{4}_\\d{1}_\\d{1}\"\n", + "- if there is a number at the beginning of the name\n", + ">>> fname = \"1_MSWEP_YYYY_M_D.tif\"\n", + ">>> regex_string = r\"\\d+\"" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "cube = Datacube.read_multiple_files(\n", + " path, with_order=True, regex_string=r\"\\d{4}-\\d{2}-\\d{2}\", date=True, file_name_data_fmt=\"%Y-%m-%d\"\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:12.095968Z", + "start_time": "2024-12-06T22:29:12.067165Z" + } + }, + "outputs": [], + "execution_count": 3 + }, + { + "cell_type": "markdown", + "source": [ + "Now the `Datacube` object is created and we can check it by printing the object" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "print(cube)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:15.175441Z", + "start_time": "2024-12-06T22:29:15.168422Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Files: 10\n", + " Cell size: 5000.0\n", + " EPSG: 4647\n", + " Dimension: 125 * 93\n", + " Mask: 2147483647.0\n", + " \n" + ] + } + ], + "execution_count": 4 + }, + { + "cell_type": "markdown", + "source": [ + "# open_datacube" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "To read a specific band from each file and assign it to its location in the array we can pass the band index to the\n", + "`open_datacube` method, (the default band value is 0)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "cube.open_datacube()" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:20.061134Z", + "start_time": "2024-12-06T22:29:20.040176Z" + } + }, + "outputs": [], + "execution_count": 5 + }, + { + "cell_type": "code", + "source": [ + "# NBVAL_IGNORE_OUTPUT\n", + "print(cube.values)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:29:22.019816Z", + "start_time": "2024-12-06T22:29:22.011773Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]\n", + "\n", + " [[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]\n", + "\n", + " [[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]\n", + "\n", + " ...\n", + "\n", + " [[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]\n", + "\n", + " [[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]\n", + "\n", + " [[0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]]]\n" + ] + } + ], + "execution_count": 6 + }, + { + "cell_type": "markdown", + "source": [ + "# plot" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "To animate the `Datacube` use the plot function" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "source": [ + "# NBVAL_IGNORE_OUTPUT\n", + "cleo = cube.plot(exclude_value=0, text_loc=(1,3), color_scale=\"linear\", vmin=1, vmax=100)\n", + "print(cleo)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:30:30.406998Z", + "start_time": "2024-12-06T22:30:30.191163Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAMWCAYAAAAZFvstAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWA0lEQVR4nO3de5hkVX0v/FXV0z1XemRGGS4zigoMFwF1MAJeCQQdghrjY24eNYmviK+JxhyNGTVeEpHkxGM0x0QdgybnnCSeEKMmhCEGwiVeUG4DyE0kDDKAMzAD9Fx6prur6v2DV3OQtYrZxd67a/f6fJ5n/vl11V6rqnbVrP71Xt9q9Xq9XgAAgIy1Z3sCAAAw2yyKAQDInkUxAADZsygGACB7FsUAAGTPohgAgOxZFAMAkD2LYgAAsjdvX27U7XbDvffeG/bbb7/QarWqnhMAwKzo9Xphx44d4eCDDw7ttt5hTvZpUXzvvfeGVatWVT0XAIChcPfdd4eVK1fO9jSo0T4tivfbb78QwiMnyPj4eKUTgjJctP9zC9/n5Q9eW8FMAGiSiYmJsGrVqh+vfcjHPi2Kf3TJxPj4uEUxjbCoNVL4Ps5tAH7E5aL5cbEMAADZsygGACB7FsUAAGRvn64phrpcMG/1bE8BAMiQTjEAANmzKAYAIHsWxQAAZM+iGACA7FkUAwCQPekTs+zSw46L1ndt2pu8z5kzt0XrqeSG1O2bpD0a/2ahkYXx3+umJzqFxyiafDEXntdczeX3CgCD0SkGACB7FsUAAGTPohgAgOxZFAMAkD2LYgAAsid9YpalUiYWrhxL3ufChUdWNZ2BFU1uKKo73UvU4ykT/Z6/yc1ThcYeHR+J1udCgsEgr1sqCST1GqUUTVEBgCrpFAMAkD2LYgAAsmdRDABA9iyKAQDInkUxAADZsygGACB7Itlm2SCxVCOLEr/LFIzEmgue9WtHRevf/cItNc+kGmXFvpUZc5aKXktFtaWk5nTsm45O3ueeq++O1nfcuTta70x2o/XUY5gLMXsADEanGACA7FkUAwCQPYtiAACyZ1EMAED2LIoBAMie9IkG6uyO76ivWr8Eg5N+78XR+rf+4Ipofc071kTr3ZlOofr1n70xWj/0jIOj9RBC6HXjyQP3fnNrtD49ER87pcykh2TSSA1jp6RSJlqJ+uJVC+L1pyyM1m89P530kHotFqwYLXR7APhJOsUAAGTPohgAgOxZFAMAkD2LYgAAsmdRDABA9qRPZOAFr7g8Wl+34axovWjiQQjplInnvev50fpVH/t24TGK2HThvYXv85TnLY3W77/q4ULHGR0fida7M/HUixDSiSKpeipl4pmvWhWtT09OR+sze2eSc5reHb/P1K74fR6+eVe0Pnnf3vhxHoofv19iRCr5ojNZTiLLmTPp5AsA5jadYgAAsmdRDABA9iyKAQDInkUxAADZsygGACB70ieGVL9d8KnkgbKkEg8GUXXKRJm237QjWh9fvSha73bjz9PO2/eUNqei7vjq3YVun0pz6GdeIl2j6LEGSYzoTscTPLrT8cSKVBJIKuEi9d6SSgEw9+kUAwCQPYtiAACyZ1EMAED2LIoBAMieRTEAANmTPtFAhXfCJ3bUn7t2fbS+bsNZRadUuVSyQSqNYBCp1I2J23aXNsawKfP5Sx2rNVreGEWlUiZSpEwA5EunGACA7FkUAwCQPYtiAACyZ1EMAED2LIoBAMie9Ik55IJEykRKKmViGFMpWon0iVBiesIwqiN1o6hewbFTqR6pxzayKP27eupYRUmZAOAn6RQDAJA9i2IAALJnUQwAQPYsigEAyJ5FMQAA2bMoBgAgeyLZMpaKxEp58ZV/mv5hLx6VdcVJv1VojAUrRqP1PVumCx1nNh335mdF671uOk6sOxP/WXemE613pmai9e+df+fjzO6Jm56IzykVpZaKUUvGypUYNyd6DYB9pVMMAED2LIoBAMieRTEAANmzKAYAIHsWxQAAZE/6xByS2ml/wbzV0Xpy93/CFSe+Pfmzl3z9Y4WOlfKC//meaL21d3f8Dt3EY0ikYYQQwsWv/mShOT3nbc9ODBEfY+Onbyh0/EGkkkOe9vKDovW7LrqvyumEENIpE2WSJgFAVXSKAQDInkUxAADZsygGACB7FsUAAGTPohgAgOxJn2igVJpEUSOLyvudqJVIe3jpFX8Uv31nOlq/7Gc/EK2XmWxw2vlvi9Z7e+IJF/de9PVo/Za/vr20ORWVSg65+5IfRuuHnHJA4jid5Bj3fX1b8YkBQEPpFAMAkD2LYgAAsmdRDABA9iyKAQDInkUxAADZkz7RQGfO3Fbo9qm0il4iwWAQl73od6L19mgrWk+lJ5RldHwk+bOLX/tnpYxxxGufHq3f8c93RetlJmikpJ7Xey7dGq0vXDmWPNbiQ+fHx5iJj9GZjD++1Hk2PRFPvih6fgNAGXSKAQDInkUxAADZsygGACB7FsUAAGTPohgAgOxJn8hY1QkQdYwxsij+e10q2aBM3zv/zmj90DMOjtY3XXhvldMp3a5Ne0s5TiqBBACGiU4xAADZsygGACB7FsUAAGTPohgAgOxZFAMAkD3pE8yKVCJB0bSKzu5uGdMpVSplYuWpK5L36XXjj/ueS7eWMqeUyc1TyZ+NLY9/PExtmyk0Rh0pJwDMvk9/+tPh05/+dNi0aVMIIYRjjjkmfOADHwhr164NIYTwoQ99KHzxi18Md999dxgbGwtr1qwJ55xzTnj+858fQghh06ZN4elPf3r02H/3d38XXvva1z7uHM4999zw3ve+N7zjHe8In/jEJwrNX6cYAIAnbOXKleEP//APw9VXXx2uvvrq8NM//dPhVa96VbjppptCCCEcccQR4VOf+lS48cYbw9e//vVw6KGHhtNPPz3cf//9IYQQVq1aFe67775H/fvwhz8cFi9e/OOFdT9XXXVVWL9+fTjuuOMGmr9FMQAAT9grXvGKcMYZZ4QjjjgiHHHEEeGcc84JS5YsCVdeeWUIIYRf+ZVfCaeddlp4xjOeEY455pjw8Y9/PExMTIQbbrghhBDCyMhIOPDAAx/178tf/nL4xV/8xbBkyZK+Y+/cuTO87nWvC5/73OfC/vvvP9D8XT4BANAAe/bsCVNT6cveqtDr9UKr9ehLHufPnx/mz5/f936dTiecf/75YdeuXeGkk056zM+npqbC+vXrw9KlS8Pxxx8fPcY111wTNm7cGP7sz/7scef5tre9Lfzsz/5sOO2008JHPvKRx719jEUxAMCQ27NnTxh/0iFheu/2WsddsmRJ2Llz56NqH/zgB8OHPvSh6O1vvPHGcNJJJ4U9e/aEJUuWhC9/+cvh6KOP/vHPL7jggvBLv/RLYffu3eGggw4K//qv/xqe/OQnR4913nnnhaOOOiqcfPLJfef4xS9+MVx77bXhqquuKvbgfoJFMQDAkJuamgrTe7eHE079uzAyb3EtY3ZmdoWrL/mFcPfdd4fx8fEf1/t1iVevXh02btwYHnroofClL30pvPGNbwyXX375jxfGp5xySti4cWN44IEHwuc+97nwC7/wC+Hb3/52OOCAAx51nMnJyfA3f/M34fd+7/f6zvHuu+8O73jHO8LXvva1sGDBgifwaC2KAQAaY2Te4jBvtJ5F8Y+Mj48/alHcz9jYWDjssMNCCCGccMIJ4aqrrgqf/OQnw2c/+9kQQgiLFy8Ohx12WDjssMPCiSeeGA4//PBw3nnnhXXr1j3qOH//938fdu/eHd7whjf0He+aa64JW7duDWvWrPlxrdPphCuuuCJ86lOfCnv37g0jIyP7NHeLYvZZKkYthHTs1uh4/EScnuiUMqcm2XzJlsL3OeDE+GaBzlT8+dt27UThMVJ6otQAhk6r3Q6tdj05CWWM0+v1wt69ewv//LzzzguvfOUrw1Oe8pS+xz/11FPDjTfe+Kjar/3ar4UjjzwyvOc979nnBXEIFsUAAJTgve99b1i7dm1YtWpV2LFjR/jiF78YLrvssnDRRReFXbt2hXPOOSe88pWvDAcddFDYtm1b+PM///OwefPmx+QPf//73w9XXHFFuPDCC6PjnHrqqeHVr351+I3f+I2w3377hWc961mP+vnixYvD8uXLH1N/PBbFAAAN0Wq3Qqud/stt2WMVsWXLlvD6178+3HfffWHp0qXhuOOOCxdddFH4mZ/5mbBnz55w6623hr/6q78KDzzwQFi+fHl43vOeF/793/89HHPMMY86zuc///lwyCGHhNNPPz06zh133BEeeOCBgR9XikUxAABP2HnnnZf82YIFC8I//MM/7NNxPvrRj4aPfvSjyZ//6BvzUi677LJ9GucnWRQDADREq9UOrVZN1xTXNM6wyOvRAgBAhE5xxp7ztmdH6+e3Px2tvzZ8Nnmsj9zym9H61PaZaH1kUfz3sVTiQSrdYq7beuWD0fqSw+NZjKnntbO7W3js7kz8OU+lkBR9jc6cua3wnAByN8zXFDedTjEAANmzKAYAIHsunwAAaIimfXlHk+T1aAEAIEKnGACgIdrtENo1bYDLrFFsUTyXXDBvdbR+3JvjX3N43Z9tLHT8deGs5M/ev3Z9/D4b0vfh8Y2Ox7+zfefte6L1VPrEIFKJFVIjAJiLLIoBABrCl3dUJ69HCwAAETrFAAAN4cs7qqNTDABA9iyKAQDInssnGiiVMpFKHpjZM1XldPpKzSmVbFD1cYZVKmVieqJT6Dip56M9Gv8TWHe6lzyWlAmA4dNq1fjlHTbaAQBAXnSKAQAawka76ugUAwCQPZ1iAICGaLfaoV3Ttb51jTMs8nq0AAAQoVM8h6SSB3rddMJAWdZtOCta/8ja9YVuX1YKQyqtIoRyExrKUvTxFVXHY2iSVIJLiiQOYGjUeE1xcE0xAADkxaIYAIDsuXwCAKAhRLJVR6cYAIDs6RQDADREq9Wu7euXc/uaZ4viIVV0d3w/namZ0o5VlrJSJlKedOSS5M+mdxV7PqYemo4fZ0d8rql0i2FUZqpC6pwtOkaZ5z4A7CuLYgCAhnBNcXXy6osDAECETjEAQEO02+3Qbtf0Nc81jTMs8nq0AAAQYVEMAED2XD4BANAQrVYrtFo1bbSraZxhYVE8pPrFWBWNrPre+XdG608/c2W0fucFmwsdfxBlRa895XlLo/X7r3q4lOMPq/Zo/IOqlainYuLqiD8rc4zU4+5O96L1onFwG8aPKjwnAOYGi2IAgIYQyVYd1xQDAJA9nWIAgIZotevr4Gb2Lc86xQAAoFMMANAQ7dAO7ZpauO3MeqcWxQ1UdEd9avf/5ivui9YPfsmTo/V7L3+g0LghhLBuw1nR+rlr1xe6fUprZG6/YUfHR6L1VHrHgmXxt3Qvkc6QSm0oU9HH0E9qvqkximrPy2tTCQD/aW6vKAAAYB/oFAMANIRIturoFAMAkD2dYgCAhtApro5OMQAA2dMpzlhnshuvT8frg2iPlvNb5oqTl0XrW765vZTjz7aiCQ3jqxdF65P37S1tTmVJJmWsGI3WW33OmcnNU4XG+OaaE+LH2RZ/nl62/eZoPZXgEkLxNBiAJ6LVaoVWq6ZOcU3jDAudYgAAsqdTDADQEO12K7Rruta3rnGGhU4xAADZsygGACB7Lp8AAGiIVrsdWu16epp1jTMsLIozkEqA6E73EvX4Tv5BpMZYt+GsaP3cteuj9X9Ze2G0/tST74vWO3vjKQUhhHDt/7gu+bOY1b/4jGi9140/tu+df2e0vvLUFckxUsfa8/CeaH3btRPJYzXFni3The+z5PAF0fpLb7k+Wv/OC0+M1ic374jWL1x4ZOE5ATA3WBQDADSESLbq5NUXBwCACJ1iAICG8DXP1dEpBgAgezrFAAAN0arxyzty6xRbFGcglQCRsuMHu6P1hSvHkveZ3JxOeyjDZW//SmnHevZbj4vWUwkQt/z9LdH61LaZaP2wVz81Wv/+l3+wD7MbHmPL4x8PqcddllRaSggh7Lw9nsZxy2tOi9a3XvlgtH7mzG3R+gXzVhe6PQBzh8snAADInk4xAEBDiGSrjk4xAADZ0ykGAGgIkWzV0SkGACB7OsVzSGrnfMqCFaPRemeyG69vj9fL9L6L3xKtn7N2fbS+bsNZhcfY+OkbCt1+dHyk0O3vuuSeQrcfVqmUicWHzo/Wd23aW8q4/dJSUq9FqptRNDVCygQw7NqhFdo1XevbDjrFAACQFZ1iAICGcE1xdXSKAQDInkUxAADZc/kEAEBDuHyiOhbFc0hq5/yFC4+M1qe2x9MFWqPxN0G/VICy1DFG1aYnOtF6vxSL7kz8cXd2V5/4UdTI/GJpHHVoz4vPKZXIUjRlol+yi8QKgLnBohgAoCF8zXN1XFMMAED2dIoBABqi3Q6hXdO1vu3MWqeZPVwAAHgsnWIAgIZwTXF1dIoBAMieTvEc0i82KqadiF7rzYFYtDKlItZm6zizbeK23dH6suP3i9a3X7+jtLFXv+aIaP27X7glWi8rLi31XgmhvNg3AGaXRTEAQEP48o7quHwCAIDs6RQDADREu/XIv7rGyolOMQAA2dMpBgBoCNcUV8eieA5J7XZP7Y7vJlIm+u20r9ozX7UqWl/31bOi9XPXro/ffkP89lQnlTLxwo+eHq3vvu/+aL3XTaefXL/++mi9aNJD6j0xsij+x7MzJm8tfCz2TVnPn7QP4ImyKAYAaAid4uq4phgAgOxZFAMAkD2XTwAANESr1QrtVk2XT9Q0zrDQKQYAIHs6xTxGKpViEE97+UHRenveSLR+x1fvLm3s2ZJKMOjs7lY+9uh4/HmdnuiUNsZL//TnovVUasTX3/tP0Xodz0dR7Xnxrki/hASpB09M0dScVDpO6vZeH+aaVqvGjXY6xQAAkBedYgCAhmi1HvlX11g50SkGACB7FsUAAGTP5RMAAA3RbrdCu6aNdnWNMywsijNQdHf3IA455YBo/a6L7ittjJh1G86K1s9du77wfYqqI+mhqJGF8T/+DDKnUz7zC9H6pWf/XeFjDZsFK0aj9T1bpqP1fgkGUg+emKKfQ61E+kRIpOYM8jk3l1+7Mj/3U+by88fcZlEMANAQrVartqg0kWwAAJAZnWIAgIZo1/g1z3WNMyx0igEAyJ5OMQBAQ7Taj/yra6ycWBRnoI7dxjN7Zyofo4h+CRP9kiliPvCNt0brdaRMtBM77buJnfap9ISFK8ei9cnNU8mxW2Px+4wsin9KdnZ3k8eqWtEEiEUHLojWO5Pxx7Bh/KjK58S+SZ1nqTSYeYl6v3O/6GfmML6mdXzuVz32MD6vzG2Z/Q4AAACPpVMMANAQItmqo1MMAED2dIoBABrC1zxXR6cYAIDs6RTXZDZ3AqeMr14UrbdG4r8Zji1Ony5bvrm9lDnV4cPXvi1aTyU3/H4ireJ9F78lWk8lQwwidaxUAsRLv/Se+IFm4o8t7NqRHPvS18cfd2pORZMyBpF63GsnbonWL1x4ZLT+5DVPitZftv3maL3f+7esHfKzmXhQNCljGD/PUmkwqfSJQaTO8Tqej6pfizrev0XNhRSQKrRaj/yra6yc6BQDAJA9nWIAgIZotVuhVdO1vnWNMyx0igEAyJ5FMQAA2XP5BABAQ7Rbj/yra6yc6BQDAJA9neIBDWMkUSpSZ9Gh86P1idt2FzrObEbzpIwtL34Kp6LXUv7wrndG67972mej9Q0fiD+vV5z0W4XG7ecl//TBaP2SU+P1lNE+cVVFX++yzo/U+RdCCJ3d3Wj9X5YdXWhO8+bHH/eG8aMeZ3aPNVufBalx+70negVfo2H8nCtqv5WLo/XJzVOVj100Iqzf8100Nq/ocVqJ912/ztkZk7dG66koxNTtU++71Ps9l+i1FF/zXB2dYgAAsqdTDADQEK12CO2aWpqtzFqnmT1cAAB4LJ1iAICGaIUarykOrikGAICs6BQ/jqK7r/vtnI8pM9EhdayZiU4px6nDyKL472ntefHndWrbTGljj69eFK0/fPOu+B2eFi+nUiZe8s0/SQ/ejb9GrV589/W//+y69LEabpDzbzpxjh/+mkOj9U3/ene0ntrt3u99Xdb7JXXup+a0cOVYtD5IqsIwJs6kklEOPvmAaH1mb/wcuOfSrdF66vkLoXhKR9FEm0GSJC4+5FnRejJ5ZSb+GFJjpI6zcNWC5JwuPey4aF3KBE1lUQwA0BCtdn0b4Gy0AwCAzOgUAwA0RLvVCu2aNtrVNc6w0CkGACB7OsUAAA3Raj3yr66xcmJRHPonTKQSCaZ3xVMPOpPxXbRlpiQUlZrTMErtQi6Wn9Ffatf5xG27SxzlsS4/+Z2VHj+E4gkGqdSGQY41m1LpCa12vJ563MP4mFOfQWWeryMLU380jD/uOlIpnrE2Hu9y+z/cGa0XndMgKR0pRVMSUufrZUcdn7zPafd8t9AYRb1s+83R+rdP+qnkfZ7/reui9VSSRdGUiUFSOuCJsCgGAGgIneLquKYYAIDsWRQDAJA9l08AADREu90K7cR+iSrGyolOMQAA2dMpfhxVJxLUoUnpE3Xo1bBzfraUmZIwjCkTKat/4bBo/Za/vr3Qcep4zCtOXhatT++ajta3X7+jtLFHx0fiY/dJIZktrXa8Z5NKmUglOtSRlFHUGZO3Fr7PFcc8J1p/8U3xBIiiyQ2p2x9w4v77MLtHS51PRccmzka76ugUAwCQPZ1iAICGaLce+VfXWDnRKQYAIHs6xQAADdFqt5Lf1lnFWDnRKQYAIHtZdYqHcYdrasd0P0V3Uw/j7uuiRhbFf39LpQWkbh9CCHu2xHf5F7Vuw1nR+rlr1xe6PfvuWb92VLT+3S/cUum4T3v5Qcmfdabj52B3Jr4D/97LHyhlToNIpQIsXDkWrU9unqpyOiGEEI5909HR+k3/s9hrOhc+5/pJpUykUilS7nv366L1Ne9YE62nzuMQiidcwLDLalEMANBkItmq4/IJAACyp1MMANAQItmqo1MMAED2dIoBABrCNcXVmZOL4jpSJlKpEUV3QI8ti78EZSUkDKKsx9bvWCmpMUb3G4nWU+kTqXodiqZS9LtPjo5787OSP7vhc98tdKx+z3nM+pHfj9bvvGBzoeM0TSplYsnhC6L1I14eTwHpdePv3143/X684S9ujNaHMU1ibHn887poCsMgqQ3feE48HSKVSrHld98QrV/1sW8XHjtl2+0vidav+5kXResP3flwobG/tuKYaH2Q/+MlYrAv5uSiGABgLmq1Q2jXdPFrK7OLbDN7uAAA8FgWxQAAZM/lEwAADWGjXXV0igEAyJ5OMQBAQ7RardCqqYVb1zjDotGL4jqi10bH41Fg0xOdUo6fil5buHIseZ+9ifuUFWHUSsWoDXD81JxSUW2pyKPknGisZFxav/SztcXGKBp1d1ZiTutCnpF5x7/xhdH6lR/9t2i9l3i/z2a8WqkRk/Pixyoa91U0qi2EEJYdv1+hMVqJryIrM5rsuAsvj9ZTj2Pp0Yuj9VT02ulbbip0fHiiGr0oBgDISTvU+DXP9QwzNHJ7vAAA8Bg6xQAADSF9ojo6xQAAZM+iGACA7A3V5RNV7yhN7UKev2I0eZ/JzVOFjjUXdlmndlj3y9soOnaq/qTD4zusH7jmoT6jN0O/JIRUEkPR9ISix+/n/ZefHa13dndLGbusx1am9138lmj9nD7P32w9jtR7rl9SS+q1S75G7x++1ygl9Xxc9Rc3Ruujic+5EEJoJ3YxjYzE63sS/3eVlUoRQgjf+qnnRev3f+DXo/Wr/+Tb0foZHy00pYEUTdcYX72oyunMOS6fqI5OMQAA2RuqTjEAAGnt9iP/6horJ5k9XAAAeCydYgCAhnBNcXV0igEAyF7tneLZ/M7yfikTRSV3eJeUPjE2Xl4iRkrq9tMT8ZyJseXp0yWVWDGyMP5715OevjRav+fSrckxqjayKD7XXsEEjToUTZMYJCHhIwMkVsR84BtvjdanSzl6uVKv6R/f+1+T93l3wXSN0fGRaL0zGU+GKJrg0u8zqGgSSJOSQ77559dH6ye+8VmVj735n2+N1j/7tfhrccgZR0br/dInjn3Tz0Trl73tS4WOlfo/uGhSxiDHKjqnSw49tvCcctBu1fg1zzrFAACQF4tiAACyZ6MdAEBD2GhXHZ1iAACyp1MMANAQOsXVqWxRXEfKRCo9IZUMkUptOODE/ZNjLDv8SdF6KiUhNaeiSQXtkfSZmEpJ6OyO715PSc0pdfypbTOFjh9CCEf+8mHR+u1f/Y9ovaznbxCpBI3pgs/rIIZx9//7Ln5LtH7OaZ+N1pNzSqQtDKNlx+8XrW+/fkfyPuuuH77Xriypuf7hGZ+L1n/3wjeXNnbRz4JOZ/bSYM5+WbGVw/oN8bSKv7g4/RgOnMWUiZSiiUdFFU1aOmMy/rzCvtIpBgBoCJFs1XFNMQAA2dMpBgBoCNcUV0enGACA7FkUAwCQvaG6fGI0sUt9eqITrScTCQomFWy98sFCtw8hhGPfdHS03p4Xfwyp+nV/tjFab/W5uj2VMpF6/jqT8dsnd3Enjp9KpQghhCNfe0S0ftNfDd9u4AUrRqP1PVuma57J4/vHn/qbaP1bG6ofO3V+fOAbb43Wf79g2kJZKSqDWHr04mi9X8oE/6nVrr6fUjQdZ3oq/v/EMDrrZ+Kf7/1Sm56/8a8K3aeOVIpU0lNRReeaSpno9/yVmbox21qtXmi16klbqWucYaFTDABA9oaqUwwAQFqrxkg2G+0AACAzOsUAAA0hkq06OsUAAGSvsk5xHTs9++00Lcuy4/eL1m887+ZSjr/mHWui9cUrVyTvc8X1F0brqZSOhSvHovXU98qn5tTPxs9dV/g+VVp86Pzkz3Zt2lvjTPbNmneeEK1vPO+b0XrRpJZBtBM7y8sao46UidRjmNk9U/nYc9l7LnhTtP7x1/yvaP23v/T60sZOnTczM/F66hxIpheVqMz/o57yrBOj9ZOuPa/Q2GX+3zy2LL6EKPq4U3OqI0GjiXSKq6NTDABA9iyKAQDIno12AAAN0W71QrumL9Woa5xhoVMMAED2dIoBABrCRrvq6BQDAJC9RnSKy4q1GVsef7gjC9O/Gzx0885Sxk655pPXFL7Pi//4jGj9infHo9pSTnz/i6L1jZ+7MlrvTKYjtFIxSbMVh9Qvdi0V1/akpy+N1ufNj8ef3XXRfYXm9Jy3PTv5s2v+5OpCx0o9r2VGtVX9Go0sir/v6ohq687kdZ1cXd71j2+I1j/xS3+bvM/bv/jLpYy9Z3I6Wk/Fhu3ZEr99meqIFFt+3Auj9Rdc/ZnCx4q57Kjjkz87ddON0fqG8aOi9V5Jnym5RK+l6BRXR6cYAIDsWRQDAJC9Rlw+AQDAI93Mdk2XNeTWOc3t8QIAwGPoFAMANEQr9EIr1LNZuK5xhsVQLYrLSplI7cCf2jZTyvGb5nnvPD1av+K/XlDaGLOVMpGycOVY8mcjiTSJey7dWmiMp738oGh9/JD9o/UbvnBDoeMPYpCUiartf+ySaP3hW3dVPnbq/NubSB4oM72jqHPXrq98jHUbzqr0+Knnu9Uu74+Syc+abnzsVMpE6jghFP/cKuv/rrKOE0IIq3/xGdH6gldfF61f8kufjdaXHr04OcawPe7cUyl44oZqUQwAQJpItuq4phgAgOzpFAMANES7VWP6hE4xAADkxaIYAIDsDdXlE0V3jqZ2rA7jDvyi+u2MnvjZN0XrL12wIFq/4re/XMqc+pmtlImx5fFTeHLzVPI+kyH9syLuuui+aH3p0RPRemd3N3msoukds/V8D2Jy697ZnsJjpJ/X+GdHKpUihPTnTSrpIZUy8f7Lz47W+503Mc981arkz+4odKTy/Obf/GLyZ5/5tX+I1s/+ws9H619896XR+i+f+8JoPfW/QR3voaLv636f+884M/66tufFz83b/s9/ROsHvfiBaH3Z8ftF69uv35Gc02xJfe7notXqhVarpki2msYZFjrFAABkL+9ftwAAGkQkW3V0igEAyJ5OMQBAQ7RDL7Rr+vrlusYZFjrFAABkT6d4lqV2G59zWvx76EMIYd3Rr6l07CYlG8zMYtLIksPjaR8P37yr8LGa9Jyn0hNSaQt7Esfpt9N+2HRnynt9Pnzt26L1PQVTJlLu+OrdyZ897eUHReupJJU6/OaXXhutf/at/xyt/7/n/Uy0XtbzV6bU+zqVZvLUUw5OHuv7X/5BKXMK3fichjFlImU2P/eHgWuKq6NTDABA9iyKAQDInssnAACaosYv7wi+vAMAAPKiUwwA0BDt1iP/6horJ41eFJ85c1uh218wb3W0Psgu+LLSAlIpE6md/CGEMH79tdH6xPHPLTR2kxIPUup4DAtWjEbrO29P5SrMnvHViwrdfmQs/ceiB2/cGa1/bMu7ovV3FUylGFkYH7s7XXxneVlJKqnjdEpMNuhMzl5KQipl4pBTDojW77l0a5XTCSGkkz3e/FeviNanq5zM4xhbHv8vc2rbTKHj7H/0eLR+54WbC8+pqF6n+ckNc+H/LoZToxfFAAA5aYVeaNX0pRp1jTMsXFMMAED2dIoBABrCl3dUR6cYAIDsWRQDAJA9l0+E/jtZU8kDe7YU2wM9SMJFSiplYtkNV0fr2487obSx57LR8ZFovehrXYfULviJ23aXNsay4/eL1rddOxG/w9p4uawd+/2UlWRR5q721Ht+emL4dv/f9/X7o/UDTtw/Wt965YOljZ1K9hhZFH9NU7cvK4Gkn9Q5u/y58TSJkbH4Z0qZz1/KSz4eT++4/Le+WvnYVKtV45d31PYlIUNCpxgAgOzpFAMANEQ79EK7pqi0usYZFjrFAABkT6cYAKAhRLJVR6cYAIDs6RQ/jlTywMKVY9H65OapaP2c0z4bra/bcNZgE4uoepdoKp0hhOHcUV/UMD6G1HOe2gWf2oHfStTb89JtgMlte6P1VCpFSpkpE3UkWZSlzNSDqqXmOjM5e8/rbKZMpKQ+95OJLLOo16n+8yz1WsxPpDZ1JuOvaareS7ymTXpvVUH6RHV0igEAyJ5FMQAA2XP5BABAQ7RCL7Rqikqra5xhoVMMAED2dIoBABqi3XrkX11j5USnGACA7OkUP46RRfHfG1LRa6nInjqMtMqJ4Kkj9mo2Y5XKkjo3UlFSgygaE5d8/hL1Qc6Y7Zt3ROu/v+03ovUPrF0frb/v4rdE62PL0h9LqYjEqqXO1xCadc4Wtf36+Gs9vnpRtN7ZGz+jpranPzu6M4lzM/E+ms3otdTnflGpz45+UvGJqbjFK//wa9H6SR98abT+rQ9fFq0/5XlLk3PqduKvxTBG1M0lrimujk4xAADZ0ykGAGgIX95RHZ1iAACyZ1EMAED2XD4BANAQNtpVx6L4caR2QKd2D3/g2E9F6+s2nFXanFJGCl77s2DFaLQ+yA7/0fGRQrdPpSrUkeiQsvy549F6L7HDenLb3viBlsXLncn0Y5hJPB9l7bRPpSekdq6HUDz5oldwruec9tlCtw+hvPdR6vn4o7XnRevv/sdfL2XcQaTmOrIw/l4p+roNYuK23YVu3y9tIfXens2EmrJSJlIG+Twr+qqmEjQe/o97o/UVJ8c/uLZ8c3vBkaG5LIoBABrCRrvquKYYAIDs6RQDADREK9TX0czsW551igEAQKcYAKAhXFNcnUYvii+Yt3rWxv7ISz4Trb/v4rdE69VnJ4Rw3zEnResH3/zNaP3eo08udPzUbuYQqt+tXVRq53oIITx5zZOi9a1XPljRbGZfcsd+n538qUSRVGLFwgPmF5rTIEkS565dX/g+RaxLpEz8yWv/d/I+//Urr4/Wy0pJGFsW/5geJCVmtgyStlDW83fmzG2lHCeE6v/PGVue/i+5Pa9YgkzqM3nywXhySJNSJsp8TeH/5vIJAACy1+hOMQBATnx5R3V0igEAyJ5OMQBAQ9hoVx2dYgAAsqdT/DhSu91TO+frSJlIOeDE/aP1VMrECTf+bbR+09o3Rut1JEykdlh3Ch7nwJOXJ3927+UPFDza8BlZFP99NvX8TU8UfQbT91l69OJo/cEbd8YPtLLw0ElFEytSCRpFn493nv9fkj/70//yd9H6b/zvXyg0RkoqXaBMz3/vC+I/6Ma7RFf992/Fb15SYsQgUu+JYZSa69S2mcrH3nzFfdH6wS95crQ+jJ+XqRSQXFIpWqG+a319eQcAAGRGpxgAoCFcU1wdnWIAALJnUQwAQPZcPgEA0BC+vKM6hRbFF+3/3LCoFd/NXYaiO0fbiV3Zs7kDuiypxxZCCE86ekm0vvXKBwuNMbZ3R7ReR8pESioVYMGK0Wh92ZFLo/Vh3DFdps7ueM5JKlNhbHn8rZ5KqwghhLEnxZ/zh2/e1Xdu+2rZ8ftF69uvj5+Xg+hMVp8HM2+02t7C83/njGh9eiKR9tFLf/51Z+JnyLc+fFmhOa155wnR+jV/cnWh45SpV8Pnfur/qFQaQkrq/TuIoqkbqc/YXif+/PX7vyj1f23R/8svXHhktH7G5K2FjgNPlE4xAEBDtEMvtGvq4NY1zrBwTTEAANnTKQYAaIhWqDGSTacYAADyolMMANAQ0ieqU9miOLUjtt+u26I7ePvtii3iqNcdnv7h9mJjl5V8seQZC5M/K2t3/lU//dZo/SXf/JP4HbqpbIMQLn/hu8qYUtKeLdPR+pNOXxatP7hyInmsoukacyHlZGrbTLTeb+d66jlPOXft+mj9fRe/JVrfnnj+UqkUIYTw0M3xxIXUa1HHa3T2F34+Wv/cWf8Yrf/Nc/5XtN7rxj8bL3vbl6L1Os7L1BiplIlnv/W4aH3jp28obU4ps5lUUFYqRT+p1yL1f2rRVIqp3fH3ex3vISkTDAuXTwAAkD2XTwAANITLJ6qjUwwAQPZ0igEAGkKnuDo6xQAAZE+nGACgIVqtGr+8o6ZxhkVli+JUTMzY8vSQ7XnxyJlUNNTIwnij+5mvXBWtt9rx49/y17cn57QunBWtn5OIn1q3IX77oqZ3xSO0BpGK5pmeiEesXX7yOwsdJ4QQTrn0I9H6pae8/3Fmt2+OfdPR0fqN591c+Fipc7CXiB5KPU9zQb+IxLIUjXRKRUMNcqzZ9Ob1r4zWL7jilmj9yb9yfLS+cOVYtD6TOC+70+Wdr0Wf7+5M/Hxa/tzx5H0eujUes1fHuVm1MqPaUq9F0ai20fGRaL3Xac57C6qiUwwA0BCuKa6Oa4oBAMieRTEAANlz+QQAQEO4fKI6OsUAAGSvUKf45Q9eG8bHH72LuOgu2qltxVMVDjnlgGh93vz4Ltrbv7Sp8BizZcGK0Wh9byJxYxCpVIWUoruZQ0inTJz6tQ9E65ec/vvR+pp3rInWb/jCxmg9tZO6M5me6yDnYBn6pXekntslhy+I1nfevidaT712Ka0+t0+lwfz+Cz4drZeVvFL0fG2axfPj6RCTm6dqnsngnnr6gdH6DZ/7buFjja9eFK1P3La78LGaIpVK0U/q/9qiCSGp9/z263cUnhOzQ6e4OjrFAABkzzXFAAANoVNcHZ1iAACyp1MMANAY3dAKdX3jY/O/WbIInWIAALL3hDvFZX63+/7HLonW77l0a+FjNcWeElMmUoruTi56+34u/dk/iNZPvei90fplP/+H0XoqkaDMuVZtZGH6d9DR/eIpGqmUiVQqRbtd7Pfcfjv84xkJaWPL4x8nRdMkdm3am/zZwpVj0XrR5IZUEki/hJWixq65IVrvnXJ8tN7tk04SU+ZcUw564fJoffOlW0obI3UOLj50frTe7/zg8fVL5okZJCkDmsrlEwAADdFq9UKrVdNGu5rGGRYunwAAIHs6xQAADdHq9UKrV1OnuKZxhoVOMQAA2dMpBgBoCF/eUZ2hWhR3poYvD+/cteuj9XUbzorWU6kAqRSBuS6VDvHQv3wtWq9jR/1smdo2U9qxip5P7dFWtD6+elHyPv2SKWKKPr7UnPpJpUwsWDEarad22k9PFM3WKG6kFR97soaxy9KZiT+GVuK1S/3pcZCUmO5MsfukEo/mSnpC0cdx4cIjo/XUZ+xceZ7giXD5BAAA2RuqTjEAAGmPbLSr56+qNtoBAEBmdIoBABrCRrvq6BQDAJC9yjrFqZ2sqR3CIaR3uy8+dH60vmvT3uITixgdHynlOCGkUwFSj2Hynvhu+n67tVO79gfZ4V1Ev7SAomN39sQfd+q1qCMtoKgmzTVlzwPx1yGEdPLK79/4G9F6Z3n84ySVSlHm+bpny3RpxypLu938DsvMZPy1K5oSM8hnx0yD3kdQp1bo1ndNcZi7iVAxOsUAAGTPNcUAAA3hmuLq6BQDAJA9i2IAALLn8gkAgIZo9WrcaFfTOMOiEYvizmS1L0odaQGppIyxxI79Xp+d+WXNt2iKxfwVo8ljTW2P71J/1uuPidY3fvqGx5ndo9WRuJEaY2Rh/A8qs5ky0W83f0wrcftUMkQ/qVSA1POROscHGbtJRlrNvxZv+/U7ovXx1Yui9VSC0CDv09T5NBdSX+pQdRoRzEWNWBQDAGCjXZVcUwwAQPZ0igEAGqLV64VWr6ZOcU3jDAudYgAAsqdTDADQENInqqNTDABA9oaqU7wgEfm1Z8t0KccfWRT/HaCze/Z+E5rNWKpU1Ni88Xh81+TmqeSxnvmqVfH7bN8ZrReNVaojXigVWzaMUWOFn4/E7c9duz55l/dffnb8UIn3S+r9lXo+ZjNaq8zPgmPeeGS0ftPxz43Wf+r6/xWtf+f41xcad+HKsWi93/u0LKnotTrm1J0pdu5fMG91tH7mzG1lTGdozfXHB1UYqkUxAABpItmq4/IJAACyp1MMANAQNtpVR6cYAIDs6RQDADSEL++oTmWL4tSO3346k9W26VM7y/vtwF+34axo/dg3HR2t33p+fMdvHTvqiyo6pxUnL0v+7I6v3h2tp3b59ypOk0iNG0L6PEjVUykJ7XnxtIqUdiLdIoTiaRKpY6WOkzrHP/id/zc5xlTBJIbU85eca8EUgX6WP3c8PvZIfOzWSPz8GFscT0/Y78D48UMI4e4rf/A4s/uJsQv+OTL1vpvctidan1qUTj+pOmknlTKRSmoJIf25X/R9CvBE6RQDADREK3RDK9R0TXFN4wwL1xQDAJA9i2IAALLn8gkAgKbohRDq2gCX1z47nWIAABiqTvEwJjSk3HjezdH6Ua87PFrvTMV3hH/v/DsLj53ayT21Lb3rvAzd6eKvz2ztFO83bipNInX+FT0vF6wYjdb3bJkubU6plIl+qRsxVaeAhNBnrn3SOFKWHb9ftL53Rzz1YOft8YSG4rYkf7Lk8AWFjrR426Zo/ZBTDojW77l0a7Q+vnpRtD6M6QyDfDYVTVg5cyae/ANzjS/vqI5OMQAA2RuqTjEAAGmt0Autmi72rWucYaFTDABA9nSKAQCaosZrioNrigEAIC+VdYpTO4EvmLe6tDGK7k6uwy1/fXu0ftirn1raGKmd3Knd6JP37Y3Wi6Yq3H/Vw8mfPeV5SwvfZ7bMK5j0kJK6/cjC+O+aqeSEEELYfv2OaL1oKkXR5IF+j7no2EUNknyRep5SFh86P1rftSn+nkh9prQGSMpISnReUikTKRO37Y7WU58DIYTQ7cbHLiulo8zP5Nn8HAfy5PIJAICm6PVq/PKOvH45dfkEAADZ0ykGAGgIX95RHZ1iAACyp1MMANAQrV4vtGq61reucYZF7YviQb6fPpVYkdqdPLIo3gD/yEs+U3jssnZTf//LP4jWn/mqVfHjd9LH787Ed/9P3FNsZ34qXaAzGf9zSb/H3Jkq508sqdeuaKpCPwuXxxMJUvV5C+Nvk61XPhit79kyXageQjqZYufmyWh94cqxaP0Dx34qWv/ILb8ZrXcTxwkhhMnNU9F6Wa9RmekCqecjlTKRkprTaCJRJITiyQ2tbrX/yaRSKfpJPX+phJDUZ0Sq3k/R/xPKTDAC+L/pFAMANEWvW9+XarimGAAA8mJRDABA9lw+AQDQECLZqqNTDABA9oaqU1zWruJUysS6DWcVPtZL1v9StH7pWV8sfKyYO756dynHCSG9g3x6Ip5WUabt18eTL5YevTha3705vmO/rLmmkjVCSM+1qANO3D8+9sLRwsda9ownx39wQrz8K/f+VrT+vovfEq3vGiDpIXU+pVIp5oJUskaZ76HLfu4j0fqpF/xOtH7pq/84Wi8zvaNJr+kgCUYwl7RCL7RCTZFsNY0zLHSKAQDI3lB1igEA6EMkW2V0igEAyJ5OMQBAQ/ia5+roFAMAkD2LYgAAstfoyyfOXbs+Wv/fB3w8Wu++7vBo/Za/vj05Rip67aV/9ppo/bK3fSl5rKqlYpVS8WTdmfifRTq7y7uwfnLL3mi96pi41GMr09YrHyztWPdcujVaT53jH/jGW6P16URMV3u0Fa33i/VKnU8LVsQj5/ZsmU4eq2q9EuPJypJ6zlPvr0vO/G/R+mlffke0ft0ffCFa73XSz8XMnmLvu+ldM9H63sRrXWZMHJDQ69W40S6v97ROMQAA2Wt0pxgAICu9Xn0dXJ1iAADIi04xAEBDtEI3tGq6prgVfHkHAABkZag6xWfO3FbsDvNWR8s3FRz3yF8+LPmzW//2+9F6KmXiJZ94VbR++W99teCsylN10kM/ncnZ+S2zzASNOqRSJv7+iM9G69dsiL+mI4viv+eW+XzM1mvaT1lzKvN5KiuJoXP/lmh927UThY81SApJkeMANXBNcWV0igEAyJ5FMQAA2RuqyycAAEhr9WrcaFfXl4QMCZ1iAACyp1MMANAUvW6NX/OcV6fYojiEcMc/35n82TNftSp+n6/eHa2nUiZe/MdnROu9TjxFoNdN7/j8+nu/lvxZTNGd4mXtmg9hOFMgxlcvitYnbttd6DhFd/KnEiZCCGHdhrPiPzhiTaE5DePzXVQqQaOf2UxYKSp13rz4Ez8frV961hdLG7us93aZnxEAw8KiGACgIVq9XmjVFJVW1zjDwjXFAABkT6cYAKAput1H/tU1VkZ0igEAyJ5FMQAA2XP5xONIpUwcesbB0fqmC++N1q9494WFxu2XGHHS7704Wr/6k9+I1lM781O7/EcSY/f67Difrd3oC1eOResjC9O/76VSJpYevTh+rNH4seYtjL993rn/H0XryYSJPnqJP10tWDEare/ZMl14jKKqTnrod561CiappBRNDhnECz5yWrQ+snBBtH7Fb/1DaWOX5cyZ22Z7CsBP6vUe+VfXWBnRKQYAIHs6xQAATeHLOyqjUwwAQPZ0igEAGsKXd1RHpxgAgOxl1SlO7TgfZDd9KmXiaS8/KFq/66L7Ch2/3y74b/3BFdH68971/Gh94/qro/XU465jZ35RY8vjp+rk5qnSxnj45l2Fbv/iK/80/oMPlzCZ/9/eicloPZUyMTo+Eq13Z+KvXWf38F0v1vc8S/wslaSSenypMVLH+al3xxNfQgih1Y6/X7714UsKjV0HaRIwB7imuDI6xQAAZM+iGACA7GV1+QQAQKP1ejVePmGjHQAAZEWnGACgIUSyVSerRXGZu75XnroiWi+aMlGmO/715mh95YvjiRg/+Ld4gsZsJhKkdv9PbZupeSb/6dQLfidav+TEt8fvsHZ9aWN3Z4olowySpFK1OtJMDnvFodH6bf/nP6L1Ne9YE63PW7wgWv/OH8cTX0Io7/2SSoa4YN7qUo4PQH9ZLYoBABqt233kX11jZcQ1xQAAZE+nGACgKXq9+lIhMrumWKcYAIDsWRQDAJC9Rl8+kdqtnVLmLu5ed/b+pLDs+P2i9e3X7yhUP+SUA6L1XuLC+nsvf2AfZvfEzGbyxWlffke0fvGZ/63mmfyn7335jmj98NccGq3f/qVN1U1mQK1E+kRIpE+k0ipCCOHpZ6yM1lMpE89+63HR+jWfvCY5RlnKSpMo+jkHzHG9bo1f3mGjHQAAZKXRnWIAgKzYaFcZnWIAALKnUwwA0BS9Gr+8wzXFAACQF4tiAACy5/KJEMLClWPJn7XnxeOh7rl0a7S+5PAF0frO2/cUn1hCWXFwqcfwlOctjdb7RWV1E/FajTI9NdszeIxURF13plPzTAaXegyj4yOFjzWzd6bQ7W/4ixsLjT09Uf3zKmINeEJEslVGpxgAgOzpFAMANIVItsroFAMAkD2dYgCApujWGMlW1zhDQqcYAIDs6RSHEHp9khN2bS6WSJBKmViwYjRa37NlutDxQwjh4Vt3ReuLD50fre/atLfQ8e+/6uFofdnx+yXvs/36HYXGKEuZKQK9TnMSHbqd+DmbSghJpYOUmShS9LVI1fudZ3dddF+03u9xxHQm492Pos8fQO1cU1wZnWIAALJnUQwAQPZcPgEA0BS9Xo1f3uHyCQAAyIpOMQBAU3R7j/yra6yMWBSH/gkQZaUbpHa7DyK1E77MMWL6JUwsPXpxtL57czyNY5B0iJjUY164cix5n5PPfV20fskvry809rlr47f/wpJzo/XvFTp6f3desDlaP+SUA6L16cn4Ob7nwXQySWdvsdeoaMpJSm+AD+Gy0iHOnLktWr9g3upSjg/A8LIoBgBoil63xmuKfXkHAABkRacYAKApfM1zZXSKAQDInkUxAADZc/nE4ygrJaGs4/RTdfrEyKL071A7N01G653d1c4plTowuXkqeZ/OxERV0wkhhNCdib/W7dFW+j4lpSfc9/X7Cx0/la4SQvqc7fc4mi6VMpFKpQCoXa9X35dq+PIOAADIi04xAEBTiGSrjE4xAADZ0ykGAGgKX/NcGZ1iAACyp1M8oKK70VO72suUSgtIJQwUTcSoOkmiTP2SMkKn2OM+d+36aH3dhrPihz9zZbReVsJEP0XH6M4Un1PVj6MzVf15Jk0CaKperxt6NV3rW9c4w0KnGACA7FkUAwCQPZdPAAA0Ra/GjXa+vAMAAPKiUwwA0BS+vKMyWS2KUzvO60iGSHnq6QdG653p9Il4z6VbC42RSplIJTTMZspEWXPqd/vu9EyhYxXVnSmWbjGI9mgrPnbBZIhhfK2nd5X3+kiZAGBfZbUoBgBosl63G3rdmiLZahpnWLimGACA7OkUAwA0Ra9XXyqE9AkAAMiLRTEAANlz+QQAQFN0eyHUtQGuri8JGRIWxaGe2KaicXDLnzte5XRCCLMbx5WSmtOSwxdE6ztv3xOtpyLLQgjJD5Nz166P1tdtOCt9rIi7LrovWk/F74UQwv03b4/WZxJxep3J2Xvtyoo2TL3Wk7unCs8JAJ4oi2IAgKaw0a4yrikGACB7OsUAAA3hyzuqo1MMAED2dIoBAJqi26svFUL6BMOg15nbJ+Lo+Eih26dSJlKpFM958ynJY13x7gvjP1j7c4XmlLL/sUui9R987YfJ+6TSMrrT5ZwHw5iwUvQ4/RQdAwB+kssnAADInk4xAEBD9Hrd0OvVtNGupnGGhU4xAADZ0ykGAGgKG+0qo1MMAED2dIpn2SA77b/xnDXR+p4Hp6L1yc3x+myanuiUcpzj/stJ0fq//86Gwsdat+GsaP3ctesL3f7BG3dG6+OrFyXH7uyNPx+7Nu1N3qeIVDrDbKZSNG2MuWA2zwOgJL3uI//qGisjOsUAAGRPpxgAoCF63V7o1XStb13jDAudYgAAsmdRDABA9lw+AQDQFL1uCF0b7apgUdxAO++ajNZTiQ6j4yOFjl9WMkQd9jzw0GxPYZ9N3La78H0WrhyL1mcSr1GTXjuqkUqYGOQ+UimAnFgUAwA0RK/XC71eTRvtahpnWLimGACA7OkUAwA0RbfGa4rrGmdI6BQDAJA9nWIAgIbw5R3VsShuoJdtvzla/5dlR0frncn4nz+608N3srdHW4Vu350pL23h3LXro/V1G86K1lOpHmUmQExunirtWDH9kgrmcvJArmkLqfdX6rMg1+cJyJPLJwAAyJ5OMQBAU/R69X2phkg2AADIi04xAEBD2GhXHZ1iAACyp1M8h6RSKfolDJSlrCSG1C74kUXx399m9kwXOv4gUjv2U4+t6A7/2dQv7SOVZlJWusYgCQZVn8t1vFeKKjPpIXUOFn3/SqWA2dPrdkOvpi/VqGucYaFTDABA9nSKAQCaott75F9dY2VEpxgAgOxZFAMAkD2XTwAANESv1w29mr68o65xhoVOMQAA2dMpzkAqJqnM+KlUdFNZUW2d3fHfVuuIZCsapTaM0Wsp/ebanY6/RmPL4x8b7XnxeLep7TOF5lTmeZmK8kudT0VvX4c6YuIWrVwQre/cNBmt9xLnzSBzFeMGBdX45R022gEAQGZ0igEAmqLXDaGuL9VwTTEAAORFpxgAoCF6NV5TXNu1y0NCpxgAgOzpFGes6K7vQXaWp1ImiiYYtEbj9e5MsRSLYTWMqQcpU9uKpUksOTyebDDI+dROnQeJNITU87f40PnR+q5NeyufU9Hb16E9Ep/TMJ5/AFWxKAYAaIhetxt6NW20q2ucYeHyCQAAsqdTDADQEL1eL/R6NW20q2mcYaFTDABA9nSKAQCaolvjl3dkdk2xRTH7rF9axYbxo6L11O71ogkGh5xyQLT+vfPvLHSc2TQ6PpL8WSqlYy5ot8v7g1QqoSH13Kae11SaSR1z6s7Ebz+SmFOZCRAHnLh/tL71ygdLG6OoVApJ0XQcgCfKohgAoCF8eUd1XFMMAED2LIoBAMieyycAABqi163vsoZeXvvsdIoBAECnmFKkdsj3S1yIefJxT4rW77l0a9EpJZ27dn20vm7DWaWNEVNm4kFZRhalfy9Ovaap+6Ru3xop9rjbfZ6nVaceGB97Oj725ku2ROs7b98TrY+vXhSt77o7fvsQQmjPK/j4Ct4+FHy++5k3v9j7sajUazeyMH2epdI4Llx4ZKGxUykgUiyYa3zNc3V0igEAyJ5OMQBAQ4hkq45OMQAA2bMoBgAgey6fAABoCBvtqmNRTKWmJzrR+sKVY9H6tlsernI6IYQQ3n/52dH6RypOpeiXOpDatZ/aUV+WfgkGqeSQ1Gs6tjz+cfLwzbui9f2PXRKtP+2Fz0jOaeOnb0j+LOaAE/eP1nud+OPuTCXqfZ6nkcTjHlsWr/cSr+muTXuTYzTF0iMXR+uTW9OPrbN9Jlqv+twH+EkWxQAADdHr1bjRrpfXL6euKQYAIHs6xQAATdHrPfKvrrEyolMMAED2dIoBABpC+kR1LIopxZkzt0XrF8xbHa1Pbp6K1kcWxf94UTQJoZ9+SQJVaiUSJvr+rKQd+OcmkjU+tuVdyft0p+PP054H469d6jVNefDGndH6n576seR9nnf+qmj9yNceFa1vvfLBQnMaxNS2eHpCqj56dTxBY+WiiWh9/rpfjta7nfi50e8/saKbc1KpKPsfu1+0vu3a+GPoJ/WeL+vcB9hXLp8AACB7OsUAAA3R69YYyVbTOMNCpxgAgOzpFAMANISNdtXRKQYAIHs6xQAADeGa4upYFDNUeqkYpnnpOLOyvO/it0Tr5yTizNZtOCtaT8WfzabUXN/VZ677H/jkaL3Vjv+BqdWKv0atdrw+MhKP2fv1T5yenFP4RLz8vb+/JVqfP5YaO36c0cQn4kifv6mlfnbA0nhE3fQJx0XrmxPHf/7Gv4rWv/3sN6YnVZKnPG//aH3LN7eXNkbRiMRU/CPAE2VRDADQEDrF1XFNMQAA2bMoBgAgey6fAABoCJFs1dEpBgAgezrFVCq1U/yCeauj9W4ifaI73YnW26PxdIHUcfopep9UykQq6aFpzv7Cz1d6/ORrN8CxjnrDMdF6KtlgZFG8H1A0CSGEEBauHIvW24nElHmJ209ujqdVpFImTrru89H6t57z69H6INqJ5JDZlPrskEpBLmy0q45OMQAA2dMpBgBoiF63F7odneIq6BQDAJA9nWIAgIZ45JriutIndIoBACArOsXMiqKpFCmDpEwU9ak974/W77l0a+Vjl+Xij18dra/77ROS93npFX8UrV/24veUMqcyX7tewWMVTZlIJUyEkE6NSBlbXs7H7nde8P9E6y+4+jPJ+7S68RSXH54bf61TXaLFh+6M1rsz8dvv3TKdnFPqPJAmAdTNohgAoCFEslXH5RMAAGRPpxgAoCF0iqujUwwAQPZ0igEAGkKnuDoWxWRn+XPHo/X5+8UTBpqUMpHSHin+R6FUysQpl34kWr/0lHhKRx2qTiHplzCxYMVotL4nkbjQmSyWfNEebcWPk0jQ+MYJZxc6fgghnPrFt0Trl/zSZwsdJ5UYsWH8qPSdEq9dKolGKgVQFYtiAICG6HW7NX55Rz3jDAvXFAMAkD2LYgAAsufyCQCAhrDRrjo6xQAAZE+nmEZYuDKeDDG6OH4Kt0biO/ZDCGHbtROlzGk2ff3TG6P1men4poiffvtzSxs7lTLx05d8OFp/6CtfidavP+/6aD2VqjCsiqZJDOXjm5mZtaGlSUAx3U4vdNv1dHC7HZ1iAADIik4xAEBDuKa4OjrFAABkT6cYAKAher0av7yjN4R7ICqkUwwAQPZ0iqnUhQuPjNZHFsZ/H1uwYjRan9w8Fa+HeL1prvr8jdF66nKuF77p2Apn84jR8ZFo/YR3viha/7dTP1jo+Me9+VnR+g2f+27yPiOL4ufNUCY6lKQ7PXzX9KUSIy6Yt7rwsVL3kUoB1M2iGACgIWy0q47LJwAAyJ5OMQBAQ3Q7vdBt+fKOKugUAwCQPZ1iAICGcE1xdSyKKUXRXefd6U60Pj0Rr88F1/3Pm5I/O+N/nByt33/Vw1VNJ4SQTnMIIf1adCb3lDL21M74cVKpF/3mNJtSc2qPtqL12UyTePF/PzNav+6P/y5aL5oAUWZihFQKoG4WxQAADdHr1vjlHTWNMyxcUwwAQPYsigEAyJ7LJwAAGqLX6YVeTZFsPZFsAACQF51iAICG6HVCbV/e0Ru+wJ9KWRTDgB76t1uj9amZ+O1P+Lmjk8e6f3d8h+/y545H69uuneg/uX3UGyAerDtTzm7kW//2+9H6Ea99evI+3zv/zlLGrsNsRq+l9DrD9z+c6DVgWFgUAwA0RK9X45d39Ibvl/squaYYAIDs6RQDADREt9ML3VBPB7crfQIAAPJiUQwAQPZcPsE+S+0SH8TIovjvY51ECkMdRsdHovUHvnpTtP6kU46M1tujrWi9M0AawfSueJRFWc/fIAkJV3/8O9H6mnesidav+eQ1hY7fL2HisFc/NVrvTMcfdycRBZK6/fTkdLS+9coHk3MaNi/6b2uTP/v339lQ6FjfeE78Ne1MxZ+/idt2Fzp+CFImoKhepxt6If7/TBVj5USnGACA7OkUAwA0RK9b49c81xT9Nix0igEAyJ5OMQBAQ4hkq45OMQAA2dMp5jHKTJlISaUkpBIgnvytr0frM73473XdRD2EEDq9+K7dB3YtjNaXnhRPmUgZJNEhJbWbf8nhC6L1nbfvKW3sorozncrH+P6XfxCtpxI/Uq9F0dvvf+yS5JwevHFn8mezoTsVT9Dop2gCROozInVevvSW6wvPqejYUizIRa/TC72aOsU9nWIAAMiLRTEAANlz+QQAQEN0O73Q7dW00U4kGwAA5EWnGACgIXrTvdBr+/KOKlgUM1QOuPKKaP2eo0+qfuzj94vWt1c+cnGdyeq/jz6V0HDsrz8rWr/hCzdUOZ2+iiZ+FL19v4SJ8dWLovVUckhKKnlleqJYqkevU30KSEoqZeKSQ49N3mdy81ShMaRMAFWxKAYAaIjuTC90a+oUu6YYAAAyo1MMANAQrimujk4xAADZsygGACB7Lp/IwAXzVs/a2COL4r93Pe3aS6L1/zjyBVVOp6+9D8d3wZeVClCm1I79onNNvT4hhHDEq58ZrV//2RsfZ3Z5md41U85xEq9R0de0jj93Fk2AmJnF9wrMNd1Or7YNcHV9Sciw0CkGACB7OsUAAA3Rm+6GXiueI1/6WL3qM/GHiU4xAADZsygGAGiI3kzvkS/wqOFfb6b4NcVXXHFFeMUrXhEOPvjg0Gq1wle+8pXHvc/ll18e1qxZExYsWBCe8YxnhM985jMDPDNPnEUxAACl2LVrVzj++OPDpz71qX26/Z133hnOOOOM8KIXvShcd9114b3vfW94+9vfHr70pS9VPNPHck0xpXj+754c/0E7ft3Tt488JVo/7Uu/Ea1f/Jp9e3M9Ebs27Y3WF64ci9a7id+gO7ubcw1Wv7lO744/H1Vrj6avletO57UTOoR0ykTqvOx1hi/p4WXbb07+7MKFR0brOb7WsC96073Qa9X05R0DpE+sXbs2rF27dp9v/5nPfCY89alPDZ/4xCdCCCEcddRR4eqrrw4f+9jHwmte85rC4z8ROsUAAMyKb33rW+H0009/VO1lL3tZuPrqq8P09HStc9EpBgBoiN2hG0JNf0jZHR75a+LExMSj6vPnzw/z588vZYwf/vCHYcWKFY+qrVixIszMzIQHHnggHHTQQaWMsy8sigEAhtzY2Fg48MADw6/+8M5ax12yZElYtWrVo2of/OAHw4c+9KHSxmj9RMTcjy7b+Ml61SyKAQCG3IIFC8Kdd94Zpqbi32halV6v95jFaVld4hBCOPDAA8MPf/jDR9W2bt0a5s2bF5YvX17aOPvCohgAoAEWLFgQFixYMNvTKNVJJ50U/umf/ulRta997WvhhBNOCKOjo7XOxUY7AABKsXPnzrBx48awcePGEMIjkWsbN24MP/jBD0IIIaxbty684Q1v+PHtzz777HDXXXeF3/7t3w633HJL+PznPx/OO++88K53vav2ubd6+5C3MTExEZYuXRoefvjhMD4+Xse86OOCeatnZdwTfvunkj+7+uPfKWWMI1779Gh92eqVhY7znT/6evJnZUU9LVgR/w12z5bqd8umYsvqiLF65qtWReuTD01G671OIrpuJh4H9+DNE9F6COkYvJQ64vFm8zwo6jlve3a0futX45FpvcT5lHpsZ87cNtC8YlKfc2WOATHWPE/MZZddFk455bGxq2984xvDX/7lX4Zf/dVfDZs2bQqXXXbZj392+eWXh3e+853hpptuCgcffHB4z3veE84+++waZ/0Il08AAFCKl770pX3zjf/yL//yMbWXvOQl4dprr61wVvvG5RMAAGTPohgAgOxZFAMAkD2LYgAAsmej3SxL7bBOpQuU6dg3HR2tz1swFq2XlTAxiCs/8u+Fbv+8dz0/+bOrPvbtJzqdEEJ6B/7o+Ei03i85oWhKwhmTtxa6/SD+ZVn8/Ljjq3dH62WlAlx21PHJn730lusLHausBIMN40clf3baPd+tdOwy3fHGM6P1UzfdGK2nHkPqHC9T6nkaxucVmBt0igEAyJ5FMQAA2bMoBgAgexbFAABkz6IYAIDsSZ+oSWrHdEp3Op1UUNTRrz8iWv/+v3w/Wp/cPFXa2CmHv+bQaP2Of76rlOP3S5hY84410frGz10XrRdNhpie6BS6/WxKJUyEUP3jSL0nlhy+oLQxiiYSFH2fznVFEyBSKR29Pp9ndSSpAOwLnWIAALJnUQwAQPYsigEAyJ5FMQAA2bMoBgAge61er/e4MQcTExNh6dKl4eGHHw7j4+N1zGvOqWNX+9NeflC0ftdF9xU6zsKVY9F6makUh55xcLS+6cJ7SxujqGe/9bhofeOnb6h5Jv+paHpCyiDnX9HkgaLHSbnk0GOTPyt6DpaVPlHW61Dm2KnbH/HapyfH+P5XNkXrqbSb2Tz/Uup4LcibNU++dIoBAMieRTEAANmzKAYAIHsWxQAAZM+iGACA7M2b7Qk0VVm7qdujrWh9/2P3S95nZGwkWi+aMlGHg164PFq/5+tbap7J4+t1HzeIpbHK3LFfVipFSmeyW3jssgxy/LJSI5YdH3/Pf3PNCdF6KmXiiL+9KFoPIYTvlTTXos+TxAigCXSKAQDInkUxAADZsygGACB7FsUAAGTPohgAgOxJnyjZ2PL4U9qeF0+ZGFkY/73kwRt3JMfoTpeTkrBgxWi0Prl5qpTjhxBCZyaeJDA90YnWU2kcZT3mfu687I5o/ZmvWhWt3/HVu6ucTl+XHHpsodufuunGimbyn8pKGOj1ea3LSkMo6msrjkn+LPWeT71G+x+7JFo/+ZqrC80pmUrR5z5Vp0bM1usDUAadYgAAsmdRDABA9iyKAQDInkUxAADZsygGACB7FsUAAGRPJNvjSEUMjY6PROtT22aqnE6pOpPxuLRSx5iKR6+l1BG9ltLZG59rt1P9nJYcviBav/Sw46L1ohFrFx/yrGi9O5N+bEXP5bLiu0YWpX9XLyvaa8P4UdF6KjrxZdtvLmXcEEL4l2VHl3Kc3T/cE633i+srK5pP9BowF+kUAwCQPYtiAACyZ1EMAED2LIoBAMieRTEAANmTPhHSO6lDCKE9Wv1u9KL6zTcm9RimJ4olQ/Sz9OjF0fqDN+4obYwixpanT+1UwsCuTXuj9Ts3bY7Wn/byg6L1yYfiqQC9Tjrt4/6rHo7Wy9rNf9o9343WL1x4ZPI+VScJpM7LtRO3FD5W6j2RGuOMyVsLj1F07FSKRtHHVzTpoV+6RSqZYibxWZBKJ5EyAcxFOsUAAGTPohgAgOxZFAMAkD2LYgAAsmdRDABA9rJKnyia2hBCubvUy5La+Z16fN3p+A7yMnWmE7vXKx57dHwkWp/aNlPpuCGEsOW6B6L1PVumCx8rlZJQ9JwtmgrQ7/xOJVMUfU8M8r4reqzZTENIjd0v2aOM46dSJgZJxin6Wld9XgLMBp1iAACyZ1EMAED2LIoBAMieRTEAANmzKAYAIHtzMn0i153RRXepT0/EEyMG0ZnslnasIroz1SdrjC2Pv00GSZkoqmjSSFFlJkMUNcj7bhjfq7P5HM6WYXwdAJ4onWIAALJnUQwAQPYsigEAyJ5FMQAA2bMoBgAge41On0jt+m6PtqL1MyZvrXI6QyuVMpF6nrrT1Sc6lKVXw1ynts1UPkbR57ys3f91pAjM9aSCshJCUrdPHb/MxJcmvecBqqJTDABA9iyKAQDInkUxAADZsygGACB7FsUAAGSv1ev1Hnfb8cTERFi6dGl4+OGHw/j4eB3zYgj1202fSrIYWVjs967uTPx07Owub6d91QZJI5jrCQ3U58KFRyZ/lkrgKZp8AXOZNU++dIoBAMieRTEAANmzKAYAIHsWxQAAZM+iGACA7FkUAwCQvXmzPQHmhu50PEqtO92peSb1KRpXJd6KMpUZo+bcBNApBgAAi2IAALAoBgAgexbFAABkz6IYAIDsSZ9gn9WxQz21oz7FrnlylTr3+72HvF8A0nSKAQDInkUxAADZsygGACB7FsUAAGTPohgAgOxJn2Co2B0PT4z3EMBgdIoBAMieRTEAANmzKAYAIHsWxQAAZG+fNtr1er0QQggTExOVTgYAYDb9aK3zo7UP+dinRfGOHTtCCCGsWrWq0skAAAyDHTt2hKVLl872NKhRq7cPvwp1u91w7733hv322y+0Wq065gUAULterxd27NgRDj744NBuu8o0J/u0KAYAgLnMr0AAAGTPohgAgOxZFAMAkD2LYgAAsmdRDABA9iyKAQDInkUxAADZ+/8AnyEocB8bPxgAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, - "nbformat": 4, - "nbformat_minor": 0 + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Min: 1.0\n", + " Max: 3375.0\n", + " Exclude values: [2147483647.0, 0]\n", + " RGB: False\n", + " \n" + ] + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "source": [ + "# NBVAL_IGNORE_OUTPUT\n", + "HTML(cleo.anim.to_jshtml())" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-12-06T22:30:39.473738Z", + "start_time": "2024-12-06T22:30:38.152979Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "\n" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 9 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/examples/notebooks/south-america.ipynb b/examples/notebooks/south-america.ipynb index 19a3c4fc4..07b632e2b 100644 --- a/examples/notebooks/south-america.ipynb +++ b/examples/notebooks/south-america.ipynb @@ -1,1519 +1,1519 @@ { - "cells": [ - { - "metadata": {}, - "cell_type": "markdown", - "source": "One Band Raster Dataset", - "id": "35bae0a31c494626" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:44:12.723638Z", - "start_time": "2024-07-11T22:44:11.487127Z" - } - }, - "cell_type": "code", - "source": [ - "from pyramids.dataset import Dataset\n", - "path = r\"../../examples/data/geotiff/south-america-mswep_1979010100.tif\"" - ], - "id": "bd5aab35e70cd90b", - "outputs": [], - "execution_count": 1 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:44:59.385126Z", - "start_time": "2024-07-11T22:44:59.367928Z" - } - }, - "cell_type": "code", - "source": [ - "dataset = Dataset.read_file(path)\n", - "print(dataset)" - ], - "id": "4f25511faa653ed1", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 0.1\n", - " Dimension: 780 * 850\n", - " EPSG: 4326\n", - " Number of Bands: 1\n", - " Band names: ['Band_1']\n", - " Mask: -9999.0\n", - " Data type: float32\n", - " File: ../../examples/data/geotiff/south-america-mswep_1979010100.tif\n", - " \n" - ] - } - ], - "execution_count": 2 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:12.058661Z", - "start_time": "2024-07-11T22:45:08.005733Z" - } - }, - "cell_type": "code", - "source": "dataset.plot()", - "id": "faf1ea9faa725890", - "outputs": [ - { - "data": { - "text/plain": [ - "(
, )" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAH+CAYAAAAvVu7aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8I0lEQVR4nOz9eXhkR3n3jX+r6iy9SK0ZaWY0qxds4xWDYzYbApjFxKyBsOcFzAsELsIv5iEkYIITQ2LMFuI85gchz+MHSEiAhxAnxDgYG2zAwSZewXhfZjz7pq2l3s45VfX+Uaeqz2m1NNJIGm3357r6Gqn79Omq0xrp2/fyvZnWWoMgCIIgCIIgZglf7AUQBEEQBEEQyxMSkgRBEARBEMRRQUKSIAiCIAiCOCpISBIEQRAEQRBHBQlJgiAIgiAI4qggIUkQBEEQBEEcFSQkCYIgCIIgiKOChCRBEARBEARxVJCQJAiCIAiCII4KEpIEQRAEQRDEUbFshOQVV1yB888/H6VSCWvWrOl6zCWXXIJzzz0XYRjiGc94Rtdj7rvvPrzwhS9EsVjEli1b8KlPfQpLbUrkTPa6c+dOvPrVr0a5XMa6devwR3/0R4iiKHfMcthrJ3fffTde9rKXYc2aNRgYGMAf/MEfYGJiInfMTPa+1HnkkUfw2te+FuvWrUOlUsHznvc83Hzzzbljlvs+b7nlFjDGut7uuOMOd9xy32eWH/zgB3jOc56DYrGIdevW4fWvf33u8ZWw1xNOOGHS+/mxj30sd8xK2Kel1WrhGc94BhhjuPfee3OPrZR9vuY1r8Fxxx2HQqGATZs24e1vfzv27t2bO2al7JWYf7zFXsBMiaIIb3zjG3Heeefhmmuu6XqM1hr/7//7/+KXv/wlfv3rX096vFqt4mUvexkuuOAC3HHHHXjkkUdw8cUXo1wu44//+I8Xegsz5kh7lVLila98JdavX49bb70VQ0NDeOc73wmtNa6++moAy2evWfbu3YuXvvSlePOb34wvfelLqFar+NCHPoSLL74Y//Iv/wJgZntfDrzyla/EU5/6VPzkJz9BsVjEVVddhVe96lV4/PHHsXHjxhWxz/PPPx/79u3L3XfZZZfhpptuwjOf+UwAK+f9BIDvfe97eO9734tPf/rTePGLXwytNe677z73+Era66c+9Sm8973vdd/39PS4r1fSPgHgT//0T7F582b86le/yt2/kvZ5wQUX4OMf/zg2bdqEPXv24CMf+Qje8IY34Be/+AWAlbVXYgHQy4yvfe1ruq+vb9pj/uIv/kI//elPn3T/l7/8Zd3X16ebzaa778orr9SbN2/WSql5XuncmWqv119/veac6z179rj7vvWtb+kwDPXY2JjWevntVWutv/rVr+oNGzZoKaW775577tEA9KOPPqq1ntnelzqHDh3SAPTPfvYzd1+1WtUA9E033aS1Xhn77CSKIr1hwwb9qU99yt23UvYZx7HesmWL/t//+39PecxK2evxxx+v/+Zv/mbKx1fKPrU2eznttNP0/fffrwHoe+65J/fYStlnJ//+7/+uGWM6iiKt9creKzF3lk1qez647bbb8MIXvhBhGLr7Xv7yl2Pv3r3YsWPH4i1sltx2220466yzsHnzZnffy1/+crRaLdx1113umOW211arhSAIwHn7x7JYLAIAbr31VgAz2/tSZ2BgAKeffjr+4R/+AbVaDUmS4Ktf/SoGBwdx7rnnAlgZ++zk+9//Pg4fPoyLL77Y3bdS9nn33Xdjz5494JzjnHPOwaZNm3DRRRfh/vvvd8eslL0CwGc/+1kMDAzgGc94Bq644opcinOl7PPAgQN473vfi3/8x39EqVSa9PhK2Wcnw8PD+Kd/+iecf/758H0fwMrdKzE/rCohuX//fgwODubus9/v379/MZZ0VHTbx9q1axEEgdvHctzri1/8Yuzfvx+f//znEUURRkZG8PGPfxwAXIp0Jntf6jDGcOONN+Kee+5Bb28vCoUC/uZv/gY//OEPXU3sSthnJ9dccw1e/vKXY9u2be6+lbLPJ554AgBw+eWX4xOf+ASuu+46rF27Fi984QsxPDwMYOXs9ZJLLsG3v/1t3HzzzfjgBz+Iq666Ch/4wAfc4ythn1prXHzxxXj/+9/vyjA6WQn7zPLRj34U5XIZAwMD2LlzJ/793//dPbbS9krML4sqJC+//PIpi/Ht7c4775zX12SM5b7XafNJ5/3zzXzvtdt6tda5+xdrr53MdO9nnnkmvvGNb+Cv//qvUSqVsHHjRjzlKU/B4OAghBBT7guYvPfFYKb71FrjAx/4ADZs2ICf//zn+O///m+89rWvxate9apcTeFy32eW3bt344YbbsC73/3uSedbqvsEZr5XpRQA4M/+7M/we7/3ezj33HPxta99DYwxfPe733XnW6p7nc17+j/+x//AC1/4Qpx99tl4z3veg7/7u7/DNddcg6GhIXe+5b7Pq6++GtVqFZdeeum051uq+wRm///0T/7kT3DPPffgRz/6EYQQeMc73pFrzlzKeyUWl0VttvngBz+It7zlLdMec8IJJ8zb623cuHHSp6eDBw8CwKRPW/PNfO5148aN+OUvf5m7b2RkBHEcu30s5l47mc3e3/a2t+Ftb3sbDhw4gHK5DMYYvvjFL+LEE08EMLO9LxYz3edPfvITXHfddRgZGUGlUgEAfPnLX8aNN96Ib3zjG/jYxz62IvaZ5Wtf+xoGBgbwmte8Jnf/Ut4nMPO9jo+PAwDOOOMMd38YhnjKU56CnTt3Aljae53L76fnPve5AIDHHnsMAwMDK2Kff/VXf4Xbb789VxoEAM985jPx+7//+/jGN76xpPcJzP49XbduHdatW4enPvWpOP3007Ft2zbcfvvtOO+885b8XolFZlEqM+fAXJtt1qxZo1utlrvvM5/5zJJtQDlSs83evXvdfd/+9rcnNdssp71OxTXXXKNLpZIeGRnRWs9s70ud73//+5pzrsfHx3P3P/WpT9VXXHGF1npl7NOilNInnnii/uM//uNJj62UfY6NjekwDHPNNra56Ktf/arWeuXstZP/+I//0AD0k08+qbVeGft88skn9X333eduN9xwgwag/+Vf/kXv2rVLa70y9jkVO3fu1AD0zTffrLVe2Xsl5s6yEZJPPvmkvueee/QnP/lJ3dPTo++55x59zz335P4YP/roo/qee+7R73vf+/RTn/pUd4wVU6Ojo3pwcFC/9a1v1ffdd5/+13/9V12pVPQXvvCFxdpWV4601yRJ9FlnnaVf8pKX6LvvvlvfdNNNeuvWrfqDH/ygO8dy2WsnV199tb7rrrv0ww8/rL/0pS/pYrGo//Zv/9Y9PpO9L3UOHTqkBwYG9Otf/3p977336ocfflh/5CMf0b7v63vvvVdrvTL2abnppps0AP3AAw9Memwl7fOSSy7RW7Zs0TfccIN+6KGH9Lvf/W69YcMGPTw8rLVeGXv9xS9+ob/4xS/qe+65Rz/xxBP6O9/5jt68ebN+zWte445ZCfvsZPv27ZO6tlfKPn/5y1/qq6++Wt9zzz16x44d+ic/+Yl+/vOfr0866STn+rFS9kosDMtGSL7zne/UACbd7CcmrbV+4Qtf2PWY7du3u2N+/etf69/+7d/WYRjqjRs36ssvv3zJRehmstcnn3xSv/KVr9TFYlH39/frD37wgzmrH62Xx147efvb3677+/t1EAT67LPP1v/wD/8w6ZiZ7H2pc8cdd+gLL7xQ9/f3697eXv3c5z5XX3/99bljVsI+tdb6rW99qz7//POnfHyl7DOKIv3Hf/zHesOGDbq3t1e/9KUv1b/5zW9yxyz3vd511136Oc95ju7r69OFQkGfeuqp+i/+4i90rVbLHbfc99lJNyGp9crY569//Wt9wQUX6P7+fh2GoT7hhBP0+9//fr179+7ccSthr8TCwLRe4qNOCIIgCIIgiCXJqrL/IQiCIAiCIOYPEpIEQRAEQRDEUUFCkiAIgiAIgjgqSEgSBEEQBEEQRwUJSYIgCIIgCOKoICFJEARBEARBHBXLXki2Wi1cfvnlaLVai72UBWW17BNYPXtdLfsEVs9eaZ8rj9Wy19WyzyzNZhPVanVBbs1mc7G3d8xY9j6S1WoVfX19GBsbc3OLVyKrZZ/A6tnratknsHr2SvtceayWva6WfVqazSYqa7Ygbg0vyPk3btyI7du3o1AoLMj5lxLeYi+AIAiCIAjiWBJFEeLWMJ75kv8L4ZXn9dwyqeHOH78JURSRkCQIgiAIglipeEEvPH9+hSTjy75qcFYseyGplAIAjI2NLfJKFpZqtZr7dyWzWva6WvYJrJ690j5XHqtlr4uxT601xsfHsXnzZvBVJr5WEsu+RvKJJ57ASSedtNjLIAiCIAjiKNi1axe2bt16TF/T1oSe98ofzntEMolruO0Hv7Nq6k2XfURyYGAAgPlBXA1vGEEQ88sP1/5W7vvfGbl7kVZCEKuLarWKbdu2obe3d7GXQsyBZS8kGWMAgEqlQkKSIIhZU2LCff2q5OFFXAlBrE7s3/HFeW0OxuY3rT7f51vqrK7dEgRBEARBEPPGso9IEgRBzAWKQhLE6oVxBsbnNyI63+db6lBEkiAIgiAIgjgqKCJJEARBEMSqhHE+776P5CNJEARBEASxCuAc4POcil5lOpJS2wRBEARBEMTRQRFJgiAIgiBWJWT/M3dW124JgiAIgiCIeYMikgRBEARBrErI/mfuUESSIAiCIAiCOCooIkkQBEEQxKqEsQWw/6EaSYIgCIIgCII4MhSRJAiCIAhiVUI1knOHhCRBEARBEKsSzjj4PKei5/t8S53VtVuCIAiCIAhi3qCIJEEQBEEQq5MFSG1jlaW2KSJJEARBEARBHBUUkSQIgiAIYlVCzTZzh4QkQRDELLjOO3XSfa9KHl6ElRAEQSw+lNomCIKYIVkRyX3W9X6CIJYPjPEFua0mVtduCYIg5gHuM/Q8pbjYyyAIglh0KLVNEAsApT9XNirWqD5cX+xlEAQxR6hGcu5QRJIg5pmp0pyU/lzeTPf+0YcEgliecM4X5LaaWF27JQiCIAiCIOYNSm0TxDGColYEQRBLC8YYGJvn1PY8n2+pQ0KSIOYRSl9PpvOarDRBvdL2QxAEMRtISBLEArNShcZUojm7327HTNeIdJ136pK8XvQBgSBWJtRsM3dISBIEMSuOJKqsGJyN+Moea79eioKSIAiCyENCkiCIGTNTcTgfEbylEJ080j4We30EQcwNxuc/grjK/MhJSBIEMTOWUno3KzKni2CSnydBEMTCQkKSIOaRpV7rdzQsNQHZ7evs98fquq+U95cgVjMcHHyeQ4h8lTkrkpAkiAVgpYiMpSQiZ8tyXjtBEMcGaraZOyQkCWKV082eZymKsKW0pqk601fKBwiCIIiZQkKSIFYZM+m6Xmy6CbKZCNzs86Y6fja+llPVYU43BpPEJEEsHygiOXdWVyKfIFY5S0EkzoSlts5XJQ+TQCQIgugCRSQJYpWw1MTZ0TCdmLvOO/Wo9khRRIJYvdCIxLlDQpIgVgHLUUR2CryF3MNyvD4EQawMfvazn+Hzn/887rrrLuzbtw/XXnstfvd3fxcAEMcxPvGJT+D666/HE088gb6+Prz0pS/FZz7zGWzevBkAsGPHDpx44oldz/1//+//xRvf+MYjruHKK6/Exz/+cVxyySW46qqrZrV+Sm0TxApnOYskG2VcznsgCGLpwjlbkNtsqNVqePrTn44vfelLkx6r1+u4++67cdlll+Huu+/Gv/7rv+KRRx7Ba17zGnfMtm3bsG/fvtztk5/8JMrlMi666KIjvv4dd9yBv//7v8fZZ589q3VbKCJJECsYEmDHDkqPEwRxNFx00UVTCr6+vj7ceOONufuuvvpqPPvZz8bOnTtx3HHHQQiBjRs35o659tpr8eY3vxk9PT3TvvbExAR+//d/H//rf/0v/NVf/dVRrZ8ikgRBEHOERCRBLE8Y5wtyA4BqtZq7tVqteVnz2NgYGGNYs2ZN18fvuusu3HvvvXj3u999xHP94R/+IV75ylfipS996VGvZ0GF5M9+9jO8+tWvxubNm8EYw7/927/lHtda4/LLL8fmzZtRLBbxohe9CPfff/9CLokgCIIgCAJAu9lmvm+ASTn39fW525VXXjnn9TabTXzsYx/D2972NlQqla7HXHPNNTj99NNx/vnnT3uub3/727j77rvnvK4FFZLT5f0B4HOf+xy++MUv4ktf+hLuuOMObNy4ES972cswPj6+kMsiiFUBpbUJgiAWj127dmFsbMzdLr300jmdL45jvOUtb4FSCl/+8pe7HtNoNPDP//zPR4xG7tq1C5dccgm++c1volAozGldC1ojOV3eX2uNq666Cn/2Z3+G17/+9QCAb3zjGxgcHMQ///M/433ve99CLo0gCIIgiFXOQhqSVyqVKaOGsyWOY7zpTW/C9u3b8ZOf/GTK8/7Lv/wL6vU63vGOd0x7vrvuugsHDx7Eueee6+6TUuJnP/sZvvSlL6HVakEIMaO1LVqzzfbt27F//35ceOGF7r4wDPHCF74Qv/jFL6YUkq1WK1dnUK1WF3ytBEEQBEEQi4EVkY8++ihuvvlmDAwMTHnsNddcg9e85jVYv379tOd8yUtegvvuuy9337ve9S6cdtpp+OhHPzpjEQksopDcv38/AGBwcDB3/+DgIJ588skpn3fllVfik5/85IKujSCWO5TWJgiCODLsKOx6ZnLO2TAxMYHHHnvMfb99+3bce++96O/vx+bNm/GGN7wBd999N6677jpIKZ1+6u/vRxAE7nmPPfYYfvazn+H666/v+joveclL8LrXvQ4f/OAH0dvbi7POOiv3eLlcxsDAwKT7j8Si2/90OsBrrad1hb/00kvx4Q9/2H1frVaxbdu2BVsfQSwnSEAuDp2zuAmCIGbKnXfeiQsuuMB9bzXOO9/5Tlx++eX4/ve/DwB4xjOekXvezTffjBe96EXu+//zf/4PtmzZksv0Znn88cdx+PDh+V08FlFIWs+j/fv3Y9OmTe7+gwcPTopSZgnDEGEYLvj6CIIgCIJY2SyFEYkvetGLoLWe8vHpHsvy6U9/Gp/+9KenfHzHjh3TPv+WW26Z0et0smg+kieeeCI2btyYM9qMogg//elPj9iyThDEZCgaSRAEQRxrFjQiOV3e/7jjjsOHPvQhfPrTn8Ypp5yCU045BZ/+9KdRKpXwtre9bSGXRRArChKQSwdKcRPE8mIhu7ZXCwsqJKfL+3/961/Hn/7pn6LRaOADH/gARkZG8JznPAc/+tGP0Nvbu5DLIogVw3XeqeC++aWl4pmlP4iFhwQlQSwPOBj4PKe2OUhIzhtHyvszxnD55Zfj8ssvX8hlEMSKhgTk0oT7jAQlQRArHpq1TRDLFEppL22yAp/eK4JYmtjU9nzfVhMkJAlimUJRruVBMOAhGPDw4xOehpu2zM6fjSAIYqlDQpIgljEkJpcG3GfgPoMocYgSB/cZCoM+/IpANJQgqUoUB0KoRONHg2cu9nIJgkihiOTcISFJEAQxj3CPQRQ5RJHDqwiIUvvXrGwoyIbCLac/fRFXSBAEMX+QkCSIZQzV3i0NVKwnNT15JQ/FgRBrTuvB2qf1Yuuzjwf3GIJ+D37BIzFJEEsAa0g+37fVxKKPSCQIglgpyLqC9tt/RJgwX2up4RV8nPP+Z6G66zDqQxMYfbK6WMskCIKYN0hIEsQyg6KQSxeeEZFeQUAEAsLjYIJBhAEY5yhvXIPh7UOIawl+fMLT8JId9y3iiglidcM5wOe5ppGvslwvCUmCIIgFgnHmopLcEwAALwxQqISoxhNg/upKgRHEUmMpzNpe7pCQJIhlhI1G+hUBUTQfe7eevwlJKwHjHHEjxuHfDLvjmwfiRVnnaiVbJzn60IRrvAEAL3wC3DNfj+0ehyhyMJ/hhv4zIBsKr2g8tChrJgiCmAskJAlimZBNaXupkBS+wJoTN8IvF6CkRP3ACEZ3jkE21CKulABM97ZKNET6fVyPwX0BFUsInyNKNJBoiCKHSjT+s3I6dKxJUBLEMYRmbc8dEpIEsUzoO6OMNcdVcPihYTzj3c+HKBUhG01Uf+//h/16AOtwAL31IWxrfh5xvQXuCTzy3e2LvexVBfeZS1cPPmsduGAoDfSAcYYDv9kPv+xDxRIAUFgbQEYKYcVH/VATzGfQscb1xdNITBIEsWxYZSWhBLF8+e1f3w0v9OCVPNT3D6G+5yD8vgpqrIKmDNAQPSjuewRaaYjAW3WfipcaXDDIWIFxBq1MylsrDSU1mGCuftILzed5zrkTodcXT1u0dRPEaoKzhbmtJigiSRDLiNO/dxN+fvZvgadCMRoeQQkTUD5DTzwKXepFeUMfookGZJQs9nJXHdnmmaAcIKpF4J7IiUkACEo+ACBpJUhaCUQo0DwcmTR3Wmd5ffE0MJ/houqD077mz8/+LQBGuD7vnrvme0sEQRDTQkKSIJYR//3854ILBi8MEPT3obF/CKXWKEb8fuxlx6G5pYxy+J+Qw+OLvdRViay3a1Or+8YR12Jwj0MlCo2DLagBDS2NUPQKHpjgYJyhvN5DeX0RScuIf9lQ0Kmg/NHgmeCeSZm7usu0gUf4AqX+AgBAKY17XvbbED530ejSQA8A4KRvXHdsLgBBLDOoRnLukJAkiGVEZVMvmtUWdt32CMLeApqjDSQ//yC80AMTDCMA9g43EY3H1HCzyBy8fQQAMHLfBABTP6kSIw5lS0KERjT2bu6BX/SQtEztZOW4HkzsrSEazkeUO78H0nGMPncp87CioWLjW8k9gdEnTQf/fz//uXj2rbcvzEYJgljVkJAkiGXExmedhvEn96F2cAxRLULPYC8mDuSjj/bTsI1aEYtL1qTcRhSNoDTCUcUSrViCCYagJ4CMFSpbezDu1yB8AS01otHYRTsLgz5kQ4H5DH6vwOBZG42QTCT8UojmaA1KatQO1yBSuyEtFe552W+br5XCb/34v47tRSCIJQpFJOcOCUmCWEZopVwzjZ/W3FlLGWt4LQIOr+QhqpKH5FIgWzcpihwsjUqqRBthqTSEz937BwAi9CB8gcKaEABQWBti3VkBAMALBRjn8IumzrK0oQ9wPwseerYMQIQBVJxg+OHdiGottPZEEL4RlTIG7n35C9x5zvy3Hy/8RSCIJQpjDJwMyecECUmCWEY8et1dqO2vQyXa1dHFVZk7pnxCCJVoJFWZi4ZlzbKXK7xjEsxy2FO2brK2o+W+tnuxgtISj5v3UzYUWr2Ru3/dWf0ATOf3+P4quGBQUoN7AiqRYNyks9ecvAWMc8hmhM2//XQw34ecqJlzNluo7x9C7eAYmmMNMK7xm9dcgLO+f/PCXQCCIFY0lPsiiGWEX/QR9Prwyx6Cfq/riD0RCteoQSwvbEONveXuFx0iWmqoWEElMr0pyCiBimPzfWxqKnUcQ0sJHgbw+3rRs20QfilEayJCNBFBJQq/PO/Zx3SfBLFUYIy59Pa83SgiSRDEUob7HM2RaMpmGtmSEEW+4pttlkM0cqbYDwTGS9K8byxhbowiAHCPQwQcXDDX+W0RgQcZJYgbCaKxGvyy6eRuDY2aA9KSCMYZeKGAvqdsQtKMML6/CiU1kqbEf51zLgCQhRBBELOChCRBLCPOufHn+PnZv4XerWXISCIo+Vh74gD8kqmlk1GCtaefgPHte6AShV237wDjxhh77IHaIq/+6PArpnaQ+cyJ42y6eLmjYw0Jsx/tabTS+ejuw0DDHDf8+ChYKiKPf/4JrsFm/bmngwkB5gnIegPBccdDl3vAmg0k67ZAcwGmFcSTD4MFAeD58JMYTAisfzrH2OO7Mb4v7SwXDLec/nS86MFfLcq1IIhjDWPmNt/nXE1QapsglhmtoQj1oYZLdcoocSkVlUjUdu0HACTNCF5BgAnmGi2WK9mULzC5VnI507m3KY9L32+lFFTSFtI6jiEbDTDPAy+E0D0V6KAAXSxDNMYhojpEYwJyZATJgQNI9u2BbjXNOTlDz9YNED6HjKWpueQcPzvznIXbMEEQKwqKSBLEMoWJ1JQ68MA4R9KMUN07htL6NagfHjf1cmkKVMYKosSXbSRPxxrZlTOfgWP5p7dVrKFjDVbkrq6107bJprZlLM11SDSiiaZ7XGsNFZk6SFVvwKuPg/kBdL0GVigBcQRwhnh0DEwIaCnTZpwWFGPgYYDCmhB+2UdjqInm4QjcY7hpy1lQicaFB+4/dheEII4xnDPwebbrme/zLXWWd5iCIAgAJiqZNE1KdGLfMJJmhLhhOn7jWgIZy2UrIjs5UuRuuZAVwdnmqKlqW62I7Gyk4p4Hr6cM1WxBSwn4gbEDUhLQ7XMxkdoLMQbmeVBRDCUloE3ntxd6qGzt7ajLZLj55LPna8sEQaxAKCJJEMuIG/rPgEo0mgdiTDxqolLHPf9UUx/XjKCVRnXvKAAgaUkM3V1dxNXOHmeJkxFLNkLHfIaoYTuR9TGPRtq1FbcETuypRCMamttMc68inPE4EwzMn+z/yT2Gdaf1uwk25Q0VMM6NCflTTjaiUUroVhOyMgCWROCcQZX7AABMSoTHbQOEACsUoYtl9JbLYJ4PXerFSb1mlCIPA/Tf/SCiiSZa403UDtegpaK6SWLFwtj8d1lT1zZBEEuazsiijBIIzhDXGhjfb4SjjBWSxtwEzrFmqrpHO1awM33CfXZMxaR9LevhmW3+mQu5cyjz/soujzU3t8A5a9dKJhIySoCoCa0UoM36NPcAoaG5B83bJue8bMQiGAeUhJqYMGbMng8dx2C+DwiB8uZ1qIQBVBzj8G92YGTHMIQv8KPBMynNTRDEJEhIEsQyJ2k0IQo+WtUG6ofrYJxBKw2+zBtsOrGCcrE9MrnHwHwGHU9OMx8NOtbQ3szPo6XONduAcTBu/tVR5Lq0ERSggqI5RElwrU07qYwBBMYSiHPTmKM1IE1Us31ajt7N/RjZMTzJboggVgp8ASbbzPf5ljokJAliGfHy4QdwnXdq7r5f/+/7ACzvxhNRMqLXijTZUOCe8VGMhk1k1UttgKwtjihyrDmjBK00iv0FHLhjGMDCp72z02nmg+aBOD+PO4209p1RRlA2v6KZ4Cj1l9w0m7FdQ2mnPkfjoYeM/Q9niKoTKEdmfUpr+APrAKWhZQK1YYu53wuhhQd25gA04xjv24w+zwMYR3NgK0r7HjMp8FYThWYDYzsPYWz3GAprw3ndN0EsBRg3t/k+52qChCRBrACWs4jMkm3yYD5z9ZEqE/2zkUmgbYmjpV6Uusn5YLqxj0pqaKkhApPKBsw4xGjCNFIppTGx+yC4J8ADD/FEE36PEZlJo4WClNBxDAgBLzBCkBXL5uRJDDCOMmNgtSrAOEL/IDA+asSnVmA9FfilENwXbrY3QRBEFhKSBLGM6IxGAitHRDqPSI9BZvZkrX6yMJ+ZDmapodXy3r+K9Yx8MVlqKcIydZKeLyCC9Ne40qZWMsXvKZkO7bT20TzBA7QCazXTsIkEk4lJaTPt6iwBQEcRGONmGg6fPKKRIFYC1Gwzd0hIEgSxaFgBtea0HnDBUBoogXsC68/YimBNBdz3jKUNAFEqYu/PTeewjBIEPQXUDo1DSQ0vFNh4/gC4J9CqNnHojrGjXs9iCPPsa9pr0inc4kzzlBeaX93c44gmmqkZvUJ9aALRxGMo9vdAJWYOtwg8aKWx/nm/lXZtlwA/QPOB+8E4g+jdieGHngDjHOAMw4/uBxcMcSNG2FvAwQcPIaknEKEAQRBEJ6ssk08QK4+VMOVFBMKlT73QgygWIAoheBiY+j8hoNMu5bgRm1SuJ5zhulYaSUsiqkWQ0dw6qRf7eqo0RS8jhaQpzd6aEtFEy90mDtQwcaCG8f0TGNkxhOEnDmNkx2HUh+sYfmIIo08exvAThzC+bxQT+0dR3TOMeGgYyaHDUKPD0BNVxBM1RKPjiIdHkTRjJM0IOpGIGzGa1RZaafo8rARgfjsKShArCWtIPt+32fCzn/0Mr371q7F582YwxvBv//Zvucf/9V//FS9/+cuxbt06MMZw7733TjrH+973Ppx00kkoFotYv349Xvva1+Khhx6a9nW/8pWv4Oyzz0alUkGlUsF5552H//zP/5zV2gESkgSx5Lmh/wxc553aNa29UpCREUw6m57l3Hwvpblpbaa7KJW5mXnTSUsiaSSIazFkPHdLnsUWk4Cp/8xGJe0kIya48ZtMH2+nvDk4N1Fd9xzOzOjDRJkUnidch7ZOJMAZuO+5c9j3wH6dtBJoaa4nF2ROThALQa1Ww9Of/nR86UtfmvLx5z3vefjMZz4z5TnOPfdcfO1rX8ODDz6IG264AVprXHjhhZAZJ4ZOtm7dis985jO48847ceedd+LFL34xXvva1+L++2dn80WpbYJYoljhuBREzULTs6EM7gmUN/Qh6C2hfObpUP0bAADeoX1mQgsX6N30hPHNTNO1wudQkjnxo6Re9nPFLVqasZC2U1tG0jXeWDseBUC2EiMqPQGVCkEZm7R2rLQTiSqKwLQPltTAw4JJZQNIGq20kQeI6y2oWKavnwpIX6C4JoSMlGuGIoiVAmPmNt/nnA0XXXQRLrrooikff/vb3w4A2LFjx5TH/MEf/IH7+oQTTsBf/dVf4elPfzp27NiBk046qetzXv3qV+e+v+KKK/CVr3wFt99+O84888wZr5+EJEEsQa4vnua+PlLN3nJutiluMWlTGSvIWKE5WsPAuWcAhSKiygaAMeg1mwAAXtRA30nbwTiDv34dWFjAoS9f60y6h381PuvXFyWe6/ZeStey+nA9971fadcoZjvXCxv8drc75xj+zVjOc9N6Xg49fLPrhvcLHkbum3Dn2PzCdQCMkX3W9DxuxDh876h5/V6BaDjB9cXToGKNVyUPz/+mCWIFUa3mJ4uFYYgwXHgbrVqthq997Ws48cQTsW3bthk9R0qJ7373u6jVajjvvPNm9Xor46M7QRDLHpvG3XvznUCrhfDgkxBxCyJuonB4J7ydD0G2Iqg4gRyrQtVr7TTsKjbMzorIbnWMVkxOR+f1m+p6LiWhTRDzgfFjnf8bAGzbtg19fX3uduWVVy7oXr785S+jp6cHPT09+OEPf4gbb7wRQRBM+5z77rsPPT09CMMQ73//+3HttdfijDPOmNXrUkSSIJYYK7kWspNCfwgRCKw9YcDU+HkcjHPUfnM/ZKMJxjnCgTVQvT2A1lCtCFoK+Gv6ACkho7Sj21tdn4mtp2ZuTGMREKJ7Z7WOzVhHFDmQaASlycKys7a03RnO3GsBbTF5nXcqRSWJZQ9n5jbf5wSAXbt2oVKpuPsXOhr5+7//+3jZy16Gffv24Qtf+ALe9KY34b/+679QKBSmfM6pp56Ke++9F6Ojo/je976Hd77znfjpT386KzFJQpIglgnZWsnlFBmy62Y+Q+WkUuZ+Di1NDV9cNx3C3OPgnkC0Y7+rhXzkB792x449WkuPM+e0M6/t9xY7KQfIR+RkXaF8QgjZUGaijMegAGAZXM+42qVoPtZopNfuSERDbfugxu78cw7ePeK+Lm4xEQwda5Q3lpxQ7TZX3H7oIUFJEJOx3dDHChv5POWUU/Dc5z4Xa9euxbXXXou3vvWtUz4nCAKcfPLJAIBnPvOZuOOOO/C3f/u3+OpXvzrj1yUhSRBLiJUYjTxiWnUaQ3HGs13L05+Hd0TM5rKm1Ux2fjib71ANQSwxVrIhudYardbsRroezXNISBLEEuHHJzztiMcsp0ikJRsRzNrMWGQkEdfNL67Sul5wT0ArjaCnAO4JBL2B6USO5KTIo0Ul+fGIuuM6dX6ffR7RIR4zNZecs7zonuI6UpqbII6eiYkJPPbYY+777du3495770V/fz+OO+44DA8PY+fOndi7dy8A4OGHzf+1jRs3YuPGjXjiiSfwne98BxdeeCHWr1+PPXv24LOf/SyKxSJe8YpXuPO+5CUvwete9zp88IMfBAB8/OMfx0UXXYRt27ZhfHwc3/72t3HLLbfghz/84azWT0KSIJYInenGLNxnCAd9yIbKpSiXOtxnufnZSVNCpT6RQgpEVZNePtwcBgCEBybAODOm5D5HXI8x9rjpxs7VA8KIar8i3PnXnNaT2uNwbH32iU60yiiBVwggoxhJM0bfUzZjYvdBVPeM4Mkb9ixLcT7fZK/BxKPN9tdPNGY8wpEgliOMA3yeS6zZLM9355134oILLnDff/jDHwYAvPOd78TXv/51fP/738e73vUu9/hb3vIWAMBf/MVf4PLLL0ehUMDPf/5zXHXVVRgZGcHg4CBe8IIX4Be/+AU2bNjgnvf444/j8OHD7vsDBw7g7W9/O/bt24e+vj6cffbZ+OEPf4iXvexls1o/CUmCWALMJKWtYz1lZG25oDKzoG2Xtp2ZDVjvQg6tFEQQIGklk9LQ1s7Gfp2NUrbGIhT6Q8T1FrgnUByogHET7TTNPAIqkWCcQSsFryLcubrWIBIAZj4PnCCI2fOiF73IDAqYgosvvhgXX3zxlI9v3rwZ119//RFfp9OH8pprrpnpEqeFhCRBLCKzqYlUiV4VqViRdm5PxVRiujUeuX/thBytjDdlYU3Zfd8tvc58tmhztpcydD2IlQ7DAtRIYnV96CIhSRDHmJmKx2y382yYTdPJQpFduygaUSiKHGFv29OMCwa/7EEp5RppmOCQifleKwW/6OfOa/fEU+Fno5EqyUdrW1Vj5s291A6HM1d7yYSAKAQoDfQAOOSimsxny6J7e7EgUUkQRDdISBKLRjdBRQX7bcJBHzrWiMcldKwR1WdWG7mU/uDrWCNJR+4l1XazjAgFmGDo2ViClhrV3RNgPkNzxKShezaWENUiaKmd2ASAyqnGPsgKz95NPYhqEQqVED2Dxmaj7ymb4Vd6AKVw/+98EiWviTHNsK35MLiKEdRGUNj+IHqGRzD65DCiegyv4CEaj1B93ApQRqluglgFMD77msaZnHM1QUKSWBRWos3NfNPZWLJc6VZfp5SCEKI9MzrREJlj7P0yUbm6yk6imklnK6nzNkJKQWsNBo1EeWBMI/FCeAmgvACi3AuMjuVeyysI+L1tQ28SkgSx8uGMgc9zanu+z7fUWWW6mVjqXOedSiIzJalKJFUJWZ9aSC0HcmnuUECEAn6h/RlWJm3D67iWQLYkuC/AfSPqjA2NuRXWhggrPsJKAK8gTNOMVGhVm2402d5fPgwVJ9CJxBk/+hSKogmPJfBkBKYVeNyElgm8DevRM9iLwpoQwudggn4dzgX6f0sQqxOKSBLHjNn8oVnNvnRWeIkiN801c4xGHouayWDAy3VPe5W2CPQK5msmGFSswH0OEYjceMPShoJ7zCt48IseGOfwQoE129akndbc+UyqxHhPbnj2WVBRBO574D094GsHkOzeBdloQEUxtJT49YGN+K2NuxA0xqCEB96sQddrUI0GRneOoDHactFfW0awEIgSd+fuO61shK9gqD5mpvXYNSzn6DNBLDcYM7f5PudqYkl8BP/yl7+ME088EYVCAeeeey5+/vOfL/aSiHmGohUzR8XGXDteRtFI16yCtAM6jSCKgIMJhtK6EsrrSij0hejZUIaWytQ/lnwXkbQCEzAd1VyYBhnuCTDOIQLPpa9F4JnvpUQyUUM0MgZZHUeyexcmtu+GbLS9EC+67UOYkD2IChVEYQWqUAakEbGN0Rb8QlsEZ/exELDUV9N2jqtYQTbUiunGtxkF+v9OEKuHRReS3/nOd/ChD30If/Znf4Z77rkHv/3bv42LLroIO3fuXOylEYvISo1GruQ/sFNF8gp9Bfe1bZLp29oHJhiSVpJ6R7Z9JQEgacmu4/m0UpBRAq00ROAhmahBJxI6kaYuUkoEfeX04Mz0HM1dmIDvSH+2VLvT2yt5bgIP99qd5gvBVNN5rMhcKZCoJJYDNiI537fVxKKntr/4xS/i3e9+N97znvcAAK666irccMMN+MpXvoIrr7xykVdHLAYrVUReXzztmLxOMOC5ppHajqlnph5NyjvbNBMO+k4UrT9jAICJJPpFH5uff7aZYRsGkOMTxnbHE3jiP+9C0pKQsUKhr4DR7abhJej1oWIAMAKScwa/FCIZqWHjeWeZmkcpMb59j3v9uB4hrk5Axgm8MAA4RzQyBu57ORHJhMDpP/kc4rEq7n/15/Cs4OeQwyNQUYTyRtMFnjQSlDYWMLG7YSKEaYPQXNLMNt1vo409W4vpehhG7ht3x6l47uULSx0rJlfq/22CWM0sqpCMogh33XUXPvaxj+Xuv/DCC/GLX/yi63NarVZuoHi1Wl3QNRJzZ7YRiewfnexzl/sfoWNV+5adbT0dU61npgIzK5JUohDXYwBA3Iix//b7oZXGpueegXiinnlNk1Jmadra0s0kvHZo3PlIcj/1m0yNylUiU4NxbSKSvkLrsBmzCN8DmDk/Y8zMP+MMjHM8/T8vBbZsnjRFwkZK29FIBVHkYH7aPT7DEoOs0M5GHrnH3GuoeHmUKywE0/0uWO7/v4nlCU8/uM73OVcTi5raPnz4MKSUGBwczN0/ODiI/fv3d33OlVdeib6+Pnfbtm3bsVgqsQh0/tGhFNnSImtPZEUkYOx0rCDc9dNf4/Ebfo0nbvoNnrjpNxg/UAMTRtSN75toP0flhZ1SGkqaGwuMiTnzffDAAw889xx7A+CmU6g4AbSGSjL2PVJCS2kEaBS1v5YLK+qyIxy1NKMglVzZ0cejhf5/E8TyZNFrJAFMGk+ktZ5yZNGll16KsbExd9u1a9exWCIxB+Yz0rAc/9gc6zoxlWhnHTQTJnk8ps0+3XDNIj6DVxHgnhFKfsl3lj0i9OCXAvilAIW+IrzQS8cemiacif111A/XXU2kGU/IU4GZRgY5g0qM2FP1BmSzBRVFkE1zs49pbUYeso7oplcugQc+mDBRSeb74L4HUSwASoF7pitcSQ0ZSajYNP/YSG446KNycnnW1y97fcKBADrWrt7SRiSFz494nVcrVFdJHGuoRnLuLGpqe926dRBCTIo+Hjx4cFKU0hKGIcIwPBbLI4glQWet3pFq9wobfIR9JorXPBAfUax0Pj7d+bOG3UGpPb6Qp0IRMEJOpZ3YWik0x9qlKFkrIMA0uZj727+KOGdYd+ogZJSguK6C+t6DLg1eGOiDVgoqSiDSyCTjHCIM4PWU0RoagYoTRCNjSBot0/UdBuD1BpKJOoqbN0DW6ojHJyBbEbace5zznwRM3SUArDllKx761/9G3yllMMGw9VnHI2nGZmxjKYRXCOAVQ0TjdYw+edhFP4ceH4GOzUz0qGqitLYre+huKsOZDZ1iklLfxELAmbnN9zlXE4sakQyCAOeeey5uvPHG3P033ngjzj///EVaFUHMH4sVWcmmfOcT5pu6yKnsatrpZuVqGDsfn47GUBP1YWPdwziHihLEtQaSRgtxrQEmBKC0MSJXGoyZ+kedSDAhUNy4HvF4HSpOjPjkDFpKcE/AKxfNcfa5nDsRyT0BEfhu3Z1wT0BGCVSiXDQ0aUVgnLkIo1YawhcunW1rVVeKtc9ik41WUtSSIJYOi961/eEPfxhvf/vb8cxnPhPnnXce/v7v/x47d+7E+9///sVeGrEEWY1RidmmP0UowP2j/4zYGf3M4pc9cG/6lDlLG1vM1/n7s2TtfiwiMOIu6Cmmr++ZmkfO0BptQIQBlDR2P8ZjkkMlAPMEVBQhGh5DUCkjaZgoqCgEJoIZmznlWkpEI2NQcQKVSMgoSddm/rURySd+eI9bk5Y6NURnTigzzox9UHrjnsgJUOYzCBhDeVHkuXpSgiCWDtmMxHyeczWx6ELyzW9+M4aGhvCpT30K+/btw1lnnYXrr78exx9//GIvjZhHOjuwiaPnSMKyvL4IERrzblFqN7Qcjbl552tFo5mmmt72Y43RZu646p62vY1LeQuG+sH8cUHFBxcMpX5jw+OFHoTPkTSjdld3KtpK6/sQ9pvUtr+2D5ASvFiEThKwIICOY3i9PeClMuLDh8EYQ2t4FIxzNA4OQyUSYV8PklaEeMKMVLTpare/WgvNqhGhJ//O06BSoVl976fMelUTD9aegkQylMMYtZaPF49/FyxqAlzggb/6KpTSED7H8ENjYD5zXpV+RdD0mnlmNU/AIoilwpJotvnABz6AHTt2oNVq4a677sILXvCCxV4SsQDM9Rf+cvyDsRhrVulUmIWmu2H41AJJz6Bb2UYHRNqdzYSAF5p6RO4JcN9DsK7fRDyFAIQA8zwwzzTWQKSTcdIu7bB/DcJ1/SisWwMA4GEALwxcfWX+tTmiiah9R7oXJSVC1YCnY2jGEXoJBnsmUPZakJpB+wXInn4zMSez1+ykHwCU4l4g6AMqMReo2WbuLHpEklhddAor+iMw/6w/dRDhmjJ0IjH0wAgAI2LmY9xiNsIm005nAC7dq6UC42KSoJwu1aOkieA1qy0IP+3u9n0nKrMRw6TegOjtgVYKPAjAfB/w06YfzsEzYtL4R3LTuc05CgN9RqQWQ3iJRNJopefPrFMwCMHMvtLaScYZRlkFDVVAwCO0Eg8cQMEzolMzDqYVNPeg0lS3TKfmWBFJ6W2CIFYqJCSJRYVS3vPPyI4hVDYnTsypRBubnllMaumsjbT4ZQ+yZWok67vbaeqejSWTii76aWo6MVG5jnR2Y3c74sd9BtlQ0LHG+JoJxLXYCLlAYHzPYbf+tadsNo0xQqB4vPGN1emsbNa7xpxMSajafug4BhMxWodHwDwB7vuAUmiNjiNpxml3OYdOzc0La8ppE41ENNHEiS97hnktT+CBi0w6O1EcV3/5ENZtLqNUquCJB3fC8wVKvUXsuP9BvPhPPLAkAhhD35Y+aGVqKmv76xChgEqFsChyaC99T+J8nWn2egf95tdy80AMvyLce5gdQWkFqiYLIYKYE9S1PXdISBKLznJMWc+Uxezatkw123m2MJ85UZS9D0jT1l6+gYZ1pNc712EFEPPNZAkZK3hCQEYyt36dSPDQpLXh+WZKjZSA50MXy4CSgJQmOgmABQFEGIB5AkyItujM/HaPJpoo9vcCQKbhhoEH6TkYQ6I4Es1xTnwbzjz3BTiwrwalgQ1b+yGlwtPOHsC2p/SDyeuNkOQi0wHuTbpe3GOIp4hKqlhDlDh0rKeMXOaaoLoesXqhiTkEsXjQ7yOCWGF4oUDQU4BfCuBVBESRp+P+MiP7fOZunUwVjdRx297GnsuKQ5na4iQtEwm1U1ymI2fkLYyNjn2OGYGo3YxuJaWpi/Q8I9jCAlihCBUUACsUPR/M8wG/LSIBZDrI2z6X3BPoOX4zRGgsf0y0UoAHgTErFwKNxMdZ+DWioBdDhxvY8eBuHNg9gicf2o3eviIeemgMt/3oPvxm7QVQQRHgIrs9+IXJn9OtgXv22tuvu0UXZUO5qG03KBp5ZMgqiJgOqpGcOxSRJIglhF8RCPo9NA/GrqZxNilpAHjyh/vQ/3TTrZ1UZa7Jw0+FpUrakS+OyYIkmzrN3ucVhBN7a8+owAsFZKwwcNI6BD0FqEQh6C1h9813uOdMJ4Ls9J3aoYZZbz0B8xmq+0zXN+MMjVHz2OBZW1Hfd8isK41Y2rS07fDmHneej9aSJ2nGGN83iqRl5nMf/s0oAEDc+DhOf92ZiOtRWofJ4W3ciInTzocUPs7kDyPRBSTcx++9xMMPyyfjRc9kGG9uAmNAIEKc8tRz8PR7PwdZrQKcQyUKrXEzW7z6eD0nDoMBrz05p+IjqUqIYmpYnrlG8RQTiQqD/qQUtyhOfTz3mfsAwT3mjNEt81Ezu5wgg3OiG8yUUs/7OVcTJCQJYonA00ifbChjaN0RQZyNmOzWPZ2dSuPO6zHIWZyXCzYpZW0aZMxNBDzXET2ViJwKN+kmFaicMxTXGE/J6u4hJK0E/adsROPgmBOK1sfR1j9mjcYBDhkliBvplJm4LZ6skLbNPPbfngd+DnCBg09/BRg0uJaYiHw8/7eARAGtmENwDcE1iiGDHmq6Wd4AcvtnPoPwGWQ9H1WUSG2AkrnVOLIposdTPW4jyNRBfnRlJyQ+CWIyJCQJYgGZTTNR9o8+8xlU1fyxt7Vzs0FGRqh4FdHusu6ovZuqdrJTfGS/L64tgvsRtNIoVEL4RR9xwzaxpFHMLpNhZopt0LGCjwkG7vF0vUY4Nocn0jGMNv2tIKMEjPtgHBChj96Tj8f+X/y6fZycXDOqEg2/t4RSth5z3UbzukpjX7IJnClILbBv2ENaSolDQwk4YxACaDRj8PUbwTmDZhzF+x6DjBLTVe61p9qIEnevCaRR4FmKOeYzINEuyjsTEWn3ynwGlmQ8LXvFqotIzgf2/zIJypXDQqSiKbVNEMSiEg0nue+daDiCmLQ1d8UtAZRSEL6AbmnE4yZSllRlLtU8VSQsK1I6xQj3OPyiaUgRgZfa46RTY9LIYDdUrLvWXto1uNpIpQBlupqV1AC83LhHkz43qWyVJE60ZoWs2UPs0tWAEaRZMZkVcV39MDmDBoPUAlKbx5tNjTBg8D2GRlOhNxRoNszUHc04wDiGnzgEv2hM1q3ws9dU9AqwzOsKP7veduNRVuBl36Nsx3uW7HW1ZQtub5kSBTsD3P5LHD1khE4QbUhIEsQCk/2DM1V00ooBv1dM6txVsT6iiATa0cfajhZEiYN7DKWthfw0lfQ82WaPTkGpYu268FSska3A23/XIXe+3/rAcxCN18E4w8T+USRNkz72S2FXkTpdCrf6cD33fTIonW1R7ZB5jHOOno1mAo6WGkFPgNGdVXDBwH0OLhiSpoRXEGhVfw3AjFyUkYII0oig1GgeyEznSaSzFmKcgQ8fxMgZL0IkCqg3fDRiD6UgwYtPfNwcD45Ne+4Aq08AnodkSz9u/b2rIYrm/CJsC+mg35sUSbZCMsnUNcq6cu/FTCPPtgxCxxqlE0J3f2Vzjzl/S0JLG9Xlxt8z/dfeF9fMdWCcYXx7+/pPVXO5nMmWhmQj/HMpK6Do5MqAMQY2zyHE+T7fUoeEJEEcI6ZLcdvIke3SPRo6RYhsKMhYzmv0yaZIAaC4eQPEyJh5rSiBVwgAzhCu6Z3z69g1d669uKYIJTXiRowk9bM0kUsFFRtRFNUSKKXAOYeSGkopMMnAO6KS5vxpfaRWCPv60DzhLARxDUwrxEog8BTqkQdW1NCMQegErFkDS2IgbkEEBbPGtJHFWBkZUdkt8ucETDqD2zbBzJbOqTkATAQ63Z/wOFQaaeWcua8BPikCO900opXCVM1kM/mAdiQoOkmsdkhIEsQSYKp05kzgHaLC1uOJ4vS1lUcTjbGRN8D4NXZa60Bp6GTuEa3sum2qXSmFpGXS6MLniBuxq6l06wu4q69USoHPxuGMMUi/CMUEYhEikQzNWEAqhl+NnIiz+3eAa+NZqRs1sGIZLM6nm8PeoF3n2ZK5iTbcY7DvsrVk4h6b3BCT/jvd+5P9ebHNWVEjhvAz709q7p7EEkzk36eseGTciNkj1VyuBJzlUqZ+dT6g6OTyhWMBDMnn93RLHhKSBLHAzKY7dKYNEMGAZwyux6UTWp0NGCpTn8fSVHY3W59u2JrG4tbAiUfOeS4FXX34CTQOV8E4xyPXPpoTmVnsdBZg5mnT7HHWHof7DH5hvH1/pEwzjjAd2mOP1sw6PTbpdfrOKEN1iE4AGN2+3413bI3W0PO9r0H4Hnp9H8+pTri/MI/8x6+wJ432Pbi7mbPhyQq+oaGq+7qzdKDnlIKriywOhPCKHoTHwfx03akobx424rTvKWUkzbaZemOoBdlQEEWeq5dspal6a6fUe6JJ/3PB0DvYAyXN7HU77tHuN06FJ+Mcftl35xt5uL2HTvunaChfv7vcsOUd9qejuDUAYH5mCv1hWiYhkDQTDN1dnfpEU7AUopPZ3zeLvRZidbDahDNBHFMW0gjZRrqyDTS2qcLe4nHpPCNV5hhgauNxi0rPYdPtdjRiFheR7Og474YVs0d63W7Y55Q3lJ21j617nG6OdyedqW2tNGQsIWPT+Z3UW0hqDchGEyqRgNKA0lDSHtcuFcgas3fDCfB0z+X1JZQGighKbdHGRDsVrpSaJHTN3HFjq8Q9hqDfg1/Of/535vDpeowFE4cXmmYo+6/db+e/9voJn7uIZrY5x12r7GSdFRK9zJYXeAUPfslHXIux9vg1R33OxTRA73xdMmI/MmRIPncoIkkQC8RC/xK3zSgAoIBcVDL3R9/a/JTaom8uM5pt44LwPSdCuJcxv+YcDUzuMLavebQiRMUa4/uM0bpOax85586T8YjrFgxxx4xr1Sksten05mEAoTUYY+BhGrXKuBZnrZOyZ8xGIZnPIDKf1Xk61Ff0BhChl0sv2/pGEznsSHWnUTLbyNMpNrPvZVKVaFXTCGVZI6q1oJVGUA7c6znzdsFyqW4ZKzNdqKOswF7d7LpWykQd62TgVQTiWgzeG4AJhkMPD8353EshOrmU1rFUIfufuUNCkiAWgOlEpBUbQb+HcCBAfXdzcpf2EbApRol26rgzDQmkk22sd2AmxTxTE3KVZDq4YaarWCH65K2PoDnaAoBcJzRgUu9W1Gb31l5DXvxNt+fsY+OP1hH0e25Ki43QKaVQ3NIWfHE13wUepFE87nO0Ku21br9ud+64bH2p7axmPjO+i2kdoa1vtPsL+j0n6m3KO1jjO8shO287aSWuVtEvMbA0+rfpGRvb6+wpwCsE0EqhVW24TnjGmbNEEoFAYTBya4uGk9x0ooknGm6dFhkr+EVzDax4ztZTlvqL0ErDL/pYe4aEjFLLqKZE44B5j3WsEQzk/2Rkf+bm2u1tr/2RPuT0nVGGTD8QFNeETjgb/1E5qQSjk6zYX3tKJb1PoLyuDBklCCsSrWoL437dHUcQxNRQapsgFgnZUEjqyZwbHWbbNDCbaSo2venS40k71d0YanZ9Tmfzj7s/bSyxt87531ORTYcznzlfTBsFDSs+OOfuppSaNEtcSQ2/5CPsDXJrmPRa6SzsbhHdzvni9vtsZBgwNkyyJZ2IzEX4pMr7XSoNEXjOk1MEHnjgIegtgXEGr+C74wATRbQiL7seUeQutd25zq7XVLBcRNR+7ZqZgvTDiczvrbN0wv5szBfZet7psNHh+qH2z6CWZk2dEdspz+HbSK8HrRQmDo6jPlSHVhprju93x1mBezQshdQyRSOnh/OFua0mKCJJEItAzrYlNZGebi71XOAdosmOX5yJmMxGJIG2QbmMteuKzv7h7uaH6CbrxNpZB2VTpsxnk+Z9Z4WEE0Zo1x268YbZsYMdNZzZNHpQ8sE4h4qPHDWzAtcKRBuB9DKlA7ZT2j0nNOKRewx+wYPyTZqaSQYJCeELMNE2cw/KgXuuVwjSyTym5jSoGC/IoKeAaKIJr+CbWsbUB1IEwl0H5rNc5DR7zaPhBF4lSq+Fcg01xTUFqLRnhnEGFisnJBlnSBrthhrZkk64Z/0uO3925sN50pU+pN9nvR+zP8NhJYDw2kbzXtj+M5a0zIz18UfrR/z5NuMr213+cT02/pqNGPWhCXfMXP9PHsvmFxKNxGJAQpIgFgErpGyUzzKTCTZH+3qYJkI1p3PL+VnvVCJlOmRDYeyJmvs+O0/cnk+U2mKXdalB7EQl2nVXZwWbRfiiaxmB/dqOp2S+MR/ScmZNQdzj4Omc7qmOZYLDC8Wk19Sxdk0j3SKt03tHKtfZnZ0iNGl9fv4Dw0KkfGdTP8t9MbdxnLFporIz2QEz4z0oBxB+u1yEUtsrG6qRnDskJAniGOP+MNloS5rytQLH1t/NtObMWgbpDvGT7S4GMOs6THvuqVaRFS1WAGRne3d7LZ5Zj451bqRf9jgbBQSAYI2P5uEI2suf19of2a+Dfs+tq+cpRbP3tE5x+KEx97rrzuqHlzauNEabRjylk19s2lgEAs1yywnQsGIiiLZWMVv72NjTbizqOaHovq7vb7q9AMDYUIRgjYkKNsea4MJ2ovfBK/jGmieRUHEM7vsI+3oQru01XeOJBPe4S4XbyKZWGq31kduDkhpxashurzEARPXYrSfe0K67tPsTgWg3TqW1k1wwKKlR3JL/+bEpbVt/m/0AYCOH00Uvs2TrIrPRPyeOO1L1zGfQsv0zKROFpCXBOINf9JG0JDx3zbv/vGe/PnDHYfczaPdlo9ALISBnkuqmqOLqZHx8HJdddhmuvfZaHDx4EOeccw7+9m//Fs961rMAAAcOHMBHP/pR/OhHP8Lo6Che8IIX4Oqrr8Ypp5wy5Tnvv/9+/Pmf/znuuusuPPnkk/ibv/kbfOhDH5r3tZOQJIhFxIpHG6HsrM+bK8fSZDrbWJMdD5gVsFPVJcapGM7WQtpj41pijL3RNvbWHVHFzsguYNKyQa8PhVRUZ61s0rngnBuTcMbN17n9CAavYASnF+ZniHsFBUBAK42kN52wk2h4BQGVpkq9ish1ejO/LdwqmyuIGzG4YCgMVCCb1gvSiEgoBXAGFSUQhQDCE+1ua0/AL5pUfdJKwHlsjuUMMoqNLVKqbWUquYQvwNeYyKwVilrqtnl6JJ2w5dlSBcGgpXmeS+tDuQ8EIiPyVCzbpQ+YXWR5Ossoe35bcuCFHkTogQsGITXCHusFKVComHGRxU11RKNxWyBOUdKQ/ZnNTVM6yulS8wGZmx9bUjOFeT/nbHnPe96D3/zmN/jHf/xHbN68Gd/85jfx0pe+FA888AA2b96M3/3d34Xv+/j3f/93VCoVfPGLX3SPl8vlrues1+t4ylOegje+8Y34H//jf8xxV1OzykpCCWJp0VnXZpsX5tLA0On9Z28LQWctZDfxCLSFoY00WsuVbsdmz5WdSW3Tt92wAsZFdVOPyWg8dh2+ueM5c7Y6kwRk6lOZFVSMcyM8PWEEkzCiMJsy7lybTY9mvxc+h1cw6VO/6JtGmzBwDTdaaSMi09dknEFFMXQiM/Y93Pl32jUqpcFTb83smpwQE2zKJpRJYyOldjegHdUFpjayz5rfz+Zn13madvkAZTviO6+rTBTiRuzW59abGD9Qe52yUcYjkT0mGyVfTJZCow5xbGg0Gvje976Hz33uc3jBC16Ak08+GZdffjlOPPFEfOUrX8Gjjz6K22+/HV/5ylfwrGc9C6eeeiq+/OUvY2JiAt/61remPO+znvUsfP7zn8db3vIWhGG4YOuniCRBLCLRUOIsdbjH0NgTzTmlJuvKpbmPRX1XpwDQsQaK7T/OWRsa15XrtSNcQbH9a8gKn9KGAlrjEVSiUdpQABcMyVqJaDyN3NlO6UwkMhpuN4kwziBC4cST39te4+4fHwBgop+d03g6hb0VFcmgTDumjTF71u4na32UjYxON6Wotqfh0vKjT446UaSlRnl9EUpp9J84ABklafSUo2fjWoAzeMUQomCicH65iL3//ai5JlKD+wLRRGrXozSYZIAPeAWB+qHmlAJJ1qWLnloRDrSnB3UTobYe1V6zCIm7T8capRPMH66JR5u5SHO27rBbrSfQFuW2ZMGWD6hxjZFq1T0v6PcQlEwzUrG/4M7lFQSCfs/4RCb5D1LZ/xPdJvXMdLoUsTJYyBrJajU/HSkMw66CLkkSSClRKBRy9xeLRdx6661485vfDAC5x4UQCIIAt956K97znvfM7wZmCUUkCWKRiYYTJFWJaDiZN+GnjkGTgH2Nbjc3DadbyrnLfTZCaaOKPE2lBv1eGk0zkbbprIOyNkVRPYZSCjKtZ+y0/LHNIp1rsZNObCrVRkujaoxoPEZcM8IjW09nz2fXYOmc4pP92kZmjW1PO7poRZvw2xFQ7nGoREGEPvxyEV6piKDSg6CnBL+nhKActCOcPgf3BfyybybipDfrX8k91rU5KpuCz0YjO98j+yHAdbJXBPyyl4sG22Oj4SQ3vjErHkWJQ5Q4/F4Bv3dy8xDzGYqbQvNhIP3ZEEWOoN9zX4uisXtigqHQF7qUf3ldD4r9RRTXhAgHAhTWBQgHfePbOuhjOUFRyYVnISfbbNu2DX19fe525ZVXdl1Db28vzjvvPPzlX/4l9u7dCyklvvnNb+KXv/wl9u3bh9NOOw3HH388Lr30UoyMjCCKInzmM5/B/v37sW/fvmN4tbpDQpIgFoDZ1DdZQbMS6RQYndiIn1/2EPYGEKGZ4NKqxq6hQ0YKSSOZspu46+umnpJT0U1kZ30hs+UFukNwZptO4nHpBCLPpNeP1Bk+VU0gF5OFnktxJwqMMTSHRiEbTSQNM86xM83N03naIhC5aKIT0yKftu+2hqke7+xWt0LOK01Obh0prexmlSeTI9qiyE3kt8OHUzbUpFINLhhkotx0ntZ4Eyo2PzdcmHS/PX6qefAEsRDs2rULY2Nj7nbppZdOeew//uM/QmuNLVu2IAxD/M//+T/xtre9DUII+L6P733ve3jkkUfQ39+PUqmEW265BRdddBGEEFOe81hBqW2CWAKoaRoC5sJC2bQApuPWpin9Sj6qlI0YWX9HG6USGT9Gd3zAkTSl6zYOewN0o2+rmUQSN0ykqznSglIKSVW6jmjANOi4STNeuyNYhALFre1zN3ZHQKxNKUADGDi9z9Ub1g413Nqj4SQ3irGb/Y/u+ECQ9b/s9COceLRtpD00lE9/iZKZqJK02hNm3Dk5Q1gpIQbSTm6BxmgDSL9PWtJdEyvygFQc8nw3dmsoTRcnGoV1gROYndHIpJ6442zNqmwohIO+abzx8kI1u3+RiuuuZQ6eRnFD6OySGvtazqLKlinkopxFDiQ6V8IQ+Qkanknll7a2035hJch98LARbOEL9D+9F0wwJE3prgEAxOOS0tqrkIVstqlUKqhUKjN6zkknnYSf/vSnqNVqqFar2LRpE9785jfjxBNPBACce+65uPfeezE2NoYoirB+/Xo85znPwTOf+cz5XfxRQEKSIBaAxUhJdRp6Z82cF0JMZv/oZq2KuJ8fi9gtCmTTorKhzB95ziB4e6Rgu4nEdEd3w9rX6JYZSagynoLZJh1R5LmZ19n1ZGv3uMcQVkJTW8gZWuMRRMCh5OSIcfY72bH3btdnNt6grjs6ki46GdXjtAmIQysFr2AadLxiiLBnDEpqaCUARGmnuXBG2wByIr1zDDr38jWQU/mC2pQ2AFdeYMWpUgpBv5fzX7SY6eXtcwCpV2fRNB75ZR+tapSre7SG72FfgPr+phPia0+tYOThqns/OiO/rikotUKy3we95kOGkhp+2XciU6Z2VbZMYf4/yhHE7CiXyyiXyxgZGcENN9yAz33uc7nH+/r6AACPPvoo7rzzTvzlX/7lYiwzBwlJglihdJo7Z79fyPpJFbcNvafDigFR5IjqJsIofAHd0pCRglcQkHFe5NioLeOpDYwfAyXviKboVogwwTrHfLfPnWhnyG27f7NipHMU4kKR7bRWSO2PfAEvbbARgWc8J5WGbEWTn98lPd75eOfrZedud0YmWSaCbCcTccBFPLXULvKseX5EoUomOwa4SUaJeZ/DXg+l/gJaQ1FqBt8Wd62xKPe82qH6jARfZ8e5fR+VUkiaaZ2rbHd1d6vbXSpc551KVkALyFIxJL/hhhugtcapp56Kxx57DH/yJ3+CU089Fe9617sAAN/97nexfv16HHfccbjvvvtwySWX4Hd/93dx4YUXunO84x3vwJYtW1wtZhRFeOCBB9zXe/bswb333ouenh6cfPLJc99oCglJglhC2HQxMDexZ58bDLT/i+c7V+c39mLX3W0ede51bd2hxxBWfCRViSSWmfrDCH6vgO7ViNM/+FmRk7QSyCgVebGEV/QAJNAi7VBG94haUpVuDKXtAM5NLUn/3fuLg7nn2f30bC2mr2XGG2Z9Jat7xl2Ea+JJm2bWU0Yhrcm2vS6lE8KuqXK/5ENLjaBkomlJMwLjHIX+HtQPjpk9KI2JQzX3tZYKSVO662A7sBlvp7a72SFZs3KVaBQH2+lmryDcGEGvIBBzY3bOyxzl9UVwX+R+luy0Gdvhno0S29ICpRRQTMc41mM0hlrt56fNQFkzfc8XuRKJvpN6kTQTcMFQXFtEXI+hlIZf9BE3YlMf6nEX1ZaRchFZ4Qsnkr2ih2J/0c0Xj2sxCmtCyFghrsUuMp29PgCcbZXwBSZ2mPc7O1Ep603ZrSucILphayh3796N/v5+/N7v/R6uuOIK+L75/79v3z58+MMfxoEDB7Bp0ya84x3vwGWXXZY7x86dO3O14Xv37sU555zjvv/CF76AL3zhC3jhC1+IW265Zd7WTkKSIBaAVyUPr7qOSxUb8cR9dkRzdRupygqqTmPoTuy8aSZ0bvZ0NoULdI+4dZvNPRXd5itnLXHsWoDJowdn5Fk4w4htN4r9PcA0TUc2EscFg0zH/0039hDIX5OpIq7ZUoOpmphcUw835QCqy/hCGxF26eQp1pStq7TPm2r0o8rsz4rpKFNbmv15iKoxgrJnhGXm50bL9OcjG8nMnDOLjjW8knETsNfLqwj3YUU37IjMhY9eE3OHMQ3G5jcafTTne9Ob3oQ3velNUz7+R3/0R/ijP/qjac/RKQ5POOEEaL3wkXZqYSOIBeJo0lGyrhY07dzZENHJbGYdZ3H+f5nGkyOJqnhc5nwls+eSkXKd117Rg1f04Jd9CI8j7A3gl82ndCbakSedSUN3WxvQFrDTCcrsmD7Xhe0LCK9t9i1jhaBs/OBm1U3eYQmUxdnr2H2HHrjf7rxmnKM5WoNWyolD+7UZ26gmdVx3mqZP9Zq5NWYm+kzlIWkfA4wZuspcA62US3cDbWsh5pu1CV/kLJyyXe7ZtXCvfS3aHen5DvXs3gGY90hweAUPx533FHgFDyIQEAGHX/Dglz3XzR03E2ipzHXzzTGt8QhxLUbSlOA+x9oT1rj1yIZCPG7EYlQ1hui21hfIfzjq9mGEIFYqFJEkiAUkKyZnE6HsJiazBtqlrQXjkRhr1Ha0Jh1rOVLTy0xe1762ijWCAc9ZsEyejZ05T3bcXPY8GcEY9HvGZ7DRntutYw14DNFoOg/ab4sarTQS3hYQAJxfIuPapLet0MvsWzby4lyUjFekbCj3dbbz2q4jqUp3/+F7R93zj3vxZpQGeqCVAuMM6566DjoTfbNrGP7V+KS6VLuO/jN63P3bnnuCS6NqpdEYnoBWCmO7Tfra1vfJeBgAEB4az3VW+0Xfvb6WGkFP6NLRdmRgs9py61KJaeKpcZOWFQF3ZQScc2dCrpSCis0eldRgXMMvmPpMr+hhYn/diUn7s5id6+7e67BdT6mkEWHdotDGYD6N+FlxNkUE1PqKJq0ESmokTQkZ1SFjIxIZZ3ji5kddij0ajZ0vaOwnrsM+6ZhnX9xgrldQ9lBcW4SMJcobyhg4uR+N0SYYZyiuKaL/lM1QiURh3RqMPrrLNUE98ePHXQRcezrXhDYXqE5y4WAL0LU93zWXSx2KSBLEMWKufwiYz1ydX9bOZTrmIyrSLYI2m7TdbNZgz5uziekS8esWZZsu8jYdUzWEZMkKYC6YiwTa12UzeC9y58+Yj1vaqdTu3UBaaQif50SkjUrmzsttipk5EZg7TyZ9C6RCdZY/JyalrNy5OsdBulGVmVrSbLTY+nRma2pz0cjM9ZQt2R6HaKOxsu0b2c3zUivtaiGVMo008bicZJSf/aCjkrYRO/dFrkygWU0thvpL6D9lM5JWBNmKwISACDyMPnkYY7uG2xHlY9CURcwPC2lIvlogIUkQx5BXJQ8ftaC0f5x0rMHTmc1HEnSTZlCn/o5Hy0zMtu0au83hzpp9y0wtWaf/YG4PGWHUef+k+zK1bdPRLe0+nZjMTazxBJJmDJWkTS2ZpoxuNYndpgx1ih+eps2z+7ETZrTUTjyZtUh3M1FRnrsBJvXenj2t3GvayTfcb6eus/t3JuAZ0Zc00+lAgpnob0ea2bxepuGGc2csb1+j83W6fZ2dVmQjkVb06YzY1VKZUZWRmT9u12fXISNj/RM3EyT1JDdv3p4/+//C/n/ofP+5YIhqEUTgoXdjBYwzxI0YrbEJQGnE9RbAOeqH2xFi4bfHcmZ9TeeD1VZzTSwfKLVNEIvA0TbjODEpp2+gsNhUsX3ubCIlU/lPdovg5YWWeR732aQUeFbCOsuVRDvPRe4zkxK09ZMJc13I2Q7kbCOECISrc1OxhFcI4FWauTpN+7qd+3H7yPgbIjPRxpIVlY3RBrxQwAu9jIjkbj1Hun4A0KrGzpomacbp5Jq2MLXp2pwNj+DtCGDY/tVtO8gZ55BRAu7xNFpnbX3SGdqpeOxsTnL7RuoVmXY2M8lcylvHGl5BtPdXaFvrtMcwtuszk6bMRUKd0FT5n5/OmkgUuUs3M7+d9rYG8zrW7a70dC1eQbh0u/0ZUdJEJJEZXWw/uNgZ5za97dLxdTNSM6lrBL2Bs5hqjjYgI3Md/KKP5mgdvVsG0LN1A8YeeRL1YWMgH9djRNUYftm8N92ajYilx1Kx/1nOkJAkiEVitmLSRhNlQ6GypRcqUWhNROCcO2sTABh7oOaek52Yk61D5B1RwKx5dud8aHdcGtERRQ4U26bfViy5urdp7Iuy92WtUXhH9E9k5jrb+dZK8dxUEwAorMv+sY7dv53NPtkpM1l7pc4Z2Z3Ct33q9n27f3xg8uN2PZlZzrbOz75etl5u4omGW9Pgn54L5vmANtFDtn4jWBxh+BPXtOs/lUZ1+4TbS9YMfOCU/lx6u2/bQLonidLgWuhEQrZihP3pVKDxOpSUKK8bdrV9hx46ZNaqTCTPKwSIm1HuOmZNzRlve1VqZSLkzeF2rW622SQrHDs783WmltV2atvrZo+3AjK2ljqZn4Gst6ed1W5Hblq7IABoHozdezHp/e0ycaiz7rgw6Kcm6iPgHsO602oIyiFa401XhwqEGHm0img0XtK+lAQx31BqmyCWEV7Jc6PeuMfBeTvNGFYChBVjWt2trlEdoVt5KrKRzNk+/2i7wI+0npkgijOvVbN7nM+O+Zm+tpYSEML8O+mxVIxlo3uN/PzpbOp6Up2o0ibdzRm474MJE71jjIN77Uhmbt3cdC9nU9fcMzOrhS/MLeAuZc197rwubUrbL3i55+aWNIXAsvdnhWKuNrUjop5NUwPtutrC2mCSKTow93phK2hVolFcW3b3R7UIMlaIapEr26CZ3ssHzvSC3FYTFJEkiCVIt7SotR3hHnMmyhYmGITH0RwzkZSpBFF2SslUTBq1OE1kJXtsdiRjt8enI3dcRvCKInfTVIA0HZk5Nht1EqFw6daZNANlu+A7RyDOhqnEslcxosuKwbhazz3u0rueBx21jJCUErxRAxhHUk8g+oK0PjLTpZ2aX8uW6SpvVVs5+53maM2Jw2i8/ZpaKUBr8MAHz4wydxZC2YaWWENm5seopG0QDwBKCjcpJih7kImJdmffj+xzswbjIhutzFyLbIS6Fce5iPGkc2Z/BtJouo24R8NJO3KeuWbt91hNOseRyKbAkWg0RmoIewsIyoExaw89tMab7dco8jkLV4JYLpCQJIhFZKr0tijySdNnsn9oVTKEoGKiQOtPGwD3BCrHrUPjcBVxc6f7g9bYnR+h5xoWutSoudcu5aMp2T/Itr4MgJuVDeRT4/MR1VNufZPNu7PCtnmwbSXTe0rJPK4Ueo8vuWNsrSHjDFE9dhGvrHjMpu+zuNT3NHvKpes7Uu/SV10FRVYkMd+HjiJAKYAx1E5+JsAYNp3zH/BLZvZ3XG+ZMoY00jZxoDbJ35FzBplYj0nTiFJYtwZamqYcFSfmNQCoKE6bddqd5xyZlHXYbnhRSXtP7bIAldZMcoSVgklv8xZUWtcY15LcPOxuae7Oa5e91tk0de51M/W0nc/LNpJ1vg7zjbWQSqYoXTgCnTY+T/5w36TXz+6nc43E0oVqJOcOCUmCWIIcyX9OFLkTRyLwXDNAz6Z+ADtnnFqbSdRENtSk8+lYQ3vHJuLixK/XbgiZLkpqm0UA06CiYgXu59O05nzTG0fPR1p+RlEpxk2NZIqQLWhmu7DNGvxSiNZE5Dq7s40t3BeuRkkmeT9LIwwBnUjA9wHOASnBXFqb5cQk0O7kFsIcY615hC+geabBJZ0s5Bd9yCgxUXFhIpWyY6B59jrnGmwwtw8eU1pTdfx8zCXiPBMWcogAQSx1SEgSxCLzquRhXF88LXffVJEa+72pk4vhlTwnBEafOICNzzoVfsEzUzd8DqCJ2dLtD342upQ1G1/o9J2sK+iMyfV0f7AbBzIzmzfbtcvURkdmvDfTLnArjj0G294xn5Gkzrnj7QhkXvzoqAWdJICUAGNQ3AdXppPbfkBQicpFEIF2Z3LSStz9SSNBVGu1bYAaLRONTBRYK50xrlRGSHJolf/QktTbEUhrrm3LC+zPgQg4lEyMnZBgkIAz/55kKdRh8ZP7WQJyEWfbCDZpROIUgj/bgJaNSPLeydZYnHNndG+Zj/f7WIlIMiRfGCgiOXdISBLEEuAVjYfwn5XTAbT/mHarP7Rftw7YP4gRtpwboD40Ab8YAFrjae94AeKJOiZ2H8Twrx7InatbHSPQnvYCZKKhXf5A5iTHPEaSJtVlTrH3TvxMh2829R/059Oxa07sc9G3ZtmI66Qpc/6HOtYQJe7ERTfxMp2lTyetA3HuHFmfxCyH/utucE9AJRJ+KcQa34eWEtwTqb+ksfUJewvphwOD3Y+NJHLBEHttL0kuGJJGy9kKVXe1O7O5xzFxcMKdyyuaPwVaKngl+7XdZ9supzgQumiojNI0udQIewtojDTcFCJ7XbWX9wtNqrKd/u24DrYzOtvx3NntbY+z35e2FtzrBSU/FbimptQrehAeR9JK0BhtQbakE532/MFAvikomxrPliksdqqaRCSxlKHWMoJYIlxUfdCImY408pGES9I0ojKqtaCiGK2RMbSGx9CqNmb1+sfSrsSadHcz655NhKdzOkkWO6cZMFE4LxRdp99kj5uK6WZkT0W2q3i65h+bwmacm/eSMeg4zk3M8UuBif55wvhkhsL5Nzofx0zKO2t4bgSpaKfFM9cgaxtkDc/bZQHp9J3sPtJzF9e252FywRA3IjO2UOSvo917Lp3t5yO03bAfalz0O/NBKPt+y1jmbIiyBu4ykojqsZvc0+l1Op0XKrF64DAjEuf1ttibOsZQRJIglhCvaDyEG/rPyDXbdIuCeRXhDJVtxIlxhqGHdqG8oQ/h2l741cakP9bZNPmkx5bhWDcbKdIde0mq0jWJcI9Bxgr14YYz77ZG2u06Q268Bztmkydx3itzJmRFk98rcmbflqz/oemaTsWajS4WCulx0v2btBIIm8LOdEd7mTGE2bpKrXTu+SpRuXS5m8+tFJJGJvoW5aNv9proWMMvKGjZTqcrqVEfSg25a7FLbWdnWHdzCegUky5S7jHodA46YN4DGynOpr2RSX3b2kyevp929VwwMMGRNEwXN0f7g0fWzsp+76bqZKKhsxkFSixPGDQY5vdDxHyfb6mz2oQzQSwLcjOAu6RXs1HLpJW4yJVKJBrDE4hrDZQH1+Se03mOlUQ3q6RuxPU4NxWocw61pVvEarbMxkswN2ZReLnmm3Yk0aRtZZS4+2wk0p6j83x2lKK5T+VeR9vo3RTXgOWimvmfF8Y5Cn3GiFt1XEstJ0eJO0dmTkU3E/lu/3aev2ewnDZVCai4PQfdRlk7I5J2zrc1vbfHZPeafWwxobQ2sdShiCRBLDGma2KxAjBr67Prlv3txz2GnuOLCJ4cRt+WPhd5ZD7L1TRma8G4x3LTRKbrGJ9NjWC354aDvokQZjz/gHb0R6fWL9l6x6N5naA//6styXggFvuLED6HjBWaY/lmpMqJPYhrsetKrm6fcOu0a5yuXk7FOned7ZXkHoPINICsOa4PYY8xc6zuGQHQjkZO/OuP3VxnC+MMScs0DGmPQ6Y+ohJAZUsfmmMNM187HRFpnxNNNJ2okrECFxoylmCcu3nbAOCX28LVjiAEjJjMCivjEsDhhQLVw3UX0ZWJ8ZO0qeWg32uLtxlUWHT6lcqGyj0v6PfM40XAL3vgXtow5ZsUf/1wHTJSiMaj9Hz5/Vn/ys4ShqQqc3WsnRNtpvdOIFYC1Gwzd0hIEsQS46Lqg7ih/wyoWDrhZgVkz1OKaOxrwasYMSbryqX/OskKEe4xoNQ+LjsycDbMpUNVxTqX8mRJW5RZ78rsCMejfT0V5xsl/F7hxFFQ9kwXs2QIyoErH/DTySzc40jKAcKewNUVAkAVE5M8ImdKLsKVCplsvaaNNgqfp40wGVGfew9Frm7SkjRjrDl+HQ49tM+keYN01nMaieQeR1yPENWMyIomMt3tvshFMoXHnak7F2bWthX9wmduTnc2tV47VJ/082dNwc069Iwie91+hjtncatE5+o2eVrHCWCSr6aKpRO22fnd7a/z6W2CII4OEpIEsQTJNhnY+jAVazQPpxYuHX90s1GVaDxG3EwQ1+JJ55vqtbIRwWOBSvS0Ina6qSZzRcYK3BOQUQKltOuEVlKDe0bkeQUfKjEeicDsUt0zXbedcw206yS7NQNpqdtiyaarlUnPC4+jNRGh4glse54xtm8cGoNKJETgpebk7TraSefu8JBUmSk6tknFHWv9PFXbS1JJDSEFknhqka1jDcwiRZz9Wc2Zl2futxODsjO/uWAuvc64hgIQlHxE9fb/A9uxzTN1mEuFrGOAhdLaC49tkJnvc64mFlRIXnHFFfjBD36Ae++9F0EQYHR0dNIxO3fuxB/+4R/iJz/5CYrFIt72trfhC1/4AoIgmHxCglglXFR9ENcXTzNNN5lpHC692lBG3GRGHsZVCb8iMum5JnpOKUA2FCrH9aBQCV2KtH647iJPgPEFtE0W2ek1U01lAY4+zW2Fq0J+Kol9PbtnwHgMHo31SmFdmt4VDGElQN8WY/8T9BSciXvQW0J112F4BR9+KUTPtkHU9x12fwW8MEBjqAoACHsCjG80djkHbx858h7jtlCW6ftj07AA4BcDeAXfdBfHWRNxjrgRwS8GaFZbuZR8XEtyRuQAEAMYPGstGsMTaAxPQAQe1p56XLqGGPvueNT5SNroq4xMDaFf9s1Em7Tb2wpb2ZJObNlaQhtRnNhh8s3NkchZAbm1ZyKuKond/nNd2x1p7uyHl6xPqF8RuYihKHKI9PhSf8EZr7eq7Wk/zZH2hyz73KbXyln5TGU9tBRYbIshgjhaFlRIRlGEN77xjTjvvPNwzTXXTHpcSolXvvKVWL9+PW699VYMDQ3hne98J7TWuPrqqxdyaQSxLMjN+E2/L/YH8NN6u9aBuG3C3KUJwTY5JM0E9VjCCz0opRHVY4S9QTuNma2X6xW51+uE+ZnXmKWQzM5ctv/aNbrH5iHNqGykr2UibIWKqYWMai1opVEa6IFWGmO7RsAEQ+/GCuqHjWj0CkFqt+PBK/hgnMMvhSj1S1OnOI0HZje6df5qpRDXW7moJIRwoi9uRKYLOh1FKIJ2el5lGmSYYGiO1V0TTdKS8EtGREcTTTRHjXJLWgmiWj5qaCPW1jYISFPFaYez/VdnOpptd7OOtfNsTOom/S3A3XzubBRSxxq8N/9+u+swxbWzNZLZ9LgoGpsmJhgEOJTSzrdSS+1KPFTmHDw3Y3vpIUrGRJ17DM3UG9bWNF9UfXCRV7c6YEyDsXnu2p7n8y11FlRIfvKTnwQAfP3rX+/6+I9+9CM88MAD2LVrFzZv3gwA+Ou//mtcfPHFuOKKK1CpVBZyeQSx7FCxRvNgbJpJugiubilvNEw0yy97LiVqzqXaKc20ngyYeU3b0dBpqZKdoQwg10E7F+uVSR6BNv3pAX7RR1xv1wlmu7jNWiRqB6vOLsd4Eia5ukCbep9JRNalhKUG0p4WW+fIOIMXekhaiUkTZzq0LVww133szpP5WiUqM8monTI/9NABeGH3X/FaakC0u707p9HYfzu9F93jXjuNbCPY9uNHt/dtLmUT9nWFLyb5Rub21KXWMR6XbU/KY1S2MVOs+4KONZqZ5jIVa7yq8dAirowgZsei1kjedtttOOuss5yIBICXv/zlaLVauOuuu3DBBRdMek6r1UKr1f4jUK1Wj8laCeJY84rGQ5NGJwLmD6aNRKpEQw4nqe9ke1pHUpXwKgLrT12H2uEaimsKKK/vzYzS2+8iSoBpNrEehFmBCbT/YEfjMRp7ojk33HSNYnakHG3zzdGy5sQ+97XwOdYcvw4i8OAVQ3hFY1vj9ZYhgh1gnKE0uBYAUH3yILgn4JcY6oerqQG4j7BSBPfMmsLMZBUAuQYiS7c6SdmSLlLKPe6ua2FNOb3PNNPsun0HAKC+30RRW0MRmM8QVIwKZYKhNdTu2j84OoRwwEQhZSxNjWfoYWJfA37Zc68tUr9JmQpiEeTFqqWzZlYlGkh0LjLJfOZqErMd8i66HGsXuVap3+lUZRLdRoCGg+3aVADo2VwG5wxKadSHm27NjYOtdqlER23lUhOOWXgmwtvscCigushjC3Vtz51FFZL79+/H4OBg7r61a9ciCALs37+/63OuvPJKF+kkiJXOKxoP4Trv1Nx99g8k87WbV8w6Jq+4mkOlIDyOaCJC2Bu7juCwN4AIvUlNGNZkGmnXbhYrRESm+3uh/ljberGjbbhRsWlI4Zy5ZhMzq1pBtiIzRabRQnO05jqltdKI6y34JSM0sxGv2qFx93WnP2RWVM406tbp+RhWim7+NWAagrJR2ux5O98X2VBoHGi5dRxoHHbPsaJRNlRuVKFsKPd+ApP9NK1g9CrCWeQAgN/FG9PVRWam5Ez1vnUbOWnJ/lz5ZQ+FtSGaIyZoYKOtQrB2nWnZRzQeQ41n0ul2P0tYRALt65tNZwPm/ztxbOHQ4PNsID7f51vqzPpj/+WXXw7G2LS3O++8c8bnY12ku9a66/0AcOmll2JsbMzddu3aNdstEMSKwE62sTBrFZRJSxfXlhH0BOC+wMTBcSTNCDJKIBMjrnJpUqVyI/OUbJtXT2XcvZDMpWs7m8IHTLrapqmB7FSXdKxe2t2cm12dRiOByeJtPrERSSgNnRH2neUF1jxcpYbf9nYk4/PsGEk7y3oxONKoyKw1VVjx0apGk46Rqdm4nQ0+03MvNboZtJOIJJYrs45IfvCDH8Rb3vKWaY854YQTZnSujRs34pe//GXuvpGREcRxPClSaQnDEGEYzuj8BLGSsWnBbO2arbuyYqExUkOzahpMtFRo8GbGv5CDcaQznNupVq8QufS2qQ9MI1kdHboLbRU0Fwsgzhmk0iYqmd5nRwYmzRgi8MA8U3MHWPsb7vZs5lNLRBNN97g7zyz3nb1Wnc8VgQcR+qmQ1WnUVLumF2RG+mVLESzFwRCtoSg3xhBoi0eBdESkvS4dowUBkw4XQmA6jlSzGteSI9bVznS6jfk5FiisEagdqqdrVOCZcoukkRingY59LweytbXUWLP4UGp77sxaSK5btw7r1q2blxc/77zzcMUVV2Dfvn3YtGkTANOAE4Yhzj333Hl5DYJY7rwqeXhSejtLZ4dr0Ouj0G8+bJ34uy9Ac9deTOw9jIMP7ncj9Ur9RYS9Zp6zXwrRu3U9eGjq7MYe3wPAiKcD9+8DYGYoJ3VTy2UbBOJjYFdytCnK1ng7miVjhae+/lSI3h6Ac2iZGnX3VsCFgJIS4ZpeMCHQGJ5wQnvfvfvhFUQ73Z/CfIagZH51aqlRWNu2Kqs+boSPFWxWPDGfoXmw7WfYGm/CCz3Tad1oueYflSh3DteFnNYn+mUfWiozPzp9L2TctuoBAFbkaB3I+yYCeSFoj42qsftaQoJzDqWUs5YCgHBDACAC5xwi4ODWczNWrkmICVO/qaWGUsqlutvnRi6tbplkjp9OWOKeSV/XDrW9gqo7J3I2QfZ57vosg5pIUeRuapQVkKLIceGB+xd5dQQxNxa0RnLnzp0YHh7Gzp07IaXEvffeCwA4+eST0dPTgwsvvBBnnHEG3v72t+Pzn/88hoeH8ZGPfATvfe97qWObIGZANrIh68o1qahYmbF3UkLFiYl8pSLSRt1U6sXXzQTbIqPMJJo0krIcoj+dRtsAoKWEbhhxwgqFSccznk/zt+9nuZpRGeOIdI657Izodc7Htl3aMora0Uuvo4FEpt3Zol2vqpTKRSHn0qJkz+U8PjMRRqUUmGTgade5knrSJJnssTMl6xXJMil6LbWLFk9FVkQuN5ZTGn7FswD2PyD7n/njz//8z/GNb3zDfX/OOecAAG6++Wa86EUvghACP/jBD/CBD3wAz3ve83KG5ARBtDlSVBLI1xQqqdEcaWHPT+5E/6lbkTRNo019qI6gJ0RxTQF+KTAG2PXIRSNFsQARtJtwtGyntoUvIEp8Wf0R1OmkFhVFYL5vbp6HpGqaZ+JawzTaSGmaljgD9wRa1cbkc8DUSnLOcz6Odv70bGCcuy7t0qb1GHl4J7RSU4p6lej2uL9G4kzDs/WR1uNRVdsfLtzzYw3R8b45W5xUgHZ2PctUoLmu9MxnezuvG2jbEXUKyCPZSHUrj5ANBdHvTSlSO1lOIjLOjGbkHsPLhx9Y5BURxPywoELy61//+pQekpbjjjsO11133UIugyBWPHaUIvcYanubLv23c3Q3Hvu3He44ryIA1HDKq07Ghuc9A6regL9tGw6d/mIMs/XQmuGk8+6A9EMo5uG0H3zLNIBwjkO/fgJbzi24KNoj1z6+4N3b3ejsTreCJM7Y8IzcN5F7ztD92+GXQjPR5t2XIKwNIfYLUHf8xgg6IVA6/VQktQaKgwPY/98PwisIhL1GYLfGIycWZaTc19znWHv8GjfHuv/MdmNSbU8jFzHLCqvq3qqrQx1+YghMtAWhs3Hq564jmXsMtT1tcWvf36QqnQ1Utv7RnaeL+bfsSBFn77PrtBHU+sFm7jVt2lo2FMb3mmtsRV+2ztK+L52vDeSjcZ1CGDBd4HFqmN8cbrmO807hmZ34BEzfnLVYaW+bIci6EFA6e2lBIxLnztzM2giCOGYcyV9uuuhMZ1q6PjSBoTt+A1lvINmzG2uGn8BaDOG4xoMQjSqYkvCbVehEgge+sw3qljI+lthGBdVFIB0JGSVImjH81jiUFyAJymCcQUYJisdvBZoNRON1RGPjGDhtG7yiMXAHgKQpISPlorOAuQZrj1/TNniXOicILVPNOXfd4ZmpQjO5rp3ns99nLX66Pi+9bp2iaqr1dWuOUUpNijxmZ10f6fnTwToi6lywSVHSzvV2Rl3tv7aLe7G7uXWsJ1lZkYgkVhokJAlihaC6TPYA8inEdoOC8VRsDY8BjEP5IYKkgUZhDdjBPZBeAeACsBNWmJlPbWsslxtZ258kKCMOeyG559LLk47XmciXmiymAKCwJsxNqLH+hkBeVE2X3tVKuxnYR0P2/T6SYOIdXqPZ508lJqc8V9pFbqOR1pboaMmuPU5HOXYT5ZZu63Um337+2i/UlKaZkKuL9RlZ/CxBGPSC3FYTi2pIThDE7LBRyW71ktYKSDYUZF2B+wzRcJJryOEeAysag/K4HiFpDkMUApQfuRtidAxiTR/iU87BSM9W8LLExmc9G/ADsFYdG0tFHLijbVNizdAB84n0WKUPc1GojKAIBtJO6niyV+Jj//GEE9HPf/s+MJlAFivAW/8fiFYN+7Y+GwwKPQ88Ar+nhKTRwpptaxD0mFT+vtqedpp7LEL5OOP9WB+uIygHxp5GMFQ29aJZNR3Y3ikeZKJcw1L9YNM1iDSHW27tk0YR2u77Nb6rp8umxQUyYwl9lpusI4ocKLW7prPp/uz7o2LtzmGx32WjiDmf0qQtylyntWCudjRuJi4lXtzUtmgLBxX8gufmcotQ5Gd7dzQeAYBX8OCFnulc9zSKG8KcULVTdaJqnItU2q/tvo9eos8Pdj1zndRELBxk/zN3SEgSxArBpC1lLvLEfObq5FzEMtGI6jFkZCI/Y9v3o7h1E3i5BHg+FBfYuPcuDA+eAdaqQwsBtFpQSeJ8DhlnWIyO2SN5S7ru6Eb3xwBAhmWAcdR6BjHhr4GnY8TaR4gmWmO1NEqYIG7EuWilTNq2M/XD9fZ5lTIRuVTcyFbijtdS5UzfgY6Z1UfA1Q2mjTSdneCdzDayOFvs+YXf7v63oi5LNlLJ09GbOuNHKnzjW+oV0rGNUdtBQMYKcS1GY8jUZ4pQOB9P23DEfN41nXYs/E1niihx94EOAHlFEisWEpIEsYLoJrKyBsg6Np2+IhBmbKDU6N28FjpOwIQAkhjhyD6ooIBScwRQGqzVhJYJdCIho8TVrwF5+5bF2l+W7CxoYIp1MQ7FBZiWEEjAtQQYoBnLRcX0FDY2sqEgfZWLpgFpraDXrnm0wvNIzFT8zfYaL4SozKaJtdJtX0kpc/O5Nc/bA2mlc1FICxM89cZsX/vs48IXk4Q4Eyx3fCfLyVWAWHzYAtj/zLud0BKHhCRBLEOmsgOalF7u0lihxiWSRoJmtQXhc4zvHYFXDKEShaCvjHBiAurp56MwfhA6iYEkBqREa3gMjdEGkpbMjBFM/2h7bE61frMh16mbuV9CudR+N1x9qPAgRQiAgaW1kAwaTGtEE00XqY1qEZJ0VnVrLIKMMzO1UzsgLxVSSRqFDHqC3JhFI0aN8aQockSN1NS9Y23d5kTbWsxugnCqPWY7t7MTbbqRFX5Tia/sawu/nWIXfholTKOROh3baN8PpRSEMClsGUsgM+1QSQ0vjUjKyIzpzF4zS8/GUsZayETbZWRGJCbN9njPbInAUiIbjZTHwLyfIBYLEpIEsUyZibdkJ/YP2sTuBpgwQqAx0kBjtIE1x/UjrjWgEwl/4kbwDRsgJ8aN96IQaI3VENeNKIprbU88AJME3ELVS0533sIGf9J9th5v7IGauy/49X+BbdgEjA6h9uw3IWYBpPYgmUSxvwc88Ewklg+7BpqwL4BX9Jx48su+a7DhnkBxrXms0Fds+ysqBca5E6ZhpYF4vbl+jaGmE3FyOMmvOa2nC3sDJ7IAIBqPnQ3O1NdEue9nIuunGt3Y+TgAoJi+QseIRZ2ak8uGcq+Zm44z6DtRbI3UuWDpVKFMPWYq1G1E0k4n0lKjtK4EnU7SET6HjBVULOGXPajYGLXXdzeP6F25GFCDzdKGQ4PPc3PMfJ9vqUNCkiCWMUcjJgHzh776mBFXKtGQ9THsxgEAwAmv2OzEUKGvCBGYXxPj+0bRqsZuAoqsq0kCpJvQ8yuiXVuXGfuXjdgcrfDMTfbpJrKSJOdVaO5U0Pv3QEUR6qqEAXUAMQ9RiMZRq9bBPYGkGaM51kRQMuK0NRY5Qdc42AI2pKeSGqX+AgrrTfONvVZAvu4PyHdoZyfSmHVOrn1sDrdyj0cZwTlVhGs+BPyRxhjmXk9qJwCzHyTsdBw3KcdaFEHBL3tImrI9YamLfRATLCeiVSLN/PPUMN5GhG23uI2IZo3UF4PCoI/mgRmMPiKIDEmS4PLLL8c//dM/Yf/+/di0aRMuvvhifOITn3DerRdffHFuwAsAPOc5z8Htt98+7bm/973v4bLLLsPjjz+Ok046CVdccQVe97rXzev6SUgSxCrkSFEbrRREWusX11tunCLQNsEGJje/zEQYMt80TkjMvjkiW++ZRXVE1qark3PWPlJiU2s7auFaNFgZIaubKTZpmtXMjs6nT60ozNaJAmm9YOq1yTh30UitFFQi3de5NR8hepZNUWf3tpRnSk9F9gOEi2SqqS2DbJTT1mH6Rd9Fg20ZAfeF8faMpftju9h0liFQNHLpsxS6tj/72c/i7/7u7/CNb3wDZ555Ju688068613vQl9fHy655BJ33O/8zu/ga1/7mvs+CIJpz3vbbbfhzW9+M/7yL/8Sr3vd63DttdfiTW96E2699VY85znPmd0ip4GEJEGsQrK2MJ3s/eVBAKlXYGZqCvMZ6jtaYD6bZB3TSc8p7VnWE4+2p6NsfM46qFgiaSUuugnARdusaJoqqjMTEaWS9jhAUeTgnINnjKnvvuo/ABix8qyTT0VPEkN7PuCFKP3WqWZcYivC2O4R+EUTkWyUm+C+GY0oihxB2fzqVFJDJgpJK4FuxG60pJIafdv6wThH0jTRzNrhCSecyutLSJpJarrdyO3dXtverSbK6aXp4P0HhsxxU4jp2TLlOTruz1rX5GyKOgzIg/72nxP7fooiz/2s+L3pjPD0OmTnaXPRvqaCM6g00qlihfF9E85iaeLJhot+LgVR7VeE+/+UVKWzoZrOHJ5YHVSr1dz3YRgiDMNJx91222147Wtfi1e+8pUAgBNOOAHf+ta3cOedd056/saNG2f8+ldddRVe9rKX4dJLLwUAXHrppfjpT3+Kq666Ct/61rdmu50pWRof4wiCOGqONPGmG9YiqFsXdDYdGY+3u3GtOJB1lUutZiem2Bvn3N0Kgz4Kgz6CAQ+VzX3oGexFaaCENcdX0Le1gvL6EsqbCyhvLiAcCIz4O4rOW5VoJ3q5x+CXPdMUItoRPZP6lEjqaZqYC0BpQEqowPyC14mEimLIWKEx2kQ0ESEajc10m9hMj2lVY0S1BHEtQdJIML5vAhMHamhWWybVqhSao3U0R2toDE+gOVpD0kobS6RG0jTPbXX4IHaKD79opgpxT7ixg4vVlWyvn72G2ZQ0F6z9WEN1/dqVNMTS3bLHyEhNilCqdNa7jE3k0daJAosrIrP/f+Jq23Ir6PfAPXMtyO5neWC7tuf7BgDbtm1DX1+fu1155ZVd1/D85z8fP/7xj/HII48AAH71q1/h1ltvxSte8Yrccbfccgs2bNiApz71qXjve9+LgwcPTru32267DRdeeGHuvpe//OX4xS9+cbSXqysUkSSIFcDR1koeCRsls6bXM/3jHdcS+GUvZwEDwE3GsfVx2U5dKyLYLCJu3aJzKtFgiYZKuq/BChFhAwNKAmEBfHwESRxDSwnm0tR5e5/Oc3ViRy4CtmObu33aPQPInSfb7ez25TEIjy+5KULTpeNtmUL28U7Ryz3m0tA2Gu1MztO6yKy9j0txz2FqzrHARu4B4KV7frPIqyFmw0JMorHn27VrFyqViru/WzQSAD760Y9ibGwMp512GoQQkFLiiiuuwFvf+lZ3zEUXXYQ3vvGNOP7447F9+3ZcdtllePGLX4y77rpryvPu378fg4ODufsGBwexf//+uW4xBwlJgliFTCfUpkt7z5TG7ggtP4Yocmx5/iAY5wjKAcp/8ufoGdoB3qoDSkL29CMp9CD4zW2AlIAQ0EmC6oOPAUojrrfw+I2PuvPWdrRyr5PdhxW7zGcuheoEbcZXsrHbdAM3EGHvP34XKpHp+EeODc97BnQcQ9UbGDxzM7hnRE9rPHKTbQAzHtF2D1vjbACIG7Hr9C6tq0ArBa9g6vsao00kzTSFnxGSfq9Ap82OX/Yw8mgVoshdE9GaU3tcA09jqH0d7H4WElvaYK+r8AVEYE2MTONMUpWTagRt84u9/o09UU50VU4qObHcM1h2hu7jB0wjmItWNpRrplkK6ews3DclIGgoEpFEjkqlkhOSU/Gd73wH3/zmN/HP//zPOPPMM3HvvffiQx/6EDZv3ox3vvOdAIA3v/nN7vizzjoLz3zmM3H88cfjBz/4AV7/+tdPeW7WUbCptZ5031whIUkQxLxjp3oACvvvOgTmM1SO68HW3feZjulWCxAC3oYIbM06yNExADCRQCGQ1FtQ1gB9hhN0sgLFRs50rBGNtusts5N+AMAr+JARazfKeB50HJtftpy5JiMbJQOMCNTKdCtrpSFbbeGdNBNoZc7VqtbT+8yEnKSVtL0Pu6zdNjdl18p8Bs8XprxAcHhFjqSRoBtz7YDPnifn1dkxXQdAbq74VFHTbEd9Z4d61u/SNt2otEtbhJ6ZhiPy4x+XmohkPoOsK/gV8755lU53UGI5wJm5zfc5Z8Of/Mmf4GMf+xje8pa3AACe9rSn4cknn8SVV17phGQnmzZtwvHHH49HH3206+MAsHHjxknRx4MHD06KUs4VqpEkCGLe6RQOsqEw9vg4Rm+4CTqKoFoRGjv3QI+NQBzai6TegNZmNKFuta12Os81Hdku5+xM6KlqCrnPwDh3VkdewQd0+7U6BZITgdOkWU0NZDoaUbXta7Jfu/WqvF2ORU5h7G7T4355sl+mO+c8Ca0jThDq6FifasrMdGuy71G21lL43IlUMwoxPSZZeiISMB+YFnosJbHyqdfrk5wHhBC53xGdDA0NYdeuXdi0adOUx5x33nm48cYbc/f96Ec/wvnnnz+3BXdAQpIgViBH04Azn7BMdCzr46gSieqDjyMZn4BXKkKl4xeTiTqSiRqg2t6LRxIoU2GbbnIdxqm45F6+ych2WXNPmOhj5hc34/kaRe4LMG6EjvDMv14ojOl5KlhFwMGEudkoZ37sYntP2T8czGcu3W0jk521iPZ5STNxzSudHE2T0lRMO9O8c2zhLEIwTkAmefsfJTW4x+GFHsKKD68gXBTUvm9Lha7XfokZoRMzw9ZIzvdtNrz61a/GFVdcgR/84AfYsWMHrr32Wnzxi190fo8TExP4yEc+gttuuw07duzALbfcgle/+tVYt25dzhPyHe94h+vQBoBLLrkEP/rRj/DZz34WDz30ED772c/ipptuwoc+9KF5uXYWSm0TxApkIRpvZooo8dwf2mwN3z3//3u7PmfzC9c5r0W/6GPbC55mvCzDAD2b+s0UmTDAvrseg0oUuGciiXtu2++E6iSz7IxtUZZsveTIjiFTxxiaX4WVE4egpRGXQV8ZKm2cqWyuQPjmNVUsEVbaxe1MNMDTz+R2zjbnzMwyTySimqln7NvS54Rrsb/HNeXUhyZQ6Cuma1YY3TlirmM6RlBJDfjAulPWOzG57k1PgSgVASFw/9dvAgAkTQm/7OPwXaPmXLP058xdu4w/qE3ZiiJHUPLBBINX8Fy9p4wUlErN4K3fZuoV2rkOFWswP/OzcaDlflaiqilBKG0oIK4lUEqhedDctxTT2jY9b/9lFJkkjpKrr74al112GT7wgQ/g4MGD2Lx5M973vvfhz//8zwGY6OR9992Hf/iHf8Do6Cg2bdqECy64AN/5znfQ29vrzrNz587cB9Tzzz8f3/72t/GJT3wCl112GU466SR85zvfmVcPSYCEJEGsGBaqc/tItOsh256Ds/2jH9djeKEHmRgj77g6gWCN+QUpCgF0IoH0F6Rf9Nvp0I4OYR1riNCkhOyv02z0rtMAnfF2PSDjDLIVQUsJ7ntORAImcmmEnY2YmrO7VOwU2WbuCZQGetzXzdHapGPC3gJUoqCVmmTSPVUavbbnIHpP3Ardaot0ryCgpZpkEj8TcjWRU9hCdTLXTmoda2gvX8LAfGsEvzw8GGVdgadC+yU77lvk1RBHQ9auZz7PORt6e3tx1VVX4aqrrur6eLFYxA033HDE89xyyy2T7nvDG96AN7zhDbNaz2whIUkQxFGTHX84V2Ta2GIElYKKEyD1dARgRhsq3Z5s4glnPm6jZdZvMCcWfQaWsEn32e/9ku+MxwubzOzDpDqOpNaASlRX6x47uYalTSFAXlgp1W7WyU60kbGEXwzSJp/ERFoDL/06jfwFRhAmqSF37rzplBwg7b70fTBhawrz4mu+jMstbi63bI96nK70wEWCZ7kGJoxFkFLted2LOfZwJsxmOhNBrDRISBLECuJYRyU7rYKyRuU2qpVNLXfOiC4M+mA+w/jOeu7YLc8ypt5B/1p4F1wEABgaeCrK/48RTcV4ApJ72NgaQ1AbRlyoIPjlDdBxAhVFOHCHGU1nhdru/94NlY59lA0jUBSMXY8XehCBNh3izRZUFEEnEuUTtyEeMd3kA6ckSJoRGGeoD9WRtCS4MCKxfrBt/+MVPWipwARHde+Y6UL2Ta1lUA5d9BEA/FIIlch0BGVbmNWHGjmTckt17xhkK0FrPELftqZ7zvhuE+W0Eb21T+txex99YMI9fzpRmRWdncdZ303tMciSmS6TNCWaI5F7Tfv6U73PaorHVKaxyP4sWeN73ZESX0pYWyNR4otmEE/MDwvpI7laoGYbglhhLHajDdAWJkcSAM4b0FrBODGTGGudRgM8icCUhEY6QlAHUIyjIXoQewUoP0TiF8GDALxk/hWB5ybCcM9MtxG+cA0tbgIOZ1CxNBFQqcELIaAUknoDyfgEVBybWyrabDSQC+YaTLKpcy1VOo1FumidktYqSEElZva2VhrRRBNJM4ZK7OSWdjQ1KyDbolKiPtx05x3bNezWk52IM11X+ZTvwyyEmj1/VkQC0883Pxqy51tKjTaWbgKaWH4s5GSb1QIJSYJYgSy2mGTTjGDMYlOXVjzZJgatTAe1TqSZPAPAVy2MqwqauoC6V4EGg+IepFcA0wpaSug4Bg/bxuFTdX7bJpygJ0BhTRHFtWUUKiHE5q3w16+DVyrCH+iH39sDr6cMrxim52p3lVsh2SmCgdQGSKlUpOrMLdsVzlJxaaORHVG8bOOKx1zHuD3WpNfz02Sc7RGfncCbL6E2X53LtsN+MUdCTgeJSIJoQ6ltglihLFbzDdCR2pzKR9BnaB4w9Y8Dv1UBFwxhpYC1Jwyg982/j6i0Fg/6Z6PXr0FrhifG1oEDkBpgrB8TDYGT1/eht1xHQxZwyvh33NQGrbSL/KlEwiukptEFDxNxAwpmgkx9qI6gx6SYk5aEHhlG7dHtkFECf10/RG8PwDmKSsErm87qwafB1U4CwK5b9kPbUZLNzAxqT0BzDS8UYJyhNdFujPGrDWe4bsSgqX3kgqGy1aSm7XQXSzTRAhMMlS29KPSVMPLkMA4/vA/PeO9zwYRAuK4f0fAIis96NlR5DWRQhP/kg0CSAFrh9sv+2bwd46lwzTQgRUPtxqJOUWmPk7F2QlbGys3+tl2iQYW5GeadE4hmg461M2zXU6TbFxsbjTX2ViQolzMM8x9RW3offRYWikgSxArmVcnDix6dnArVEcFjwtjdtKoNiIfvQVAfwSnyfvSpYSTaw6aecawr11EpxBgoNVAIFJTmiJSPlvTBS0WIcgmipwwReG40oQjan5ezE1ncayuTVlaxRGvPXiSNFkpbNhhj9NQKyE66AZCZpW3u6xaF6+xozkclNbyCb+yB0mkuNuWtpIZSGjJRkwyKmeAIewNENSNIewd72pFHpRANj2RfEJoLIEmgIzNFqBMb7SsOhkc2IM+msLNm5AskoGy5wEzKIxYL3dEdf9OWsxZxNQSxeFBEkiCIRUcrU1fIODNNL/UGvMd+DW9gA8L+TQh7aniMnY5QxNCCYTwKILgGZwoHGxVECYcol1162CuYLmy/FIJx43vIOWvXOKap07BSgEokCpUQSUvAX9ePYOMG6CgCL5agZQJVq0NFcepzaeZy23S5CPK+P0pqJyKt0HS1lGmnt1YKSTMG9wSSVgLV8Xne1VZ2pLplJKGlAvcFGiMmWsk4g1/pgWpFaUc3A6tNgAsfQvhAEoP5PsC6xwy4x9AamtmsbuaznIjstFKy+16KqeiFIrtXmnCzPFkK9j/LHRKSBLEKWMw093QEAx64Z8b+Cc9Y6RTWlHHwv38DvxSisLYX1V2HoJXGaadtQ+msMwEAOo7BSmXsX3sBBnwf47IXjaf9NpQwwm7g+FPApIT2PLCoibXnPAEAYEKgb+sdKPb3QoQ+Rh7fj7BSBOMMcT3C6K9Mt7dKJPrPNa/FPAGvp2wacQA0D48CSO1/hMjVSHLBIKVOm3vak3EY585iSCvuopqMm0kuXLC0MajtT9mqRm5cIuccSdN8LeMWCqkhuhd6CDash45j03HebEKNj4ElMUTUxMGf3wkReKa+MhTp3lID8OEEOjXTnirq15m6Hbq72vU47jOUTgjddZgv5tvCaL5wa4q185EkiNUKpbYJYpWwZFPciZlPrZRGXI/RqtZdqldGSTtCFyeA0oAfAK2W+RpATzSCkEeQIkDkl9AMetFcsxmttRshgxLivg3gPT3gxSKY56dd3HZ8ocp5RHJPtJteZLsJRsexS3PLKGmnouM4b3ieaXIxndq6fY7c7G3zujbVbjwxpYlUivZ6ADMykYn2CEWejm50YyTjGDpJAM6Mr6SfRkknqmmkNzHRSjE5Umi75ueCTe9yzue1OWYpp7U7WU1R2JXGUhiRuNyhiCRBrCKyYnKpRCi5x1x9JPcF4kaMuBFDRgmCnqI7TicScugQRP8AIAR0fRyFeByKeyiiBgYNrhK0/BKgNaQI0VgzgLBVRVAoAYlp7LETbJKGQlSLEDdMbWHSkujdMgCvXMDEniFACNe4A86h4wSQMpOq1vDLxdxeRMCdCPTSCGA7nZ6vlbRC0C/5LtUNAHEjco03WtrmFgkgPV9GEJpUesaaiDMnsFmmLpJ7op1yn8L7set7M0uB1GkJdLQsFwFpma99E8RyhIQkQRCLRrZD1worGZtonxd6kFGMuN4yqedaA6reAAvGoRoNiHIZYauKRrEfMTPRyJiHUEwgClNTbq0wUVqPYP1W8KgB1qgh6CnCK4aIaw03s9tEPhXqh8acLQ9jDKxYAuccYk0fVK0GcI5ooukil3Gt4fZiRhMKBL5wYjGux/BLpuknbsTwi+ZrJbVJN6d+lyLIjCj0OLgn4BXGTeQxTZNnxaewM709Aeb70HEMaG1qIcPQ3FcyIyaztkNKKXgVAc45ouGk6/SZThGXnY3t1pgRTXYWd1jxkTTT1Hxm3vrRiMJuAnapiktbKkDpveUJ1UjOHRKSBLFKWQrRSWshU90+kbtPJRpj3jhGd42hNW6aQcZ2j6Fn+yFXT6gSia3DI+grFtA/uAnjTzkX8AHNOHbgZCSao5n4GBkNUApPhg6A9YM1nHzxaRgvrsfasR0Ir/8eVBwjGqshrrfcLGytNMZ+84hbU3X3kItEPvLd7VPuJxqPoKSxyRmrmnXzMSOEZawQlE1UtDHagl8wv34LfSG4b4SplhphJYQXekaAinYENGkm8ApebkwkiyVYqQw9NgowBl4IMfrLu8CFgFcuojlaA+McSTM2glQYU3YlNUSxLfZQasugzqk02e+LW41HZ2FtgMZBY/ETrPGhlMLEvoaLzAX9njt3NJy4+d+zMj7vMjPcfr+URKXd88uHH1jspRBHAcP8T6JZbbFpEpIEQThReawFpUo0kLQNtVWiwTLdr3EtcSMNAaA52jCzrqVJCY9v3w2/t4RiIiGOOwuJV4BiHBoMoUjQTHxs6G0iEAk4U1jvH0Zp92Mo+rvA6uOoVyeA1GsymmgibsQu6lc7aMYjMs6QtBJ4oefMw6fcj9SuxjEoe4hqbX9GLbXzmJQNBeHnZ3dnLYO4J0zE0jN2QCqW0FIjaSYQQeqJGXrtZpxy2TQgcQ4oDR4KQClwT7T35LqqOYRtArJC7Sg6jm0kTrYmX5NuKfPZir+p0upLSUQC5hpeVH1wsZdBEIsGCUmCIByLFaWUDeXsZLRnhEKc3mcnnMhIwS+l0UhIxPXY+E6OjIP7PorV/dDCw0GxGT1eHQGLEBRjHG70AvBQCeooxhPQe3eClcpgYcG9vrXOMa+buPvihml+aY03EdV4rpmmG2ElgIwkRCCgpYnkyUg5sRWnwjLJzCgPyh64365n9IuBq5fkvjAp09BzgpBz5h4XvjC1n0q71Db3za91Hgbm+GxNpVJgwoMIBIJ+c1yn6Ov8Puf3ac3JI+XGMvq97bWrRINjchPPbCKJ0x2z1EQkQGbkyx1Kbc8dEpIEQXTlWFgG2YkqosRdZFIl2kUhk6rE2lMqCCshimvLKK2rGAPxdCJM0kwbUzyB+M7bEBaLOHXb8UAcQbeagOfh1LAANTIEWR2HajYhgwAYHYNstlB56olQrQjxWBWt0XHI6KATi4ceOuR8IZuHo5xgykbLSieEbo732uPXuqk3zbEGimvh5my3xiMnMMfjunv++M46vIpop4LHI3CfY822vtSw3Ai2uBG75zRHTW0mEwyPf+sGqESBexwqUSgN9EAlEmGliP33HQAAeAUBv2xT6QXTMZ5aDSml0RhquiYesZW7LnElNaqPtSfsWPHYTNK0vdeObBb7gvYc8IdqS1L0LQSrZZ8EMRUkJAmCmJJjFaF0I+fSiJZtwhGAMe0e1fCLAeJ6C9zj8AoBZGQ6u+N6BBklzoR8oFQEWCpwtIJuNqCjCLLegGw0IZRGXJ0ADwN4sRFnwdo+yEZ+rJ+MFJgwzS52FrglW7+nYw0JCRkDzbFGzkIoaSUIykZgNYabEIEAE9w9L7v/LFykRuZpU45KZBrh5FAAVCzNeRLAL6ZNLYmCktp5VCbNuN2pnXpbAnamN4dyVkTtY5RSLjWvYhyR7DXRqp26J3FFLBcWwq6H7H8IgiC6sNARStfl2/m91ABkLgIJpMIpMdG++tAEqnur4ILh8CMH8JSXnwPm+5CNJmSzBVEIkUzU0RqbQHFDP5JGCyxKIMLARDibLSStKG1kSf0iW9LVEGZTtbzDK5H5DMI39jrcE8Zg3ONojTfBpUB9uAHhcXCfp9NpjCidqi5URso159juda2MRZJNbWsxuUeYcQae/ssy6W8gnY0N2/ltnmtNzbXSLg3v5oSnolPJvK2NFdQiM9XG1blyNWkaz0IhpmkOIgji2EJCkiCIGbNQYtJayOjYdBPH4+0awqQpXZQsacY5QTm2awRR3dQx9mwoG1/Goo/g+OPBCkVMnHgOvKiGfZXT0ScPw5cR9vrbsKX+CLiMMFI5Hi0U4LMYvc3DOGHXfWAqAVotjNx6O8AZuBDYc8fj8ELz67J2uI7iWuMf6YUCfdsG0qk0AmF/BV5PGYwxjDy4HUnTREu5J1AfmjDHCTPJh3MGpTRqh+qug1vJrKBMkLQSJC2ZNsuYSKJUGs2RloswJo12Qw9ghKQXeohqEbyCcLZBPYNlAEDYa1LbpXXGHsikw5vp1zJt9DFiVCUKtT1Ppo9pl9rWnnmfALh/mWDQrdUViSGWPxwafJ4jiPN9vqUOCUni/2vvzcMkK8p8/29EnHMys5as3le6aURlEVQEBQQVfmK3CDI6Vx3UYdERR4ErwqDCgwrOte1RUBlwcBx3x3G5o44ygEMr60XZFzegpaWhm6YL6K6uNZdzTkT8/ogTkSezlq4lsyqz8v08z3kql5ORcbKqq7/1Lt+XIKZEIzq806nd2pnF1ow7KobOP9HvyFQm0ADwO3z4OR8yMo/tvv3uJGV7C3KL81h34v8H/cw2QClkXnE8Cp1L4cVlDOk89pS7kRMRooyPzs6nwWQEdHSDCQGvIwMVmhwv9zjisokoWnGmYoVwuIRMPgcVJ6bpxRJ44DsBaUk3vvDEH5LDTISx2JS2CCoTb6wnpZI6SWwnn1kqXQ0YIRd0+Mj25Mx7289Tatel7faRdIWb96hEMQGT+uae5851e/PGbjQiM26CaG9ISBIEMS3qGZ1kqVRpeuSgjYBJX6HYX4Kf8+FlBNRQCTKMUR4y6ehSf9nVInJhbHpsA8rwrj54992NaGgEMorRIwQCrcEXL0NXfhvWdi1GHHQiGBkE790OXSwAUqK4ZxB+MYDIBpCRma2d6RIoD5aq9i4CDyIbgDEOWQ7d4za6ZxqDKhNvlNSQsQJTSfpYKTCZiDip4WVFYlhuaiSFzyu+kamUtmuOCbhLe5v3VYlIVG7SjowU4rLZR3moVBWRBDj8joxr1pFhDBF4rqkp/f1Jp/otsqjA4tF1pI0k3fhEqW1iJjA0oGubIpIEQRCTo15isrbZxAoWO7uZe8nUm3LsvBy11CgPhK7eUKwzAiwqRuh7cndVxPKFLaZ7mXGGwvMDEIGH7MJudK1bhcyy5cjESXo4jqDDEKpQxIoNx4P5GUAIBPkuiMROJ7dlOzILOo1fo++BBx78LpM2Hnp6F7xsBPACen+/C0Claaf4XLkqqmfFmU3rA0YcejkPWhrhLMPEJ1IwxCUJFZmGmrA/cmvEhditJTICYSFynw+QCNfI2CUBgIrMr31TH6qhtYLIBBBZH9z3zXV6ZjykimI8c98zABJPz4JyTUa1tZMsx10UdKrm41PF/kzMlnAl5i/UbDNzaKoTQRAzIt3ZPVPSosqSFgyqqsO4Oh0uI1klHnVi3WPS0QoylODWiDuZtw0AKBWhyyXocgmqVIKWElprQEpoGUOHZehkxjbzfRNlLIXGRNzOtU6lhs2GdFW943hYMZb2etRSjftaa3hei+t6T64/bW7uZY21UO2aNj2P1Fd3LUnXu/WkBCq1kGPuK7Zm541Pcaetl8ZLt88m9fz5J4hWhCKSBEHMmJnWTVpD8rDPRAZdmturNHiU9padsXfQ7Zvo45B0z8dl6bwPraC00TkAUJGCjJPu5CSFW97TDz+KocohVBRBx0ZE6lhCSwmRy0FLifLeIYhMAMSyEhFNOqDj5P25MGMbZRhVpbGVUq4V3V6n2bCuSuPb6w46PdNcJO26lbQ3qxGR6VnlriYyUuA+BxcM4UgMWTDd53Yijkx8LuNiKbFNCpBdutD4cfoeRFcnwBiYENBSIrswA8ZZ4m9ZiUZaEefKD4rKpbcnG42cTuRSRRrxoHSRaD/544P5zPmSzhYkIlsfikjOHBKSBEHUjZmkuq2gGi+qJQJu6gGTyJ/gRszY/m4VS2jFoZVyFj7pyBzjDDKUkGHshB6UMobkwyPGEoglHo9aQRRLZsxgECQLMECbcYoi8KrtdUoRFI+Nd2MS4ZORBOfcRQtrm1LGug9Uoo5M8KrmGpay5DHXa4RUlQenVxGdCnAjFN17yIrsHO7tBwBj8i6NcGaeMKMWs1moUhk6ilx6vfZ7pVAdEeQeg4z0lKOE05mfbe2Yavcwm5CIJAgDCUmCIOrKTOsmdZSOaCl07Z8D9zmyPZWRhiY1HaPQW3Kp7+fu73OiIhocfyb23j8Muds9Bz8D7nNXe3joO19trHZiCZHLQmQz0Knxiea9eWJDFMPvyGDPE73wcyZCOrBjwE2FkUUFaYVgbOxyrHC0IxJ1pJF/STeEV2moyS3Mwc/5KOwpAF7FWqc8WImuRkPSCTeR41UenFHJrMM5r+oId/sXHFoqNymn1D+CjuULwX0PKowQjxTdZxAXy65LXYajm1rS4pX5DCw2t/28cJHKfQnEtLn7ZEk3ZsGKZzJBJ6YBRSRnDglJgiAaymSE5YTzlaUGYIRPOjoWlySiIekERGa57+Zy51/cCS01wkKEeFBC5DhkUSHsi12tn4p1pdM5VXsoyyFUGENJieySRdBJFNKkv2NEhTK8rA+tgLgUpvZoBJ8IjA9jdqGJZEalGJzzKoPztOjxMiL56kGlopk2Bc05q0prc8HGjMJZo3CLLEuITCpqmnx20aDxoPQ7zOSb0mAZSw5bl0RSNbzOHFQYmVR3FLuu8KhUrHq/tIBMP5buwE92Vrk1xvd5qiKy9j2tQLfClSCI2YWEJEEQDaWefpMqsvWSRsBZ65eqBgzO4WU9qEhCRAI6p6tqE9NRNBkpIDIpYC150lTDEY0UEfAOxIWii0CqKE7S5xoqtqIlTrwrk9pOqU1TT1KrCSQRVl9VJsCkRKCKTUMQ9009Ik/MxAG4WdhMMOf5CGBU04wVxl5SY2prFb28APNVJbWeRBaVUuDgVWl/NyZRKVcfyjiHDGPzfrIi4GsjiOnooBWRje6mtlFYFesxP1eCmCyMNcD+p87rNTskJAmCmHPSI++A6vR2OBiZ9LXUyORNlI/xxA7ITlqJNLpW5qCkxoI1PVj0klUAgJHn9iIuRQhHyoiKMQZyg074FHeGGHh0pOp9//zfj1RmUqeigCpS8LLPmuaZSMHLmkgf90Uyl9rsP9MdOOHXs19Psldr/M3d/c4VC1w9ZsfKJWBCQMUxdCxRfG4PAMDvGHARU8ZZMl/b3C8+V5kLbhuULMxn8PKmUztOaiRZzFAYtNNrjOjqXGqm83DO0PvgVnQu7YaX9RF0d7g9RyNF5BbmoGKJuCSruuqtcLRRSDsnHTA+j/Z7s/SIha6e9JlbnqsSoXafACDMdsYtSxhLvKahiCRBzA1k/0MQRFMxXtpWS21qCYsmCihDlRIh3Im8Fx7fkwiv2ETUYgnhC5dCBlK2OzVpVTN3WrvoXdqLcSy0Gu9x5absANUTYsyCxr/RbIIbuyFU2+3YznNjLTT2r+qxPis3srDm2mqtldId4FwwFPuGXQOOfX8RGHN3xjniQkWw2veYqC7ReYEmZuxaaTenvHZWuf3KfDapVLeLRI7DdNLlRHtiayTrfbQTFJEkCKLuzLThJl1L5xpJlLHvYYJBl0yK1kbBZKQRjcRQSkH4Anu27AQAeFkzNrFjcZeZdc05lL/vyFWtQBR+Mlc6sdAJujIIh8uuC1qiEiVNstzgXgQZMtPhLRjicqVbPJPPwcsG0FxBSwkVRuZrFDsBaUSwEXN2ZKKlNj0+Xlo33dktoVyKX8UaUSFyE3GMB6cRe8O7+tC9eglklHShS43yUMlF/NKd4ja97KyHUvtLd6Xbxh4VmXOdkPdG1zZOpns77S3qfj5SwrKRZujE/IKabWZOw4TkU089hf/zf/4Pbr31VvT29mLVqlX427/9W1x22WUIrJ0GgO3bt+O8887Drbfeilwuh/e85z246qqrqs4hCGJ+k06FMp+5VLcVDNxjiAclhoomFe1GKBYUkJybXZgBAPSs7kF+v8WQYYTs4h6M7NqD3OI8/I4AI7tHXA3jcFSq3QYGHh9xIidtwB0s8iAiIyLjQoy4VLEXyuR9F3H0MpUZ1macowfucXBPIJNnyehBjYUvOxDM9wEhTP0hY64uMRzYChVLdCzJI+juQHlgGH5HBiLjQfg8mfFd+Y+qVkSmP7OlRy4xnpFliaFnhxHkfbOGYAi6zOclfA4v47l53ipWGN7Vh7gUojxUqnSTL8sgHIpM1JBzM13HYwgW+C666VL+gqHwgvl8i31FhIUInHPs/+aVZpa4LyAjiZ13PVf1GdvP3X725eeMAE3XuNaKz2gORiSS9Q9BVGiYkHz88cehlMLXvvY1vPjFL8Yf//hHnHPOORgZGcFVV10FAJBS4pRTTsHSpUtx1113Yc+ePTjrrLOgtca1117bqK0RBNFkTKa+bV9TU7yMMJ3PiSm4bYjRSoN5AiLw4ed818QyVWxXt+u8TqW9mRgdgfBzfmJezlPNLNod9mp4RydUYSRJAZs9e7ksosSGp2vVEoTDBXBhGnHS3pDWAihNbcrXvJ9ytkRaVRubqySNXznfptR5cq7xs1SJ+5CONJCpvJdt3rGfCUuJyDRuNrgv3NfJTsJJn0djEYl6QhHJmdMwIfnmN78Zb37zm939F73oRdiyZQu++tWvOiG5efNmPProo9ixYwdWrTLF8V/84hdx9tlnY+PGjcjn86PWLZfLKJcrheaDg4ONugSCIOaAdN1d7Vi+9HO1UTnGOfycD8CIoOzCDkRDBZQHi8gujODlMpXmlTHGDNaSjvQJX8DvNJHHqBSb6TO+QDQSmbR1sVI/6GXM+5eHSkmTSWysdDwjzDqWdEOFpuuc+V5lVCMAHSVzsrUyDS7FMsKhAkTgQUYKItDj1mVWfRbWAJ0zDO0aNvWJVghzM7c7zlq/SYYoea48HCIqRujZL3Cp+rgYu9R65TOXYwo6rbRpyunw3GzxOCMRdPhOQMtIQllro33My05PATKfj560+GwU8y0a+cv8IQDMz82GvkfneDdEKzKrNZIDAwNYtGiRu3/33XfjsMMOcyISADZs2IByuYwHH3wQJ5544qg1Nm3ahM985jOzsl+CIGaHtDjwu4Uz3PbyojI2sajGNLnWkYaMNAq7CygNlFwdI/cEtFIo9pdQHtoOAOjfPgBZVOCeSZ/b7vCxOoKjIZmsw8y8aqmgpRGVpvlGuogdE8k0msTzEVDoWbMM3OPI9HQBAIJFPWBCwF+8CFi8DGAcpYcfhAojZFctTybnKAxs3w0vawRxqb/gml6iYgQVSXBfuDQwYJpo7DWpWCPTE8Dv9KEiib3bBsznpRQWHbDACW0ReBjZPWLsfqSGjFTV7PCBZ/ZCK43SQMmJw3CoYoie7ta22KlDXlZARgp+dzKSsSxNGhyADJWrYwWAxYcuNOtxhqgYQfgccVlicNuwmZ+eilRzj0Glvj8u1Z36ObI/F+nv50T1krn9Arc2AIw8VR733PlIuo5Zpu7PN7E8ERSRnDmz1rX9l7/8Bddeey0+9KEPucd6e3uxfPnyqvMWLlyIIAjQ29s75jqXXnopBgYG3LFjx46G7psgiMYjE5GoI101szkdgZxMJMrOqJaRdLV9gEnflofDihBNRzPHWZd71cbfSuqq7m3nEylTYoczZ/9jxyja2dy2oWb48a0oPvQgCvffZ16vNYo7e6HtzG9ZSYOnYZyB+8bs3M968LMehC/G7JyOS6aOU6mUGXhiPm5GRVaaeoBKnWTnkk7IVFOQ9e1knO3z85eh6VQ3h3Sd1enDfEbcRUfNdVb2YTrmK5ZOtbPI0+J1rJGafJJd3+n19hUVTdNOAosgJsuUheQVV1wBxtiExwMPPFD1mmeffRZvfvOb8c53vhMf+MAHqp5jbPQ/eq31mI8DQCaTQT6frzoIgph/6Ei7qKC9PxE86ay2o/z8nO/qA2U5dkbfteJkXzCfwcuazmtekxKviEkjMmWsEusg5WZ6GwNzcx2yWILIZeB1dSbC0EM0VEA0UkTUP4Dynn7X4exlfdeoU2UYnjTF2Ou0ImgsMWRHJNqvaRsia3Nkr0NGCn7OB/erbYJsDeVYn1u6o14l0U37frVCnHvMCVu390hCRiaNrxLxbxp+Jv/9qSp3qBqvuW/SAndfQrldRGT7WScpsDof6WlOk2HdunVjaqnzzjsPgNFEV1xxBVatWoVcLocTTjgBf/rTn/a57tVXX42DDjoIuVwOa9aswYUXXohSaXT98kyZcmr7/PPPx+mnnz7hOevWrXO3n332WZx44ok49thj8W//9m9V561YsQL33ntv1WN79+5FFEWjIpUEQcxvbErb8xmQTOObzJQUKxyiEROBFIGpRQxHTJqy1G9GAnpZM5daTvKXfNqP0c/5EHnTYcL9cmIOzk3Ur6ZZRanEkihM9pMJoJVGNDgMkcsm1xXB68iBiYpoK+3uR1wKkyYdBRWHSVSTwcv68PsKTshqqSECPuaUm9yinLtf2F1wtzNdgRkFmURJ43IMJjhkKCGSxqSR3SNuFKVOiVUpNbwOD8xP0v2cwyRDq+sWbeONLI+uoVSxNvZLSoFzM1lHubpJhbgkq4zm02UHOtLuu5Y2q59MJIT7rCrlnRaafqcHWbYinwzNibnh/vvvh0xNj/rjH/+IN73pTXjnO98JAPjCF76AL33pS/jOd76Dl770pfjsZz+LN73pTdiyZQu6u7vHXPM//uM/cMkll+Bb3/oWXvva1+LPf/4zzj77bADAl7/85bruf8pCcsmSJViyZMmkzt25cydOPPFEHHnkkfj2t7/t/iq2HHvssdi4cSN27dqFlStXAjANOJlMBkceeeRUt0YQRAtjxUM8WC1C5CTtXTJ5302asSbeKpYQAUc4EkNFlfS5Ez4TRK/S0dCR50dcNE9GynUny0giHKzUDgb5xGtRMBeFjIsmAtCxYjFEJjDi0UYIPYHyYAFBVxYiEyDwPfQ9+SS4YPA7TYc59wWEzxGOmKYcLRVyi7MQPkdUiBB0puolM15V13X3yi6356HnhqGlcjO9gcr87bhooqfRSISoFFf5RDo7JCFGNbukJ9qUnq98DtllfpXvpKW0O6x6LJP3nRj3sgJBh5/srWDep0Y0WmE5bjlC8viSIxe47nwZK4z0Ftz1pOsgR3aUKlHVCX4W5ms00l5XO9ZGWho5IrG2GTiTySCTyYw6f+nSpVX3/+mf/gkHHngg3vCGN0BrjauvvhqXXXYZ/vqv/xoA8N3vfhfLly/HD37wA/z93//9mHu4++67cdxxx+E973kPABPge/e734377rtvxtdXS8NqJJ999lmccMIJWLNmDa666iq88MIL6O3trap9XL9+PQ499FCcccYZePjhh3HLLbfg4osvxjnnnEMpa4JoM2Zq68IEB+d2nnYltaxkpWM5LYSmkt6WoYmYufo/Zb7W1u/VYlPcMozdrG5ZDhHuHXDHyAtDiEsRZDlEae+QS5PbWkGb/pWhdMLPMnbNponwudcljTSVz6l6oo07P4lAyqJyjS7pukYtK3Wr1gy+tq51os+0tuNexbrKj7NrWSdkrMY8f7qoVKR4rPXq8R7zgVPjLW0pIhvNmjVr0NPT445Nmzbt8zVhGOL73/8+3v/+94Mxhm3btqG3txfr169352QyGbzhDW/Ab3/723HXOf744/Hggw864fjkk0/ipptuwimnnDLzC6uhYV3bmzdvxtatW7F161bst99+Vc/ZcWBCCNx4440499xzcdxxx1UZkhME0T7IgoLo4FCRBvOnVsPo540fYTafSSKRDB2Lu1xtYlyOEZel6yi2gsvv9FyEDKik0e17p429RcBdDabwTUqbCQbNNVRsUthVk1WkRmmg6Dq5GefGVLwUJobiCl0H7Afe2YEFz+81DTSdOXi5jHsvJmqm2Vj7HlHxbLQd6jYV7Xf4UFLDJszTYyG5lzT92HrNsOKzmR5/mJ5f7jqjO63pe+Dsg6xwHuVbGelRaWLbVV4b0bTfi0ze1LPaCCwAF5F0504icmgjkloqxFJV/RFRe85kaylJYM1vmNZgus4RyWS9HTt2VAXFxopG1vLzn/8c/f39Lg1tg2+15X7Lly/H008/Pe46p59+Ol544QUcf/zx0FojjmN8+MMfxiWXXDLVy9knDROSZ599tvsgJmLt2rW44YYbGrUNgiBaBJvCTqdVgYpFi8jxlJm1mc5SeL6E3OIMmDBTY4Rv6iPLg8VKvV2kEI1EySjASkOILMtJd+yqxNKHJV3ZzlcRcO/PBXPiDDBjAbmw02xiDPf2QwSeE5ZexwsQmQBDz/YlXd5DSQTTrBGXpNsrEwzhYOTEW8/+3eCeABMSUcG8DwRDeThENp9xNZtR4m8ZDpcr9Y7JZ2Cvwe80lkBuao31ofTM9yHI+y6VDwDlASO+7exuN2UoJR5FjoPFlcf9biP248HqKK4tCwgHI3Qs7kDQFYyeS74PrDA85D0HQcUS3BMo7BmGVsqVAzC/ks5WY4jT8SAROf9ppP3PdBqCv/nNb+Lkk0+uskUERjcmT9SUDAC33347Nm7ciOuuuw5HH300tm7digsuuAArV67Epz71qSntaV/QrG2CIJoOHZnGmLTI05EGjOaBjBS8pGbPTmrRSkEmZXpp823hV6KJXDFIK85STT1jTYix76mQpIuT16Wjmu48qUe18JjInwCLjd+kNSi3e4tLIRYcsKKyhhpdC5puTDFrprrEIV0a3D7GBB+Vzq/ap6qOmloz9agUQ2SEmVeemp0tctyl8L0OD1EprhL545FOi1d9luPMBTefv6oaMTlV4lKIuBSZaHB/sbKXuFIXO5WGGhKRxGzz9NNP49e//jV+9rOfucdWrDC/I3p7e10vCQA8//zzEzYlf+pTn8IZZ5zhnHIOP/xwjIyM4IMf/CAuu+yyUT0rM4GEJEEQTUUlSjT6P/24YISM8IUTVwv2N0bbXSsWgPs+ROChtHcImZ5OiFwW/Vt3IhwuIbugEwPP7DWRQs6S+c8xZFkiuygDldQJ2vcIOnwUektgPkMm72N4V9FZ2KR/CevUeMR0I05clhBSQybBMO4LsEgZGyHPpLqHdu5Gsb+E7hV5iMD8OraRPy4YZARnmZP2TZSxEdJKaXhZMydbhhK5BVlke0zXthVkXtZH35MvADAii/tAqa8MkRGQ0tQ7yqKC9iq1jqJbuBpIK/y01FV7sB3YlnR010Qyxai6yNpJRUHed9favSIPL+sjKoSV9xzHWNxGIZnP4Cd77VzWg6hQNvWmYey66YOuwNWblnmEsCN2n2daFNdGJ2/wDiIx2QaY1HZ9O/anmyr/9re/jWXLllXVMR5wwAFYsWIFfvWrX+GII44AYOoo77jjDnz+858fd61CoTBKLAohoLV25YX1goQkQRBNR7or10624R6DyHF4vnBp3mhIojxUgoolgq4SRBBDywAyjFF4YQDda7OICmVXO2n9ChUqZtuAETJxSSdTWaSJAirtonMqEVEy0mCxSftabIpYK21S64mwLOypRMU4527yCwB4OQ8qVuCeeaywZxjZnhy0MnvggiGTz6K419RZcl9gYHDI1RcyboRqXIyx6EULwThHXI6RW9jhhBT3BAp9BTDOMNxbqK7zzAhXH2qjvzLVLGM71muFnxWDOtIIi1HV87mVlfqvkR0l9z3r2j+HqBSDA/CXBPCywpmlc8FcRLX/6T5wXzgj+XTEeDxyqwMnaAef2YNwJHQCknEGP1f5L04lAt9O3BE5bn62rACmxhtiDlFK4dvf/jbOOusseF7l55Yxho9+9KP43Oc+h5e85CV4yUtegs997nPo6OhwHdkAcOaZZ2L16tWuoeetb30rvvSlL+GII45wqe1PfepTOO200yCEGPX+M4GEJEEQdSc9em06jDnqLtZgsUbYF7u0txM+xagqbStD0yE98uxuI/ACz9VLArZhpboD2hqO27/irXi0qW2gMhrQ3gbgajHTtX1j1fkpWUkZy9A0AXEpIMsxlDDTZmRU2ZMsxy5lzkRl1rTIccSlODE+1+79TKRTQAQaXtZ3e6pKZ0fKjSl0e/VH14n63cJNG+JJxA8wKW4JZT7/IQ0UzW37WVhPxnQjTnq0oul2NzWmTFYinSypeZ1MfST3mfv+2++VEfmVDvVMdxZexoPfEZgIp18CIM0fCkmkdF+1sRSNbA+aZUTir3/9a2zfvh3vf//7Rz338Y9/HMViEeeeey727t2Lo48+Gps3b67ykNy+fXtVBPKTn/wkGGP45Cc/iZ07d2Lp0qV461vfio0bN07voiaAhCRBEE1NVT1ervo55jOXws3kk67nTGAaLYZLyC3tQThcQueyHnDfg7e9D17S3f3cMyNOUBT9MmRRIcj7ztjcpWpjjbAQQRZVEo1MxE7KNN0y5nQZj0FCQmQEmK3VTNUvskQAlgbL8DICIjBjEEXGg0hMw4XHzfv7DCgq9zojFpM1PeHGH1rTcS4YpNLwU16TRlxyxF4l6mhrGtOpXuYz6FSto5t9Xax4ftponvArU2ustY9pjmLI9AROzHKfu+sDjLWRlxXGuskTyHQFZgpR0shjaxplQcHPi0oXfY67zvSwPzJ7S8Y+2j8W4rK5HxUj+DkfxVJsmp98Ac01RAYoPlPp2ieIuWT9+vXjppwZY7jiiitwxRVXjPv622+/veq+53m4/PLLcfnll9dxl2NDQpIgiKbFGlAD1SPs0jYycTlOzLnLkGEMr8NEI/2ODIIFeXSuKMPLZcCFQDafqZrBnYZ7rMpvEmM0heyLqcxtTjeVVEdTpbP1qbUAqt0X46be0q6RXtM+p5JRiCzxjGTC2Pc4gThUsfLhHgPLVaJ8E3lu2kikjjSQM+l7CQm/03PlCJZKc5JKvCtNzSj3hRmNmHSXR8XIjbK0cI9B+xUrpnTTjFhWaciy75E2bxe+SfmX+svwch7Kg2GV1dF4UDSyfWBQ9a+RnOKIxFaHhCRBEE1NelSh8zj0TP2cLBhrHxXwqtnWfkcGXfuvgvfSQxAN3g1ZCqG5SSf7Od/4Oibj8QQAP+tB+dpEzHIc2qt4SlrbGhuNS6dyaz0T02I3/bgRQNJdi40QMsGRW5BNjS00UUKbqna3fVFlzWPrO81cauXqP+NSaEzPwxiMM4QjYSVCl9gJKVUxEbcCUloPTa9Sl+g6xKNKRNI1wdQI2nhQIrNYINMTQEYKXetyELYeM6gWw2lxPPzsiFs7t9hEWVUksd/Rq8A97soSulYuQnnATBcKh039pd+RwV9+9YS7jr1/6Xd7zq/tgvA5SoMR4mKMgSdGnMj3U41EaUg8EsT0ICFJEERdmWl95HiMZzmjlZmQUh4sus5n7nFEQ8Pw9r4AryMHkc0AWqNzaTe8rPEq7Fw65KKT5cHINX+EfbFLeavINGFYAWdJi5D0vkRqWFit+bYlbX/j53wn9LgnEHgmQgcgaRbx3dc01oKI+4DfYXw2VWIzZNcTnCG3IIeoGJmoX2Ki7gdGNItcJRKZFpW1Fj1VRuvpaGuS6rfNN+kRh6X+csWnssMHELnoo01rC59DOMN0mcxD96AiCe5xBF1ZN688LpaTOleFrpWLECzohiqHlVGXsYbICGcOr5VGVIgqk3OSRikAKD1Xqdm0kIhsX5qlRrKVISFJEETdaISIHM97MI3tyraRvagQYuTZ3fC6OqGlBBgDE8JF77hn0qpIhKQIOFRJOZHDfAbMcGTjWFhBmsn7o1K4Fr/DT0VOzRQc00hj9hbkffgdvhuDqOLRaTQzUYcjHClVeV7KSEJGQG5BBmXPpH/HSsXXRiPT1JYY2OYbV1vqfDKl6xK318qTr+WhELw7gCxLU+fqM4jAzBT3cz68bGA8Id0Unhgi8JDp6UI0UkRpTz9ySxeZekcrEHeHFb/IsDK9Jx0RrZ2WQxBMNyC1Xef1mh0SkgRBNJRT4y0zEpiyoFx/tegYbaJrJ7Iwzt1sazNBJsCu3/4RPfsvg9YKKoxRGiggKpjoVrGviEx3AJHxwEToOpzHEk+yqFwnuRz1bJrKfyDBoiR9naSkiztDt7aOTASNCYYglea2QpZzhkJfATJS4NxY5LiaRGmibYBJbQ/s2AuVpPS9TAHcq0z/KQ+HrsNbBBwCpmZSSV0lFtMR1lo/xfRnnlsdVKW6bYreNtpYMWmthrTUKA+FlWlCiY+mmbITomtVp0uBdy7pSuyQuBP7NsL85O1bEXT4EAFHeTCCCDhKe0OEfcbzUxYUwj2V2sc9ewZHXcN4EW2KRhLEzCAhSRBEy1GbbtVFhd1/3g0va1Olg2CCw8sIBF1Z071bCF30jnGGruWd6FjcBRF46P3Ds24izETRuH2RjtZZixpXD+lXp8eVUuDgkKEyndtQALibj804h5fhED5H0BkguyjjPCW9jEnzapkYbie1hCqW8DIeZCQRjhgRCaBqNKQzPLepbFRS8umpNkDS7JRK69uOZ6UUhG9sfJTUEEJUWRepkgJKlXWCDj/ZhwQXHpgwk2yQ1LcqqdG5BAhHQmeobq17GDeWTF7iCblg/zyGnxtBkPcRD0pEgxNLe6AyfrM2GkkikqDU9swhIUkQRMswXt0hUPFuZIJDSwXhcXQt60Z2UReGn+1LmlliePAgubGJMXWFFZFVb5znZKob3Po2inGuw1zL6MirlhpILH/sOEVZk9Zm3Mz2joomYmmjf1yM3Uc6Zlp7DA/P2s/dzjyv2luK9NQb5/Woqrur3ftZgcsZFuy/BHEpRG5xPtmfgt9RMTr3cz6e/92eqgk6E0FCkSAaDwlJgiBaBiscxrLZYYI5z0XFGbqWd5uxiUKAewJeFvAyEbqW58E4R6Y7RvfqxQBMJEzFEs//cQ9kQVWJKGB0unc8XOQLqKRdk7SxnajCfIZyquEj3Y0NALnlmVT6t3Jt6fGQZcBNhZGhROeSDozsth3QyplzAybN7JpOEtEWjcSIhuSYwjx97TyJotr9BZ2esxPyO02UUfgc5aHQjZh0r01im/u9Zj8wzl0nOWDGNvodGfz5fx5ze9jzlz144fEX4Hf6EN5zTiRraQzU+58Yct/3tNelhUQjMR3MiMQ6RyTrvF6zQ0KSIIiG0qgubmP0DZSfM6P6BrcaISVyHB0rshjYOYDh54YAACMvFMEEc76CjHPXHaxiMw2FcdOBHCz2nGBJ191NlVoD87Gm4lhz7fRjQacHL+NBpbwl/ZyP4l7jyyMCAS0VmOCQoUT3ii4wziG8qGo6jPC5iwL6nRxxMQbLMicmuWeilOOJs7Rdjtu/L8B9mLrLZO2oEJm6zVIMzrnzq7Qp/bgUwcuaGej2q9/dAe77rjteJJZGuUVZ89lFCnsfHYSXF4gHTUNO7feChCNBNAej8ycEQRB1pFH/4U+U1rSpZBkrJ8jsSEHb7VybFo5rxvvtq1O8HtgpMGlqTch54ikpAgEvO/Hf/jqVJq7FfiYmcsuqhC0wuoYz/Thg0tsqMhZDWmpoqaBlJeqpI131HrZ72+/IgHsCUaGMqFCG35kD930zicdnCPI+hC/MDO6yhIwUwqHQ2QrtK31NEDPBdm3X+2gnKCJJEERDmQ1fybRFkB2vZ0WOlkB2YQblQdO4IZJuYreOUojLRiCZer59N29MhloBZE28daTHFEj2emQooaWqSm2HKU9E4VdS1UwwFPtLyXWY15trUaZ7uyzd5+Dex065SUcgU2J2LAHNfNPwEnRlkppSZaKTnLmO8SqfzUhChhwyUvCyvmkCyhrxWHihH50rFyMqlozRu2/sg8qD2nV9p/cW5AWKO2mUIUE0KyQkCYJoGWwNYlrqWdNw+1g0KFHwy+55Ly/gdwszS3uBj/KQESVcMPRv74OWGjI2zTmyLN2caJ0az+jeZ4Z7TXcY27hjWDOyz0YoRY67tHe6ecWtn3gwhkOhMSdP0trlwYrokpEET6b4qEgls65Nl3THfln3OchQufXS6EjDT0VBw+EymDCv71re4Zp+VKyQzWecfU/PmkUY7u0HYKKj2YXdrrM8s3gB/JUrAQCvOjeH4vN7Ueofwdb/fnLU5zSedRSltYl6QV3bM4eEJEEQ84606LM+icxnVSlXlbLDEeBV6V6/03PRsUbusbaphyezq+0+bM0hAOhyMq6xEFfEpq1nFCxlfQRnZQQYmyF7Lel51BbGzeciMqJKrHLOgUx1mjyddueCQSq4cgGtFFA25uOl/oLzgZRhDO6FCHq64Hd1QGuNaNcuiK5ODDy5y5mOWzb0PVp1n0Qj0UjIkHzmkJAkCKIt0JGp7Ut3FmsntnTTF4wzn+3T25IJDiZMqpkLBhlV7HfS2OdVUjdqXstcpzVg6h6jUgxAuAYaZ5guWGL6zhAVIxeZBIxYtc9xTxg/zJxJiYuOHHguB9bVDfnC824EoqVWRBIE0fyQkCQIYl4ji8qlSqMhic41JqXLBMPIzqI7T+Q4ZFFBFhWKRZMat5HBtFH3VFPcE5Fey0Yn7XuFfTFEzkRSbao9fU1A9VQav9MzJueJcGSCoWOxMffWUqFzaaeb/qOVRrG/ZEYwRrJSj+kDfqcPnkQp/bLEisNXuznXIhtAlkJopdG1ZjlKL+wFAMSlEIXdQ64OcmhXP6KC6SLPLci57vjSnkGU+kcQjoTggqGwp+CaoUhEEnMB2f/MHBKSBEG0DelGEpvitlgRabHp49quau6zuorJfSFy3NRI+hWD7/Q+ZVEZK6RUjaNSCkII12hjxi9W5l5rpeHnzExvJji0SjrWk5Q39wVUMqnG78jAy2UQF8vQsYQIjH9k2G+slax1UseS7sqeAw/l4RBQGtkFncj0dMHr6sDeLdshwxgqllBJMPLVd97dkM+NIIjZodmzOQRBtBCtUM+mlDG4rp2wAlR3Wo9n/zObItJ2oDMxei/pUY7WRmii1Leb4pM0vdh0dK1VkFbp1L+CDCNEI0XIMALjHNz3AM6gpFlPZAJ4uazxh+zMwevIwM/5EL4Z75jJ5+B15sADH+FwyRmlA8CRt/92+h8OQdQBBtWQo52giCRBEHWjUVY/U0V0VDwIRY47M2sVaxSeqqStxxJesykUx3zfpAOd+wyFp8pj+j261LZX8XgMizH87opVTu3rhvLGsN1OqZFF5a4/tywDJTUYN/6QUTFKmnA44lIE7pn3K/UPmHR4LLH7id3Om5NxhgNOeCmKewbBOMOyI16CRYVK2YDX3YW+PzwBGSk3gec1d93TgE+RIIjZhoQkQRDzjn01pdQyVgd1M2AjpLW2PLZm0toDAYBApXbSikj7fG163k6LcetzBg4guyCDuCwhPA6RpMDNNBofUcEIcK20SU+nIosyUsguXYhi3xAADhVFEJnA+EfmMnjhwcdcfSbjjNLZRPOgAdS7prG9SiRJSBIEMb+palJJzdE2k1qScYFNKCJFjo8SgEAq5e5VT6KRRVWd7gaAVC0l7zZNQ1Zshn3VHdPcM36S2YUZ0wBTjhF0BfA7TcOOigvwOwIU+4bBPYGgO0jqLRWiQoTBbc+aDu2sD78nj3h4BNwTUFGMzuULXSTzsOtvq+OnRBDEXENCkiCItiItHptRQI6H7R4fj3QDTprJ2AbZtZlr6DFd28aPUoIxDhF4iEsROpbkEXR3YPj5Ifg5D+FIiLgkERVCiMAzkUulTARSSnDfg5fLAJzjwO/eMP0PgCAaAPlIzhwSkgRBzFvsWEILr5knXSuw5qo+cizSU3DS0dNaasWwE8qAG8kIwJmy20hn+tqzizJQkRnLmM1nIAIPKjZzr6E0vO4M/M4sVBQnTTsaPfstNLOzcwEy3VkEXVlwj6P/6d0YeeY55A85EHH/AJ78nwehYgnGORbX9yMiiBlDk21mDglJgiDmLcwfHcVLz3G2tZHNJCD3xWSiqHyM2sqqesvUZ8J8hmgkNpN9BEs8HyXiskSxr+i6u2XZNPGoKEZUKFdNpDFjFmPkli5Gx3AJXetWQUsJb/Ei+DkfWlWm7hAEMb8gIUkQxLyGe6xq3rUVVLWPt5qgnCy2e91+HQtrL2TmdXMACsLnyK/uRlyKwLxi8nxiR5RMrSkPleBlzBSbuBTi+d8/jdzCDuhYAkKCSTnm+xFE09CA1DYotU0QBDF1GmX9k47ATUfo2YgkT9K6tpOZ+QzRoHRrNrOITO9tMvu05+iopvkmSWnbjm37vPB50o2tUB4qgXGOuBxDRdL5SnJPIL96ofGJ7Mxhxz1PmdcG5vOUoUo8Ivdi+LlB59NZ3FuElhqvffCBOnwSBEE0G/NGSP7urzZg6ZIuAHB/KR9+w+1zuymCIOoG8xkwRbGnawSYyKFSH1ic4IXzBC8voCPtvgLmcxS+cEbm3GPwcva/ggjcM1FHrTS4L+DnfAw8M4DOpZ3wOjKAMkK08hqLiWICAPc4RGDsfrys5x4niKZD6wbY/zTvH6WNYN7867bTGexfz4wz/PG0E/HH006cy20RRFvQLEbklrFqAy1T9ZhsZWz0kXPuopCcc2hpo4zmMeElUdrk96jwOWQoEZdiRMUIi1+8tDJiMWdGJnoZYUzLuXm9CDhkpBCXTH2lDGMjWJPfyQ+98bg5+AQIgmg08yYiqWKJcCTE0kNWI8h3YuCpXvRv75vrbREEMQ3SzSK2Y1lMwapHFlI1SpGGnxdQcSUyZyNx6c7o+UjpuQgAUERY9Xhtw85IpwnPKqXA9hYhAoHcwhy00ijsKWBw5xDCoQgDOwYQlyS8rEB5IHSd4ADwkpNfisLuQchIoXNpN0TgwcsGEIEH7olRoxgJohkg+5+ZM2+EpIxMfc7I8wOISyFkGLsJDQRBtCbcY5CRhujg8LtFtUCcArZOMj0WMBrHd7EdqK2zDPuj9D1wzhGNRPCyAuFIDC01gm4ffqeP7IIMtNSISxIiY9LgSimEwyXEZROFFIGHTE8nGOcIurIAAC/rz9blEQQxi8wblcU5g/A5/I4AXjZwfwEfeftv53prBEFMEet3WDXGr47m4RMZe7cjtd6aSikoqV3DDIDq20q7JhuljDjXSqFjcRe8rA8vG4B5ArCp78DELHo/fsYsXRFBTA6mdUOOdmLeRCSZML+wBnfuBeP9CEdCmudKEC1OrUUP0Ri4xwCPIRqS8FJ1lPZggoELBs4Z4rKElgpRKYk+CgGZfJdUrKCVEZU6MSHPLc5DZIywLPcPzfGVEkQNWtXfrodS263JK//7V8jn83O9DYJoOxrRaCMLCjoxE7ep6HhQjmvGXeuTmE6BW9sfwAim0p54zDXameJOazauq0Yt+t3CRW9FjmPk2RKAtKl7XPn+lCIoaURkXIrQtW41tJTovfcxeFkf3BM44Ju/mM3LIghiFpg3QpIgiPnDZGdgp70QJ5P6ppT2+NgpP5ba2d4ix6tqTJnPzDn23EREMs7NqMTHn4IIPBT6Cq7DmyCaDWq2mTkkJAmCaGqqaiTH8H50goZE4rSpbb7h3viiz4p3HWnIJAqsYo1MdxZxKQT3KpY/UaGMYl8bGHYSRBtDQpIgiKbDCZuUwJEFhWBx9a8sXfP8eGvFic1PM0+vaQZUpIFIQ8JEhVlcGSdp09/2M/fywj0HAHufNnZrWmkM7Rp0axb3lME9hhO3/n62LoMgJg2DBkN9fy/Ue71mZ950bRMEMfvMhRE599iEEbPxIBE5ObjPqlLc1ndzXyUEWml0LOpAx6IcRMaDUpXPm0QkQYzPFVdcAcZY1bFixYqqcx577DGcdtpp6OnpQXd3N4455hhs3759wnX7+/tx3nnnYeXKlchmszjkkENw00031X3/FJEkCGJazOU0m7QR9mRS2iQip89Y9kvp2+nPPxwJoSIJ7gt4Gc/cnoboJ4hZo0m6tl/2spfh17/+tbsvhHC3//KXv+D444/H3/3d3+Ezn/kMenp68NhjjyGbzY67XhiGeNOb3oRly5bhJz/5Cfbbbz/s2LED3d3dU97bviAhSRBEyyCLqmIHlETJSCTWl6rPc4LPtraUYE9xALnVQWJmHrtygvk+PYgg6oHneaOikJbLLrsMb3nLW/CFL3zBPfaiF71owvW+9a1voa+vD7/97W/h+2YYwP7771+/Daeg1DZBEC0Jicjmg3MOJip2SwBwarxlDndEEBPTSEPywcHBqqNcLo+7jyeeeAKrVq3CAQccgNNPPx1PPvkkAGP4f+ONN+KlL30pNmzYgGXLluHoo4/Gz3/+8wmv6/rrr8exxx6L8847D8uXL8dhhx2Gz33uc5Cy/n/YkZAkCKLl0CQgm5KwP0I4GCHsi7Gh71Fs6Ht0rrdEEBOjdSW9XbfD/H5as2YNenp63LFp06Yxt3D00Ufje9/7Hm6++WZ8/etfR29vL1772tdiz549eP755zE8PIx/+qd/wpvf/GZs3rwZb3/72/HXf/3XuOOOO8a9rCeffBI/+clPIKXETTfdhE9+8pP44he/iI0bN9b9I2Rat/Ysn8HBQfT09GBgYIAMyQliFpnLGkkL9xlFJZsQikISk2Eu//+27/3Mrf+JfFdHfdceLmC//++d2LFjR9V1ZTIZZDKZfb5+ZGQEBx54ID7+8Y/j9NNPx+rVq/Hud78bP/jBD9w5p512Gjo7O/HDH/5wzDVe+tKXolQqYdu2ba7e8ktf+hKuvPJK7Nq1a4ZXWA3VSBIE0bJYE20Sk80BCUii5dDaRRDruiaAfD4/LYHc2dmJww8/HE888QSWLFkCz/Nw6KGHVp1zyCGH4K677hp3jZUrV8L3/aqmnUMOOQS9vb0IwxBBEEx5X+PR0NT2aaedhrVr1yKbzWLlypU444wz8Oyzz1ads337drz1rW9FZ2cnlixZgo985CMIw7CR2yIIog40i2ggEUkQxHyiXC7jsccew8qVKxEEAV796ldjy5bq37d//vOfJ2yeOe6447B161YopapeY9esJw0VkieeeCL+7//9v9iyZQt++tOf4i9/+Qve8Y53uOellDjllFMwMjKCu+66Cz/60Y/w05/+FP/wD//QyG0RBDFP4D5DsNib9EhFonE0yx8WBDEVGJQbk1i3A1Oz/7n44otxxx13YNu2bbj33nvxjne8A4ODgzjrrLMAAB/72Mfw4x//GF//+texdetWfOUrX8F///d/49xzz3VrnHnmmbj00kvd/Q9/+MPYs2cPLrjgAvz5z3/GjTfeiM997nM477zz6vPBpWhoavvCCy90t/fff39ccskleNvb3oYoiuD7PjZv3oxHH30UO3bswKpVqwAAX/ziF3H22Wdj48aNVPNIEE1MM9RIAsYSiCAIolV55pln8O53vxu7d+/G0qVLccwxx+Cee+5xEce3v/3t+Nd//Vds2rQJH/nIR3DQQQfhpz/9KY4//ni3xvbt28F5JTa4Zs0abN68GRdeeCFe/vKXY/Xq1bjgggvwiU98ou77n7Vmm76+Pnz4wx/Gzp07XV7/05/+NH7xi1/gd7/7nTtv7969WLRoEW699VaceOKJo9Ypl8tVLfSDg4NYs2YNNdsQxCzSLCIyHYmkFPfcQdFIYjo0Q7PNzl//EPnOOjfbjBSw+qR3t40uabj9zyc+8Ql0dnZi8eLF2L59O37xi1+453p7e7F8+fKq8xcuXIggCNDb2zvmeps2bapqp1+zZk1D908QRDXNIiIJgiCIuWfKQnKsmZC1xwMPPODO/9jHPoaHH34YmzdvhhACZ555JtJBUMZG1zZprcd8HAAuvfRSDAwMuGPHjh1TvQSCIFqUYLGHYLGH3H4Bul6SRfdLOtBzcCcWHNo111sjCKIFqXt9ZHK0E1OukTz//PNx+umnT3jOunXr3O0lS5ZgyZIleOlLX4pDDjkEa9aswT333INjjz0WK1aswL333lv12r179yKKolGRSstkfZgIgph/2LnN9qvwzd/CTFCzDUEQ06BJZm23MlMWklYYTgcbibQ1jsceeyw2btyIXbt2YeXKlQCAzZs3I5PJ4Mgjj5zWexAEMb9hPgNL1UaKwIhJqpecfag2kiCIhnVt33fffbjvvvtw/PHHY+HChXjyySfx6U9/GgceeCCOPfZYAMD69etx6KGH4owzzsCVV16Jvr4+XHzxxTjnnHPaokCVIIipwXxWiUpyDi/ngXGKRhIEMT3Ss7HruWY70bBmm1wuh5/97Gd44xvfiIMOOgjvf//7cdhhh+GOO+5wqWkhBG688UZks1kcd9xxeNe73oW3ve1tuOqqqxq1LYIgZshcRqH8zsrfvkopyFDO2V7aHYpGEgQBNDAiefjhh+PWW2/d53lr167FDTfc0KhtEAQxj1BKQWQEmGDQUsPLeq5O0sJ8BlBqu6GQiCTmDUqZo95rthE0a5sgiJYh7IsBmGYbFWtEIzH8Ts8IzBx3qW+/28yXtfdHnipPtCwxBUhEEgSRhoQkQRAthRWROtLQnoYsy1ENOPa2racETDMONeEQBFGF1uao95ptBAlJgiCmzKnxljkxJpdFBe0xeHmBOJIQOQ6vw/4aM9FK5jOIXHW6m2ZxzxyKRBIEMRYkJAmCaClsNJL5JjIJoKpOUkcayKVuEzOGRCQxbyEfyRlDQpIgiJZBFhS4zyCLCsxnyC4M0LGkA4wzhIUInHMwwSAjCc45kDFm5cyPAAB+jiMaNJ3eooNDFtrrF/5UIQFJzHfI/mfmNHzWNkEQRL2oTVEzzvbpI8nF6HpJYt+QiCQIYjJQRJIgiJbCNtZwj8HLedBKQ/jcRSO5YNCypkaSROSUIBFJtA2U2p4xJCQJgpgys9loEyw2v6ZEjqP8XAQdacSRSU8//9zeKa3FfYb8QR0AgOzCDEp7y86TEjA+lbauUhaVS6GHe+J6XU7TQyKSIIipQEKSIIiWZCbG4yxJd9uvY65dRJWlEEEQ8xCtGxCRbK8aSRKSBEFMibmw/alNTc9E4I0nHoFKl7eOtOsOJwiCIMaHhCRBzBJWgO0rdTiWUGvndGM8KMcVjn5eOM/ItAm5LFZHGHoO7AYA5BZkEXRmoJVGx5JuhMMlaKWhk5Fm5SFzHwCGnx+Biszje/8wXP8La0La+eeMaE+oa3vmkJAkiAZTKwzHE5QTRfpu8A5q2//kqwTiJCOEKtbjNtjYLm/uCXeb8WSkIufQSoJx27TDnLCc77TrzxdBEDODhCRBEC3PvlLdnDPIWEG5Q0KGcRKNNBFJ7glopSAjBS4YZGhutwMkIom2RSlz1HvNNoKEJEE0kPkWZZyTsYiJabhMP5hEJrPrMsj0BACAhesWAABE4CEqRs4/UgQevKyPuBQht6gLXkcGshQit2wRwsFhMMahogjME/CyPqJCCO5x9D89CFmuetd5Sav9DBJEXaFZ2zOGDMkJooFM9J907XNTOZeoYKOKSppDK+1EJOMMXtaHCLxEUAZgjIN7AtwT7hzGeerxpOZSsEpafR52b58ab6GfK4IgZgxFJAmiiTg13jIq6kf/2U8Nk56WYJxDcFPjqGJl6iE5gwjMrz2eCeBlAohcBiqKwRiDiiJXE6kldW0TxLyHDMlnDAlJgmgwVghOtmubhOPE1EYHuc/BBYOXSQSix8G4iSratLYIPKhYgQsB7qd+7fHqZhonIpMap/nqI0k/YwRB1AsSkgQxS7T6f95zUR85FirSVWJSSw0IhtyiLtNt7QmU+kfc7aArBxVLMK7BPQGRy4J5EbjnwctlwYSAlhJgZk1zLkNpdzjKRmg+0Oo/hwRRV6hGcsaQkCQIomVhPgMTLKmNVAA4ZBhDhrGrfdTKpLW9jgy8rg74C3sQDw2Dd+TA4xgqjKDCCEjOBdA2lj8EQRAzhYQkQRAtiywq8AVGSAJI+UIy1zjDkqYa4Xsm5Z1EHnWUiMhyCBXFLs09n0UkRSMJogbdAPsfqpEkCIKoplnS2haVaoKRofmlvWfr8wCMqXhuQRZaaTDOEBfKyC7sBksMyOP+AUTDBahyiLhYgixFUFEEABjcuRcyjAGYMYnzpdmGBCRBEI2ChCRBEBPSbCIyjRV6MqqYhwsfSae2hIoFVCwRl0OwMEldJwbkWinExbJZJxGdaVTc+iKSBCRB7APq2p4xJCQJgmhZVDx2KtqOP0x3cFeeZIACdCyhY5msUxmLGMnKejby2Yo+kiQiCYKYDUhIEgQxLs0cjQQAkePwsgJxyQhCnjTYlIdKYJxBhjHKg0XInX3uNeFICMB0e7PEuNxGM0deKCAeTNbyGHRKQFoxqWY53U2CkCAaCHVtzxgSkgRBtCw60k5EaqWhADCloCQDBxCXTb2jnZ/tbnMGpbQb7ZWOaqpYg3tsVGp7tgUkQRCzAM3anjEkJAmCaDlEB4eONLy8SWHvq9OaC2YilImIZIJBxwrSTbFJ5nknvpHzoT6SIAhiNqBZ2wRBjEmzp7UBgCf1j8YzkrnUdnrW9qgmGqXN+EOp3KFktXDkXvPURLbC94EgWhab2q730UZQRJIgiJaj1paHCQYVSWjBoZSG8AMwztyM7aFdwwAAJTWEz+HlzK++TN7YBAnfCNKe/XpcdLN/xwAAE83s3zIM5icd4oXZT1tNdrwmQRDEbEMRSYIgRtHsUTAVaXMoZWojIwXuCxeV5B4HT4zIGWdmHncyk1sr7aKQKpZu8k3FxDw5BIMIBJjgVTO3W7GDmyCIcdC6YgFUt2NmEclNmzaBMYaPfvSjAIAoivCJT3wChx9+ODo7O7Fq1SqceeaZePbZZydc5zvf+Q4YY6OOUqk0o/3VQhFJgiBaFl5r7ZNgooomcsg4r+rQrk11W9KPj3cOQRBEI7n//vvxb//2b3j5y1/uHisUCnjooYfwqU99Cq94xSuwd+9efPSjH8Vpp52GBx54YML18vk8tmypzmRks9m67pmEJEEQVTR7NDJN2B9B5EzE0O/0qwRg2mQ8v7obwhdQUiPbk3NzuO3zfkemajZ3elQi4wxxMTaRT6kx/FSxKpVD3dwE0cIobY56rzkNhoeH8d73vhdf//rX8dnPftY93tPTg1/96ldV51577bV4zWteg+3bt2Pt2rXjrskYw4oVK6a1n8lCqW2CIAAYAdnMIpL7rOoQHUZA2rSz8LjryB6zySZJZcelCCpWiEthagKOOWQYmWadwEvS40ZsisD8quSCuUac9HsTBEHUMjg4WHWUy+UJzz/vvPNwyimn4KSTTtrn2gMDA2CMYcGCBROeNzw8jP333x/77bcfTj31VDz88MNTuYRJQUKSIIimFpD7wjbeKKVdR7aKK1FFG2FUsYSMlBuPaKOPo9ZzYxTHjyqQgCSIeULd6yMrIxfXrFmDnp4ed2zatGncbfzoRz/CQw89NOE5llKphEsuuQTvec97kM/nxz3v4IMPxne+8x1cf/31+OEPf4hsNovjjjsOTzzxxNQ/pwmg1DZBEC2DyPGq210rc+C+gJ/z4WVMc022pwMqGX0oAg/cE8gu6kI0XIJWCrnFecgohvA98MBHXChDBB7AGWQpgteRAfc9yDCCCHwAps5ShnHyzrsRlWK3j+LO0N2ei45ugiBmQAMNyXfs2FEl9DKZzJin79ixAxdccAE2b968z/rFKIpw+umnQymF6667bsJzjznmGBxzzDHu/nHHHYdXvepVuPbaa3HNNddM9mr2CQlJgiBaApHjVUKyNipoayJtmppxnnRla6gwduJSRjF0LBGFMXg5QjhchAg8MM4RDpcQlLPgnkBUCBEVjEiMCmXISMLLmF+ZwhezdNUVyPqHIFqLfD4/YcTQ8uCDD+L555/HkUce6R6TUuLOO+/EV77yFZTLZQghEEUR3vWud2Hbtm249dZbJ7V2Gs45Xv3qV1NEkiAIgvmmVpGJlLBMaiJlGCcG4wpCcTDOERXKicBU8MMYcSmEihW8rA8VKwCxa77RSkElAUeb+uaeadSpTXfLSM7G5ZKIJIhG0QSztt/4xjfiD3/4Q9Vj73vf+3DwwQfjE5/4RJWIfOKJJ3Dbbbdh8eLF09iWxiOPPILDDz98yq+dCBKSBEG0HDrSgMeS0Ya8qssaQKoG0ghKKyIrzyd1lYmPpFYMjCfzumMF7sFFMK241EpBgbspOFpStzZBEDOnu7sbhx12WNVjnZ2dWLx4MQ477DDEcYx3vOMdeOihh3DDDTdASone3l4AwKJFixAEAQDgzDPPxOrVq12d5Wc+8xkcc8wxeMlLXoLBwUFcc801eOSRR/Av//Ivdd0/CUmCIJoe7jMEizyIjHB+kMLn8DJeUiPpVQlJP2d+sYrATrDpgEwikTzwIJKUN/e4S4mnBaNWDCLwkpQ3Q1yKoIsRtJLQUiMaMSFL7rFRU3bqDUUjCaKBpJpj6rpmHXnmmWdw/fXXAwBe+cpXVj1322234YQTTgAAbN++vcpbt7+/Hx/84AfR29uLnp4eHHHEEbjzzjvxmte8pq77IyFJEAROjbe0XOe2Trq0EUnEnDlBKKMQwjdp6qgYGjufRDDKMEZcKLsu7vRa1kcSSFLZsXTTcUTgwct4o2ZyR0NmjUZ4SZKAJIj25fbbb3e3161bBz2JdHn6NQDw5S9/GV/+8pfrvLPRkJAkCKKp4T4z4xBjDZFB1ZQai7X5AWydY8VMPG0wbg/jGRm7c+1cbruGrY2sfNWjRKRFRdqNTSRzcoJoMZrIkLxVISFJEETTw11zjRFsXlZABMIIPBhDXJZK6fg53922YlErhbgco9Q/4sRkaaDoIpPcMzZCKlaQYYzyYNGlxgt9BYQjpoO7uKsMWaxOXZGAJAiiXSEhSRBEy2CjkVpqxMUYTDBwwRCnzuGcIfZHz1qwqW3ATKixHdfcE9BKJVNrBLjH4WUDRIUQ3BNg3LyH8MyazGdAsbHXSWltgpgdtFbQda5prPd6zQ4JSYIgWgKb2gbgIpNcGAsgnhqHWBmROHpyjZIaLJbQiiEuJ0JSKGftwzhzdZGm8zuV+k7SVXZEYr0h8UgQc4BuQGq73nZCTQ4JSYIgmhqbNtaRhixXGmS4YNCSgQlrx5N4PvoCxf5S5TzOUIaZcVsaMF9NJ7aElxUuwikCDhkqMMEgAoG4GMPL2a7tGKU+81oVU2MNQRCEhYQkQRAtB08iklrZVLdyzTDcR1WzjVKVaKM7J1nHvh5IopVJqtyam9uvXNQ3CknCkSCahBaw/2l2SEgSBAGg+S2AZFFBxRrcY5AZBaUUhC/Ak74aEZiUNOcM9tc4T4RkrSBk3DTucJ+bph2p3JQcxhk4Z/ASb0r7WhuJ1JGuHs+4j0YbEo0EQcxnSEgSBOFodjFpYYKBJ3FFLTVgI5RSAV6l0cZGIwG4iGQ6uqildilx95jSAGeQoUzOTU2zqRGNY5mRk3AkiNbBDiGo95rtxKwIyXK5jKOPPhq/+93v8PDDD1c5s2/fvh3nnXcebr31VuRyObznPe/BVVdd5Ub+EAQxOzS7gJRFBRYzSAAiV+nT5t0+4pJEfnWHuZ/Y+ABwTTfWM7JjUQSdRDKV1M503IrLqBi5hptMPgPhC3hZH3uf3guR40AOOGnnH2f92gmCIJqVWRGSH//4x7Fq1Sr87ne/q3pcSolTTjkFS5cuxV133YU9e/bgrLPOgtYa11577WxsjSAINL+IBJKmmyQCGPYZISlyHJFvbqfnZwPVPpLc487KR8XKjT60YxJVbDq0vayfPGYsgey5QWeAwp4Ge/4QBDH7aF3/Lmvq2q4vv/zlL7F582b89Kc/xS9/+cuq5zZv3oxHH30UO3bswKpVqwAAX/ziF3H22Wdj48aNyOfzjd4eQRAtioo11JB09Yr9Tw8CMGnvVUd0Vdn5iMBztj6AjVSyZHxi5fFS/4h7PhwuIS7HyajFCLKo8Man/jCLV0gQBNH8jHbtrSPPPfcczjnnHPz7v/87Ojo6Rj1/991347DDDnMiEgA2bNiAcrmMBx98cMw1y+UyBgcHqw6CIKZPK0Qja7FNN2OhpUZciiDD2MzWLoXutj1ULJ1BuQwjRIUyZGjS3vYcS1SM3O1b1h3e8GsjCGIWURpQqs4HRSTrgtYaZ599Nj70oQ/hqKOOwlNPPTXqnN7eXixfvrzqsYULFyIIAvT29o657qZNm/CZz3ymEVsmCKJFkAUF6ygZVs21MVSK3Xkq+sggAs8cmQAiG0CWzPQanjE12SIYggwjBN0dKO0dhgjKkGGMjkUdePWdd8/OxREEMXtQanvGTDkiecUVV4AxNuHxwAMP4Nprr8Xg4CAuvfTSCddjbHRUQWs95uMAcOmll2JgYMAdO3bsmOolEAQxzxGBBy8buNS2ncMtAg/MMzO6ddJoYzGWQAIiMHWSIvCgYgm/w4zT+c0RR87JtRAEQTQzU45Inn/++Tj99NMnPGfdunX47Gc/i3vuuQeZTKbquaOOOgrvfe978d3vfhcrVqzAvffeW/X83r17EUXRqEilJZPJjFqTIAginep+4fEX3G2/0wdPfCP9nI9MdxaAEY5dKxaaUYjlMDk3B+6bX4tBTxeC7g7wTAAV70TQXcD9rz+WIpMEMY8g+5+ZM2UhuWTJEixZsmSf511zzTX47Gc/6+4/++yz2LBhA3784x/j6KOPBgAce+yx2LhxI3bt2oWVK1cCMA04mUwGRx5Jf/0TRKNpxfrIWmTB/NK2ndym+SZ0t9M+koxzeBlzXnZBpxONPPDgd3XC6+4C70zqubWG6NsLFcXoWrkIgO0IJwiCICwNq5Fcu3Zt1f2uri4AwIEHHoj99tsPALB+/XoceuihOOOMM3DllVeir68PF198Mc455xzq2CaIBjMfRORE2G5uO8VmzHPsxBvfB/MEmO+B5TqgiwVAKcQFY/mjpMSB371hdjZOEMTsoXT9m2Oo2Wb2EELgxhtvxLnnnovjjjuuypCcIAhiOthpM/arjBQ8YWohhc+dR6RtumGegN/dZYSkEEC5BNbRCSxcikxSr13o3TNn10MQBNHMzJqQXLduHfQYnUxr167FDTfQX/oEMdu0yjjEyRINVtLOslipUWK+se/hHkOprwzmM3DO4Xf2g4vqZj0vU/mV6Hf4CDpNN/fB//mrRm6dIIg5QmsFretcI1nn9ZodmrVNEG3MfBOTaVQSkRT+2GltAG72tp2lrWpSUiQgCYIgJoaEJEG0KfNVQI6HijVO3Pp73LLucGhPw+/0cOx998/1tgiCmEuoRnLGkJAkCGLeYaORgOnq5klU8pf5Q9zjpecj3LzoUADAhr5HZ3eDBEE0B1qZo95rthENHZFIEATRDKhIQ0UaOnUAJkoJ0OhDgiCI6UJCkiCItoD7rGIJ5LMqMakjjV+vPmwut0cQxByglW7I0U5QapsgiLZARRqINHhKRFozcx211y9+giCIekFCkiDakHZrtBkPPkFHN0EQbYBWQL1HGlKNJEEQ851T4y1zvQWCIAhiHkARSYJoQygiORpG0UmCaDu01mMOS5npmu0ERSQJgmgr0tZAimojCYIgZgRFJAmijaBIZDU81cV98uBjc7wbgiBmHdWAGsl6r9fkkJAkiDaBRGQFFWmqEyUIoiF2Pe1m/0OpbYIg2g4SkQRBEPWBIpIEQbQFJB4JghiF1g0YkUgRSYIgiHkFiUiCIIjGQEKSINoEElMEQRDV0IjEmUNCkiDaCBKTBEEQzcWmTZvw6le/Gt3d3Vi2bBne9ra3YcuW6t/Vw8PDOP/887Hffvshl8vhkEMOwVe/+tUJ1/3Zz36Go446CgsWLEBnZyde+cpX4t///d/rvn+qkSSINoG6tgmCIKrRSkHX2a5nquvdcccdOO+88/DqV78acRzjsssuw/r16/Hoo4+is7MTAHDhhRfitttuw/e//32sW7cOmzdvxrnnnotVq1bhr/7qr8Zcd9GiRbjssstw8MEHIwgC3HDDDXjf+96HZcuWYcOGDTO+TgsJSYJoA0hEEgRBNCf/8z//U3X/29/+NpYtW4YHH3wQr3/96wEAd999N8466yyccMIJAIAPfvCD+NrXvoYHHnhgXCFpz7VccMEF+O53v4u77rqrrkKSUtsEQRAEQbQnSjfmADA4OFh1lMvlSW1pYGAAgIkoWo4//nhcf/312LlzJ7TWuO222/DnP/950oJQa41bbrkFW7ZsceK0XlBEkiDmOe0ejaS6UIIgxkNrBV1n+x+73po1a6oev/zyy3HFFVfs47UaF110EY4//ngcdthh7vFrrrkG55xzDvbbbz94ngfOOb7xjW/g+OOPn3C9gYEBrF69GuVyGUIIXHfddXjTm940vQsbBxKSBEEQBEEQdWbHjh3I5/PufiaT2edrzj//fPz+97/HXXfdVfX4Nddcg3vuuQfXX3899t9/f9x5550499xzsXLlSpx00knjrtfd3Y1HHnkEw8PDuOWWW3DRRRfhRS960ai090xgWre2c+bg4CB6enowMDBQ9Q0jCKJCq0Yl7SxsFWl3296fzOveUny8cZsjCGJGzOX/3/a9t116FrqzQV3XHiqFOGDTd6d8Xf/7f/9v/PznP8edd96JAw44wD1eLBbR09OD//qv/8Ipp5ziHv/ABz6AZ555ZlSN5UR84AMfwI4dO3DzzTdP+jX7gmokCaINaPX0rhWGzGdgKUFJEATR6mitcf755+NnP/sZbr311ioRCQBRFCGKInBeLdmEEFBT7BDXWk+6VnOyUGqbINqAVo1IphlPQLa6SCYIYg7RCqiz/c9URy6ed955+MEPfoBf/OIX6O7uRm9vLwCgp6cHuVwO+Xweb3jDG/Cxj30MuVwO+++/P+644w5873vfw5e+9CW3zplnnonVq1dj06ZNAIw/5VFHHYUDDzwQYRjipptuwve+9719+k9OFRKSBDHPaTURmU5hM59B5Mxf4eGeuOo8EpAEQcwHrLCrrVv89re/jbPPPhsA8KMf/QiXXnop3vve96Kvrw/7778/Nm7ciA996EPu/O3bt1dFLUdGRnDuuefimWeeQS6Xw8EHH4zvf//7+Ju/+Zu67p9qJAlinjMfhSSJSIJofZqhRvLJj/8tujN1rpEsh3jRF77fNrqEaiQJgiAIgiCIaUGpbYKYp7RaJNJS1ZGd3NbJV+4z6sQmCKJuNMOIxFaHhCRBzDNaVUCOBfeZE5GAEZk35Q6GijSltwmCmDFaa9S7wq/FKwanDKW2CYJoStIekrWPAfNLMBMEQbQqFJEkCGLOSQtEkeNQcZLK9hiCRZW/d728MI9zDlmW+M0RRyIqxeCcw++s/Do79r77Z2nnBEG0NKoB9j9tltqmiCRBEHOONRqfjtm4tbvQshK5fOiNx9VtbwRBEMT4kJAkiHnGfKsdTItM4QsIX4AJhkxPAL/Th9/pIZP30bW8E51LOtzrSEwSBLEvtNINOdoJEpIEMQ9pNTEpCwqyoKAjDVlU4J7xj2Q+g9/puUP43B1MMGipwAWDkhqlwTL8nI+uZZ3ILcghtyA315dFEAQx76EaSYKYp1gxOV+bUrhgYML8LezVpMQZZ20XFSAIYupohbr/rpjihMSWh4QkQcxj5oOINJFH84teBBxKanDBwH0B4RshyT1zWwQeZCTN6/jU6y0JgiCIqUFCkiDmKa0kImvHItqmG5Hj4IIBovI8T27zlFDUSiPozEArDRUraJ+ikQRB7BsyJJ85JCQJYh7SSiISgJunDRgh6XcLd1uG5pcyE5Xb5r6CAEdcjsGE+Sp8jqgQISpEs3sBBEEQbQoJSYIg5hwVa3DPRBh1pCs+kgCQMedoqRFL6V6jlUac1EIG3QIqltBKuVT4kbf/dpavgiCIVqMRXdbtVp9NQpIgiKbAikegMltbAVBxDMCYk9uUt440lFLwsx68rIleyshEK8tDIUQgZnHnBEG0KpTanjkkJAlintFsae3a+sc0IserBCJgBGN6sk00ZKKQ2mNQQ+ZxHWmIHIcsKreO8I14fN3vH2rcxRAEQRBVkJAkCGLWsJHGtHBUsYbwGXSkwXwjItMRyfR5QCI07f0kJR5HEifs/N1sXQZBEPMErRuQ2taU2iYIgpgVrGDUnq66P9Y5gBGPtkrS1lS2VxKJIAiiuSAhSRBEQ1FjiENEGtxnTgSqoUoTDfcYokFZlRKvXYv7DDLSeEvx8UZsmSCIdkFrc9R7zTaChCRBEE2JSsTmWJCAJAiCaA5o1jZBzDNaYc72eAIRqO7eVpGuOoDWuD6CIFoD27Vd76OdICFJEARBEARBTIuGCsl169aBMVZ1XHLJJVXnbN++HW9961vR2dmJJUuW4CMf+QjCMGzktgiCmGNshFEW1JjHeFA0kiCIemINyet9tBMNr5H8x3/8R5xzzjnufldXl7stpcQpp5yCpUuX4q677sKePXtw1llnQWuNa6+9ttFbIwiCIAiijSFD8pnTcCHZ3d2NFStWjPnc5s2b8eijj2LHjh1YtWoVAOCLX/wizj77bGzcuBH5fH7Ua8rlMsrlsrs/ODjYmI0TBEEQBEEQE9LwGsnPf/7zWLx4MV75yldi48aNVWnru+++G4cddpgTkQCwYcMGlMtlPPjgg2Out2nTJvT09LhjzZo1jb4Egmg5KAVMEASxbyi1PXMaGpG84IIL8KpXvQoLFy7Efffdh0svvRTbtm3DN77xDQBAb28vli9fXvWahQsXIggC9Pb2jrnmpZdeiosuusjdHxwcJDFJEPMcEsYEQRDNyZSF5BVXXIHPfOYzE55z//3346ijjsKFF17oHnv5y1+OhQsX4h3veIeLUgIAY6NtQLTWYz4OAJlMBplMZqrbJgiiBSEBSRBEI2lEBJEikvvg/PPPx+mnnz7hOevWrRvz8WOOOQYAsHXrVixevBgrVqzAvffeW3XO3r17EUXRqEglQRDtAwlIgiCI1mDKQnLJkiVYsmTJtN7s4YcfBgCsXLkSAHDsscdi48aN2LVrl3ts8+bNyGQyOPLII6f1HgRBtC6tKiBve/HL3W3mM+hIgyWm65xXStGZMI9pqcEEw+t+/9DsbpQgiCqoa3vmNKxG8u6778Y999yDE088ET09Pbj//vtx4YUX4rTTTsPatWsBAOvXr8ehhx6KM844A1deeSX6+vpw8cUX45xzzhmzY5sgCKIZuGXd4eAeq5rCA5g54bKowD0jJlWsoT1zTu25dp206AzyPolLgiBaioZ1bWcyGfz4xz/GCSecgEMPPRSf/vSncc455+CHP/yhO0cIgRtvvBHZbBbHHXcc3vWud+Ftb3sbrrrqqkZtiyDahlaM7t3gHTTXW9gnt7345eBedQ23jjR0lBrtOIZotNS+dqz1CYKYHahre+Y0LCL5qle9Cvfcc88+z1u7di1uuOGGRm2DIAhixtx+yCsgfAEALnoIAMI3EUjmMycQ7VeRERAZk87mgiEqxfCz5leuDBVkWQIAFOBEaFyIEQ1JbF7+Mqx/7k+zdXkE0bZopaEkNdvMBJq1TRDzlFaI7rUi6ZpHHWmInLmvYpOiTgtNiwxNzZSS5j8tpVRV1FLFesIoJkEQRLPS8Mk2BEEQU8EK4GZJzd9+yCugIw0JE0GURSMKuWdEoyyqSlo7Z75YMSkC7kQkAMiosoYsqmRFIB6U7quKSFASxGxhUtH1brZpr3/DFJEkiHlKswix+UY6AmnvjxWJZIJViUgAVXWUwL7rJQmCIJodEpIEMY9pZTHZLKn5Ex773SiRyD3mOrNthBIAhC/gZz0IX0CPUXeVXqe2pjJNK3/fCKKVoGabmUNCkiDmOa0sSppJTKaxEUjrGQkYQRgXYoRDkfnaH1UdxZ0hwr4YYV+M8nORu116LoKKNN5SfBxvKT7e0t8vgiCmzp133om3vvWtWLVqFRhj+PnPfz7uuX//938PxhiuvvrqCdf8+te/jte97nVYuHAhFi5ciJNOOgn33XdffTeeQEKSIAhiEpzw2O9cBNIeaQ9IFVc/Z4WivQ+YGkhbD6ki7eohSTwSxNzQDBHJkZERvOIVr8BXvvKVCc/7+c9/jnvvvRerVq3a55q333473v3ud+O2227D3XffjbVr12L9+vXYuXPnlPY2GajZhiDagFPjLU0T3ZsKzSawTtz6ewDGSBww4nE8/0hbSzkWJCAJYv4zODhYdT+TySCTyYw67+STT8bJJ5884Vo7d+7E+eefj5tvvhmnnHLKPt/7P/7jP6ruf/3rX8dPfvIT3HLLLTjzzDMnsfvJQ0KSIIim5QbvoKYUW2986g8TPn/zokOdqLRCU0W6Ka+FINqZRtQ02vXWrFlT9fjll1+OK664YsrrKaVwxhln4GMf+xhe9rKXTWtPhUIBURRh0aJF03r9RJCQJAiCqDMb+h6d6y0QBDEJGjlre8eOHVXjnseKRk6Gz3/+8/A8Dx/5yEemvadLLrkEq1evxkknnTTtNcaDhCRBtAmtmt4mCIJoRfL5fJWQnA4PPvgg/vmf/xkPPfQQGJueXdgXvvAF/PCHP8Ttt9+ObDY7o/2MBTXbEATR1NzgHUQCmCCIhtAMzTYT8f/+3//D888/j7Vr18LzPHieh6effhr/8A//gHXr1u3z9VdddRU+97nPYfPmzXj5y19et32loYgkQbQRtkavFYVZs9ZLEgRBNIozzjhjVDp6w4YNOOOMM/C+971vwtdeeeWV+OxnP4ubb74ZRx11VMP2SEKSIAiCIOrEWH+k0R9AzYuSGorXt9lGjTGMYCKGh4exdetWd3/btm145JFHsGjRIqxduxaLFy+uOt/3faxYsQIHHVT5WTvzzDOxevVqbNq0CYBJZ3/qU5/CD37wA6xbtw69vb0AgK6uLnR1dU330saEhCRBtCGtGplstjncBAHs+9/RRM/TzzLxwAMP4MQTT3T3L7roIgDAWWedhe985zuTWmP79u3gvFKteN111yEMQ7zjHe+oOm+6neMTwbTWLT3LZ3BwED09PRgYGJhxUStBtCutJigtPDEDf0vx8TneCdGu1OvfTjsKyrn8/9u+929OOg5dfn1jasNRjON+/Zu20SXUbEMQREtTOwebIFqRVv1jjiAotU0QRMvzy/wh8LuFu5+eKmOn0RBEI6inrRY1lM0+WjfAR1LXd71mh4QkQRDz2mPythe/vCpqmR5paGdgA8BJO/84q/si5g/1rDkmMTm7NHKyTbtAQpIgCABj12g1u7hMC8SqOdepx7g3WkTa17GY0uJE/Uj/G5rJvx1qKiNaCRKSBEGMS7NFKvkY9ZBpoZgmLSJ1pJ14lEUFFKvT3wRBtCdKaig2t/Y/rQ4JSYIgJqRVrYLGEpjMZ/B8E69Mp7gJot7M9N8NRSOJVoGEJEEQk6IZBWVaLNpmGxXrSXVyM5+BJ19PeOx3jdoi0eaMle62kXU1zh8zJCJnD6qRnDmU2yEIYkqcGm+Zs//oVKShkjR17TFdSEQSs4X9d2N/jic6hyBaBYpIEgQxLerVWDAVRMfov33TUUmy+iGaHRKKzYVWDbD/qfN6zQ4JSYIgZsxciMpaSEQSBEHMPiQkCYKoK+NFXOohMGvte3SkcdJzf5rxugRBTJ2x/k23WsRVSw1d565tTV3bBEEQ9acZm3UIgpge4/07bjUPTC1Rd/sfLeu6XNNDQpIgiFmlkRFLgiAaz025g/d5Dk3oaR9ISBIE0RTU/qczlrC0na6nFh+flT0RBDE26eEAzGdj+rLelDsYb2nyf6taN8D+R1NqmyAIYs6haAZBtAYTmfu3gpgkZgb5SBIEQRAEMWkmEoZjjR6dTCp8rlBSN+RoJ0hIEgRBEAQxJWrFpB0MYCdL1R6/zB+CX+YPmaPdEo2EhCRBEARBEFNmX5HJsebdNxtaqoYc7QQJSYIgCIIgpsVbio+PKSh1pKHi9krxtiskJAmCIAiCmBEnDz5WdX8sEVl7TjOglW7I0U6QkCQIgiAIYsacPPjYhB3czVgnSc02M4eEJEEQBEEQM6aZu7OJxkE+kgRBEARBNASR45DFSvNJszXgaKmhQbO2ZwJFJAmCIAiCmDG26UZH2h1pEQmMXTtJtDYUkSQIgiAIoq4wf/zI4y/zhzRN442SGqrOIw0VNdsQBEEQBEHUh7HS2c3WdENMH4pIEgRBEARRV9Ld281sz60jDc3rXCNJEUmCIAiCIIipcYN3ENQY9j/pmklLs6S2iZlDEUmCIAiCIGbEDd5Bkz63mUSkijVUnSOS7VYjSUKSIAiCIIgpMxXx2KxQanvmkJAkCIIgCGJKTCQix0pvOyZ6jmhJSEgSBEEQBNFwTo23zPUWRqGkrnsqut52Qs0OCUmCIAiCIBpCM4pHor6QkCQIgiAIYkqcGm+ZJzWSCprVd2yj1s1seFR/Wl5I6iSEPDg4OMc7IQiCIIj24fV99+/znIn+b7bP6TZLBc83Wl5I7tmzBwCwZs2aOd4JQRAEQRBTZWhoCD09PXPy3jrWUKzOXdvTFMbXXXcdrrzySuzatQsve9nLcPXVV+N1r3vduOffcccduOiii/CnP/0Jq1atwsc//nF86EMfmu62p03LC8lFixYBALZv3z5nP4izweDgINasWYMdO3Ygn8/P9XYaSrtca7tcJ9A+10rXOf9ol2udi+vUWmNoaAirVq2alfdrZn784x/jox/9KK677jocd9xx+NrXvoaTTz4Zjz76KNauXTvq/G3btuEtb3kLzjnnHHz/+9/Hb37zG5x77rlYunQp/tf/+l+zuveWF5Kcm+E8PT098/ofuSWfz7fFdQLtc63tcp1A+1wrXef8o12udbavc64DQDrS0E0QkfzSl76Ev/u7v8MHPvABAMDVV1+Nm2++GV/96lexadOmUef/67/+K9auXYurr74aAHDIIYfggQcewFVXXUVCkiAIgiAIYjYoQAF1LtEsJNPFa+tDM5kMMpnMqPPDMMSDDz6ISy65pOrx9evX47e//e2Y73H33Xdj/fr1VY9t2LAB3/zmNxFFEXzfn8klTAkSkgRBEARBtBVBEGDFihU4u3dbQ9bv6uoa1btx+eWX44orrhh17u7duyGlxPLly6seX758OXp7e8dcv7e3d8zz4zjG7t27sXLlypldwBRoeSGZyWRw+eWXj6ny5xPtcp1A+1xru1wn0D7XStc5/2iXa22X67Rks1ls27YNYRg2ZH2tNViNrdC+Ptva88daY1/nj/V4o2Ga+u4JgiAIgiDmhDAM0dHRgf/8z//E29/+dvf4BRdcgEceeQR33HHHqNe8/vWvxxFHHIF//ud/do/913/9F971rnehUCjMamqbz9o7EQRBEARBEFUEQYAjjzwSv/rVr6oe/9WvfoXXvva1Y77m2GOPHXX+5s2bcdRRR82qiARISBIEQRAEQcwpF110Eb7xjW/gW9/6Fh577DFceOGF2L59u/OFvPTSS3HmmWe68z/0oQ/h6aefxkUXXYTHHnsM3/rWt/DNb34TF1988azvveVrJAmCIAiCIFqZv/mbv8GePXvwj//4j9i1axcOO+ww3HTTTdh///0BALt27cL27dvd+QcccABuuukmXHjhhfiXf/kXrFq1Ctdcc82sW/8AVCNJEARBEARBTBNKbRMEQRAEQRDTgoQkQRAEQRAEMS1ISBIEQRAEQRDTgoQkQRAEQRAEMS1ISBIEQRAEQRDTgoQkQRAEQRAEMS1ISBIEQRAEQRDTgoQkQRAEQRAEMS1ISBIEQRAEQRDTgoQkQRAEQRAEMS1ISBIEQRAEQRDT4v8HAv5pShlT3VgAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 3 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Raster Dimension", - "id": "ec7a3eb96e15551b" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:26.676518Z", - "start_time": "2024-07-11T22:45:26.670351Z" - } - }, - "cell_type": "code", - "source": "print(dataset.cell_size)", - "id": "ebaffeba1f880bfc", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.1\n" - ] - } - ], - "execution_count": 4 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:29.460253Z", - "start_time": "2024-07-11T22:45:29.456153Z" - } - }, - "cell_type": "code", - "source": "print(f\"Rows , Columns = {dataset.rows}, {dataset.columns}\")", - "id": "e8a7621323b4cce3", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Rows , Columns = 780, 850\n" - ] - } - ], - "execution_count": 5 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:32.312872Z", - "start_time": "2024-07-11T22:45:32.307794Z" - } - }, - "cell_type": "code", - "source": "print(dataset.shape)", - "id": "21100af16eab8f7b", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1, 780, 850)\n" - ] - } - ], - "execution_count": 6 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:34.870973Z", - "start_time": "2024-07-11T22:45:34.866699Z" - } - }, - "cell_type": "code", - "source": "print(dataset.band_count)", - "id": "b6a201ff7f7a8865", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n" - ] - } - ], - "execution_count": 7 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Band Information", - "id": "2be31b991f61a7a7" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:37.874688Z", - "start_time": "2024-07-11T22:45:37.870124Z" - } - }, - "cell_type": "code", - "source": "print(dataset.band_names)", - "id": "31ea6a6093b3ee8d", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Band_1']\n" - ] - } - ], - "execution_count": 8 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:40.429557Z", - "start_time": "2024-07-11T22:45:40.422665Z" - } - }, - "cell_type": "code", - "source": "print(dataset.dtype)", - "id": "d13257b3a22dc5e7", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['float32']\n" - ] - } - ], - "execution_count": 9 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:43.137699Z", - "start_time": "2024-07-11T22:45:43.132693Z" - } - }, - "cell_type": "code", - "source": "print(dataset.band_units)", - "id": "b8e307ac9bc6eee8", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['']\n" - ] - } - ], - "execution_count": 10 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-22T18:40:51.347751Z", - "start_time": "2024-06-22T18:40:51.343617Z" - } - }, - "cell_type": "code", - "source": "print(dataset.scale)", - "id": "be127eb59fd24b76", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1.0]\n" - ] - } - ], - "execution_count": 11 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:46.517072Z", - "start_time": "2024-07-11T22:45:46.511053Z" - } - }, - "cell_type": "code", - "source": "print(dataset.offset)", - "id": "afe47c772ba613db", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0]\n" - ] - } - ], - "execution_count": 11 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Geospatial Information", - "id": "a24bfb5254c0a501" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:45:57.139493Z", - "start_time": "2024-07-11T22:45:57.133894Z" - } - }, - "cell_type": "code", - "source": [ - "print(dataset.geotransform)\n", - "print(dataset.top_left_corner)" - ], - "id": "327b72ea6ad3c355", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(-110.0, 0.1, 0.0, 18.1, 0.0, -0.1)\n", - "(-110.0, 18.1)\n" - ] - } - ], - "execution_count": 13 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:04.168659Z", - "start_time": "2024-07-11T22:46:04.152130Z" - } - }, - "cell_type": "code", - "source": "print(dataset.bounds)", - "id": "14ce8f2ea24f28cf", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " geometry\n", - "0 POLYGON ((-110 18.1, -110 -59.9, -25 -59.9, -2...\n" - ] - } - ], - "execution_count": 14 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:07.000982Z", - "start_time": "2024-07-11T22:46:06.993450Z" - } - }, - "cell_type": "code", - "source": "print(dataset.bbox)", - "id": "fe4f3ed89a9f8d64", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-110.0, -59.9, -25.0, 18.1]\n" - ] - } - ], - "execution_count": 15 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:10.258717Z", - "start_time": "2024-07-11T22:46:10.250895Z" - } - }, - "cell_type": "code", - "source": [ - "print(dataset.epsg)\n", - "print(dataset.crs)" - ], - "id": "51359d0f096e6601", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4326\n", - "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]\n" - ] - } - ], - "execution_count": 16 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:13.626528Z", - "start_time": "2024-07-11T22:46:13.619918Z" - } - }, - "cell_type": "code", - "source": "print(dataset.no_data_value)", - "id": "44dfdd3e7f3f80c", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-9999.0]\n" - ] - } - ], - "execution_count": 17 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:16.433175Z", - "start_time": "2024-07-11T22:46:16.415955Z" - } - }, - "cell_type": "code", - "source": "print(dataset.lon)", - "id": "71a267e8e2481bee", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-109.95 -109.85 -109.75 -109.65 -109.55 -109.45 -109.35 -109.25 -109.15\n", - " -109.05 -108.95 -108.85 -108.75 -108.65 -108.55 -108.45 -108.35 -108.25\n", - " -108.15 -108.05 -107.95 -107.85 -107.75 -107.65 -107.55 -107.45 -107.35\n", - " -107.25 -107.15 -107.05 -106.95 -106.85 -106.75 -106.65 -106.55 -106.45\n", - " -106.35 -106.25 -106.15 -106.05 -105.95 -105.85 -105.75 -105.65 -105.55\n", - " -105.45 -105.35 -105.25 -105.15 -105.05 -104.95 -104.85 -104.75 -104.65\n", - " -104.55 -104.45 -104.35 -104.25 -104.15 -104.05 -103.95 -103.85 -103.75\n", - " -103.65 -103.55 -103.45 -103.35 -103.25 -103.15 -103.05 -102.95 -102.85\n", - " -102.75 -102.65 -102.55 -102.45 -102.35 -102.25 -102.15 -102.05 -101.95\n", - " -101.85 -101.75 -101.65 -101.55 -101.45 -101.35 -101.25 -101.15 -101.05\n", - " -100.95 -100.85 -100.75 -100.65 -100.55 -100.45 -100.35 -100.25 -100.15\n", - " -100.05 -99.95 -99.85 -99.75 -99.65 -99.55 -99.45 -99.35 -99.25\n", - " -99.15 -99.05 -98.95 -98.85 -98.75 -98.65 -98.55 -98.45 -98.35\n", - " -98.25 -98.15 -98.05 -97.95 -97.85 -97.75 -97.65 -97.55 -97.45\n", - " -97.35 -97.25 -97.15 -97.05 -96.95 -96.85 -96.75 -96.65 -96.55\n", - " -96.45 -96.35 -96.25 -96.15 -96.05 -95.95 -95.85 -95.75 -95.65\n", - " -95.55 -95.45 -95.35 -95.25 -95.15 -95.05 -94.95 -94.85 -94.75\n", - " -94.65 -94.55 -94.45 -94.35 -94.25 -94.15 -94.05 -93.95 -93.85\n", - " -93.75 -93.65 -93.55 -93.45 -93.35 -93.25 -93.15 -93.05 -92.95\n", - " -92.85 -92.75 -92.65 -92.55 -92.45 -92.35 -92.25 -92.15 -92.05\n", - " -91.95 -91.85 -91.75 -91.65 -91.55 -91.45 -91.35 -91.25 -91.15\n", - " -91.05 -90.95 -90.85 -90.75 -90.65 -90.55 -90.45 -90.35 -90.25\n", - " -90.15 -90.05 -89.95 -89.85 -89.75 -89.65 -89.55 -89.45 -89.35\n", - " -89.25 -89.15 -89.05 -88.95 -88.85 -88.75 -88.65 -88.55 -88.45\n", - " -88.35 -88.25 -88.15 -88.05 -87.95 -87.85 -87.75 -87.65 -87.55\n", - " -87.45 -87.35 -87.25 -87.15 -87.05 -86.95 -86.85 -86.75 -86.65\n", - " -86.55 -86.45 -86.35 -86.25 -86.15 -86.05 -85.95 -85.85 -85.75\n", - " -85.65 -85.55 -85.45 -85.35 -85.25 -85.15 -85.05 -84.95 -84.85\n", - " -84.75 -84.65 -84.55 -84.45 -84.35 -84.25 -84.15 -84.05 -83.95\n", - " -83.85 -83.75 -83.65 -83.55 -83.45 -83.35 -83.25 -83.15 -83.05\n", - " -82.95 -82.85 -82.75 -82.65 -82.55 -82.45 -82.35 -82.25 -82.15\n", - " -82.05 -81.95 -81.85 -81.75 -81.65 -81.55 -81.45 -81.35 -81.25\n", - " -81.15 -81.05 -80.95 -80.85 -80.75 -80.65 -80.55 -80.45 -80.35\n", - " -80.25 -80.15 -80.05 -79.95 -79.85 -79.75 -79.65 -79.55 -79.45\n", - " -79.35 -79.25 -79.15 -79.05 -78.95 -78.85 -78.75 -78.65 -78.55\n", - " -78.45 -78.35 -78.25 -78.15 -78.05 -77.95 -77.85 -77.75 -77.65\n", - " -77.55 -77.45 -77.35 -77.25 -77.15 -77.05 -76.95 -76.85 -76.75\n", - " -76.65 -76.55 -76.45 -76.35 -76.25 -76.15 -76.05 -75.95 -75.85\n", - " -75.75 -75.65 -75.55 -75.45 -75.35 -75.25 -75.15 -75.05 -74.95\n", - " -74.85 -74.75 -74.65 -74.55 -74.45 -74.35 -74.25 -74.15 -74.05\n", - " -73.95 -73.85 -73.75 -73.65 -73.55 -73.45 -73.35 -73.25 -73.15\n", - " -73.05 -72.95 -72.85 -72.75 -72.65 -72.55 -72.45 -72.35 -72.25\n", - " -72.15 -72.05 -71.95 -71.85 -71.75 -71.65 -71.55 -71.45 -71.35\n", - " -71.25 -71.15 -71.05 -70.95 -70.85 -70.75 -70.65 -70.55 -70.45\n", - " -70.35 -70.25 -70.15 -70.05 -69.95 -69.85 -69.75 -69.65 -69.55\n", - " -69.45 -69.35 -69.25 -69.15 -69.05 -68.95 -68.85 -68.75 -68.65\n", - " -68.55 -68.45 -68.35 -68.25 -68.15 -68.05 -67.95 -67.85 -67.75\n", - " -67.65 -67.55 -67.45 -67.35 -67.25 -67.15 -67.05 -66.95 -66.85\n", - " -66.75 -66.65 -66.55 -66.45 -66.35 -66.25 -66.15 -66.05 -65.95\n", - " -65.85 -65.75 -65.65 -65.55 -65.45 -65.35 -65.25 -65.15 -65.05\n", - " -64.95 -64.85 -64.75 -64.65 -64.55 -64.45 -64.35 -64.25 -64.15\n", - " -64.05 -63.95 -63.85 -63.75 -63.65 -63.55 -63.45 -63.35 -63.25\n", - " -63.15 -63.05 -62.95 -62.85 -62.75 -62.65 -62.55 -62.45 -62.35\n", - " -62.25 -62.15 -62.05 -61.95 -61.85 -61.75 -61.65 -61.55 -61.45\n", - " -61.35 -61.25 -61.15 -61.05 -60.95 -60.85 -60.75 -60.65 -60.55\n", - " -60.45 -60.35 -60.25 -60.15 -60.05 -59.95 -59.85 -59.75 -59.65\n", - " -59.55 -59.45 -59.35 -59.25 -59.15 -59.05 -58.95 -58.85 -58.75\n", - " -58.65 -58.55 -58.45 -58.35 -58.25 -58.15 -58.05 -57.95 -57.85\n", - " -57.75 -57.65 -57.55 -57.45 -57.35 -57.25 -57.15 -57.05 -56.95\n", - " -56.85 -56.75 -56.65 -56.55 -56.45 -56.35 -56.25 -56.15 -56.05\n", - " -55.95 -55.85 -55.75 -55.65 -55.55 -55.45 -55.35 -55.25 -55.15\n", - " -55.05 -54.95 -54.85 -54.75 -54.65 -54.55 -54.45 -54.35 -54.25\n", - " -54.15 -54.05 -53.95 -53.85 -53.75 -53.65 -53.55 -53.45 -53.35\n", - " -53.25 -53.15 -53.05 -52.95 -52.85 -52.75 -52.65 -52.55 -52.45\n", - " -52.35 -52.25 -52.15 -52.05 -51.95 -51.85 -51.75 -51.65 -51.55\n", - " -51.45 -51.35 -51.25 -51.15 -51.05 -50.95 -50.85 -50.75 -50.65\n", - " -50.55 -50.45 -50.35 -50.25 -50.15 -50.05 -49.95 -49.85 -49.75\n", - " -49.65 -49.55 -49.45 -49.35 -49.25 -49.15 -49.05 -48.95 -48.85\n", - " -48.75 -48.65 -48.55 -48.45 -48.35 -48.25 -48.15 -48.05 -47.95\n", - " -47.85 -47.75 -47.65 -47.55 -47.45 -47.35 -47.25 -47.15 -47.05\n", - " -46.95 -46.85 -46.75 -46.65 -46.55 -46.45 -46.35 -46.25 -46.15\n", - " -46.05 -45.95 -45.85 -45.75 -45.65 -45.55 -45.45 -45.35 -45.25\n", - " -45.15 -45.05 -44.95 -44.85 -44.75 -44.65 -44.55 -44.45 -44.35\n", - " -44.25 -44.15 -44.05 -43.95 -43.85 -43.75 -43.65 -43.55 -43.45\n", - " -43.35 -43.25 -43.15 -43.05 -42.95 -42.85 -42.75 -42.65 -42.55\n", - " -42.45 -42.35 -42.25 -42.15 -42.05 -41.95 -41.85 -41.75 -41.65\n", - " -41.55 -41.45 -41.35 -41.25 -41.15 -41.05 -40.95 -40.85 -40.75\n", - " -40.65 -40.55 -40.45 -40.35 -40.25 -40.15 -40.05 -39.95 -39.85\n", - " -39.75 -39.65 -39.55 -39.45 -39.35 -39.25 -39.15 -39.05 -38.95\n", - " -38.85 -38.75 -38.65 -38.55 -38.45 -38.35 -38.25 -38.15 -38.05\n", - " -37.95 -37.85 -37.75 -37.65 -37.55 -37.45 -37.35 -37.25 -37.15\n", - " -37.05 -36.95 -36.85 -36.75 -36.65 -36.55 -36.45 -36.35 -36.25\n", - " -36.15 -36.05 -35.95 -35.85 -35.75 -35.65 -35.55 -35.45 -35.35\n", - " -35.25 -35.15 -35.05 -34.95 -34.85 -34.75 -34.65 -34.55 -34.45\n", - " -34.35 -34.25 -34.15 -34.05 -33.95 -33.85 -33.75 -33.65 -33.55\n", - " -33.45 -33.35 -33.25 -33.15 -33.05 -32.95 -32.85 -32.75 -32.65\n", - " -32.55 -32.45 -32.35 -32.25 -32.15 -32.05 -31.95 -31.85 -31.75\n", - " -31.65 -31.55 -31.45 -31.35 -31.25 -31.15 -31.05 -30.95 -30.85\n", - " -30.75 -30.65 -30.55 -30.45 -30.35 -30.25 -30.15 -30.05 -29.95\n", - " -29.85 -29.75 -29.65 -29.55 -29.45 -29.35 -29.25 -29.15 -29.05\n", - " -28.95 -28.85 -28.75 -28.65 -28.55 -28.45 -28.35 -28.25 -28.15\n", - " -28.05 -27.95 -27.85 -27.75 -27.65 -27.55 -27.45 -27.35 -27.25\n", - " -27.15 -27.05 -26.95 -26.85 -26.75 -26.65 -26.55 -26.45 -26.35\n", - " -26.25 -26.15 -26.05 -25.95 -25.85 -25.75 -25.65 -25.55 -25.45\n", - " -25.35 -25.25 -25.15 -25.05]\n" - ] - } - ], - "execution_count": 18 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:19.390484Z", - "start_time": "2024-07-11T22:46:19.370154Z" - } - }, - "cell_type": "code", - "source": "print(dataset.lat)", - "id": "4a5f97fdb4676f48", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1.805e+01 1.795e+01 1.785e+01 1.775e+01 1.765e+01 1.755e+01\n", - " 1.745e+01 1.735e+01 1.725e+01 1.715e+01 1.705e+01 1.695e+01\n", - " 1.685e+01 1.675e+01 1.665e+01 1.655e+01 1.645e+01 1.635e+01\n", - " 1.625e+01 1.615e+01 1.605e+01 1.595e+01 1.585e+01 1.575e+01\n", - " 1.565e+01 1.555e+01 1.545e+01 1.535e+01 1.525e+01 1.515e+01\n", - " 1.505e+01 1.495e+01 1.485e+01 1.475e+01 1.465e+01 1.455e+01\n", - " 1.445e+01 1.435e+01 1.425e+01 1.415e+01 1.405e+01 1.395e+01\n", - " 1.385e+01 1.375e+01 1.365e+01 1.355e+01 1.345e+01 1.335e+01\n", - " 1.325e+01 1.315e+01 1.305e+01 1.295e+01 1.285e+01 1.275e+01\n", - " 1.265e+01 1.255e+01 1.245e+01 1.235e+01 1.225e+01 1.215e+01\n", - " 1.205e+01 1.195e+01 1.185e+01 1.175e+01 1.165e+01 1.155e+01\n", - " 1.145e+01 1.135e+01 1.125e+01 1.115e+01 1.105e+01 1.095e+01\n", - " 1.085e+01 1.075e+01 1.065e+01 1.055e+01 1.045e+01 1.035e+01\n", - " 1.025e+01 1.015e+01 1.005e+01 9.950e+00 9.850e+00 9.750e+00\n", - " 9.650e+00 9.550e+00 9.450e+00 9.350e+00 9.250e+00 9.150e+00\n", - " 9.050e+00 8.950e+00 8.850e+00 8.750e+00 8.650e+00 8.550e+00\n", - " 8.450e+00 8.350e+00 8.250e+00 8.150e+00 8.050e+00 7.950e+00\n", - " 7.850e+00 7.750e+00 7.650e+00 7.550e+00 7.450e+00 7.350e+00\n", - " 7.250e+00 7.150e+00 7.050e+00 6.950e+00 6.850e+00 6.750e+00\n", - " 6.650e+00 6.550e+00 6.450e+00 6.350e+00 6.250e+00 6.150e+00\n", - " 6.050e+00 5.950e+00 5.850e+00 5.750e+00 5.650e+00 5.550e+00\n", - " 5.450e+00 5.350e+00 5.250e+00 5.150e+00 5.050e+00 4.950e+00\n", - " 4.850e+00 4.750e+00 4.650e+00 4.550e+00 4.450e+00 4.350e+00\n", - " 4.250e+00 4.150e+00 4.050e+00 3.950e+00 3.850e+00 3.750e+00\n", - " 3.650e+00 3.550e+00 3.450e+00 3.350e+00 3.250e+00 3.150e+00\n", - " 3.050e+00 2.950e+00 2.850e+00 2.750e+00 2.650e+00 2.550e+00\n", - " 2.450e+00 2.350e+00 2.250e+00 2.150e+00 2.050e+00 1.950e+00\n", - " 1.850e+00 1.750e+00 1.650e+00 1.550e+00 1.450e+00 1.350e+00\n", - " 1.250e+00 1.150e+00 1.050e+00 9.500e-01 8.500e-01 7.500e-01\n", - " 6.500e-01 5.500e-01 4.500e-01 3.500e-01 2.500e-01 1.500e-01\n", - " 5.000e-02 -5.000e-02 -1.500e-01 -2.500e-01 -3.500e-01 -4.500e-01\n", - " -5.500e-01 -6.500e-01 -7.500e-01 -8.500e-01 -9.500e-01 -1.050e+00\n", - " -1.150e+00 -1.250e+00 -1.350e+00 -1.450e+00 -1.550e+00 -1.650e+00\n", - " -1.750e+00 -1.850e+00 -1.950e+00 -2.050e+00 -2.150e+00 -2.250e+00\n", - " -2.350e+00 -2.450e+00 -2.550e+00 -2.650e+00 -2.750e+00 -2.850e+00\n", - " -2.950e+00 -3.050e+00 -3.150e+00 -3.250e+00 -3.350e+00 -3.450e+00\n", - " -3.550e+00 -3.650e+00 -3.750e+00 -3.850e+00 -3.950e+00 -4.050e+00\n", - " -4.150e+00 -4.250e+00 -4.350e+00 -4.450e+00 -4.550e+00 -4.650e+00\n", - " -4.750e+00 -4.850e+00 -4.950e+00 -5.050e+00 -5.150e+00 -5.250e+00\n", - " -5.350e+00 -5.450e+00 -5.550e+00 -5.650e+00 -5.750e+00 -5.850e+00\n", - " -5.950e+00 -6.050e+00 -6.150e+00 -6.250e+00 -6.350e+00 -6.450e+00\n", - " -6.550e+00 -6.650e+00 -6.750e+00 -6.850e+00 -6.950e+00 -7.050e+00\n", - " -7.150e+00 -7.250e+00 -7.350e+00 -7.450e+00 -7.550e+00 -7.650e+00\n", - " -7.750e+00 -7.850e+00 -7.950e+00 -8.050e+00 -8.150e+00 -8.250e+00\n", - " -8.350e+00 -8.450e+00 -8.550e+00 -8.650e+00 -8.750e+00 -8.850e+00\n", - " -8.950e+00 -9.050e+00 -9.150e+00 -9.250e+00 -9.350e+00 -9.450e+00\n", - " -9.550e+00 -9.650e+00 -9.750e+00 -9.850e+00 -9.950e+00 -1.005e+01\n", - " -1.015e+01 -1.025e+01 -1.035e+01 -1.045e+01 -1.055e+01 -1.065e+01\n", - " -1.075e+01 -1.085e+01 -1.095e+01 -1.105e+01 -1.115e+01 -1.125e+01\n", - " -1.135e+01 -1.145e+01 -1.155e+01 -1.165e+01 -1.175e+01 -1.185e+01\n", - " -1.195e+01 -1.205e+01 -1.215e+01 -1.225e+01 -1.235e+01 -1.245e+01\n", - " -1.255e+01 -1.265e+01 -1.275e+01 -1.285e+01 -1.295e+01 -1.305e+01\n", - " -1.315e+01 -1.325e+01 -1.335e+01 -1.345e+01 -1.355e+01 -1.365e+01\n", - " -1.375e+01 -1.385e+01 -1.395e+01 -1.405e+01 -1.415e+01 -1.425e+01\n", - " -1.435e+01 -1.445e+01 -1.455e+01 -1.465e+01 -1.475e+01 -1.485e+01\n", - " -1.495e+01 -1.505e+01 -1.515e+01 -1.525e+01 -1.535e+01 -1.545e+01\n", - " -1.555e+01 -1.565e+01 -1.575e+01 -1.585e+01 -1.595e+01 -1.605e+01\n", - " -1.615e+01 -1.625e+01 -1.635e+01 -1.645e+01 -1.655e+01 -1.665e+01\n", - " -1.675e+01 -1.685e+01 -1.695e+01 -1.705e+01 -1.715e+01 -1.725e+01\n", - " -1.735e+01 -1.745e+01 -1.755e+01 -1.765e+01 -1.775e+01 -1.785e+01\n", - " -1.795e+01 -1.805e+01 -1.815e+01 -1.825e+01 -1.835e+01 -1.845e+01\n", - " -1.855e+01 -1.865e+01 -1.875e+01 -1.885e+01 -1.895e+01 -1.905e+01\n", - " -1.915e+01 -1.925e+01 -1.935e+01 -1.945e+01 -1.955e+01 -1.965e+01\n", - " -1.975e+01 -1.985e+01 -1.995e+01 -2.005e+01 -2.015e+01 -2.025e+01\n", - " -2.035e+01 -2.045e+01 -2.055e+01 -2.065e+01 -2.075e+01 -2.085e+01\n", - " -2.095e+01 -2.105e+01 -2.115e+01 -2.125e+01 -2.135e+01 -2.145e+01\n", - " -2.155e+01 -2.165e+01 -2.175e+01 -2.185e+01 -2.195e+01 -2.205e+01\n", - " -2.215e+01 -2.225e+01 -2.235e+01 -2.245e+01 -2.255e+01 -2.265e+01\n", - " -2.275e+01 -2.285e+01 -2.295e+01 -2.305e+01 -2.315e+01 -2.325e+01\n", - " -2.335e+01 -2.345e+01 -2.355e+01 -2.365e+01 -2.375e+01 -2.385e+01\n", - " -2.395e+01 -2.405e+01 -2.415e+01 -2.425e+01 -2.435e+01 -2.445e+01\n", - " -2.455e+01 -2.465e+01 -2.475e+01 -2.485e+01 -2.495e+01 -2.505e+01\n", - " -2.515e+01 -2.525e+01 -2.535e+01 -2.545e+01 -2.555e+01 -2.565e+01\n", - " -2.575e+01 -2.585e+01 -2.595e+01 -2.605e+01 -2.615e+01 -2.625e+01\n", - " -2.635e+01 -2.645e+01 -2.655e+01 -2.665e+01 -2.675e+01 -2.685e+01\n", - " -2.695e+01 -2.705e+01 -2.715e+01 -2.725e+01 -2.735e+01 -2.745e+01\n", - " -2.755e+01 -2.765e+01 -2.775e+01 -2.785e+01 -2.795e+01 -2.805e+01\n", - " -2.815e+01 -2.825e+01 -2.835e+01 -2.845e+01 -2.855e+01 -2.865e+01\n", - " -2.875e+01 -2.885e+01 -2.895e+01 -2.905e+01 -2.915e+01 -2.925e+01\n", - " -2.935e+01 -2.945e+01 -2.955e+01 -2.965e+01 -2.975e+01 -2.985e+01\n", - " -2.995e+01 -3.005e+01 -3.015e+01 -3.025e+01 -3.035e+01 -3.045e+01\n", - " -3.055e+01 -3.065e+01 -3.075e+01 -3.085e+01 -3.095e+01 -3.105e+01\n", - " -3.115e+01 -3.125e+01 -3.135e+01 -3.145e+01 -3.155e+01 -3.165e+01\n", - " -3.175e+01 -3.185e+01 -3.195e+01 -3.205e+01 -3.215e+01 -3.225e+01\n", - " -3.235e+01 -3.245e+01 -3.255e+01 -3.265e+01 -3.275e+01 -3.285e+01\n", - " -3.295e+01 -3.305e+01 -3.315e+01 -3.325e+01 -3.335e+01 -3.345e+01\n", - " -3.355e+01 -3.365e+01 -3.375e+01 -3.385e+01 -3.395e+01 -3.405e+01\n", - " -3.415e+01 -3.425e+01 -3.435e+01 -3.445e+01 -3.455e+01 -3.465e+01\n", - " -3.475e+01 -3.485e+01 -3.495e+01 -3.505e+01 -3.515e+01 -3.525e+01\n", - " -3.535e+01 -3.545e+01 -3.555e+01 -3.565e+01 -3.575e+01 -3.585e+01\n", - " -3.595e+01 -3.605e+01 -3.615e+01 -3.625e+01 -3.635e+01 -3.645e+01\n", - " -3.655e+01 -3.665e+01 -3.675e+01 -3.685e+01 -3.695e+01 -3.705e+01\n", - " -3.715e+01 -3.725e+01 -3.735e+01 -3.745e+01 -3.755e+01 -3.765e+01\n", - " -3.775e+01 -3.785e+01 -3.795e+01 -3.805e+01 -3.815e+01 -3.825e+01\n", - " -3.835e+01 -3.845e+01 -3.855e+01 -3.865e+01 -3.875e+01 -3.885e+01\n", - " -3.895e+01 -3.905e+01 -3.915e+01 -3.925e+01 -3.935e+01 -3.945e+01\n", - " -3.955e+01 -3.965e+01 -3.975e+01 -3.985e+01 -3.995e+01 -4.005e+01\n", - " -4.015e+01 -4.025e+01 -4.035e+01 -4.045e+01 -4.055e+01 -4.065e+01\n", - " -4.075e+01 -4.085e+01 -4.095e+01 -4.105e+01 -4.115e+01 -4.125e+01\n", - " -4.135e+01 -4.145e+01 -4.155e+01 -4.165e+01 -4.175e+01 -4.185e+01\n", - " -4.195e+01 -4.205e+01 -4.215e+01 -4.225e+01 -4.235e+01 -4.245e+01\n", - " -4.255e+01 -4.265e+01 -4.275e+01 -4.285e+01 -4.295e+01 -4.305e+01\n", - " -4.315e+01 -4.325e+01 -4.335e+01 -4.345e+01 -4.355e+01 -4.365e+01\n", - " -4.375e+01 -4.385e+01 -4.395e+01 -4.405e+01 -4.415e+01 -4.425e+01\n", - " -4.435e+01 -4.445e+01 -4.455e+01 -4.465e+01 -4.475e+01 -4.485e+01\n", - " -4.495e+01 -4.505e+01 -4.515e+01 -4.525e+01 -4.535e+01 -4.545e+01\n", - " -4.555e+01 -4.565e+01 -4.575e+01 -4.585e+01 -4.595e+01 -4.605e+01\n", - " -4.615e+01 -4.625e+01 -4.635e+01 -4.645e+01 -4.655e+01 -4.665e+01\n", - " -4.675e+01 -4.685e+01 -4.695e+01 -4.705e+01 -4.715e+01 -4.725e+01\n", - " -4.735e+01 -4.745e+01 -4.755e+01 -4.765e+01 -4.775e+01 -4.785e+01\n", - " -4.795e+01 -4.805e+01 -4.815e+01 -4.825e+01 -4.835e+01 -4.845e+01\n", - " -4.855e+01 -4.865e+01 -4.875e+01 -4.885e+01 -4.895e+01 -4.905e+01\n", - " -4.915e+01 -4.925e+01 -4.935e+01 -4.945e+01 -4.955e+01 -4.965e+01\n", - " -4.975e+01 -4.985e+01 -4.995e+01 -5.005e+01 -5.015e+01 -5.025e+01\n", - " -5.035e+01 -5.045e+01 -5.055e+01 -5.065e+01 -5.075e+01 -5.085e+01\n", - " -5.095e+01 -5.105e+01 -5.115e+01 -5.125e+01 -5.135e+01 -5.145e+01\n", - " -5.155e+01 -5.165e+01 -5.175e+01 -5.185e+01 -5.195e+01 -5.205e+01\n", - " -5.215e+01 -5.225e+01 -5.235e+01 -5.245e+01 -5.255e+01 -5.265e+01\n", - " -5.275e+01 -5.285e+01 -5.295e+01 -5.305e+01 -5.315e+01 -5.325e+01\n", - " -5.335e+01 -5.345e+01 -5.355e+01 -5.365e+01 -5.375e+01 -5.385e+01\n", - " -5.395e+01 -5.405e+01 -5.415e+01 -5.425e+01 -5.435e+01 -5.445e+01\n", - " -5.455e+01 -5.465e+01 -5.475e+01 -5.485e+01 -5.495e+01 -5.505e+01\n", - " -5.515e+01 -5.525e+01 -5.535e+01 -5.545e+01 -5.555e+01 -5.565e+01\n", - " -5.575e+01 -5.585e+01 -5.595e+01 -5.605e+01 -5.615e+01 -5.625e+01\n", - " -5.635e+01 -5.645e+01 -5.655e+01 -5.665e+01 -5.675e+01 -5.685e+01\n", - " -5.695e+01 -5.705e+01 -5.715e+01 -5.725e+01 -5.735e+01 -5.745e+01\n", - " -5.755e+01 -5.765e+01 -5.775e+01 -5.785e+01 -5.795e+01 -5.805e+01\n", - " -5.815e+01 -5.825e+01 -5.835e+01 -5.845e+01 -5.855e+01 -5.865e+01\n", - " -5.875e+01 -5.885e+01 -5.895e+01 -5.905e+01 -5.915e+01 -5.925e+01\n", - " -5.935e+01 -5.945e+01 -5.955e+01 -5.965e+01 -5.975e+01 -5.985e+01]\n" - ] - } - ], - "execution_count": 19 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:23.500708Z", - "start_time": "2024-07-11T22:46:23.483998Z" - } - }, - "cell_type": "code", - "source": "print(dataset.x)", - "id": "f05fe8d538a86680", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-109.95 -109.85 -109.75 -109.65 -109.55 -109.45 -109.35 -109.25 -109.15\n", - " -109.05 -108.95 -108.85 -108.75 -108.65 -108.55 -108.45 -108.35 -108.25\n", - " -108.15 -108.05 -107.95 -107.85 -107.75 -107.65 -107.55 -107.45 -107.35\n", - " -107.25 -107.15 -107.05 -106.95 -106.85 -106.75 -106.65 -106.55 -106.45\n", - " -106.35 -106.25 -106.15 -106.05 -105.95 -105.85 -105.75 -105.65 -105.55\n", - " -105.45 -105.35 -105.25 -105.15 -105.05 -104.95 -104.85 -104.75 -104.65\n", - " -104.55 -104.45 -104.35 -104.25 -104.15 -104.05 -103.95 -103.85 -103.75\n", - " -103.65 -103.55 -103.45 -103.35 -103.25 -103.15 -103.05 -102.95 -102.85\n", - " -102.75 -102.65 -102.55 -102.45 -102.35 -102.25 -102.15 -102.05 -101.95\n", - " -101.85 -101.75 -101.65 -101.55 -101.45 -101.35 -101.25 -101.15 -101.05\n", - " -100.95 -100.85 -100.75 -100.65 -100.55 -100.45 -100.35 -100.25 -100.15\n", - " -100.05 -99.95 -99.85 -99.75 -99.65 -99.55 -99.45 -99.35 -99.25\n", - " -99.15 -99.05 -98.95 -98.85 -98.75 -98.65 -98.55 -98.45 -98.35\n", - " -98.25 -98.15 -98.05 -97.95 -97.85 -97.75 -97.65 -97.55 -97.45\n", - " -97.35 -97.25 -97.15 -97.05 -96.95 -96.85 -96.75 -96.65 -96.55\n", - " -96.45 -96.35 -96.25 -96.15 -96.05 -95.95 -95.85 -95.75 -95.65\n", - " -95.55 -95.45 -95.35 -95.25 -95.15 -95.05 -94.95 -94.85 -94.75\n", - " -94.65 -94.55 -94.45 -94.35 -94.25 -94.15 -94.05 -93.95 -93.85\n", - " -93.75 -93.65 -93.55 -93.45 -93.35 -93.25 -93.15 -93.05 -92.95\n", - " -92.85 -92.75 -92.65 -92.55 -92.45 -92.35 -92.25 -92.15 -92.05\n", - " -91.95 -91.85 -91.75 -91.65 -91.55 -91.45 -91.35 -91.25 -91.15\n", - " -91.05 -90.95 -90.85 -90.75 -90.65 -90.55 -90.45 -90.35 -90.25\n", - " -90.15 -90.05 -89.95 -89.85 -89.75 -89.65 -89.55 -89.45 -89.35\n", - " -89.25 -89.15 -89.05 -88.95 -88.85 -88.75 -88.65 -88.55 -88.45\n", - " -88.35 -88.25 -88.15 -88.05 -87.95 -87.85 -87.75 -87.65 -87.55\n", - " -87.45 -87.35 -87.25 -87.15 -87.05 -86.95 -86.85 -86.75 -86.65\n", - " -86.55 -86.45 -86.35 -86.25 -86.15 -86.05 -85.95 -85.85 -85.75\n", - " -85.65 -85.55 -85.45 -85.35 -85.25 -85.15 -85.05 -84.95 -84.85\n", - " -84.75 -84.65 -84.55 -84.45 -84.35 -84.25 -84.15 -84.05 -83.95\n", - " -83.85 -83.75 -83.65 -83.55 -83.45 -83.35 -83.25 -83.15 -83.05\n", - " -82.95 -82.85 -82.75 -82.65 -82.55 -82.45 -82.35 -82.25 -82.15\n", - " -82.05 -81.95 -81.85 -81.75 -81.65 -81.55 -81.45 -81.35 -81.25\n", - " -81.15 -81.05 -80.95 -80.85 -80.75 -80.65 -80.55 -80.45 -80.35\n", - " -80.25 -80.15 -80.05 -79.95 -79.85 -79.75 -79.65 -79.55 -79.45\n", - " -79.35 -79.25 -79.15 -79.05 -78.95 -78.85 -78.75 -78.65 -78.55\n", - " -78.45 -78.35 -78.25 -78.15 -78.05 -77.95 -77.85 -77.75 -77.65\n", - " -77.55 -77.45 -77.35 -77.25 -77.15 -77.05 -76.95 -76.85 -76.75\n", - " -76.65 -76.55 -76.45 -76.35 -76.25 -76.15 -76.05 -75.95 -75.85\n", - " -75.75 -75.65 -75.55 -75.45 -75.35 -75.25 -75.15 -75.05 -74.95\n", - " -74.85 -74.75 -74.65 -74.55 -74.45 -74.35 -74.25 -74.15 -74.05\n", - " -73.95 -73.85 -73.75 -73.65 -73.55 -73.45 -73.35 -73.25 -73.15\n", - " -73.05 -72.95 -72.85 -72.75 -72.65 -72.55 -72.45 -72.35 -72.25\n", - " -72.15 -72.05 -71.95 -71.85 -71.75 -71.65 -71.55 -71.45 -71.35\n", - " -71.25 -71.15 -71.05 -70.95 -70.85 -70.75 -70.65 -70.55 -70.45\n", - " -70.35 -70.25 -70.15 -70.05 -69.95 -69.85 -69.75 -69.65 -69.55\n", - " -69.45 -69.35 -69.25 -69.15 -69.05 -68.95 -68.85 -68.75 -68.65\n", - " -68.55 -68.45 -68.35 -68.25 -68.15 -68.05 -67.95 -67.85 -67.75\n", - " -67.65 -67.55 -67.45 -67.35 -67.25 -67.15 -67.05 -66.95 -66.85\n", - " -66.75 -66.65 -66.55 -66.45 -66.35 -66.25 -66.15 -66.05 -65.95\n", - " -65.85 -65.75 -65.65 -65.55 -65.45 -65.35 -65.25 -65.15 -65.05\n", - " -64.95 -64.85 -64.75 -64.65 -64.55 -64.45 -64.35 -64.25 -64.15\n", - " -64.05 -63.95 -63.85 -63.75 -63.65 -63.55 -63.45 -63.35 -63.25\n", - " -63.15 -63.05 -62.95 -62.85 -62.75 -62.65 -62.55 -62.45 -62.35\n", - " -62.25 -62.15 -62.05 -61.95 -61.85 -61.75 -61.65 -61.55 -61.45\n", - " -61.35 -61.25 -61.15 -61.05 -60.95 -60.85 -60.75 -60.65 -60.55\n", - " -60.45 -60.35 -60.25 -60.15 -60.05 -59.95 -59.85 -59.75 -59.65\n", - " -59.55 -59.45 -59.35 -59.25 -59.15 -59.05 -58.95 -58.85 -58.75\n", - " -58.65 -58.55 -58.45 -58.35 -58.25 -58.15 -58.05 -57.95 -57.85\n", - " -57.75 -57.65 -57.55 -57.45 -57.35 -57.25 -57.15 -57.05 -56.95\n", - " -56.85 -56.75 -56.65 -56.55 -56.45 -56.35 -56.25 -56.15 -56.05\n", - " -55.95 -55.85 -55.75 -55.65 -55.55 -55.45 -55.35 -55.25 -55.15\n", - " -55.05 -54.95 -54.85 -54.75 -54.65 -54.55 -54.45 -54.35 -54.25\n", - " -54.15 -54.05 -53.95 -53.85 -53.75 -53.65 -53.55 -53.45 -53.35\n", - " -53.25 -53.15 -53.05 -52.95 -52.85 -52.75 -52.65 -52.55 -52.45\n", - " -52.35 -52.25 -52.15 -52.05 -51.95 -51.85 -51.75 -51.65 -51.55\n", - " -51.45 -51.35 -51.25 -51.15 -51.05 -50.95 -50.85 -50.75 -50.65\n", - " -50.55 -50.45 -50.35 -50.25 -50.15 -50.05 -49.95 -49.85 -49.75\n", - " -49.65 -49.55 -49.45 -49.35 -49.25 -49.15 -49.05 -48.95 -48.85\n", - " -48.75 -48.65 -48.55 -48.45 -48.35 -48.25 -48.15 -48.05 -47.95\n", - " -47.85 -47.75 -47.65 -47.55 -47.45 -47.35 -47.25 -47.15 -47.05\n", - " -46.95 -46.85 -46.75 -46.65 -46.55 -46.45 -46.35 -46.25 -46.15\n", - " -46.05 -45.95 -45.85 -45.75 -45.65 -45.55 -45.45 -45.35 -45.25\n", - " -45.15 -45.05 -44.95 -44.85 -44.75 -44.65 -44.55 -44.45 -44.35\n", - " -44.25 -44.15 -44.05 -43.95 -43.85 -43.75 -43.65 -43.55 -43.45\n", - " -43.35 -43.25 -43.15 -43.05 -42.95 -42.85 -42.75 -42.65 -42.55\n", - " -42.45 -42.35 -42.25 -42.15 -42.05 -41.95 -41.85 -41.75 -41.65\n", - " -41.55 -41.45 -41.35 -41.25 -41.15 -41.05 -40.95 -40.85 -40.75\n", - " -40.65 -40.55 -40.45 -40.35 -40.25 -40.15 -40.05 -39.95 -39.85\n", - " -39.75 -39.65 -39.55 -39.45 -39.35 -39.25 -39.15 -39.05 -38.95\n", - " -38.85 -38.75 -38.65 -38.55 -38.45 -38.35 -38.25 -38.15 -38.05\n", - " -37.95 -37.85 -37.75 -37.65 -37.55 -37.45 -37.35 -37.25 -37.15\n", - " -37.05 -36.95 -36.85 -36.75 -36.65 -36.55 -36.45 -36.35 -36.25\n", - " -36.15 -36.05 -35.95 -35.85 -35.75 -35.65 -35.55 -35.45 -35.35\n", - " -35.25 -35.15 -35.05 -34.95 -34.85 -34.75 -34.65 -34.55 -34.45\n", - " -34.35 -34.25 -34.15 -34.05 -33.95 -33.85 -33.75 -33.65 -33.55\n", - " -33.45 -33.35 -33.25 -33.15 -33.05 -32.95 -32.85 -32.75 -32.65\n", - " -32.55 -32.45 -32.35 -32.25 -32.15 -32.05 -31.95 -31.85 -31.75\n", - " -31.65 -31.55 -31.45 -31.35 -31.25 -31.15 -31.05 -30.95 -30.85\n", - " -30.75 -30.65 -30.55 -30.45 -30.35 -30.25 -30.15 -30.05 -29.95\n", - " -29.85 -29.75 -29.65 -29.55 -29.45 -29.35 -29.25 -29.15 -29.05\n", - " -28.95 -28.85 -28.75 -28.65 -28.55 -28.45 -28.35 -28.25 -28.15\n", - " -28.05 -27.95 -27.85 -27.75 -27.65 -27.55 -27.45 -27.35 -27.25\n", - " -27.15 -27.05 -26.95 -26.85 -26.75 -26.65 -26.55 -26.45 -26.35\n", - " -26.25 -26.15 -26.05 -25.95 -25.85 -25.75 -25.65 -25.55 -25.45\n", - " -25.35 -25.25 -25.15 -25.05]\n" - ] - } - ], - "execution_count": 20 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:32.882265Z", - "start_time": "2024-07-11T22:46:32.860682Z" - } - }, - "cell_type": "code", - "source": "print(dataset.y)", - "id": "af1545aded83ad42", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1.805e+01 1.795e+01 1.785e+01 1.775e+01 1.765e+01 1.755e+01\n", - " 1.745e+01 1.735e+01 1.725e+01 1.715e+01 1.705e+01 1.695e+01\n", - " 1.685e+01 1.675e+01 1.665e+01 1.655e+01 1.645e+01 1.635e+01\n", - " 1.625e+01 1.615e+01 1.605e+01 1.595e+01 1.585e+01 1.575e+01\n", - " 1.565e+01 1.555e+01 1.545e+01 1.535e+01 1.525e+01 1.515e+01\n", - " 1.505e+01 1.495e+01 1.485e+01 1.475e+01 1.465e+01 1.455e+01\n", - " 1.445e+01 1.435e+01 1.425e+01 1.415e+01 1.405e+01 1.395e+01\n", - " 1.385e+01 1.375e+01 1.365e+01 1.355e+01 1.345e+01 1.335e+01\n", - " 1.325e+01 1.315e+01 1.305e+01 1.295e+01 1.285e+01 1.275e+01\n", - " 1.265e+01 1.255e+01 1.245e+01 1.235e+01 1.225e+01 1.215e+01\n", - " 1.205e+01 1.195e+01 1.185e+01 1.175e+01 1.165e+01 1.155e+01\n", - " 1.145e+01 1.135e+01 1.125e+01 1.115e+01 1.105e+01 1.095e+01\n", - " 1.085e+01 1.075e+01 1.065e+01 1.055e+01 1.045e+01 1.035e+01\n", - " 1.025e+01 1.015e+01 1.005e+01 9.950e+00 9.850e+00 9.750e+00\n", - " 9.650e+00 9.550e+00 9.450e+00 9.350e+00 9.250e+00 9.150e+00\n", - " 9.050e+00 8.950e+00 8.850e+00 8.750e+00 8.650e+00 8.550e+00\n", - " 8.450e+00 8.350e+00 8.250e+00 8.150e+00 8.050e+00 7.950e+00\n", - " 7.850e+00 7.750e+00 7.650e+00 7.550e+00 7.450e+00 7.350e+00\n", - " 7.250e+00 7.150e+00 7.050e+00 6.950e+00 6.850e+00 6.750e+00\n", - " 6.650e+00 6.550e+00 6.450e+00 6.350e+00 6.250e+00 6.150e+00\n", - " 6.050e+00 5.950e+00 5.850e+00 5.750e+00 5.650e+00 5.550e+00\n", - " 5.450e+00 5.350e+00 5.250e+00 5.150e+00 5.050e+00 4.950e+00\n", - " 4.850e+00 4.750e+00 4.650e+00 4.550e+00 4.450e+00 4.350e+00\n", - " 4.250e+00 4.150e+00 4.050e+00 3.950e+00 3.850e+00 3.750e+00\n", - " 3.650e+00 3.550e+00 3.450e+00 3.350e+00 3.250e+00 3.150e+00\n", - " 3.050e+00 2.950e+00 2.850e+00 2.750e+00 2.650e+00 2.550e+00\n", - " 2.450e+00 2.350e+00 2.250e+00 2.150e+00 2.050e+00 1.950e+00\n", - " 1.850e+00 1.750e+00 1.650e+00 1.550e+00 1.450e+00 1.350e+00\n", - " 1.250e+00 1.150e+00 1.050e+00 9.500e-01 8.500e-01 7.500e-01\n", - " 6.500e-01 5.500e-01 4.500e-01 3.500e-01 2.500e-01 1.500e-01\n", - " 5.000e-02 -5.000e-02 -1.500e-01 -2.500e-01 -3.500e-01 -4.500e-01\n", - " -5.500e-01 -6.500e-01 -7.500e-01 -8.500e-01 -9.500e-01 -1.050e+00\n", - " -1.150e+00 -1.250e+00 -1.350e+00 -1.450e+00 -1.550e+00 -1.650e+00\n", - " -1.750e+00 -1.850e+00 -1.950e+00 -2.050e+00 -2.150e+00 -2.250e+00\n", - " -2.350e+00 -2.450e+00 -2.550e+00 -2.650e+00 -2.750e+00 -2.850e+00\n", - " -2.950e+00 -3.050e+00 -3.150e+00 -3.250e+00 -3.350e+00 -3.450e+00\n", - " -3.550e+00 -3.650e+00 -3.750e+00 -3.850e+00 -3.950e+00 -4.050e+00\n", - " -4.150e+00 -4.250e+00 -4.350e+00 -4.450e+00 -4.550e+00 -4.650e+00\n", - " -4.750e+00 -4.850e+00 -4.950e+00 -5.050e+00 -5.150e+00 -5.250e+00\n", - " -5.350e+00 -5.450e+00 -5.550e+00 -5.650e+00 -5.750e+00 -5.850e+00\n", - " -5.950e+00 -6.050e+00 -6.150e+00 -6.250e+00 -6.350e+00 -6.450e+00\n", - " -6.550e+00 -6.650e+00 -6.750e+00 -6.850e+00 -6.950e+00 -7.050e+00\n", - " -7.150e+00 -7.250e+00 -7.350e+00 -7.450e+00 -7.550e+00 -7.650e+00\n", - " -7.750e+00 -7.850e+00 -7.950e+00 -8.050e+00 -8.150e+00 -8.250e+00\n", - " -8.350e+00 -8.450e+00 -8.550e+00 -8.650e+00 -8.750e+00 -8.850e+00\n", - " -8.950e+00 -9.050e+00 -9.150e+00 -9.250e+00 -9.350e+00 -9.450e+00\n", - " -9.550e+00 -9.650e+00 -9.750e+00 -9.850e+00 -9.950e+00 -1.005e+01\n", - " -1.015e+01 -1.025e+01 -1.035e+01 -1.045e+01 -1.055e+01 -1.065e+01\n", - " -1.075e+01 -1.085e+01 -1.095e+01 -1.105e+01 -1.115e+01 -1.125e+01\n", - " -1.135e+01 -1.145e+01 -1.155e+01 -1.165e+01 -1.175e+01 -1.185e+01\n", - " -1.195e+01 -1.205e+01 -1.215e+01 -1.225e+01 -1.235e+01 -1.245e+01\n", - " -1.255e+01 -1.265e+01 -1.275e+01 -1.285e+01 -1.295e+01 -1.305e+01\n", - " -1.315e+01 -1.325e+01 -1.335e+01 -1.345e+01 -1.355e+01 -1.365e+01\n", - " -1.375e+01 -1.385e+01 -1.395e+01 -1.405e+01 -1.415e+01 -1.425e+01\n", - " -1.435e+01 -1.445e+01 -1.455e+01 -1.465e+01 -1.475e+01 -1.485e+01\n", - " -1.495e+01 -1.505e+01 -1.515e+01 -1.525e+01 -1.535e+01 -1.545e+01\n", - " -1.555e+01 -1.565e+01 -1.575e+01 -1.585e+01 -1.595e+01 -1.605e+01\n", - " -1.615e+01 -1.625e+01 -1.635e+01 -1.645e+01 -1.655e+01 -1.665e+01\n", - " -1.675e+01 -1.685e+01 -1.695e+01 -1.705e+01 -1.715e+01 -1.725e+01\n", - " -1.735e+01 -1.745e+01 -1.755e+01 -1.765e+01 -1.775e+01 -1.785e+01\n", - " -1.795e+01 -1.805e+01 -1.815e+01 -1.825e+01 -1.835e+01 -1.845e+01\n", - " -1.855e+01 -1.865e+01 -1.875e+01 -1.885e+01 -1.895e+01 -1.905e+01\n", - " -1.915e+01 -1.925e+01 -1.935e+01 -1.945e+01 -1.955e+01 -1.965e+01\n", - " -1.975e+01 -1.985e+01 -1.995e+01 -2.005e+01 -2.015e+01 -2.025e+01\n", - " -2.035e+01 -2.045e+01 -2.055e+01 -2.065e+01 -2.075e+01 -2.085e+01\n", - " -2.095e+01 -2.105e+01 -2.115e+01 -2.125e+01 -2.135e+01 -2.145e+01\n", - " -2.155e+01 -2.165e+01 -2.175e+01 -2.185e+01 -2.195e+01 -2.205e+01\n", - " -2.215e+01 -2.225e+01 -2.235e+01 -2.245e+01 -2.255e+01 -2.265e+01\n", - " -2.275e+01 -2.285e+01 -2.295e+01 -2.305e+01 -2.315e+01 -2.325e+01\n", - " -2.335e+01 -2.345e+01 -2.355e+01 -2.365e+01 -2.375e+01 -2.385e+01\n", - " -2.395e+01 -2.405e+01 -2.415e+01 -2.425e+01 -2.435e+01 -2.445e+01\n", - " -2.455e+01 -2.465e+01 -2.475e+01 -2.485e+01 -2.495e+01 -2.505e+01\n", - " -2.515e+01 -2.525e+01 -2.535e+01 -2.545e+01 -2.555e+01 -2.565e+01\n", - " -2.575e+01 -2.585e+01 -2.595e+01 -2.605e+01 -2.615e+01 -2.625e+01\n", - " -2.635e+01 -2.645e+01 -2.655e+01 -2.665e+01 -2.675e+01 -2.685e+01\n", - " -2.695e+01 -2.705e+01 -2.715e+01 -2.725e+01 -2.735e+01 -2.745e+01\n", - " -2.755e+01 -2.765e+01 -2.775e+01 -2.785e+01 -2.795e+01 -2.805e+01\n", - " -2.815e+01 -2.825e+01 -2.835e+01 -2.845e+01 -2.855e+01 -2.865e+01\n", - " -2.875e+01 -2.885e+01 -2.895e+01 -2.905e+01 -2.915e+01 -2.925e+01\n", - " -2.935e+01 -2.945e+01 -2.955e+01 -2.965e+01 -2.975e+01 -2.985e+01\n", - " -2.995e+01 -3.005e+01 -3.015e+01 -3.025e+01 -3.035e+01 -3.045e+01\n", - " -3.055e+01 -3.065e+01 -3.075e+01 -3.085e+01 -3.095e+01 -3.105e+01\n", - " -3.115e+01 -3.125e+01 -3.135e+01 -3.145e+01 -3.155e+01 -3.165e+01\n", - " -3.175e+01 -3.185e+01 -3.195e+01 -3.205e+01 -3.215e+01 -3.225e+01\n", - " -3.235e+01 -3.245e+01 -3.255e+01 -3.265e+01 -3.275e+01 -3.285e+01\n", - " -3.295e+01 -3.305e+01 -3.315e+01 -3.325e+01 -3.335e+01 -3.345e+01\n", - " -3.355e+01 -3.365e+01 -3.375e+01 -3.385e+01 -3.395e+01 -3.405e+01\n", - " -3.415e+01 -3.425e+01 -3.435e+01 -3.445e+01 -3.455e+01 -3.465e+01\n", - " -3.475e+01 -3.485e+01 -3.495e+01 -3.505e+01 -3.515e+01 -3.525e+01\n", - " -3.535e+01 -3.545e+01 -3.555e+01 -3.565e+01 -3.575e+01 -3.585e+01\n", - " -3.595e+01 -3.605e+01 -3.615e+01 -3.625e+01 -3.635e+01 -3.645e+01\n", - " -3.655e+01 -3.665e+01 -3.675e+01 -3.685e+01 -3.695e+01 -3.705e+01\n", - " -3.715e+01 -3.725e+01 -3.735e+01 -3.745e+01 -3.755e+01 -3.765e+01\n", - " -3.775e+01 -3.785e+01 -3.795e+01 -3.805e+01 -3.815e+01 -3.825e+01\n", - " -3.835e+01 -3.845e+01 -3.855e+01 -3.865e+01 -3.875e+01 -3.885e+01\n", - " -3.895e+01 -3.905e+01 -3.915e+01 -3.925e+01 -3.935e+01 -3.945e+01\n", - " -3.955e+01 -3.965e+01 -3.975e+01 -3.985e+01 -3.995e+01 -4.005e+01\n", - " -4.015e+01 -4.025e+01 -4.035e+01 -4.045e+01 -4.055e+01 -4.065e+01\n", - " -4.075e+01 -4.085e+01 -4.095e+01 -4.105e+01 -4.115e+01 -4.125e+01\n", - " -4.135e+01 -4.145e+01 -4.155e+01 -4.165e+01 -4.175e+01 -4.185e+01\n", - " -4.195e+01 -4.205e+01 -4.215e+01 -4.225e+01 -4.235e+01 -4.245e+01\n", - " -4.255e+01 -4.265e+01 -4.275e+01 -4.285e+01 -4.295e+01 -4.305e+01\n", - " -4.315e+01 -4.325e+01 -4.335e+01 -4.345e+01 -4.355e+01 -4.365e+01\n", - " -4.375e+01 -4.385e+01 -4.395e+01 -4.405e+01 -4.415e+01 -4.425e+01\n", - " -4.435e+01 -4.445e+01 -4.455e+01 -4.465e+01 -4.475e+01 -4.485e+01\n", - " -4.495e+01 -4.505e+01 -4.515e+01 -4.525e+01 -4.535e+01 -4.545e+01\n", - " -4.555e+01 -4.565e+01 -4.575e+01 -4.585e+01 -4.595e+01 -4.605e+01\n", - " -4.615e+01 -4.625e+01 -4.635e+01 -4.645e+01 -4.655e+01 -4.665e+01\n", - " -4.675e+01 -4.685e+01 -4.695e+01 -4.705e+01 -4.715e+01 -4.725e+01\n", - " -4.735e+01 -4.745e+01 -4.755e+01 -4.765e+01 -4.775e+01 -4.785e+01\n", - " -4.795e+01 -4.805e+01 -4.815e+01 -4.825e+01 -4.835e+01 -4.845e+01\n", - " -4.855e+01 -4.865e+01 -4.875e+01 -4.885e+01 -4.895e+01 -4.905e+01\n", - " -4.915e+01 -4.925e+01 -4.935e+01 -4.945e+01 -4.955e+01 -4.965e+01\n", - " -4.975e+01 -4.985e+01 -4.995e+01 -5.005e+01 -5.015e+01 -5.025e+01\n", - " -5.035e+01 -5.045e+01 -5.055e+01 -5.065e+01 -5.075e+01 -5.085e+01\n", - " -5.095e+01 -5.105e+01 -5.115e+01 -5.125e+01 -5.135e+01 -5.145e+01\n", - " -5.155e+01 -5.165e+01 -5.175e+01 -5.185e+01 -5.195e+01 -5.205e+01\n", - " -5.215e+01 -5.225e+01 -5.235e+01 -5.245e+01 -5.255e+01 -5.265e+01\n", - " -5.275e+01 -5.285e+01 -5.295e+01 -5.305e+01 -5.315e+01 -5.325e+01\n", - " -5.335e+01 -5.345e+01 -5.355e+01 -5.365e+01 -5.375e+01 -5.385e+01\n", - " -5.395e+01 -5.405e+01 -5.415e+01 -5.425e+01 -5.435e+01 -5.445e+01\n", - " -5.455e+01 -5.465e+01 -5.475e+01 -5.485e+01 -5.495e+01 -5.505e+01\n", - " -5.515e+01 -5.525e+01 -5.535e+01 -5.545e+01 -5.555e+01 -5.565e+01\n", - " -5.575e+01 -5.585e+01 -5.595e+01 -5.605e+01 -5.615e+01 -5.625e+01\n", - " -5.635e+01 -5.645e+01 -5.655e+01 -5.665e+01 -5.675e+01 -5.685e+01\n", - " -5.695e+01 -5.705e+01 -5.715e+01 -5.725e+01 -5.735e+01 -5.745e+01\n", - " -5.755e+01 -5.765e+01 -5.775e+01 -5.785e+01 -5.795e+01 -5.805e+01\n", - " -5.815e+01 -5.825e+01 -5.835e+01 -5.845e+01 -5.855e+01 -5.865e+01\n", - " -5.875e+01 -5.885e+01 -5.895e+01 -5.905e+01 -5.915e+01 -5.925e+01\n", - " -5.935e+01 -5.945e+01 -5.955e+01 -5.965e+01 -5.975e+01 -5.985e+01]\n" - ] - } - ], - "execution_count": 21 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Driver information and metadata", - "id": "1437541ca3b43730" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:37.183290Z", - "start_time": "2024-07-11T22:46:37.174046Z" - } - }, - "cell_type": "code", - "source": "print(dataset.meta_data)", - "id": "78a369841fe44d44", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'AREA_OR_POINT': 'Area'}\n" - ] - } - ], - "execution_count": 22 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:39.376450Z", - "start_time": "2024-07-11T22:46:39.370921Z" - } - }, - "cell_type": "code", - "source": "print(dataset.block_size)", - "id": "65209ab3e8e19872", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[850, 2]]\n" - ] - } - ], - "execution_count": 23 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:41.844103Z", - "start_time": "2024-07-11T22:46:41.836824Z" - } - }, - "cell_type": "code", - "source": "print(dataset.file_name)", - "id": "4725c7e8c6fbd9b5", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "../../examples/data/geotiff/south-america-mswep_1979010100.tif\n" - ] - } - ], - "execution_count": 24 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:44.491220Z", - "start_time": "2024-07-11T22:46:44.486397Z" - } - }, - "cell_type": "code", - "source": "print(dataset.driver_type)", - "id": "887fd837131f0433", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "geotiff\n" - ] - } - ], - "execution_count": 25 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Create a copy of the dataset", - "id": "d6a48b516fec3ed2" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:47.922500Z", - "start_time": "2024-07-11T22:46:47.904845Z" - } - }, - "cell_type": "code", - "source": [ - "dataset_copy = dataset.copy()\n", - "print(dataset_copy)" - ], - "id": "e3176c9df1484eea", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 0.1\n", - " Dimension: 780 * 850\n", - " EPSG: 4326\n", - " Number of Bands: 1\n", - " Band names: ['Band_1']\n", - " Mask: -9999.0\n", - " Data type: float32\n", - " File: \n", - " \n" - ] - } - ], - "execution_count": 26 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Add a new band ", - "id": "e49e62422d7456e5" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:52.469486Z", - "start_time": "2024-07-11T22:46:52.439603Z" - } - }, - "cell_type": "code", - "source": [ - "import numpy as np\n", - "new_band = np.random.rand(dataset.rows, dataset.columns)\n", - "new_dataset = dataset.add_band(new_band, unit=\"mm\")\n", - "print(new_dataset)" - ], - "id": "5343d34e85aa9c65", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 0.1\n", - " Dimension: 780 * 850\n", - " EPSG: 4326\n", - " Number of Bands: 2\n", - " Band names: ['Band_1', 'Band_2']\n", - " Mask: -9999.0\n", - " Data type: float32\n", - " File: \n", - " \n" - ] - } - ], - "execution_count": 27 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Read band values", - "id": "bf049dd2270e5c37" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:46:56.394055Z", - "start_time": "2024-07-11T22:46:56.385114Z" - } - }, - "cell_type": "code", - "source": [ - "arr = dataset.read_array()\n", - "print(arr.shape)" - ], - "id": "a6c0b68ea1e3b289", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(780, 850)\n" - ] - } - ], - "execution_count": 28 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:05.142746Z", - "start_time": "2024-07-11T22:47:05.135181Z" - } - }, - "cell_type": "code", - "source": "arr", - "id": "c7db63cf1b26288b", - "outputs": [ - { - "data": { - "text/plain": [ - "array([[-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", - " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", - " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", - " ...,\n", - " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", - " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", - " [-9999., -9999., -9999., ..., -9999., -9999., -9999.]],\n", - " dtype=float32)" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "execution_count": 29 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:20.528559Z", - "start_time": "2024-07-11T22:47:20.520752Z" - } - }, - "cell_type": "code", - "source": [ - "block = dataset.read_array(band=0, window=(0, 0, 100, 100))\n", - "print(block.shape)\n", - "print(block)" - ], - "id": "cb697dcbbee72d52", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(100, 100)\n", - "[[-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", - " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", - " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", - " ...\n", - " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", - " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", - " [-9999. -9999. -9999. ... -9999. -9999. -9999.]]\n" - ] - } - ], - "execution_count": 30 - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:24.352632Z", - "start_time": "2024-07-11T22:47:24.340242Z" - } - }, - "cell_type": "code", - "source": "dataset.get_block_arrangement(x_block_size=100, y_block_size=100)", - "id": "464e1c4eb4ca69bf", - "outputs": [ - { - "data": { - "text/plain": [ - " x_offset y_offset window_xsize window_ysize\n", - "0 0 0 100 100\n", - "1 100 0 100 100\n", - "2 200 0 100 100\n", - "3 300 0 100 100\n", - "4 400 0 100 100\n", - ".. ... ... ... ...\n", - "67 400 700 100 80\n", - "68 500 700 100 80\n", - "69 600 700 100 80\n", - "70 700 700 100 80\n", - "71 800 700 50 80\n", - "\n", - "[72 rows x 4 columns]" - ], - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x_offsety_offsetwindow_xsizewindow_ysize
000100100
11000100100
22000100100
33000100100
44000100100
...............
6740070010080
6850070010080
6960070010080
7070070010080
718007005080
\n", - "

72 rows \u00d7 4 columns

\n", - "
" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "execution_count": 31 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## \u2014 Band statistics", - "id": "67c1914ee4b32399" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:32.204305Z", - "start_time": "2024-07-11T22:47:32.185904Z" - } - }, - "cell_type": "code", - "source": [ - "stats = dataset.stats(band=0)\n", - "stats" - ], - "id": "e169a148d608af59", - "outputs": [ - { - "data": { - "text/plain": [ - " min max mean std\n", - "Band_1 -9998.992188 65.326111 -1949.050171 3413.121826" - ], - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
minmaxmeanstd
Band_1-9998.99218865.326111-1949.0501713413.121826
\n", - "
" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "execution_count": 32 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Attribute Table ", - "id": "422fccda4368824f" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## \u2014 read band attribute table", - "id": "629f81c8e5a5b7d3" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:36.632266Z", - "start_time": "2024-07-11T22:47:36.619238Z" - } - }, - "cell_type": "code", - "source": [ - "df = dataset.get_attribute_table(band=0)\n", - "print(df)" - ], - "id": "c864150edf00c6b0", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Precipitation Range (mm) Category Description\n", - "0 0-50 Low Very low precipitation\n", - "1 51-100 Moderate Moderate precipitation\n", - "2 101-200 High High precipitation\n", - "3 201-500 Very High Very high precipitation\n", - "4 >500 Extreme Extreme precipitation\n" - ] - } - ], - "execution_count": 33 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## \u2014 Set attribute table", - "id": "8d6c4296a5075e6f" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-11T22:47:39.419032Z", - "start_time": "2024-07-11T22:47:39.401639Z" - } - }, - "cell_type": "code", - "source": [ - "import pandas as pd\n", - "attribute_table = {\n", - " 'Precipitation Range (mm)': ['0-50', '51-100', '101-200', '201-500', '>500'],\n", - " 'Category': ['Low', 'Moderate', 'High', 'Very High', 'Extreme'],\n", - " 'Description': [\n", - " 'Very low precipitation',\n", - " 'Moderate precipitation',\n", - " 'High precipitation',\n", - " 'Very high precipitation',\n", - " 'Extreme precipitation'\n", - " ]\n", - "}\n", - "df = pd.DataFrame(attribute_table)\n", - "dataset.set_attribute_table(df, band=0)\n" - ], - "id": "a4a0ad7c33abfd4", - "outputs": [], - "execution_count": 34 - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } + "cells": [ + { + "metadata": {}, + "cell_type": "markdown", + "source": "One Band Raster Dataset", + "id": "35bae0a31c494626" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:23.367005Z", + "start_time": "2024-12-06T23:34:23.363262Z" + } + }, + "cell_type": "code", + "source": [ + "from pyramids.dataset import Dataset\n", + "path = r\"../../examples/data/geotiff/south-america-mswep_1979010100.tif\"" + ], + "id": "bd5aab35e70cd90b", + "outputs": [], + "execution_count": 2 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:25.570938Z", + "start_time": "2024-12-06T23:34:25.555886Z" + } + }, + "cell_type": "code", + "source": [ + "dataset = Dataset.read_file(path)\n", + "print(dataset)" + ], + "id": "4f25511faa653ed1", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.1\n", + " Dimension: 780 * 850\n", + " EPSG: 4326\n", + " Number of Bands: 1\n", + " Band names: ['Band_1']\n", + " Mask: -9999.0\n", + " Data type: float32\n", + " File: ../../examples/data/geotiff/south-america-mswep_1979010100.tif\n", + " \n" + ] + } + ], + "execution_count": 3 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:30.242387Z", + "start_time": "2024-12-06T23:34:29.471844Z" + } + }, + "cell_type": "code", + "source": "dataset.plot()", + "id": "faf1ea9faa725890", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAH+CAYAAAAvVu7aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/KUlEQVR4nOz9eZhkRZ3vj78j4iy5VGVVV3V3dVcvdLPYbIIIqOCCCMKg4jYqLhfBq44+DD9hXEZxZERHxG0cvPCT0Xu56Iwz6nUUx0GURUFkBISGVva19+7qpbasyu2cExHfP+JE5DlZmdVVXVVdW7yeJ5+uyjx5MuJkddU7P8v7Q6SUEhaLxWKxWCwWyyShs70Ai8VisVgsFsv8xApJi8VisVgsFstBYYWkxWKxWCwWi+WgsELSYrFYLBaLxXJQWCFpsVgsFovFYjkorJC0WCwWi8VisRwUVkhaLBaLxWKxWA4KKyQtFovFYrFYLAeFFZIWi8VisVgsloPCCkmLxWKxWCwWy0Exb4Tk1VdfjdNPPx25XA6dnZ1Nj7nssstw8sknw/d9vOQlL2l6zKOPPoozzjgD2WwWq1atwhe/+EXMtSmRE9nrtm3bcP755yOfz2Pp0qX42Mc+hiAIUsfMh7028vDDD+P1r389Ojs70d3djb/6q7/C6Oho6piJ7H2u88wzz+Atb3kLli5dikKhgFe+8pW46667UsfM933efffdIIQ0vT344IPmuPm+zyS//OUv8fKXvxzZbBZLly7F29/+9tTjC2Gv69atG/N+fuYzn0kdsxD2qanVanjJS14CQgg2bdqUemyh7PPNb34z1q5di0wmg5UrV+LCCy/Erl27UscslL1aph9nthcwUYIgwDvf+U6cdtppuPHGG5seI6XE//yf/xMPPPAA/vznP495vFgs4vWvfz3OPPNMPPjgg3jmmWdw8cUXI5/P4xOf+MRMb2HCHGivnHO88Y1vxLJly3Dvvfeiv78fF110EaSUuO666wDMn70m2bVrF84++2xccMEFuP7661EsFnH55Zfj4osvxn/8x38AmNje5wNvfOMb8aIXvQi//e1vkc1mce211+JNb3oTnn/+eaxYsWJB7PP000/H7t27U/ddeeWVuPPOO3HKKacAWDjvJwD89Kc/xYc//GF8+ctfxute9zpIKfHoo4+axxfSXr/4xS/iwx/+sPm+ra3NfL2Q9gkAf/u3f4ve3l786U9/St2/kPZ55pln4rOf/SxWrlyJnTt34pOf/CTe8Y534A9/+AOAhbVXywwg5xk33XST7OjoGPeYz3/+8/LEE08cc/+3v/1t2dHRIavVqrnvmmuukb29vVIIMc0rnTqt9nrrrbdKSqncuXOnue+HP/yh9H1fDg8PSynn316llPI73/mOXL58ueScm/seeeQRCUA+++yzUsqJ7X2us2/fPglA3nPPPea+YrEoAcg777xTSrkw9tlIEARy+fLl8otf/KK5b6HsMwxDuWrVKvl//s//aXnMQtnrYYcdJv/pn/6p5eMLZZ9Sqr0cffTR8vHHH5cA5COPPJJ6bKHss5H//M//lIQQGQSBlHJh79UydeZNans6uO+++3DGGWfA931z37nnnotdu3Zhy5Yts7ewSXLffffh+OOPR29vr7nv3HPPRa1Ww8aNG80x822vtVoNnueB0vqPZTabBQDce++9ACa297lOd3c3jjnmGPzLv/wLSqUSoijCd77zHfT09ODkk08GsDD22cgvfvEL7N+/HxdffLG5b6Hs8+GHH8bOnTtBKcVJJ52ElStX4rzzzsPjjz9ujlkoewWAr371q+ju7sZLXvISXH311akU50LZ5549e/DhD38Y//qv/4pcLjfm8YWyz0YGBgbwb//2bzj99NPhui6AhbtXy/SwqIRkX18fenp6Uvfp7/v6+mZjSQdFs30sWbIEnueZfczHvb7uda9DX18fvv71ryMIAgwODuKzn/0sAJgU6UT2PtchhOCOO+7AI488gvb2dmQyGfzTP/0Tfv3rX5ua2IWwz0ZuvPFGnHvuuVizZo25b6Hs84UXXgAAXHXVVfjc5z6HW265BUuWLMEZZ5yBgYEBAAtnr5dddhl+9KMf4a677sKll16Ka6+9Fpdccol5fCHsU0qJiy++GB/96EdNGUYjC2GfST796U8jn8+ju7sb27Ztw3/+53+axxbaXi3Ty6wKyauuuqplMb6+PfTQQ9P6moSQ1Pcybj5pvH+6me69NluvlDJ1/2zttZGJ7v24447D97//ffzjP/4jcrkcVqxYgcMPPxw9PT1gjLXcFzB277PBRPcppcQll1yC5cuX4/e//z3++Mc/4i1veQve9KY3pWoK5/s+k+zYsQO33XYbPvjBD44531zdJzDxvQohAAB/93d/h7/8y7/EySefjJtuugmEEPzkJz8x55ure53Me/o3f/M3OOOMM3DCCSfgQx/6EP75n/8ZN954I/r7+8355vs+r7vuOhSLRVxxxRXjnm+u7hOY/P/TT33qU3jkkUdw++23gzGG97///anmzLm8V8vsMqvNNpdeeine/e53j3vMunXrpu31VqxYMebT0969ewFgzKet6WY697pixQo88MADqfsGBwcRhqHZx2zutZHJ7P29730v3vve92LPnj3I5/MghOCb3/wm1q9fD2Bie58tJrrP3/72t7jlllswODiIQqEAAPj2t7+NO+64A9///vfxmc98ZkHsM8lNN92E7u5uvPnNb07dP5f3CUx8ryMjIwCAY4891tzv+z4OP/xwbNu2DcDc3utUfj+94hWvAAA899xz6O7uXhD7/NKXvoT7778/VRoEAKeccgre97734fvf//6c3icw+fd06dKlWLp0KV70ohfhmGOOwZo1a3D//ffjtNNOm/N7tcwys1KZOQWm2mzT2dkpa7Waue8rX/nKnG1AOVCzza5du8x9P/rRj8Y028ynvbbixhtvlLlcTg4ODkopJ7b3uc4vfvELSSmVIyMjqftf9KIXyauvvlpKuTD2qRFCyPXr18tPfOITYx5bKPscHh6Wvu+nmm10c9F3vvMdKeXC2Wsj//Vf/yUByK1bt0opF8Y+t27dKh999FFzu+222yQA+R//8R9y+/btUsqFsc9WbNu2TQKQd911l5RyYe/VMnXmjZDcunWrfOSRR+QXvvAF2dbWJh955BH5yCOPpP4YP/vss/KRRx6RH/nIR+SLXvQic4wWU0NDQ7Knp0e+5z3vkY8++qj82c9+JguFgvzGN74xW9tqyoH2GkWRPP744+VZZ50lH374YXnnnXfK1atXy0svvdScY77stZHrrrtObty4UT799NPy+uuvl9lsVn7rW98yj09k73Odffv2ye7ubvn2t79dbtq0ST799NPyk5/8pHRdV27atElKuTD2qbnzzjslAPnEE0+MeWwh7fOyyy6Tq1atkrfddpt86qmn5Ac/+EG5fPlyOTAwIKVcGHv9wx/+IL/5zW/KRx55RL7wwgvyxz/+sezt7ZVvfvObzTELYZ+NbN68eUzX9kLZ5wMPPCCvu+46+cgjj8gtW7bI3/72t/JVr3qVPOKII4zrx0LZq2VmmDdC8qKLLpIAxtz0JyYppTzjjDOaHrN582ZzzJ///Gf56le/Wvq+L1esWCGvuuqqORehm8het27dKt/4xjfKbDYru7q65KWXXpqy+pFyfuy1kQsvvFB2dXVJz/PkCSecIP/lX/5lzDET2ftc58EHH5TnnHOO7Orqku3t7fIVr3iFvPXWW1PHLIR9Sinle97zHnn66ae3fHyh7DMIAvmJT3xCLl++XLa3t8uzzz5bPvbYY6lj5vteN27cKF/+8pfLjo4Omclk5IYNG+TnP/95WSqVUsfN93020kxISrkw9vnnP/9ZnnnmmbKrq0v6vi/XrVsnP/rRj8odO3akjlsIe7XMDETKOT7qxGKxWCwWi8UyJ1lU9j8Wi8VisVgslunDCkmLxWKxWCwWy0FhhaTFYrFYLBaL5aCwQtJisVgsFovFclBYIWmxWCwWi8UyS9xzzz04//zz0dvbC0IIfv7zn7c89iMf+QgIIbj22mtT93/3u9/Fa1/7WhQKBRBCMDQ0NKHX3rlzJ/7H//gf6O7uRi6Xw0te8pJJz0+3QtJisVgsFotlliiVSjjxxBNx/fXXj3vcz3/+czzwwAPo7e0d81i5XMZf/MVf4LOf/eyEX3dwcBCvfOUr4boufvWrX+GJJ57AP/7jP6Kzs3NS65/3QrJWq+Gqq65CrVab7aXMKItln8Di2eti2SewePZq97nwWCx7XSz7TFKtVlEsFmfkNjw8POa+Vtf2vPPOw5e+9CW8/e1vb7nWnTt34tJLL8W//du/wXXdMY9ffvnl+MxnPmNGlk6Er371q1izZg1uuukmvOxlL8O6detw1lln4YgjjpjwOQBg3vtIFotFdHR0YHh42MwtXogsln0Ci2evi2WfwOLZq93nwmOx7HWx7FNTrVZR6FyFsDYwI+dva2vD6Oho6r7Pf/7zuOqqq8Z9HiEEN998M9761rea+4QQOPvss/GWt7wFl112GdatW4fLL78cl19++Zjn33333TjzzDMxODh4wMjisccei3PPPRc7duzA7373O6xatQqXXHIJPvzhD09wlwpnUkdbLBaLxWKxzHOCIEBYG8ApZ/0/MCc/refmUQkP/eZd2L59e0qU+75/UOf76le/Csdx8LGPfWy6lggAeOGFF3DDDTfg4x//OD772c/ij3/8Iz72sY/B9328//3vn/B5rJC0WCwWi8WyKHG8djju9ApJQlXVYKFQmHJ0d+PGjfjWt76Fhx9+GISQ6VieQQiBU045BV/+8pcBACeddBIef/xx3HDDDYtLSAohAADDw8OzvJKZpVgspv5dyCyWvS6WfQKLZ692nwuPxbLX2dinlBIjIyPo7e0FpfO+ZWNG+P3vf4+9e/di7dq15j7OOT7xiU/g2muvxZYtWw763CtXrsSxxx6buu+YY47BT3/600mdZ94LyYEBVd+QvMgLmTVr1sz2Eg4Zi2Wvi2WfwOLZq93nwmOx7HU29rl9+3asXr36kL8uABBKQOj0Rvqm83wXXnghzj777NR95557Li688EJ84AMfmNK5X/nKV+Lpp59O3ffMM8/gsMMOm9R55r2Q7O7uBoAxtQgWi8UyEX695KWp7/9i8OFZWonFsrgoFotYs2YN2tvbZ3sps8ro6Ciee+458/3mzZuxadMmdHV1Ye3atUbnaFzXxYoVK7BhwwZzX19fH/r6+sx5Hn30UbS3t2Pt2rXo6uoCAJx11ll429vehksvvRQA8Dd/8zc4/fTT8eUvfxnvete78Mc//hHf/e538d3vfndS65/3QlLXDExHLYLFYll85AgzX78penqcIy0Wy0ww3bV/k3ttCkKmN60+2fM99NBDOPPMM833H//4xwEAF110Eb73ve9N6Bz//M//jC984Qvm+9e85jUAgJtuugkXX3wxAOD555/H/v37zTGnnnoqbr75ZlxxxRX44he/iPXr1+Paa6/F+973vkmt39r/WCyWRc0tTv1TvRWSFsuhYzb/fuvXPv1Nt097s00UlvCHW85ZNLpk3kckLRaLZSpY8WixLF7meo3kfMC2SVksFovFYrFYDgobkbRYLBaLxbIoIZQa38fpPOdiwgpJi8VisVgsixJKATrNqehFpiNtattisVgsFovFcnDYiKTFYrFYLJZFyVyw/5nvLK7dWiwWi8VisVimDRuRtFgsFovFsiix9j9Tx0YkLRaLxWKxWCwHhY1IWiwWi8ViWZQQMgP2P7ZG0mKxWCwWi8ViOTA2ImmxWCwWi2VRYmskp44VkhaLxWKxWBYllFDQaU5FT/f55jqLa7cWi8VisVgslmnDRiQtFovFYrEsTmYgtY1Fltq2EUmLxWKxWCwWy0FhI5IWi8VisVgWJbbZZupYIWmxWCyT4BZnw5j73hQ9PQsrsVgsltnHprYtFotlgiRFJHVJ0/stFsv8gRA6I7fFxOLarcVisUwD1CVoOzw728uwWCyWWcemti2WGcCmPxc2IpQoPl2e7WVYLJYpYmskp46NSFos00yrNKdNf85vxnv/7IcEi2V+QimdkdtiYnHt1mKxWCwWi8UybdjUtsVyiLBRK4vFYplbEEJAyDSntqf5fHMdKyQtlmnEpq/H0nhNFpqgXmj7sVgslslghaTFMsMsVKHRSjQn99vsmPEakW5xNszJ62U/IFgsCxPbbDN1rJC0WCyT4kCiSovByYiv5LH667koKC0Wi8WSxgpJi8UyYSYqDqcjgjcXopMH2sdsr89isUwNQqc/grjI/MitkLRYLBNjLqV3kyJzvAim9fO0WCyWmcUKSYtlGpnrtX4Hw1wTkM2+Tn5/qK77Qnl/LZbFDAUFneYQIl1kzopWSFosM8BCERlzSUROlvm8dovFcmiwzTZTxwpJi2WR08yeZy6KsLm0plad6QvlA4TFYrFMFCskLZZFxkS6rmebZoJsIgI3+bxWx0/G17JVHeZ4YzCtmLRY5g82Ijl1Flci32JZ5MwFkTgR5to63xQ9bQWixWKxNMFGJC2WRcJcE2cHw3hi7hZnw0Ht0UYRLZbFix2ROHWskLRYFgHzUUQ2CryZ3MN8vD4Wi2VhcM899+DrX/86Nm7ciN27d+Pmm2/GW9/6VgBAGIb43Oc+h1tvvRUvvPACOjo6cPbZZ+MrX/kKent7AQBbtmzB+vXrm577//2//4d3vvOdB1zDNddcg89+9rO47LLLcO21105q/Ta1bbEscOazSNJRxvm8B4vFMnehlMzIbTKUSiWceOKJuP7668c8Vi6X8fDDD+PKK6/Eww8/jJ/97Gd45pln8OY3v9kcs2bNGuzevTt1+8IXvoB8Po/zzjvvgK//4IMP4rvf/S5OOOGESa1bYyOSFssCxgqwQ4dNj1ssloPhvPPOayn4Ojo6cMcdd6Tuu+666/Cyl70M27Ztw9q1a8EYw4oVK1LH3HzzzbjgggvQ1tY27muPjo7ife97H/73//7f+NKXvnRQ67cRSYvFYpkiVkRaLPMTQumM3ACgWCymbrVabVrWPDw8DEIIOjs7mz6+ceNGbNq0CR/84AcPeK6//uu/xhvf+EacffbZB72eGRWS99xzD84//3z09vaCEIKf//znqcellLjqqqvQ29uLbDaL1772tXj88cdnckkWi8VisVgsAOrNNtN9A1TKuaOjw9yuueaaKa+3Wq3iM5/5DN773veiUCg0PebGG2/EMcccg9NPP33cc/3oRz/Cww8/POV1zaiQHC/vDwBf+9rX8M1vfhPXX389HnzwQaxYsQKvf/3rMTIyMpPLslgWBTatbbFYLLPH9u3bMTw8bG5XXHHFlM4XhiHe/e53QwiBb3/7202PqVQq+Pd///cDRiO3b9+Oyy67DD/4wQ+QyWSmtK4ZrZEcL+8vpcS1116Lv/u7v8Pb3/52AMD3v/999PT04N///d/xkY98ZCaXZrFYLBaLZZEzk4bkhUKhZdRwsoRhiHe9613YvHkzfvvb37Y873/8x3+gXC7j/e9//7jn27hxI/bu3YuTTz7Z3Mc5xz333IPrr78etVoNjLEJrW3Wmm02b96Mvr4+nHPOOeY+3/dxxhln4A9/+ENLIVmr1VJ1BsViccbXarFYLBaLxTIbaBH57LPP4q677kJ3d3fLY2+88Ua8+c1vxrJly8Y951lnnYVHH300dd8HPvABHH300fj0pz89YREJzKKQ7OvrAwD09PSk7u/p6cHWrVtbPu+aa67BF77whRldm8Uy37FpbYvFYjkw5CDseiZyzskwOjqK5557zny/efNmbNq0CV1dXejt7cU73vEOPPzww7jlllvAOTf6qaurC57nmec999xzuOeee3Drrbc2fZ2zzjoLb3vb23DppZeivb0dxx9/fOrxfD6P7u7uMfcfiFm3/2l0gJdSjusKf8UVV+DjH/+4+b5YLGLNmjUztj6LZT5hBeTs0DiL22KxWCbKQw89hDPPPNN8rzXORRddhKuuugq/+MUvAAAveclLUs+766678NrXvtZ8/3//7//FqlWrUpneJM8//zz2798/vYvHLApJ7XnU19eHlStXmvv37t07JkqZxPd9+L4/4+uzWCwWi8WysJkLIxJf+9rXQkrZ8vHxHkvy5S9/GV/+8pdbPr5ly5Zxn3/33XdP6HUamTUfyfXr12PFihUpo80gCPC73/3ugC3rFotlLDYaabFYLJZDzYxGJMfL+69duxaXX345vvzlL+Ooo47CUUcdhS9/+cvI5XJ473vfO5PLslgWFFZAzh1sittimV/MZNf2YmFGheR4ef/vfe97+Nu//VtUKhVccsklGBwcxMtf/nLcfvvtaG9vn8llWSwLhlucDaCu+qUlwomlPywzjxWUFsv8gIKATnNqm8IKyWnjQHl/QgiuuuoqXHXVVTO5DItlQWMF5NyEusQKSovFsuCxs7YtlnmKTWnPbZIC375XFsvcRKe2p/u2mLBC0mKZp9go1/zA63bgdTv4zboX485Vk/Nns1gslrmOFZIWyzzGism5AXUJqEvAchQsR0FdgkyPC7fAEPRHiIoc2W4fIpK4vee42V6uxWKJsRHJqWOFpMVisUwj1CFgWQqWpXAKDCxX/zXLKwK8InD3MSfO4gotFotl+rBC0mKZx9jau7mBCOWYpicn5yDb7aPz6DYseXE7Vr/sMFCHwOty4GYcKyYtljmANiSf7ttiYtZHJFosFstCgZcFpFv/I0KY+lpyCSfj4qSPnori9v0o949iaGtxtpZpsVgs04YVkhbLPMNGIecuNCEinQwD8xiYQ0EYAfM9EEqRX9GJgc39CEsRfrPuxThry6OzuGKLZXFDKUCnuaaRLrJcrxWSFovFMkMQSkxUkjoMAOD4HjIFH8VwFMRdXCkwi2WuMRdmbc93rJC0WOYROhrpFhhYVn3sXX36SkS1CIRShJUQ+x8bMMdX94Szss7FSrJOcuipUdN4AwCO/wKoo74e3jEClqUgLsFtXceCVwTeUHlqVtZssVgsU8EKSYtlnpBMaTuxkGQuQ+f6FXDzGQjOUd4ziKFtw+AVMYsrtQCqe1tEEiz+PiyHoC6DCDmYSxFEEogkWJZCRBK/KhwDGUorKC2WQ4idtT11rJC0WOYJHcfm0bm2gP1PDeAlH3wVWC4LXqmi+Jf/P/TJbizFHrSX+7Gm+nWE5Rqow/DMTzbP9rIXFdQlJl3dc+pSUEaQ624DoQR7HuuDm3chQg4AyCzxwAMBv+CivK8K4hLIUOLW7NFWTFoslnnDIisJtVjmL6/+88NwfAdOzkG5rx/lnXvhdhRQIgVUuYcKa0N29zOQQoJ5zqL7VDzXoIyAhwKEEkihUt5SSAguQRgx9ZOOrz7PU0qNCL01e/SsrdtiWUxQMjO3xYSNSFos84hjfnonfn/CS0FjoRgMDCKHUQiXoC0cgsy1I7+8A8FoBTyIZnu5i45k84yX9xCUAlCHpcQkAHg5FwAQ1SJEtQjMZ6juD1SaO66zvDV7NIhLcF7xyXFf8/cnvBSAEq6vfGTjdG/JYrFYxsUKSYtlHvHHV70ClBE4vgevqwOVvn7kakMYdLuwi6xFdVUeef9X4AMjs73URQkv12tTi7tHEJZCUIdCRAKVvTWIbgnJlVB0Mg4IoyCUIL/MQX5ZFlFNiX9eEZCxoLy95zhQR6XMTd1l3MDDXIZcVwYAIITEI69/NZhLTTQ6190GADji+7ccmgtgscwzbI3k1LFC0mKZRxRWtqNarGH7fc/Ab8+gOlRB9PtL4fgOCCMYBLBroIpgJLQNN7PM3vsHAQCDj44CUPWTIlLikNc4mK9EY3tvG9ysg6imaicLa9swuquEYCAdUW78HojHMbrUpMz9goQIlW8ldRiGtqoO/j++6hV42b33z8xGLRbLosYKSYtlHrHi1KMxsnU3SnuHEZQCtPW0Y3RPOvqoPw3rqJVldkmalOuIohKUSjiKkKMWchBG4LV54KFAYXUbRtwSmMsguUQwFJpoZ6bHBa8IEJfAbWfoOX6FEpIRh5vzUR0qQXCJ0v4SWGw3JLnAI69/tfpaCLz0N/99aC+CxTJHsRHJqWOFpMUyj5BCmGYaN66505Yy2vCaeRROzkFQtB6Sc4Fk3STLUpA4KikiqYSlkGAuNe8fADDfAXMZMp0+ACCzxMfS4z0AgOMzEErhZlWdZW55B2B+Fhy0reoG8z2IMMLA0zsQlGqo7QzAXCUqeQhsOvc15jzH/fw3M38RLJY5CiEE1BqSTwkrJC2WecSzt2xEqa8MEUlTRxcWeeqY/DofIpKIijwVDUuaZc9XaMMkmPmwp2TdZGlLzXyt96IFpSYcUe8nrwjU2gNz/9LjuwCozu+RviIoIxBcgjoMIuIgVKWzO49cBUIpeDVA76tPBHFd8NGSOme1hnJfP0p7h1EdroBQicfefCaO/8VdM3cBLBbLgsbmviyWeYSbdeG1u3DzDrwup+mIPeYz06hhmV/ohhp9S93PGkQ0lxChgIh4fBPgQQQRhur7UNVUyjCE5BzU9+B2tKNtTQ/cnI/aaIBgNICIBB447WWHdJ8Wy1yBEGLS29N2sxFJi8Uyl6EuRXUwaNlMw2scLEsXfLPNfIhGThT9gUB5Sar3jUTEjFEEAOpQMI+CMmI6vzXMc8CDCGElQjBcgptXndy1/iF1QFwSQSgBzWTQcfhKRNUAI31FCC4RVTn++6STAcBaCFkslklhhaTFMo846Y7f4/cnvBTtq/PgAYeXc7FkfTfcnKql40GEJcesw8jmnRCRwPb7t4BQZYw9/ERplld/cLgFVTtIXGLEcTJdPN+RoQSH2o90JGrxfHTzYaCijht4fggkFpGHvWqdabBZdvIxIIyBOAy8XIG39jDIfBtItYJo6SpIykCkANv6NIjnAY4LNwpBGMOyEymGn9+Bkd1xZzkjuPuYE/HaJ/80K9fCYjnUEKJu033OxYRNbVss84xaf4Byf8WkOnkQmZSKiDhK2/sAAFE1gJNhIIyYRov5SjLlC4ytlZzPNO6t5XHx+y2EgIjqQlqGIXilAuI4oBkfsq0A6WUgs3mwyghYUAarjIIPDiLaswfR7p2Qtao6JyVoW70czKXgIVc1l5TinuNOmrkNWyyWBYWNSFos8xTCYlNqzwGhFFE1QHHXMHLLOlHeP6Lq5eIUKA8FWI7O20ieDCWSKycuAcX8T2+LUEKGEiRLTV1ro22TTm3zkKvrEEkEo1XzuJQSIlB1kKJcgVMeAXE9yHIJJJMDwgCgBOHQMAhjkJzHzTg1CEJAfQ+ZTh9u3kWlv4rq/gDUIbhz1fEQkcQ5ex4/dBfEYjnEUEpAp9muZ7rPN9eZ32EKi8UCQEUlo6pKiY7uHkBUDRBWVMdvWIrAQz5vRWQjB4rczReSIjjZHNWqtlWLyMZGKuo4cNryENUaJOeA6yk7IMEBWT8XYbG9ECEgjgMRhBCcA1J1fju+g8Lq9oa6TIK7jjxhurZssVgWIDYiabHMI27rOhYikqjuCTH6rIpKrX3VBlUfVw0ghURx1xAAIKpx9D9cnMXVTh5jiZMQSzpCR1yCoKI7keUhj0bqtWVXeUbsiUgi6J/aTHOnwIzxOGEExB3r/0kdgqVHd5kJNvnlBRBKlQn54Ucq0cg5ZK0KXugGiQJQSiDyHQAAwjn8tWsAxkAyWchsHu35PIjjQubacUS7GqVIfQ9dDz+JYLSK2kgVpf0lSC5s3aRlwULI9HdZ265ti8Uyp2mMLPIgAqMEYamCkT4lHHkoEFWmJnAONa3qHvVYwcb0CXXJIRWT+rW0h2ey+WcqpM4h1PvLmzxW7a2BUlKvlYw4eBABQRVSCECq9UnqAExCUgeS1k3OaV6JRRAKCA4xOqrMmB0XMgxBXBdgDPnepSj4HkQYYv9jWzC4ZQDMZbi95zib5rZYLGOwQtJimedElSpYxkWtWEF5fxmEEkghQed5g00jWlDOtkcmdQiISyDDsWnmg0GGEtKZ+Hkkl6lmGxAKQtW/MghMlza8DISXVYcIDiqlaiflIQBPWQJRqhpzpAS4imrWT0vR3tuFwS0DY+yGLJaFAp2ByTbTfb65jhWSFss84tyBJ3CLsyF135//z6MA5nfjCcsp0atFGq8IUEf5KAYDKrLqxDZA2haHZSk6j81BColsVwZ7HhwAMPNp7+R0mumguidMz+OOI60dx+bh5dWvaMIocl05M81meHt/3KlPUXnqKWX/QwmC4ijygVqfkBJu91JASEgeQSxfpe53fEjmgBzXDUkoRjp60eE4AKGodq9GbvdzKgVeqyJTrWB42z4M7xhGZok/rfu2WOYChKrbdJ9zMWGFpMWyAJjPIjJJssmDuMTUR4pE9E9HJoG6JY7kclbqJqeD8cY+Ci4huQTzVCobUOMQg1HVSCWExOiOvaAOA/UchKNVuG1KZEaVGjKcQ4YhwBgcTwlBks2rk0chQCjyhICUigCh8N29wMiQEp9SgLQV4OZ8UJeZ2d4Wi8WSxApJi2Ue0RiNBBaOiDQekQ4BT+xJW/0kIS5RHcxcQor5vX8Rygn5YpLYUoQk6iQdl4F58a9xIVWtZIzbllMd2nHto3qCA0gBUqvGYRMOwiOV0ibS1FkCgAwCEELVNBw6dkSjxbIQsM02U8cKSYvFMmtoAdV5dBsoI8h150AdhmXHrobXWQB1HWVpA4Dlstj1e9U5zIMIXlsGpX0jEFzC8RlWnN4N6jDUilXse3D4oNczG8I8+Zr6mjQKtzDRPOX46lc3dSiC0WpsRi9Q7h9FMPocsl1tEJGaw808B1JILHvlS+Ou7Rzgeqg+8TgIJWDt2zDw1AsglAKUYODZPlBGEFZC+O0Z7H1yH6JyBOYzWCwWSyOLLJNvsSw8FsKUF+Yxkz51fAcsmwHL+KC+p+r/GIOMu5TDSqhSuQ4zhutSSEQ1jqAUgAdT66Se7esp4hQ9DwSiKld7q3IEozVzG91TwuieEkb6RjG4pR8DL+zH4Jb9KA+UMfBCP4a27sfAC/swsnsIo31DKO4cQNg/gGjffoihAcjRIsLREoKhEYQDQ4iqIaJqABlxhJUQ1WINtTh97hc8ELceBbVYFhLakHy6b5Phnnvuwfnnn4/e3l4QQvDzn/889fjPfvYznHvuuVi6dCkIIdi0adOYc3zkIx/BEUccgWw2i2XLluEtb3kLnnrqqXFf94YbbsAJJ5yAQqGAQqGA0047Db/61a8mtXbACkmLZc5zW9exuMXZ0DStvVDggRJMMpmepVR9z7m6SammuwiRuKl501GNI6pECEsheDh1S57ZFpOAqv9MRiX1JCPCqPKbjB+vp7wpKFVRXfMcStTow0ioFJ7DTIe2jDhACajrmHPo90B/HdUiSK6uJ2XWnNximQlKpRJOPPFEXH/99S0ff+UrX4mvfOUrLc9x8skn46abbsKTTz6J2267DVJKnHPOOeAJJ4ZGVq9eja985St46KGH8NBDD+F1r3sd3vKWt+Dxxydn82VT2xbLHEULx7kgamaatuV5UIchv7wDXnsO+eOOgehaDgBw9u1WE1ooQ/vKF5RvZpyuZS6F4MSIH8HlvJ8rrpFcjYXUndo84KbxRtvxCAC8FilR6TCIWAjyUKW1QyGNSBRBACJdkKgE6mdUKhtAVKnFjTxAWK5BhDx+/VhAugzZTh88EKYZymJZKBCibtN9zslw3nnn4bzzzmv5+IUXXggA2LJlS8tj/uqv/sp8vW7dOnzpS1/CiSeeiC1btuCII45o+pzzzz8/9f3VV1+NG264Affffz+OO+64Ca/fCkmLZQ5ya/Zo8/WBavbmc7NNdpVKm/JQgIcC1aESuk8+FshkERSWA4RAdq4EADhBBR1HbAahBO6ypSB+Bvu+fbMx6R7408ikX5/laKrbey5dy+LT5dT3bqFeo5jsXM8sd+vd7pRi4LHhlOem9rzsf/ou0w3vZhwMPjpqztF7xlIAysg+aXoeVkLs3zSkXr+dIRiIcGv2aIhQ4k3R09O/aYtlAVEspieL+b4P3595G61SqYSbbroJ69evx5o1ayb0HM45fvKTn6BUKuG0006b1OstjI/uFotl3qPTuLvuegio1eDv3QoW1sDCKjL7t8HZ9hR4LYAII/DhIkS5VE/DLmLD7KSIbFbHqMXkeDRev1bXcy4JbYtlOlB+rNN/A4A1a9ago6PD3K655poZ3cu3v/1ttLW1oa2tDb/+9a9xxx13wPO8cZ/z6KOPoq2tDb7v46Mf/ShuvvlmHHvssZN6XRuRtFjmGAu5FrKRTJcP5jEsWdetavwcCkIpSo89Dl6pglAKv7sTor0NkBKiFkByBrezA+AcPIg7up3F9ZlYe2qmxjRmAcaad1bLUI11RJYCkYSXGyssG2tL653hxLwWUBeTtzgbbFTSMu+hRN2m+5wAsH37dhQKBXP/TEcj3/e+9+H1r389du/ejW984xt417vehf/+7/9GJpNp+ZwNGzZg06ZNGBoawk9/+lNcdNFF+N3vfjcpMWmFpMUyT0jWSs6nyJBeN3EJCkfkEvdTSK5q+MKy6hCmDgV1GIItfaYW8plf/tkcO/xsKT5OnVPPvNbfa/SkHCAdkeNlgfw6H7wi1EQZh0AAwDy4nmGxSdF8KFGJr92BCPrr9kGVHenn7H140HydXaUiGDKUyK/IGaHabK64/tBjBaXFMhbdDX2o0JHPo446Cq94xSuwZMkS3HzzzXjPe97T8jme5+HII48EAJxyyil48MEH8a1vfQvf+c53Jvy6VkhaLHOIhRiNPGBadRxDcUKTXcvjn4c2RMymsqbFTHJ+OJnuUI3FMsdYyIbkUkrUapMb6Xowz7FC0mKZI/xm3YsPeMx8ikRqkhHBpM2MhgccYVn94sotbQd1GKSQ8NoyoA6D1+6pTuSAj4k8akSUHo8oG65T4/fJ51kaxGOi5pJSkhbdLa6jTXNbLAfP6OgonnvuOfP95s2bsWnTJnR1dWHt2rUYGBjAtm3bsGvXLgDA00+r/2srVqzAihUr8MILL+DHP/4xzjnnHCxbtgw7d+7EV7/6VWSzWbzhDW8w5z3rrLPwtre9DZdeeikA4LOf/SzOO+88rFmzBiMjI/jRj36Eu+++G7/+9a8ntX4rJC2WOUJjujEJdQn8Hhe8IlIpyrkOdUlqfnZU5RCxTyTjDEFRpZf3VwcAAP6eURBKlCm5SxGWQww/r7qxU/WAUKLaLTBz/s6j22J7HIrVL1tvRCsPIjgZDzwIEVVDdBzei9Ede1HcOYitt+2cl+J8ukleg9Fnq/WvX6hMeISjxTIfIRSg01xiTSZ5voceeghnnnmm+f7jH/84AOCiiy7C9773PfziF7/ABz7wAfP4u9/9bgDA5z//eVx11VXIZDL4/e9/j2uvvRaDg4Po6enBa17zGvzhD3/A8uXLzfOef/557N+/33y/Z88eXHjhhdi9ezc6Ojpwwgkn4Ne//jVe//rXT2r9VkhaLHOAiaS0ZShbRtbmCyIxC1p3aeuZ2YD2LqSQQoB5HqJaNCYNre1s9NfJKGVtOECmy0dYroE6DNnuAghV0U7VzMMgIg5CCaQQcArMnKtpDaIFwMTngVsslsnz2te+Vg0KaMHFF1+Miy++uOXjvb29uPXWWw/4Oo0+lDfeeONElzguVkhaLLPIZGoiRSQXRSqWxZ3brWglpmsjgflXT8iRQnlTZjrz5vtm6XXiklmbsz2XsdfDstAhmIEaSSyuD11WSFosh5iJisdkt/NkmEzTyUyRXDvLKlHIshR+e93TjDICN+9ACGEaaQij4JH6XgoBN+umzqv3RGPhp6ORIkpHa2tFZeZNndgOhxJTe0kYA8t4yHW3AdhnoprEJfOie3u2sKLSYrE0wwpJy6zRTFDZgv06fo8LGUqEIxwylAjKE6uNnEt/8GUoEcUj96JivVmG+QyEEbStyEFyieKOURCXoDqo0tBtK3IISgEkl0ZsAkBhg7IP0sKzfWUbglKATMFHW4+y2eg4vBduoQ0QAo//xReQc6oYlgRrqk+DihBeaRCZzU+ibWAQQ1sHEJRDOBkHwUiA4vNagBKb6rZYFgGETr6mcSLnXExYIWmZFRaizc1009hYMl9pVl8nhABjrD4zOpJgiWP0/TwSqbrKRoKSSmcLLtM2QkJASgkCiUg4IEQicnw4ESAcDyzfDgwNp17LyTC47XVDbyskLZaFDyUEdJpT29N9vrnOItPNlrnOLc4GKzJjoiJHVOTg5dZCaj6QSnP7DMxncDP1z7A8qhteh6UIvMZBXQbqKlGnbGjULbPEh19w4Rc8OBmmmma4QK1YNaPJdj3wNEQYQUYcx97+RWRZFQ6J4PAARArQsArJIzjLl6Gtpx2ZTh/MpSDM/jqcCvb/rcWyOLERScshYzJ/aBazL50WXixLVXPNFKORh6Jm0ut2Ut3TTqEuAp2M+powAhEKUJeCeSw13jC3PGMeczIO3KwDQikcn6FzTWfcaU2Nz6SIlPfk8pcdDxEEoK4D2tYGuqQb0Y7t4JUKRBBCco4/71mBl67YDq8yDMEc0GoJslyCqFQwtG0QlaGaif7qMoKZgOWoOXfH0XklfBlB8Tk1rUevYT5Hny2W+QYh6jbd51xMzImP4N/+9rexfv16ZDIZnHzyyfj9738/20uyTDM2WjFxRKjMtcN5FI00zSqIO6DjCCLzKAgjyC3NIb80h0yHj7bleUguVP1jzjURSS0wAdVRTZlqkKEOA6EUzHNM+pp5jvqec0SjJQSDw+DFEUQ7tmN08w7wSt0L8bz7Lscob0OQKSDwCxCZPMCViK0M1eBm6iI4uY+ZgMS+mrpzXIQCvCIWTDe+zijY/+8Wy+Jh1oXkj3/8Y1x++eX4u7/7OzzyyCN49atfjfPOOw/btm2b7aVZZpGFGo1cyH9gW0XyMh0Z87VukulY3QHCCKJaFHtH1n0lASCq8abj+aQQ4EEEKSSY5yAaLUFGHDLiqi6Sc3gd+fjgxPQcSU2YgG6Jf7ZEvdPbyTlmAg916p3mM0Gr6TxaZC4UrKi0zAd0RHK6b4uJWU9tf/Ob38QHP/hBfOhDHwIAXHvttbjttttwww034Jprrpnl1Vlmg4UqIm/NHn1IXsfrdkzTSGlL65mpB5PyTjbN+D2uEUXLju0GoCKJbtZF76tOUDNsfQ98ZFTZ7jgML/xqI6IaBw8FMh0ZDG1WDS9euwsRAoASkJQSuDkf0WAJK047XtU8co6RzTvN64flAGFxFDyM4PgeQCmCwWFQ10mJSMIYjvnt1xAOF/H4+V/Dqd7vwQcGIYIA+RWqCzyqRMityGB0R0VFCOMGoamkmXW6X0cb21Zn4/UQDD46Yo4T4dTLF+Y6Wkwu1P/bFstiZlaFZBAE2LhxIz7zmc+k7j/nnHPwhz/8oelzarVaaqB4sVic0TVaps5kIxLJPzrJ5873P0KHqvYtOdt6PFqtZ6ICMymSRCQQlkMAQFgJ0Xf/45BCYuUrjkU4Wk68pkopkzhtrWlmEl7aN2J8JKkb+03GRuUi4rHBuFQRSVegtl+NWYTrAESdnxCi5p9RAkIpTvzVFcCq3jFTJHSktB6NFGBZCuLG3eMTLDFICu1k5JE6xLyGCOdHucJMMN7vgvn+/9syP6HxB9fpPudiYlZT2/v37wfnHD09Pan7e3p60NfX1/Q511xzDTo6OsxtzZo1h2Kpllmg8Y+OTZHNLZL2RFpEAspORwvC7b/7M56/7c944c7H8MKdj2FkTwmEKVE3snu0/hyRFnZCSAiubsRTJubEdUE9B9RzzHP0DYCZTiHCCJASIkrY93AOybkSoEFQ/5rPrKhLjnCUXI2CFHxhRx8PFvv/22KZn8x6jSSAMeOJpJQtRxZdccUVGB4eNrft27cfiiVapsB0Rhrm4x+bQ10nJiJprIMmwhiPx7jZpxmmWcQlcAoM1FFCyc25xrKH+Q7cnAc35yHTkYXjO/HYQ9WEM9pXRnl/2dREqvGENBaYcWSQEohIiT1RroBXaxBBAF5VN/2YlGrkIWmIbjr5HKjngjAVlSSuC+o6YNkMIASoo7rCBZfgAYcIVfOPjuT6PS4KR+Ynff2S18fv9iBDaeotdUSSufSA13mxYusqLYcaWyM5dWY1tb106VIwxsZEH/fu3TsmSqnxfR++7x+K5Vksc4LGWr0D1e5llrvwO1QUr7onPKBYaXx8vPMnDbu9XH18IY2FIqCEnIg7saUQqA7XS1GSVkCAanJR99d/FVFKsHRDD3gQIbu0gPKuvSYNnunugBQCIojA4sgkoRTM9+C05VHrH4QIIwSDw4gqNdX17Xug5Qqi0TKyvcvBS2WEI6PgtQCrTl5r/CcBVXcJAJ1HrcZTP/sjOo7KgzCC1acehqgaqrGNOR9OxoOT9RGMlDG0db+JfvY/PwgZqpnoQVFFaXVXdv/DtgxnMjSKSZv6tswElKjbdJ9zMTGrEUnP83DyySfjjjvuSN1/xx134PTTT5+lVVks08dsRVaSKd/phLiqLrKVXU093SxMDWPj4+NR6a+iPKCsewilEEGEsFRBVKkhLFVAGAOEVEbkQoIQVf8oIw7CGLIrliEcKUOEkRKflEByDuowOPmsOk4/l1IjIqnDwDzXrLsR6jDwIIKIhImGRrUAhBITYZRCgrnMpLN1repCsfaZbZLRShu1tFjmDrPetf3xj38cF154IU455RScdtpp+O53v4tt27bhox/96GwvzTIHWYxRicmmP5nPQN2D/4zYGP1M4uYdUGf8lDmJG1vU1+n7kyTtfjTMU+LOa8vGr++omkdKUBuqgPkeBFd2P8pjkkJEAHEYRBAgGBiGV8gjqqgoKMt4KoIZqjnlknMEg8MQYQQRcfAgitem/tURyRd+/YhZk+QyNkQnRigTSpR9UHyjDksJUOISMChDeZalqXpSi8Uyd0hmJKbznIuJWReSF1xwAfr7+/HFL34Ru3fvxvHHH49bb70Vhx122GwvzTKNNHZgWw6eAwnL/LIsmK/Mu1mu3tByMObmja8VDCWaatrrj1WGqqnjijvr9jYm5c0IynvTx3kFF5QR5LqUDY/jO2AuRVQN6l3dsWjLLeuA36VS2+6SDoBz0GwWMopAPA8yDOG0t4Hm8gj37wchBLWBIRBKUdk7ABFx+B1tiGoBwlE1UlGnq83+SjVUi0qEHvkXL4aIhWbxw19U6xVVPFk6HBEnyPshSjUXrxv5CUhQBSjDE1/6DoSQYC7FwFPDIC4xXpVugdnpNdPMYp6AZbHMFeZEs80ll1yCLVu2oFarYePGjXjNa14z20uyzABT/YU/H/9gzMaaRTwVZqZpbhjeWiDJCXQr6+gAi7uzCWNwfFWPSB0G6jrwlnapiCdjAGMgjgPiqMYasHgyTtyl7Xd1wl/ahczSTgAA9T04vmfqK9OvTRGMBvU74r0IzuGLChwZQhIK34nQ0zaKvFMDlwTSzYC3damJOYm9Jif9ALAp7hnCfkC1TAXbbDN1Zj0iaVlcNAor+0dg+lm2oQd+Zx4y4uh/YhCAEjHTMW4xGWHjcaczAJPulVyAUDZGUI6X6hFcRfCqxRqYG3d3u64RlcmIYVSugLW3QQoB6nkgrgu4cdMPpaAJMan8I6nq3KYUme4OJVKzPpyII6rU4vMn1skIGCNqX3HtJKEEQ6SAisjAowFqkQMKIOMo0SkJBZECkjoQcaqbx1NztIi06W2LxbJQsULSMqvYlPf0M7ilH4XeyIg5EUll0zOJSS2NtZEaN++A11SNZHlHPU3dtiKnUtFZN05NRyoq15DOruyoR/yoS8ArAjKUGOkcRVgKlZDzGEZ27jfrX3JUr2qMYQzZw5RvrIxnZZP2TnUywSFKfZBhCMJC1PYPgjgM1HUBIVAbGkFUDePucgoZm5tnOvNxEw1HMFrF+te/RL2Ww/DEeSqdHQmK6769D0t788jlCnjhyW1wXIZcexZbHn8Sr/uUAxIFACHoWNUBKVRNZamvDOYziFgIsyyFdOL3JEzXmSavt9elfi1X94RwC8y8h8kRlFqgSmshZLFMCdu1PXWskLTMOvMxZT1RZrNrW9NqtvNkIS4xoih5HxCnrZ10Aw1pSK83rkMLIOKqyRI8FHAYAw94av0y4qC+SmvDcdWUGs4Bx4XM5gHBAc5VdBIA8Tww3wNxGAhjddGZ+O0ejFaR7WoHgETDDQH14nMQgkhQRJLipPA+HHfya7BndwlCAstXd4FzgRef0I01h3eB8FuVkKQs0QHujLle1CEIW0QlRSjBchQylC0jl6kmqKZHLF7sxByLZfawv48slgWG4zN4bRm4OQ9OgYFlaTzuLzGyzyXm1kiraKQM6/Y2+lxaHPLYFieqqUionuIyHikjb6ZsdPRz1AhEaWZ0C85VXaTjKMHmZ0AyWQgvA2ih6Lggjgu4dREJINFBXve5pA5D22G9YL6y/FHRSgbqecqsnDFUIhfH488IvHb0769gy5M7sGfHILY+tQPtHVk89dQw7rv9UTy25EwILwtQltwe3MzYz+nawD157fXXzaKLvCJM1LYZNhp5YKxVkGU8bI3k1LERSYtlDuEWGLwuB9W9oalpnExKGgC2/no3uk5U3dpRkaeaPNxYWIqoHvmiGCtIkqnT5H1Ohhmxt+TYAhyfgYcC3UcshdeWgYgEvPYcdtz1oHnOeCJIT98p7auo9ZYjEJeguFt1fRNKUBlSj/Ucvxrl3fvUuuKIpU5L6w5v6lDj+agteaJqiJHdQ4hqaj73/seGAADsjudxzNuOQ1gO4jpMCmfFCowefTo4c3EcfRqRzCCiLv7yLAe/zh+J155CMFJdCUIAj/k46kUn4cRNXwMvFgFKISKB2oiaLV58vpwSh163U5+cU3ARFTlYNjYsT1yjsMVEokyPOybFzbKtj6cuMR8gqEOMMbpmOmpm5xPW4NzSDKJKqaf9nIsJKyQtljkCjSN9vCKUoXVDBHEyYrJZ93RyKo05r0PAJ3FeysiYlLVqkFE35tFUR3QrEdkKM+kmFqiUEmQ7ladkcUc/olqErqNWoLJ32AhF7eOo6x+TRuMABQ8ihJV4ykxYF09aSOtmHv1v2xO/ByjD3hPfAAIJKjlGAxeveikQCaAWUjAqwahE1ieQ/VUzyxtAav/EJWAuAS+no4ocsQ1QNLUaR9IietzqcR1Bth3kB1d2YsWnxTIWKyQtlhlkMs1EyT/6xCUQRfXHXtfOTQYeKKHiFFi9y7qh9q5V7WSj+Eh+n12SBXUDSCGRKfhwsy7Cim5iiaOYTSbDTBTdoKMFH2EE1KHxepVwrA6MxmMYdfpbgAcRCHVBKMB8F+1HHoa+P/y5fhwfWzMqIgm3PYdcsh5z6Qr1ukJid7QSlAhwybB7wEFcSol9/REoIWAMqFRD0GUrQCmBJBTZR58DDyLVVe7Up9qwHDWvCcRR4EmKOeISIJImyjsREan3SlwCEiU8LdvZootITgf6/7IVlAuHmUhF29S2xWKZVYKBKPW9EQ0HEJO65i67yoMQAsxlkDWJcERFyqIiT6WaW0XCkiKlUYxQh8LNqoYU5jmxPU48NSaODDZDhLJp7aVeg6mNFAIQqqtZcAnASY17VOlzlcoWUWREa1LIqj2EJl0NKEGaFJNJEdfUD5MSSBBwycClerxalfA9AtchqFQF2n2GakVN3ZGEAoRi4IV9cLPKZF0LP31NWTsDSbwuc5PrrTceJQVe8j1KdrwnSV5XXbZg9pYoUdAzwPW/loPHGqFbLHWskLRYZpjkH5xW0UktBtx2NqZzV4TygCISqEcfS1tqYDkK6hDkVmfS01Ti8ySbPRoFpQil6cIToUSyAq9v4z5zvpde8nIEI2UQSjDaN4SoqtLHbs5vKlLHS+EWny6nvo96uLEtKu1Tj1FK0bZCTcCRXMJr8zC0rQjKCKhLQRlBVOVwMgy14p8BqJGLPBBgXhwR5BLVPYnpPBE31kKEEtCBvRg89rUIWAbliotK6CDnRXjd+ufV8aBYufNBkPIo4DiIVnXh3r+8Diyrzs/8upD2upwxkWQtJKNEXSMvC/NeTDTyrMsgZCiRW+eb+wu9ber8NQ7JdVSXKn/P+F99X1hS14FQgpHN9evfquZyPpMsDUlG+KdSVmCjkwsDQgjINIcQp/t8cx0rJC2WQ8R4KW4dOdJdugdDowjhFQEe8mmNPukUKQBke5eDDQ6r1woiOBkPoAR+Z/uUX0evuXHt2c4sBJcIKyGi2M9SRS4FRKhEUVCKIIQApRSCSwghQDgBbYhKqvPH9ZFSwO/oQHXd8fDCEogUCAWD5wiUAwckKyEJAZMRSLUEEoVAWAPzMmqNcSOLsjJSorJZ5M8ImHgGt26CmSyNU3MAqAh0vD/mUIg40kopMV8DdEwEdrxpRAuFVs1kE/mAdiBsdNKy2LFC0mKZA7RKZ04E2iAqdD0ey45fW3kw0RgdeQOUX2OjtQ6EhIymHtFKrlun2oUQiGoqjc5cirASmppKsz6PmvpKIQToZBzOCAF3sxCEIWQ+Ik5QDRm4IPjT4Hqc0LUFVCrPSlkpgWTzIGE63ey3e/U6zxpPTbShDoF+l7UlE3XI2IaY+N/x3p/kz4tuzgoqIZibeH9ic/co5CAs/T4lxSOhSsweqOZyIWAslxL1q9OBjU7OXyhmwJB8ek8357FC0mKZYSbTHTrRBgiv21EG1yPcCK3GBgyRqM8jcSq7ma1PM3RNY3a1Z8QjpTSVgi4+/QIq+4sglOKZm59NicwkejoLMPG0afI4bY9DXQI3M1K/PxCqGYepDu3hZ0tqnQ4Z8zodx+YhGkQnAAxt7jPjHWtDJbT99CYw10G76+LlxVHzF+aZ//oTdsbRvid3VFM2PEnB199fNF83lg60HZUxdZHZbh9O1gFzKIgbrzsW5dX9Spx2HJ5HVK2bqVf6a+AVAZalqXrJWpyq13ZK7etV+p8ygvaeNgiuZq/rcY96v2EsPAmlcPOuOd/g0/U9NNo/Bf3p+t35hi7v0D8d2dUeAPUzk+ny4zIJhqgaof/hYusTtWAuRCeTv29mey2WxcFiE84WyyFlJo2QdaQr2UCjmyr0LRzhxjNSJI4BWhuPa0R8Dp1u16MRk5iIZEPHeTO0mD3Q6zZDPye/PG+sfXTd43hzvBtpTG1LIcFDDh6qzu+oXENUqoBXqhARB4QEhITg+rh6qUDSmL0ZRoDHe84vyyHXnYWXq4s2wuqpcCHEGKGr5o4rWyXqEHhdDtx8+vO/MYeP16MsmCgcXzVD6X/1fhv/1dePudRENJPNOeZaJSfrLJDoZbK8wMk4cHMuwlKIJYd1HvQ5Z9MAvfF1rRH7gbGG5FPHRiQtlhlipn+J62YUABBAKiqZ+qOvbX5yddE3lRnNunGBuY4RIdRJmF9TigrGdhjr1zxYESJCiZHdymhdxrWPlFLjyXjAdTOCsGHGtWgUllJ1elPfA5MShBBQP45aJVyLk9ZJyTMmo5DEJWCJz+o0HurL2j0w30mll3V9o4ocNqS64yiZbuRpFJvJ9zIqctSKcYQyLxGUapBCwst75vWMeTsjqVQ3D4WaLtRQVqCvbnJdC2WijnYycAoMYSkEbfdAGMG+p/unfO65EJ2cS+uYq1j7n6ljhaTFMgOMJyK12PC6HPjdHso7qmO7tA+ATjFy1FPHjWlIIJ5so70DEynmiZqQiyjRwQ01XUUL0a33PoPqUA0AUp3QgEq9a1Gb3Ft9DWnxN96ek4+NPFuG1+WYKS06QieEQHZVXfCFxXQXuBdH8ahLUSvU17r5lh2p45L1pbqzmrhE+S7GdYS6vlHvz+tyjKjXKW+v0zWWQ3redlSLTK2imyMgcfRv5UtW1NfZloGT8SCFQK1YMZ3whBJjicQ8hkxPYNYWDESp6USjL1TMOjU8FHCz6hpo8Zysp8x1ZSGFhJt1seRYDh7EllFVjsoe9R7LUMLrTv/JSP7MTbXbW1/7A33I6Tg2Dx5/IMh2+kY4K/9RPqYEo5Gk2F9yVCG+jyG/NA8eRPALHLViDSNu2RxnsVhaY1PbFssswSsCUTmacqPDZJsGJjNNRac3TXo8qqe6K/3Vps9pbP4x98eNJfrWOP+7Fcl0OHGJ8cXUUVC/4IJSam5CiDGzxAWXcHMu/HYvtYYxrxXPwm4W0W2cL66/T0aGAWXDxGvciMhUhI+LtN+lkGCeYzw5meeAeg689hwIJXAyrjkOUFFELfKS62FZalLbjetsek0ZSUVE9demmcmLP5zw9N4aSyf0z8Z0kaznHQ8dHS7vq/8MSq7W1BixbXkOV0d6HUghMLp3BOX+MqSQ6DysyxynBe7BMBdSyzYaOT6UzsxtMWEjkhbLLJCybYlNpMebSz0VaINo0uMXJyImkxFJoG5QzkNpuqKTf7ib+SGayTqhNNZByZQpccmYed9JIWGEEep1h2a8YXLsYEMNZzKN7uVcEEohwgNHzbTA1QJRRyCdROmA7pQ2z/GVeKQOgZtxIFyVpiacgIODuQyE1c3cvbxnnutkvHgyj6o59QrKC9JryyAYrcLJuKqWMfaBZB4z14G4JBU5TV7zYCCCUwjiayFMQ022MwMR98wQSkBCYYQkoQRRpd5Qw2vcCPek32Xjz850OE+a0of4+6T3Y/Jn2C94YE7daN7x63/GopqasT7ybPmAP99qfGW9yz8sh8pfsxKi3D9qjpnq/8lD2fxiRaNlNrBC0mKZBbSQ0lE+zUQm2Bzs62GcCNWUzs2nZ72tRMp48IrA8Asl831ynrg+H8vVxS5pUoPYiIik6a5OCjYNc1nTMgL9tR5PSVxlPiT5xJqCqENB4zndrY4ljMLx2ZjXlKE0TSPNIq3je0cK09mdnCI0Zn1u+gPDTKR8J1M/S102tXGcoWqi0jPZATXj3ct7YG69XMSmthc2tkZy6lghabEcYswfJh1tiVO+WuDo+ruJ1pxpyyDZIH6S3cUAJl2Hqc/dahVJ0aIFQHK2d7PXoon1yFCmRvolj9NRQADwOl1U9weQTvq82v5If+11OWZdbYdn1d7jOsWBp4bN6y49vgtO3LhSGaoq8RRPftFpY+YxVPM1I0D9goog6lrFZO1jZWe9sahtXdZ8Xe6rmr0AwHB/AK9TRQWrw1VQpjvRO+BkXGXNE3GIMAR1XfgdbfCXtKuu8YiDOtSkwnVkUwqJ2rLA7EFwiTA2ZNfXGACCcmjWEy6v113q/TGP1Run4tpJyggEl8iuSv/86JS2rr9NfgDQkcPxopdJknWRyeifEccNqXriEkhe/5nkkUBU4yCUwM26iGocjrnmzX/ek1/veXC/+RnU+9JR6JkQkBNJdduo4uJkZGQEV155JW6++Wbs3bsXJ510Er71rW/h1FNPBQDs2bMHn/70p3H77bdjaGgIr3nNa3DdddfhqKOOannOxx9/HH//93+PjRs3YuvWrfinf/onXH755dO+diskLZZZRItHHaFsrM+bKofSZDrZWJMcD5gUsK3qEsNYDCdrIfWxYSlSxt6oG3vLhqhiY2QXUGlZr92FQCyqk1Y28VxwSpVJOKHq69R+GIGTUYLT8dMzxJ2MAMAghUTUHk/YiSScDIOIU6VOgaU6vYlbF26F3gLCSgjKCDLdBfCq9oJUIhJCAJRABBFYxgNzWL3b2mFwsypVH9UiUBqqYykBD0JlixRrWx5LLuYy0E4VmdVCUXJZN08PuBG2NFmqwAgkV88zaX0I84GAJUSeCHm99AGTiyyPZxmlz69LDhzfAfMdUEbAuITfpr0gGTIFNS4yu7KMYCisC8QWJQ3Jn9nUNKWDnC41HVhz80NLbKYw7eecLB/60Ifw2GOP4V//9V/R29uLH/zgBzj77LPxxBNPoLe3F29961vhui7+8z//E4VCAd/85jfN4/l8vuk5y+UyDj/8cLzzne/E3/zN30xxV61ZZCWhFsvcorGuTTcvTKWBodH7T99mgsZayGbiEagLQx1p1JYrzY5Nnis5k1qnb5uhBYyJ6sYek8FIaDp8U8dTYmx1xgjI2KcyKagIpUp4OkwJJqZEYTJl3Lg2nR5Nfs9cCiej0qdu1lWNNr5nGm6kkEpExq9JKIEIQsiIJ+x7qPHv1GsUQoLG3prJNRkhxkjLJpQxYyO5NDegHtUFWhvZJ83vJ/OzazxNm3yA0h3xjdeVRwJhJTTrM+uNlB+ovk7JKOOBSB6TjJLPJnOhUcdyaKhUKvjpT3+Kr33ta3jNa16DI488EldddRXWr1+PG264Ac8++yzuv/9+3HDDDTj11FOxYcMGfPvb38bo6Ch++MMftjzvqaeeiq9//et497vfDd/3Z2z9NiJpscwiQX9kLHWoQ1DZGUw5pcbLwqS5D0V9V6MAkKEEsvU/zkkbGtOV69QjXF62/mtIC5/c8gxqIwFEJJFbngFlBNESjmAkjtzpTulEJDIYqDeJEErAfGbEk9teX+OO3+wBoKKfjdN4GoW9FhVRD487ppUxe9LuJ2l9lIyMjjelqLSzYtLyQ1uHjCiSXCK/LAshJLrWd4MHURw9pWhbsQSgBE7WB8uoKJybz2LXH59V14RLUJchGI3teoQE4QRwASfDUN5XbSmQeJmb6KkW4UB9elAzEarrUfU1CxCZ+2QokVun/nCNPltNRZqTdYfNaj2BuijXJQu6fECMSAwWi+Z5XpcDL6eakbJdGXMuJ8PgdTnKJzJKf5BK/p9oNqlnotOlLAuDmayRLBbT05F8328q6KIoAuccmUwmdX82m8W9996LCy64AABSjzPG4Hke7r33XnzoQx+a3g1MEhuRtFhmmWAgQlTkCAaiaRN+4hA0CejXaHYz03CapZyb3KcjlDqqSONUqtflxNE0FWkbzzooaVMUlEMIIcDjesZGyx/dLNK4Fj3pRKdSdbQ0KIYIRkKEJSU8kvV0+nx6DZrGKT7Jr3VkVtn21KOLWrQxtx4BpQ6FiASY78LNZ+HksvAKbfDacnDbcvDyXj3C6VJQl8HNu2oiTnzT/pXUIU2bo5Ip+GQ0svE90h8CTCd7gcHNO6losD42GIhS4xuT4pHlKFiOwm1ncNvHNg8RlyC70lcfBuKfDZal8Loc8zXLKrsnwggyHb5J+eeXtiHblUW204ff7SGz1IPf4yrf1h4X8wkblZx5ZnKyzZo1a9DR0WFu11xzTdM1tLe347TTTsM//MM/YNeuXeCc4wc/+AEeeOAB7N69G0cffTQOO+wwXHHFFRgcHEQQBPjKV76Cvr4+7N69+xBereZYIWmxzACTqW/SgmYh0igwGtERPzfvwG/3wHw1waVWDE1DBw8EokrUspu46evGnpKtaCayk76QyfIC2SA4k00n4Qg3ApEm0usH6gxvVRNI2VihZ1LckQAhBNX+IfBKFVFFjXNsTHPTeJ4281gqmmjENEun7ZutodXjjd3qWsg5ubHJrQOllc2s8mhsRJtlqYr8Nvhw8ooYU6pBGQGPhJnOUxupQoTq54Yyle7Xx7eaB2+xzATbt2/H8PCwuV1xxRUtj/3Xf/1XSCmxatUq+L6P//W//hfe+973gjEG13Xx05/+FM888wy6urqQy+Vw991347zzzgNjrOU5DxU2tW2xzAHEOA0BU2GmbFoA1XGr05RuIR1VSkaMtL+jjlKxhB+jOd6jiKrcdBv77R6a0bFaTSIJKyrSVR2sQQiBqMhNRzSgGnTMpBmn3hHMfIbs6vq5KzsCIJSqFKACdB/TYeoNS/sqZu3BQJQaxdjM/kc2fCBI+l82+hGOPls30u7vT6e/WE5NVIlq9Qkz5pyUwC/kEAJxJzdDZagCxN9HNW6uiRZ5QCwOabobu9Yfp4sjicxSzwjMxmhkVI7McbpmlVcE/B5XNd44aaGa3D+LxXXTMgdHIrvcN3ZJld01Y1GlyxRSUc4sBSKZKmEI3AgVR6Xyc6vraT+/4KU+eOgINnMZuk5sB2EEUZWbawAA4Qi3ae1FyEw22xQKBRQKhQk954gjjsDvfvc7lEolFItFrFy5EhdccAHWr18PADj55JOxadMmDA8PIwgCLFu2DC9/+ctxyimnTO/iDwIrJC2WGWA2UlKNht5JM+eZEJPJP7pJqyLqpsciNosC6bQorwj1R54SMFofKVhvIlHd0c3Q9jWypkYSioSnYLJJh2VpauZ1cj3J2j3qEPgFX9UWUoLaSADmUQg+NmKc/I437L3Z9ZmMN6jpjg64iU4G5TBuAqKQQsDJqAYdJ+vDbxuG4BJSMABB3GnOjNE2gJRIbxyDTp10DWQrX1Cd0gZgygu0OBVCwOtyUv6LGjW9vH4OIPbqzKrGIzfvolYMUnWP2vDd7/BQ7qsaIb5kQwGDTxfN+9EY+TVNQbEVkv7ea1cfMgSXcPOuEZk8tqvSZQrT/1HOYpkc+Xwe+Xweg4ODuO222/C1r30t9XhHRwcA4Nlnn8VDDz2Ef/iHf5iNZaawQtJiWaA0mjsnv5/J+kkR1g29x0OLAZalCMoqwshcBlmT4IGAk2HgYVrk6KgtobENjBsCOeeApuhaiBBGGsd8188dSWPIrbt/k2KkcRTiTJHstBaI7Y9cBidusGGeozwnhQSvBWOf3yQ93vh44+sl5243RiZJIoKsJxNRwEQ8JZcm8ixpekShiMY6BphJRpF6n/12B7muDGr9QWwGXxd3teEg9bzSvvKEBF9jx7l+H4UQiKpxnSuvd3U3q9udK9zibLBWQDPIXDEkv+222yClxIYNG/Dcc8/hU5/6FDZs2IAPfOADAICf/OQnWLZsGdauXYtHH30Ul112Gd761rfinHPOMed4//vfj1WrVplazCAI8MQTT5ivd+7ciU2bNqGtrQ1HHnnk1DcaY4WkxTKH0OliYGpiTz/X667/F093rk5v7EWvu9k86tTr6rpDh8AvuIiKHFHIE/WHAdx2BtkuEcZ/8JMiJ6pF4EEs8kIOJ+sAiCBZ3KGM5hG1qMjNGErdAZyaWhL/u+sPe1PP0/tpW52NX0uNN0z6ShZ3jpgI1+hWnWaWLaOQ2mRbX5fcOr9pqtzNuZBcwsupaFpUDUAoRaarDeW9w2oPQmJ0X8l8LblAVOXmOugObELrqe1mdkjarFxEEtmeerrZyTAzRtDJMIRUmZ3TPEV+WRbUZamfJT1tRne4J6PEurRACAFk4zGO5RCV/lr9+XEzUNJM33FZqkSi44h2RNUIlBFkl2QRlkMIIeFmXYSVUNWHOtREtXkgTESWucyIZCfrINuVNfPFw1KITKcPHgqEpdBEppPXB4CxrWIuw+gW9X4nJyolvSmbdYVbLM3QNZQ7duxAV1cX/vIv/xJXX301XFf9/9+9ezc+/vGPY8+ePVi5ciXe//7348orr0ydY9u2bana8F27duGkk04y33/jG9/AN77xDZxxxhm4++67p23tVkhaLDPAm6KnF13HpQiVeKIuOaC5uo5UJQVVozF0I3reNGEyNXs6mcIFmkfcms3mbkWz+cpJSxy9FmDs6MEJeRZOMGLbjGxXGzBO05GOxFFGwOPxf+ONPQTS16RVxDVZatCqick09VBVDiCajC/UEWGTTm6xpmRdpX5eq9GPIrE/LaaDRG1p8uchKIbw8o4SlomfG8njn49kJDNxziQylHByyk1AXy+nwMyHFVnRIzJnPnptmTqESBAyvdHogznfu971LrzrXe9q+fjHPvYxfOxjHxv3HI3icN26dZBy5iPttoXNYpkhDiYdxctiRtPOjQ0RjUxm1nES4/+XaDw5kKgKR3jKVzJ5Lh4I03ntZB04WQdu3gVzKPx2D25efUonrB55kok0dLO1AXUBO56gTI7pM13YLgNz6mbfPBTw8soPblLd5A2WQEmMvY7et++AuvXOa0IpqkMlSCGMONRfq7GNYkzHdaNpeqvXTK0xMdGnlYekfgxQZugicQ2kECbdDdSthYir1sZclrJwSna5J9dCnfq1qHekpzvUk3sHoN4jRuFkHKw97XA4GQfMY2AehZtx4OYd080dViNILtR1c9UxtZEAYSlEVOWgLsWSdZ1mPbwiEI4osRgUlSG6rvUF0h+Omn0YsVgWKjYiabHMIEkxOZkIZTMxmTTQzq3OKI/EUKK0pTbmWM2Bml4m8rr6tUUo4XU7xoJl7GzsxHmS4+aS50kIRq/LUT6DlfrcbhlKwCEIhuJ50G5d1EghEdG6gABg/BIJlSq9rYVeYt+8khbnLKe8InlFmK+Tndd6HVGRm/v3bxoyz1/7ul7kutsghQChBEtftBQyEX3Taxj408iYulS9jq5j28z9a16xzqRRpZCoDIxCCoHhHSp9rev7eDgAAPD3jaQ6q92sa15fcgmvzTfpaD0ysFqsmXWJSDXxlKhKyzKPmjICSqkxIRdCQIRqj4JLECrhZlR9ppN1MNpXNmJS/ywm57qb99qv11MKrkRYsyi0MpiPI35anLWIgGpf0agWQXCJqMrBgzJ4qEQioQQv3PWsSbEHQ6HxBQ3dyHTYRw3z7LPL1fXy8g6yS7LgIUd+eR7dR3ahMlQFoQTZziy6juqFiDgySzsx9Ox20wT1wm+eNxFw6chUE9pUsHWSMweZga7t6a65nOvYiKTFcoiY6h8C4hJT55e0cxmP6YiKNIugTSZtN5k16POmbGKaRPyaRdnGi7yNR6uGkCRJAUwZMZFA/bpkAu9F6vwJ83FNPZXavBtICgnm0pSI1FHJ1HmpTjETIwJT50mkb4FYqE7y50SllIU5V+M4SDOqMlFLmowWa5/OZE1tKhqZuJ68xuvjEHU0ltd9I5t5XkohTS2kEKqRJhzhY4zykx90RFQ3YqcuS5UJVIuxxVBXDl1H9SKqBeC1AIQxMM/B0Nb9GN4+UI8oH4KmLMv0MJOG5IsFKyQtlkPIm6KnD1pQ6j9OMpSg8czmAwm6MTOoY3/Hg2UiZtt6jc3mcCfNvnmilqzRfzC1h4Qwarx/zH2J2rbxaJZ2H09MpibWOAxRNYSI4qaWRFNGs5rEZlOGGsUPjdPmyf3oCTOSSyOe1Fq4uamoKE3dAJV6r8+eFuY19eQb6tZT18n9GxPwhOiLqvF0IEZU9LchzaxeL9FwQ6kxltev0fg6zb5OTivSkUgt+mRC7Eou1KjKQM0f1+vT6+CBsv4JqxGicpSaN6/Pn/x/of8/NL7/lBEEpQDMc9C+ogBCCcJKiNrwKCAkwnINoBTl/fUIMXPrYzmTvqbTwWKrubbMH2xq22KZBQ62GceIST5+A4VGp4r1cycTKWnlP9ksgpcWWup51CVjUuBJCWssVyJpPBepS1RKUNdPRsR0ISc7kJONEMxjps5NhBxOxoNTqKbqNPXrNu7H7CPhb4jERBtNUlRWhipwfAbHdxIikpr1HOj6AUCtGBprmqgaxpNr6sJUp2tTNjyM1iOAfv1Xt+4gJ5SCBxGoQ+Nonbb1iWdox+KxsTnJ7BuxV2Tc2Uw4MSlvGUo4GVbfX6ZurVMfw1ivz4yqPBUJNUJTpH9+GmsikaUm3UzcetpbG8zLUNa70uO1OBlm0u36Z0RwFZFEYnSx/uCiZ5zr9LZJx5fVSM2oLOG1e8ZiqjpUAQ/UdXCzLqpDZbSv6kbb6uUYfmYrygPKQD4shwiKIdy8em+aNRtZ5h5zxf5nPmOFpMUyS0xWTOpoIq8IFFa1Q0QCtdEAlFJjbQIAw0+UzHOSE3OSdYi0IQqYNM9unA9tjosjOixLgWzd9FuLJVP3No59UfK+pDUKbYj+scRcZz3fWgiammoCAJmlyT/Wofm3sdknOWUmaa/UOCO7UfjWT12/b8dv9ox9XK8nMctZ1/np10vWy42+UDFr6vnbk0EcF5AqekiWrQAJAwx87sZ6/aeQKG4eNXtJmoF3H9WVSm93rOmO98SR61kCGXHwWgi/K54KNFKG4Bz5pQOmtm/fU/vUWoWK5DkZD2E1SF3HpKk5oXWvSilUhLw6UK/VTTabJIVjY2e+TNSy6k5tfd308VpAhtpSJ/EzkPT21LPa9chNbRcEANW9oXkvxry/TSYONdYdZ3rc2ER9ENQhWHp0CV7eR22kaupQAR+DzxYRDIVz2pfSYplubGrbYplHODnHjHqjDgWl9TSjX/DgF5RpdbO6RnGAbuVWJCOZk33+wXaBH2g9E4FlJ16rpvc4nR3zE31tyTnAmPp3zGOxGEtG9yrp+dPJ1PWYOlEhVbqbElDXBWEqekcIBXXqkczUuqnqXk6mrqmjZlYzl6mbR03KmrrUeF3qlLabcVLPTS2phcDS9yeFYqo2tSGinkxTA/W62swSb4wpOjD1emEtaEUkkV2SN/cHpQA8FAhKgSnbsDO95w+UyBm5LSZsRNJimYM0S4tq2xHqEGOirCGMgDkU1WEVSWkliJJTSloxZtTiOJGV5LHJkYzNHh+P1HEJwcuy1ExTAeJ0ZOLYZNSJ+cykWyfSDJTsgm8cgTgZWollp6BElxaDYbGcetykdx0HMqgpIck5aKUEEIqoHIF1eHF9ZKJLOza/5jXVVV4r1lL2O9WhkhGHwUj9NaUQgJSgnguaGGVuLISSDS2hBE/MjxFR3SAeAARnZlKMl3fAIxXtTr4fyecmDcZZMlqZuBbJCHUtDFMR4zHnTP4MxNF0HXEPBqJ65DxxzervsRhzjgORTIEjkqgMluC3Z+DlPWXW7juojVTrr5GlUxauFst8wQpJi2UWaZXeZlk6ZvpM8g+tiPrhFVQUaNnR3aAOQ2HtUlT2FxFWt5k/aJUd6RF6pmGhSY2aee1cOpqS/IOs68sAmFnZQDo1Ph1RPWHWN9a8Oylsq3vrVjLtR+XU40Kg/bCcOUbXGhJKEJRDE/FKisdk+j6JSX2Ps6dUur4h9c5d0VRQJEUScV3IIACEAAhB6chTAEKw8qT/gptTs7/Dck2VMcSRttE9pTH+jpQS8Eh7TKpGlMzSTkiumnJEGKnXACCCMG7WqXeeUyRS1n694UVE9T3VywJEXDNJ4RcyKr1NaxBxXWNYilLzsJuluRuvXfJaJ9PUqddN1NM2Pi/ZSNb4OsRV1kIialG6cAAabXy2/nr3mNdP7qdxjZa5i62RnDpWSFosc5AD+c+xLDXiiHmOaQZoW9kFYNuEU2sTiZrwihhzPhlKSOfQRFyM+HXqDSHjRUl1swigGlREKEDddJpWnW984+jpSMtPKCpFqKqRjGG8Bkl0F7Zag5vzURsNTGd3srGFuszUKPEo7WephCEgIw64LkApwDmISWuTlJgE6p3cjKljtDUPcxkkTTS4xJOF3KwLHkQqKs5UpJI3DDRPXudUgw2m9sGjpTVVw8/HVCLOE2EmhwhYLHMdKyQtllnmTdHTuDV7dOq+VpEa/b2qkwvh5BwjBIZe2IMVp26Am3HU1A2XAqhisjT7g5+MLiXNxmc6fcfLAjJhcj3eH+zKnsTM5l69dh7b6PCE92bcBa7FsUOg2zumM5LUOHe8HoFMix8Z1CCjCOAcIASCuqBCdXLrDwgiEqkIIlDvTI5qkbk/qkQISrW6DVClpqKRkQCpxTPGhUgISQop0h9aonI9AqnNtXV5gf45YB6F4JGyE2IEHDDm32MshRosflI/S0Aq4qwbwcaMSGwh+JMNaMmIJG0fa41FKTVG95rpeL8PlYi0huQzg41ITh0rJC2WOcAbKk/hV4VjANT/mDarP9Rf1/boP4gBVp3sodw/CjfrAVLixe9/DcLRMkZ37MXAn55InatZHSNQn/YCJKKhTf5ApiTHNEaSxtRltth7I26iwzeZ+ve60unYzvUdJvpWzStxHVV5yv9QhhIsR424aCZexrP0aaS2J0ydI+mTmGTffz8M6jCIiMPN+eh0XUjOQR0W+0sqWx+/PRN/OFDo/ehIImUEoVP3kqSMIKrUjK1QcXu9M5s6FKN7R825nKz6UyC5gJPTX+t91u1yst2+iYbyIE6Tcwm/PYPKYMVMIdLXVTppv9CoyOvp34broDujkx3Pjd3e+jj9fW51xryel3NjgatqSp2sA+ZQRLUIlaEaeI0b0anP73Wnm4KSqfFkmcJsp6qtiLTMZWxrmcUyRziv+KQSMw1p5AMJl6iqRGVQqkEEIWqDw6gNDKNWrEzq9Q+lXYk26W5m1j2ZCE/jdJIkek4zoKJwjs+aTr9JHteK8WZktyLZVTxe849OYRNK1XtJCGQYpibmuDlPRf8cpnwyfWb8G42PYyLlnTQ8V4KU1dPiiWuQtA3Shuf1soB4+k5yH/G5s0vq8zApIwgrgRpbyNLXUe89lc520xHaZugPNSb6nfgglHy/echTNkRJA3cecATl0EzuafQ6Hc8L1bJ4oFAjEqf1NtubOsTYiKTFMod4Q+Up3NZ1bKrZplkUzCkwY6isI06EEvQ/tR355R3wl7TDLVbG/LFOpsnHPDYPx7rpSJFs2EtU5KZJhDoEPBQoD1SMebc20q7XGVLlPdgwmzwK016ZEyEpmtx2ljL71iT9D1XXdCzWdHQxk4mP4+bfqBaB6RR2ojvaSYwhTNZVSiFTzxeRSKXLzXxuIRBVEtG3IB1909dEhhJuRkDyejpdcIlyf2zIXQpNajs5w7qZS0CjmDSRcodAxnPQAfUe6EhxMu2NROpb12bS+P3Uq6eMgDCKqKK6uCnqHzySdlb6ezNVJxENncwoUMv8hECCYHo/REz3+eY6i004WyzzgtQM4Cbp1WTUMqpFJnIlIo7KwCjCUgX5ns7UcxrPsZBoZpXUjLAcpqYCNc6h1jSLWE2WyXgJpsYsMifVfFOPJKq0LQ8ic5+OROpzNJ5Pj1JU94nU60gdvWtxDUgqqpn+eSGUItOhjLhFw7WUfGyUuHFkZiuamcg3+7fx/G09+bipikGE9TnoOsraGJHUc7616b0+JrnX5GOziU1rW+Y6NiJpscwxxmti0QIwaeuz/e6++uMOQdthWXhbB9CxqsNEHolLUjWNyVow6pDUNJHxOsYnUyPY7Ll+j6sihAnPP6Ae/ZGx9Uuy3vFgXsfrSv9qixIeiNmuLJhLwUOB6nC6Gamwvg1hKTRdycXNo2adeo3j1cuJUKaus76S1CFgiQaQzrUd8NuUmWNx5yCAejRy9Ge/MXOdNYQSRDXVMCQdCh77iHIAhVUdqA5X1HzteESkfk4wWjWiiocClEnwkINQauZtA4CbrwtXPYIQUGIyKayUSwCF4zMU95dNRJdHyk9Sp5a9Lqcu3iZQYdHoV8orIvU8r8tRj2cBN++AOnHDlKtS/OX9ZfBAIBgJ4vOl96f9KxtLGKIiT9WxNk60Gd87wbIQsM02U8cKSYtljnFe8Unc1nUsRMiNcNMCsu3wLCq7a3AKSozxsjDpv0aSQoQ6BMjVj0uODJwMU+lQFaFMpTxJVBdl2rsyOcLxYF9PhOlGCbedGXHk5R3VxcwJvLxnygfceDILdSiivAe/zTN1hQBQxOgYj8iJkopwxUImWa+po43MpXEjTELUp95Dlqqb1ETVEJ2HLcW+p3arNK8Xz3qOI5HUoQjLAYKSElnBaKK73WWpSCZzqDF1p0zN2tain7nEzOlOptZL+8pjfv60Kbhah5xQZK/Zz3DjLG4RyVTdJo3rOAGM8dUUITfCNjm/u/51Or1tsVgODiskLZY5SLLJQNeHiVCiuj+2cGn4o5uMqgQjIcJqhLAUjjlfq9dKRgQPBSKS44rY8aaaTBUeClCHgQcRhJCmE1pwCeookedkXIhIeSQCk0t1T3Tdes41UK+TbNYMJLmsiyWdrhYqPc8citpogILDsOaVyti+sm8YIuJgnhObk9fraMecu8FDUiSm6OgmFXOs9vMUdS9JwSUYZ4jC1iJbhhKYRIo4+bOaMi9P3K8nBiVnflNGTHqdUAkBwMu5CMr1/we6Y5sm6jDnCknHAI1Na888ukFmus+5mJhRIXn11Vfjl7/8JTZt2gTP8zA0NDTmmG3btuGv//qv8dvf/hbZbBbvfe978Y1vfAOe5409ocWySDiv+CRuzR6tmm4S0zhMerUilLhJjDwMixxugSXSc1W0HZUBrwgU1rYhU/BNirS8v2wiT4DyBdRNFsnpNa2msgAHn+bWwlUgPZVEv57eM6A8Bg/GeiWzNE7vMgK/4KFjlbL/8doyxsTda8+huH0/nIwLN+ejbU0Pyrv3m78Cju+h0l8EAPhtHkZWKLucvfcPHniPYV0o8/j90WlYAHCzHpyMq7qLw6SJOEVYCeBmPVSLtVRKPixFKSNyAAgB9By/BJWBUVQGRsE8B0s2rI3XEGL3g88aH0kdfeWBqiF0866aaBN3e2thy2vciC1dS6gjiqNbVL65OhgYKyCz9kTEVUSh2X+qa7shzZ388JL0CXULLBUxZFkKFh+f68oY4/VasT7tpzpY/5Cln1t1aikrn1bWQ3OB2bYYslgOlhkVkkEQ4J3vfCdOO+003HjjjWMe55zjjW98I5YtW4Z7770X/f39uOiiiyClxHXXXTeTS7NY5gWpGb/x99kuD25cb1fbE9ZNmJs0Iegmh6gaoRxyOL4DISSCcgi/3aunMZP1cu0s9XqNEDfxGpMUksmZy/pfvUbz2DSkGYWO9NVUhC1TULWQQakGKSRy3W2QQmJ4+yAII2hfUUB5vxKNTsaL7XYcOBkXhFK4OR+5Lq7qFMfxwGxGs85fKQTCci0VlQRjRvSFlUB1QcejCJlXT8+LRIMMYQTV4bJpoolqHG5OiehgtIrqkFJuUS1CUEpHDXXEWtsGAXGqOO5w1v/KREez7m6WoTSejVFZpb8ZqJnPnYxCylCCtqffb3MdWlw7XSOZTI+zrLJpIoyAgUIIaXwrJZemxEMkzkFTM7bnHiynTNSpQ1CNvWF1TfN5xSdneXWLA0IkCJnmru1pPt9cZ0aF5Be+8AUAwPe+972mj99+++144oknsH37dvT29gIA/vEf/xEXX3wxrr76ahQKhZlcnsUy7xChRHVvqJpJmgiuZilvVFQ0y807JiWqziXqKc24ngyYeE3bwdBoqZKcoQwg1UE7FeuVMR6BOv3pAG7WRViu1wkmu7jVWjhKe4vGLkd5EkapukCdep9IRNakhLkE4p4WXedIKIHjO4hqkUoTJzq0NZQR031szpP4WkQiMcmonjLf99QeOH7zX/GSS4DVu70bp9Hofxu9F83jTj2NrCPY+uNHs/dtKmUT+nWZy8b4Rqb21KTWMRzhdU/KQ1S2MVG0+4IMJaqJ5jIRSryp8tQsrsximRyzWiN533334fjjjzciEgDOPfdc1Go1bNy4EWeeeeaY59RqNdRq9T8CxWLxkKzVYjnUvKHy1JjRiYD6g6kjkSKS4ANR7DtZn9YRFTmcAsOyDUtR2l9CtjOD/LL2xCi9PhNRAlSzifYgTApMoP4HOxgJUdkZTLnhpmkUsyHlqJtvDpbO9R3ma+ZSdB62FMxz4GR9OFllW+O058G8LSCUINezBABQ3LoX1GFwcwTl/cXYANyFX8iCOmpNfmKyCoBUA5GmWZ0kr3ETKaUONdc105mP71PNNNvv3wIAKPepKGqtPwBxCbyCUqGEEdT66137e4f64XerKCQPuarx9B2M7q7AzTvmtVnsN8ljQcy8tFjVNNbMikgCkUxFJolLTE1iskPeRJdDaSLXIvY7bVUm0WwEqN9Tr00FgLbePCglEEKiPFA1a67srdVLJRpqK+eacExCExHeaoNDga2LPLTYru2pM6tCsq+vDz09Pan7lixZAs/z0NfX1/Q511xzjYl0WiwLnTdUnsItzobUffoPJHGlmVdMGiavmJpDIcAcimA0gN8emo5gv90D850xTRjaZBpx124SLURYovt7pv5Y63qxg224EaFqSKGUmGYTNatagNcCNUWmUkN1qGQ6paWQCMs1uDklNJMRr9K+EfN1oz9kUlRONOrW6PnoF7Jm/jWgGoKSUdrkeRvfF14RqOypmXXsqew3z9GikVdEalQhrwjzfgJj/TS1YHQKzFjkAIDbxBvT1EUmpuS0et+ajZzUJH+u3LyDzBIf1UEVNNDRVsZIvc407yIYCSFGEul0vZ85LCKB+vVNprMB9f/dcmihkKDTbCA+3eeb60z6Y/9VV10FQsi4t4ceemjC5yNNpLuUsun9AHDFFVdgeHjY3LZv3z7ZLVgsCwI92UZDtFVQIi2dXZKH1+aBugyje0cQVQPwIAKPlLhKpUmFSI3ME7xuXt3KuHsmmUrXdjKFD6h0tU5TA8mpLvFYvbi7OTW7Oo5GAmPF23SiI5IQEjIh7BvLC7R5uIgNv/XtQMbnyTGSepb1bHCgUZFJayq/4KJWDMYcw2OzcT0bfKLnnms0M2i3ItIyX5l0RPLSSy/Fu9/97nGPWbdu3YTOtWLFCjzwwAOp+wYHBxGG4ZhIpcb3ffi+P6HzWywLGZ0WTNau6borLRYqgyVUi6rBRHKBCq0m/AspCEU8w7meanUygUlvq/rAOJLV0KE701ZBU7EAopSAC6mikvF9emRgVA3BPAfEUTV3gLa/oWbPaj41RzBaNY+b80xy38lr1fhc5jlgvhsLWRlHTaVpekFipF+yFEGT7fFR6w9SYwyBunhkiEdE6uvSMFoQUOlwxhjG40A1q2EpOmBd7USn26ifY4ZMJ0NpXzleowBNlFtElUg5DTTsez6QrK21jTWzj01tT51JC8mlS5di6dKl0/Lip512Gq6++mrs3r0bK1euBKAacHzfx8knnzwtr2GxzHfeFD09Jr2dpLHD1Wt3kelSH7bWv/U1qG7fhdFd+7H3yT4zUi/XlYXfruY5uzkf7auXgfqqzm74+Z0AlHja8/huAGqGclRWtVy6QSA8BHYlB5uirI3Uo1k8FHjR2zeAtbcBlELy2Ki7vQDKGATn8DvbQRhDZWDUCO3dm/rgZFg93R9DXAIvp351Si6RWVK3Kis+r4SPFmxaPBGXoLq37mdYG6nC8R3VaV2pmeYfEQlzDtOFHNcnunkXkgs1Pzp+L3hYt+oBAJKlqO1J+yYCaSGojw2Kofmag4NSCiGEsZYCAH+5ByAApRTMo6DaczMUpkmIMFW/KbmEEMKkuuvnRiqtrhljjh9PWKKOSl+X9tW9gorbRlM2Qfp55vrMg5pIlqVmapQWkCxLcc6ex2d5dRbL1JjRGslt27ZhYGAA27ZtA+ccmzZtAgAceeSRaGtrwznnnINjjz0WF154Ib7+9a9jYGAAn/zkJ/HhD3/YdmxbLBMgGdngZWGaVEQo1Ng7ziHCSEW+YhGpo24i9uJrZoKt4UFiEk0cSZkP0Z9Go20AkJxDVpQ4IZnMmOMJTaf56/eTVM0oD3FAGsdcNkb0Gudj6y5tHgT16KXT0EDC4+5sVq9XFUKkopBTaVHS5zIen4kIoxAChBPQuOtccDlmkkzy2ImS9IokiRS95NJEi1uRFJHzjfmUhl/wzID9D6z9z/Tx93//9/j+979vvj/ppJMAAHfddRde+9rXgjGGX/7yl7jkkkvwyle+MmVIbrFY6hwoKgmkawoFl6gO1rDztw+ha8NqRFXVaFPuL8Nr85HtzMDNecoAuxyYaCTLZsC8ehOO5PXUNnMZWI7Oqz+CMp7UIoIAxHXVzXEQFVXzTFiqqEYbzlXTEiWgDkOtWBl7DqhaSUppysdRz5+eDIRS06WdW7kMg09vgxSipagXkayP+6tExjQ8WR+pPR5Fsf7hwjw/lGAN75uxxYkFaGPXM48FmulKT3y21/O6gbodUaOAPJCNVLPyCF4RYF1OS5HayHwSkWFiNCN1CM4deGKWV2SxTA8zKiS/973vtfSQ1Kxduxa33HLLTC7DYlnw6FGK1CEo7aqa9N+2oR147udbzHFOgQEo4ag3HYnlr3wJRLkCd80a7DvmdRggyyAlwRGnPQju+hDEwdG//KFqAKEU+/78AladnDFRtGdufn7Gu7eb0didrgVJmLDhGXx0NPWc/sc3w835aqLNBy+DX+pH6GYgHnxMCTrGkDtmA6JSBdmebvT98Uk4GQa/XQns2khgxCIPhPmauhRLDus0c6y7jqs3JpV2VlIRs6SwKu4qmjrUgRf6QVhdEBobpy5qOpKpQ1DaWRe3+v2NitzYQCXrH815mph/84YUcfI+vU4dQS3vraZeU6eteUVgZJe6xlr0Jess9fvS+NpAOhrXKIQB1QUexob51YGa6ThvFJ7JiU/A+M1Zs5X21hmCpAuBTWfPLeyIxKkzNbM2i8VyyDiQv9x40ZnGtHS5fxT9Dz4GXq4g2rkDnQMvYAn6sbbyJFilCCI43GoRMuKgnmtsg5qljA8lulFBNBFIB4IHEaJqCLc2AuF4iLw8CCXgQYTsYauBagXBSBnB8Ai6j14DJ6sM3AEgqnLwQJjoLKCuwZLDOusG71ymBKGm1Zxz0x2emCo0kevaeD79fdLip+nz4uvWKKpara9Zc4wQYkzkMTnr+kDPHw/SEFGnjIyJkjautzHqqv/VXdyz3c0tQznGysqKSMtCwwpJi2WBIJpM9gDSKcR6g4LyVKwNDAOEQrg+vKiCSqYTZO9OcCcDUAboCStEzafWNZbzjaTtT+TlEfrt4NQx6eUxx8tE5EuMFVMAkOn0UxNqtL8hkBZV46V3pZBmBvbBkHy/DySYaIPXaPL5rcRky3PFXeQ6GqltiQ6W5NrDeJRjM1GuabZeY/Ltpq/9TE1pmgipuliXWIufOQiBnJHbYmJWDcktFsvk0FHJZvWS2gqIVwR4WYC6BMFAlGrIoQ4BySqD8rAcIKoOgGU85J95GGxoGKyzA+FRJ2GwbTVonmPFqS8DXA+kVsaKXBZ7HqzblGgzdEB9Ij1U6cNUFCohKLzuuJM6HOuV+Nx/vWBE9Ksu3A3CI/BsAXjP/wCrlbB79ctAIND2xDNw23KIKjV0rumE16ZS+btLO+tp7uEA+bXK+7E8UIaX95Q9DSMorGxHtag6sJ2jHPBImIal8t6qaRCpDtTM2seMItTd952uqadLpsUZEmMJXZKarMOyFMjVu6aT6f7k+yNCac6h0d8lo4gpn9KoLspMpzUjpnY0rEYmJZ5dWbdo83sE3Ixj5nIzn6Vnezc0HgGAk3Hg+I7qXHckssv9lFDVU3WCYpiKVOqv9b4PXqJPD3o9U53UZJk5rP3P1LFC0mJZIKi0JU9FnohLTJ2ciVhGEkE5BA9U5Gd4cx+yq1eC5nOA40JQhhW7NmKg51iQWhmSMaBWg4gi43NIKMFsdMweyFvSdEdXmj8GANzPA4Si1NaDUbcTjgwRShc+qqgNl+IoYYSwEqailTyq286U95fr5xVCReRiccNrkTlecpEyfQcaZlYfAFM3GDfSNHaCNzLZyOJk0ednbr37X4u6JMlIJY1Hb8qEHylzlW+pk4nHNgZ1BwEeCoSlEJV+VZ/JfGZ8PHXDEXFp03TaofA3nSgsR80HOgDWK9KyYLFC0mJZQDQTWUkDZBmqTl/mMTU2kEu09y6BDCMQxoAohD+4G8LLIFcdBIQEqVUheQQZcfAgMvVrQNq+Zbb2lyQ5CxposS5CISgDkRwMEajkAAEkIamomGxhY8MrAtwVqWgaENcKOvWaRy08D8RExd9kr/FMiMpkmlgKWfeV5Dw1n1vStD2QFDIVhdQQRmNvzPq1Tz7OXDZGiBNGUsc3Mp9cBSyzD5kB+59ptxOa41ghabHMQ1rZAY1JLzdprBAjHFElQrVYA3MpRnYNwsn6EJGA15GHPzoKceLpyIzshYxCIAoBzlEbGEZlqIKoxhNjBOM/2g6ZUq3fZEh16ibu5xAmtd8MUx/KHHDmAyAgcS0kgQSREsFo1URqg1KAKJ5VXRsOwMPETO3YDsiJhVQURyG9Ni81ZlGJUWU8ybIUQSU2dW9YW7M50boWs5kgbLXHZOd2cqJNM5LCr5X4Sr42c+spdubGUcI4GinjsY36/RBCgDGVwuYhBxLTDgWXcOKIJA/UmM7kNdO0rcglrIVUtJ0HakRiVK2P90yWCMwlktFIfgjM+y2W2cIKSYtlnjIRb8lG9B+00R0VEKaEQGWwgspQBZ1ruxCWKpARhzt6B+jy5eCjI8p7kTHUhksIy0oUhaW6Jx6AMQJupuolxztvZrk75j5djzf8RMnc5/35v0GWrwSG+lF62bsQEg9cOuCEI9vVBuo5KhJLB0wDjd/hwck6Rjy5edc02FCHIbtEPZbpyNb9FYUAodQIU79QQbhMXb9Kf9WIOD4Qpdcc19P57Z4RWQAQjITGBqf1NRHm+4nI+lajGxsfBwBk41doGLEoY3NyXhHmNVPTcXpcI4q1kTplJJ4qlKjHjIW6jkjq6USSS+SW5iDjSTrMpeChgAg53LwDESqj9vKO6gG9K2cD22Azt6GQoNPcHDPd55vrWCFpscxjDkZMAuoPffE5Ja5EJMHLw9iBPQCAdW/oNWIo05EF89SviZHdQ6gVQzMBhZfFGAHSTOi5BVavrUuM/UtGbA5WeKYm+zQTWVGU8ipUdwrIvp0QQYCyyKFb7EFIfWSCEZSKZVCHIaqGqA5X4eWUOK0NB0bQVfbWgOXxqbhEriuDzDLVfKOvFZCu+wPSHdrJiTRqnWNrH6sDtdTjQUJwtopwTYeAP9AYw9TrcWkEYPKDhJ6OYyblaIsiCLh5B1GV1ycsNbEPIoykRLSIuJp/HhvG64iw7hbXEdGkkfpskOlxUd0zgdFHFkuCKIpw1VVX4d/+7d/Q19eHlStX4uKLL8bnPvc549168cUXpwa8AMDLX/5y3H///eOe+6c//SmuvPJKPP/88zjiiCNw9dVX421ve9u0rt8KSYtlEXKgqI0UAiyu9QvLNTNOEaibYANjm18mIgyJqxonOCbfHJGs90wiGiJr49XJGWsfzrGythklfwkqJA+flNUUmzjNqmZHp9OnWhQm60SBuF4w9toklJpopBQCIuLm69SaDxA9S6aok3ubyzOlW5H8AGEimaK1ZZCOcuo6TDfrmmiwLiOgLlPeniE3f2xnm8YyBBuNnPvMha7tr371q/jnf/5nfP/738dxxx2Hhx56CB/4wAfQ0dGByy67zBz3F3/xF7jpppvM957njXve++67DxdccAH+4R/+AW9729tw8803413vehfuvfdevPzlL5/cIsfBCkmLZRGStIVpZNcDewHEXoGJqSnEJShvqYG4ZIx1TCNtR9VnWY8+W5+OsuLlSyFCjqgWmegmABNt06KpVVRnIiJKRPVxgCxLQSkFTRhTP3ztfwFQYuXUIzegLQohHRdwfOReukGNS6wFGN4xCDerIpKVfBXUVaMRWZbCy6tfnYJL8EggqkWQldCMlhRcomNNFwiliKoqmlnaP2qEU35ZDlE1ik23K6m962vbvlpFOZ04Hdy3p18d10JMT5aW52i4P2ldk7IpajAg97rqf070+8myNPWz4rbHM8Lj65Ccp01Z/ZoySiDiSKcIBUZ2jxqLpdGtFRP9nAui2i0w8/8pKnJjQzWeObxlcVAsFlPf+74P3/fHHHfffffhLW95C974xjcCANatW4cf/vCHeOihh8Y8f8WKFRN+/WuvvRavf/3rccUVVwAArrjiCvzud7/Dtddeix/+8IeT3U5L5sbHOIvFctAcaOJNM7RFULMu6GQ6Mhypd+NqccDLIpVaTU5M0TdKqbllelxkelx43Q4KvR1o62lHrjuHzsMK6FhdQH5ZDvneDPK9GfjdnhJ/B9F5KyJpRC91CNy8o5pCWD2ip1KfHFE5ThNTBggJcA7hqV/wMuIQQQgeClSGqghGAwRDoZpuE6rpMbViiKAUISxFiCoRRnaPYnRPCdViTaVahUB1qIzqUAmVgVFUh0qIanFjCZeIquq5tQYfxEbx4WbVVCHqMDN2cLa6kvX109cwmZKmjNQfq4imX5uShpCbW/IYHogxEUoRz3rnoYo86jpRYHZFZPL/T1isW255XQ6oo66FtfuZH+iu7em+AcCaNWvQ0dFhbtdcc03TNbzqVa/Cb37zGzzzzDMAgD/96U+499578YY3vCF13N13343ly5fjRS96ET784Q9j79694+7tvvvuwznnnJO679xzz8Uf/vCHg71cTbERSYtlAXCwtZIHQkfJtOn1RP94h6UIbt5JWcAAMJNxdH1cslNXiwgyiYhbs+iciCRIJCGi5mvQQoTpwIDggJ8BHRlEFIaQnIOYNHXa3qfxXI3okYuA7timZp96zwBS50l2O5t9OQTMoXNuitB46XhdppB8vFH0UoeYNLSORhuT87guMmnvY1LcU5iacyjQkXsAOHvnY7O8GstkmIlJNPp827dvR6FQMPc3i0YCwKc//WkMDw/j6KOPBmMMnHNcffXVeM973mOOOe+88/DOd74Thx12GDZv3owrr7wSr3vd67Bx48aW5+3r60NPT0/qvp6eHvT19U11iymskLRYFiHjCbXx0t4TpbIjQM0NwbIUq17VA0IpvLyH/Kf+Hm39W0BrZUBw8LYuRJk2eI/dB3AOMAYZRSg++RwgJMJyDc/f8aw5b2lLLfU6yX1osUtcYlKoRtAmfCUrO1Q3cAUBdv3rTyAiHo9/pFj+ypdAhiFEuYKe43pBHSV6aiOBmWwDqPGIuntYG2cDQFgJTad3bmkBUgg4GVXfVxmqIqrGKfyEkHTbGRptdty8g8Fni2BZapqIOje0mQaeSn/9Ouj9zCS6tEFfV+YyME+bGKnGmajIx9QI6uYXff0rO4OU6CockTNiua0nbwzdR/aoRjATrawI00wzF9LZSairSkBQEVZEWlIUCoWUkGzFj3/8Y/zgBz/Av//7v+O4447Dpk2bcPnll6O3txcXXXQRAOCCCy4wxx9//PE45ZRTcNhhh+GXv/wl3v72t7c8N2ko2JRSjrlvqlghabFYph091QMQ6Nu4D8QlKKxtw+odj6qO6VoNYAzO8gCkcyn40DAAqEggY4jKNQhtgD7BCTpJgaIjZzKUCIbq9ZbJST8A4GRc8IDUG2UcBzIM1S9bSkyTkY6SAUoESqG6laWQ4LW68I6qEaRQ56oVy/F9akJOVIvq3odN1q6bm5JrJS6B4zJVXsAonCxFVInQjKl2wCfPk/LqbJiuAyA1V7xV1DTZUd/YoZ70u9RNNyLu0ma+o6bhsPT4x7kmIolLwMsCbkG9b06h0R3UMh+gRN2m+5yT4VOf+hQ+85nP4N3vfjcA4MUvfjG2bt2Ka665xgjJRlauXInDDjsMzz77bNPHAWDFihVjoo979+4dE6WcKrZG0mKxTDuNwoFXBIafH8HQbXdCBgFELUBl207I4UGwfbsQlSuQUo0mlLW61U7jucYj2eWcnAndqqaQugSEUmN15GRcQNZfq1EgGRE4TppV1UDGoxFF3b4m+bVZr0jb5Wh4C2N3nR5382P9Ms05p0loHXCCUEPHeqspM+OtSb9HyVpL5lIjUtUoxPiYaO6JSEB9YJrpsZSWhU+5XB7jPMAYS/2OaKS/vx/bt2/HypUrWx5z2mmn4Y477kjdd/vtt+P000+f2oIbsELSYlmAHEwDznRCEtGxpI+jiDiKTz6PaGQUTi4LEY9fjEbLiEZLgKh7Lx5IoLRCN92kOoxjcUmddJOR7rKmDlPRx8QvbkLTNYrUZSBUCR3mqH8dnynT81iwMo+CMHXTUc702MX6npJ/OIhLTLpbRyYbaxH186JqZJpXGjmYJqVWjDvTvHFs4SRCMEZARmn7H8ElqEPh+A78ggsnw0wUVL9vc4Wm136OGaFbJoaukZzu22Q4//zzcfXVV+OXv/wltmzZgptvvhnf/OY3jd/j6OgoPvnJT+K+++7Dli1bcPfdd+P888/H0qVLU56Q73//+02HNgBcdtlluP322/HVr34VTz31FL761a/izjvvxOWXXz4t105jU9sWywJkJhpvJgrL0dQf2mQN3yP//01Nn9N7xlLjtehmXax5zYuVl6XvoW1ll5oi43vYvfE5iEiAOiqSuPO+PiNUx5hlJ2yLkiTrJQe39Ks6Rl/9Kiys74fkSlx6HXmIuHGm0FsAc9VripDDL9SL2wmrgMafyfWcbUqJmmUecQQlVc/YsarDCNdsV5tpyin3jyLTkY3XLDC0bVBdx3iMoOAScIGlRy0zYnLpuw4Hy2UBxvD49+4EAERVDjfvYv/GIXWuSfpzpq5dwh9Up2xZlsLLuSCMwMk4pt6TBwJCxGbw2m8z9gptXIcIJYib+NnYUzM/K0FRlSDklmcQliIIIVDdq+6bi2ltnZ7X/xIbmbQcJNdddx2uvPJKXHLJJdi7dy96e3vxkY98BH//938PQEUnH330UfzLv/wLhoaGsHLlSpx55pn48Y9/jPb2dnOebdu2pT6gnn766fjRj36Ez33uc7jyyitxxBFH4Mc//vG0ekgCVkhaLAuGmercPhD1esi65+Bk/+iH5RCO74BHysg7LI7C61S/IFnGg4w4EP+CdLNuPR3a0CEsQwnmq5SQ/nWajN41GqATWq8HJJSA1wJIzkFdx4hIQEUulbDTEVN1dpOKbZFtpg5DrrvNfF0dKo05xm/PQEQCUogxJt2t0uilnXvRvn41ZK0u0p0Mg+RijEn8REjVRLawhWpkqp3UMpSQTrqEgbjaCH5+eDDysgCNhfZZWx6d5dVYDoakXc90nnMytLe349prr8W1117b9PFsNovbbrvtgOe5++67x9z3jne8A+94xzsmtZ7JYoWkxWI5aJLjD6cKjxtblKASEGEExJ6OANRoQyHrk00cZszHdbRM+w2mxKJLQCIy5j79vZtzjfF4ZqWafRgVRxCVKhCRaGrdoyfXkLgpBEgLKyHqzTrJiTY85HCzXtzkE6lIq+fEX8eRP08Jwig25E6dN56SA8Tdl64LwnRNYVp8TZdxucbM5eb1UY/jlR6YSPAk10CYsggSoj6vezbHHk6EyUxnslgWGlZIWiwLiEMdlWy0CkoaleuoVjK13DgjOtPjgrgEI9vKqWNXnapMvb2uJXDOPA8A0N/9IuT/hxJN2XAUnDpYURuGVxpAmCnAe+A2yDCCCALseVCNptNCbccfd0DEYx95RQkUAWXX4/gOmCdVh3i1BhEEkBFHfv0ahIOqm7z7qAhRNQChBOX+MqIaB2VKJJb31u1/nKwDyQUIoyjuGlZdyK6qtfTyvok+AoCb8yEiHo+grAuzcn8lZVKuKe4aBq9FqI0E6FhTNc8Z2aGinDqit+TFbWbvQ0+MmuePJyqTorPxOO27KR0CnlPTZaIqR3UwMK+pX7/V+yxaPCYSjUX6Z0kb38uGlPhcQtsasRydNYN4y/Qwkz6SiwXbbGOxLDBmu9EGqAuTAwkA4w2orWCMmImUtU6lAhoFIIJDIh4hKD0IQlFhbQidDITrI3KzoJ4HmlP/Ms8xE2Goo6bbMJeZhhYzAYcSiJCrCCiXoBkfEAJRuYJoZBQiDNUtFm06GkgZMQ0mydS55CKexsJNtE5wbRUkICI1e1sKiWC0iqgaQkR6cks9mpoUkHVRyVEeqJrzDm8fMOtJTsQZr6u85fswCaGmz58UkcD4880PhuT55lKjjaaZgLbMP2Zyss1iwQpJi2UBMttikowzgjGJTl1q8aSbGKRQHdQy4mryDABX1DAiCqjKDMpOARIEgjrgTgZECkjOIcMQ1K8bh7fq/NZNOF6bh0xnFtkleWQKPljvarjLlsLJZeF2d8Ftb4PTloeT9eNz1bvKtZBsFMFAbAMkRCxSZeKW7AonsbjU0ciGKF6yccUhpmNcH6vS6+lpMsb2iE5O4E2XUJuuzmXdYT+bIyHHw4pIi6WOTW1bLAuU2Wq+ARpSm618BF2C6h5V/9j90gIoI/ALGSxZ1432C96HILcET7onoN0tQUqCF4aXggLgEiCkC6MVhiOXdaA9X0aFZ3DUyI/N1AYppIn8iYjDycSm0RkHo2EFAmqCTLm/DK9NpZijGoccHEDp2c3gQQR3aRdYextAKbJCwMmrzuqeF8PUTgLA9rv7IPUoyWpiBrXDIKmE4zMQSlAbrTfGuMWKMVxXYlDVPlJGUFitUtN6uosmGK2BMILCqnZkOnIY3DqA/U/vxks+/AoQxuAv7UIwMIjsqS+DyHeCe1m4W58EogiQAvdf+e/q7RiJhWuiASnorzcWNYpKfRwPpRGyPBRm9rfuEvUKxMwwb5xANBlkKI1hu2yRbp9tdDRW2VtZQTmfIZj+iNrc++gzs9iIpMWygHlT9PSsRydbIRoieIQpu5tasQL29CPwyoM4ij+ODjGASDpY2TaCpfkyCpkQ3bkKMp6AkBSBcFHjLmguC5bPgbXlwTzHjCZkXv3zcnIii3ltodLKIuSo7dyFqFJDbtVyZYweWwHpSTcAErO01X3NonCNHc3pqKSEk3GVPVA8zUWnvAWXEEKCR2KMQTFhFH67h6CkBGl7T1s98igEgoHB5AtCUgZEEWSgpgg1oqN92R7/wAbkyRR20ox8hgSULheYSHnEbCEbuuPvXHX8LK7GYpk9bETSYrHMOlKoukJCiWp6KVfgPPdnON3L4XethN9WwnPkGPgshGQEI4EHRiUoEdhbKSCIKFg+b9LDTkZ1Ybs5H4Qq30NKSb3GMU6d+oUMRMSRKfiIagzu0i54K5ZDBgFoNgfJI4hSGSIIY59LNZdbp8uZl/b9EVwaEamFpqmljDu9pRCIqiGowxDVIoiGz/OmtrIh1c0DDskFqMtQGVTRSkIJ3EIbRC2IO7oJSGkUlLlgzAWiEMR1AdI8ZkAdglr/xGZ1E5ekRGSjlZLe91xMRc8Uyb3aCTfzk7lg/zPfsULSYlkEzGaaezy8bgfUUWP/mKOsdDKdeez942Nwcz4yS9pR3L4PUkgcffQa5I4/DgAgwxAkl0ffkjPR7boY4e2ovPjVEEwJu+7DjgLhHNJxQIIqlpz0AgCAMIaO1Q8i29UO5rsYfL4PfiELQgnCcoChP6lubxFxdJ2sXos4DE5bXjXiAKjuHwIQ2/8wlqqRpIyAcxk399Qn4xBKjcWQFNRENQlVk1woI3FjUN2fslYMzLhESimiqvqahzVkYkN0x3fgLV8GGYaq47xahRgZBolCsKCKvb9/CMxzVH2lz+K9xQbgAxFkbKbdKurXmLrtf7jY9DjqEuTW+eY6TBfTbWE0XZg1hdL4SFosixWb2rZYFglzNsUdqfnUQkiE5RC1YtmkenkQ1SN0YQQICbgeUKuprwG0BYPwaQDOPARuDlWvHdXOXtSWrAD3cgg7loO2tYFmsyCOG3dx6/GFIuURSR1Wb3rh9SYYGYYmzc2DqJ6KDsO04XmiyUV1asv6OVKzt9Xr6lS78sTkKlLJ6usB1MhEwuojFGk8utGMkQxDyCgCKFG+km4cJR0txpHeSEUr2dhIoe6anwo6vUspndbmmLmc1m5kMUVhFxpzYUTifMdGJC2WRURSTM6VCCV1iKmPpC5DWAkRVkLwIILXljXHyYiD9+8D6+oGGIMsjyATjkBQB1mUQCBBRYSamwOkBGc+Kp3d8GtFeJkcEKnGHj3BJqoIBKUAYUXVFkY1jvZV3XDyGYzu7AcYM407oBQyjADOE6lqCTefTe2FedSIQCeOANbT6elaSS0E3ZxrUt0AEFYC03gjuW5u4QDi8yUEoUqlJ6yJKDECmyTqIqnD6in3Ft6PTd+bSQqkRkugg2W+CEjNdO3bYpmPWCFpsVhmjWSHrhZWPFTRPsd3wIMQYbmmUs+lCkS5AuKNQFQqYPk8/FoRlWwXQqKikSH1IQhD4Mem3FJgNLcM3rLVoEEFpFKC15aFk/URlipmZreKfAqU9w0bWx5CCEg2B0opWGcHRKkEUIpgtGoil2GpYvaiRhMyeC4zYjEsh3BzquknrIRws+prwaVKN8d+l8xLjCh0KKjD4GRGVOQxTpMnxSfTM70dBuK6kGEISKlqIX1f3ZdTIyaTtkNCCDgFBkopgoGo6fSZRhGXnI1t1pgQTXoWt19wEVXj1Hxi3vrBiMJmAnauiktdKmDTe/MTWyM5dayQtFgWKXMhOqktZIqbR1P3iUhi2BnB0PZh1EZUM8jwjmG0bd5n6glFxLF6YBAd2Qy6elZi5PCTAReQhGILjkQkKaqRi8EhDzn/SEgPWNZTwpEXH42R7DIsGd4C/9afQoQhguESwnLNzMKWQmL4sWfMmoo7+k0k8pmfbG65n2AkgODKJme4qNZNh5UQ5qGAl1dR0cpQDW5G/frNdPigrhKmkkv4BR+O7ygByuoR0Kgawck4qTGRJOQguTzk8BBACGjGx9ADG0EZg5PPojpUAqEUUTVUgpQpU3bBJVi2LvaQq8ugxqk0ye+zq5VHZ2aJh8peZfHjdboQQmB0d8VE5rwux5w7GIjM/O9JGZ83mRmuv59LolLv+dyBJ2Z7KZaDgGD6J9Estti0FZIWi8WIykMtKEUkgahuqC0iCZLofg1LkRlpCADVoYqadc1VSnhk8w647TlkIw629nhETgaCUEgQ+CxCNXKxvL0Kj0WgRGCZux+5Hc8h624HKY+gXBwFYq/JYLSKsBKaqF9prxqPSChBVIvg+I4xD2+5Hy5NjaOXdxCU6v6MkkvjMckrAsxNz+5OWgZRh6mIpaPsgETIIblEVI3AvNgT03fqzTj5vGpAohQQEtRngBCgDqvvyXRVUzDdBKSF2kF0HOtIHK+NvSbNUuaTFX+t0upzSUQC6hqeV3xytpdhscwaVkhaLBbDbEUpeUUYOxnpKKEQxvfpCSc8EHBzcTQSHGE5VL6TgyOgrotssQ+SOdjLetHmlOGRAF42xP5KOwAHBa+MbDgKuWsbSC4P4mfM62vrHPW6kbkvrKjml9pIFUGJppppmuEXPPCAg3kMkqtIHg+EEVthLCyjxIxyL++AuvV6RjfrmXpJ6jKVMvUdIwgpJeZx5jJV+ymkSW1TV/1ap76njk/WVAoBwhwwj8HrUsc1ir7G71N+n9qcPBBmLKPbXl+7iCQoxjbxTCaSON4xc01EAtaMfL5jU9tTxwpJi8XSlENhGaQnqrAcNZFJEUkThYyKHEuOKsAv+MguySO3tKAMxOOJMFE1bkxxGMKH7oOfzWLDmsOAMICsVQHHwQY/AzHYD14cgahWwT0PGBoGr9ZQeNF6iFqAcLiI2tAIeLDXiMV9T+0zvpDV/UFKMCWjZbl1vpnjveSwJWbqTXW4guwSmDnbtZHACMyRsGyeP7KtDKfA6qngkQDUpehc0xEblivBFlZC85zqkKrNJIzg+R/eBhEJUIdCRAK57jaIiMMvZNH36B4AgJNhcPM6lZ5RHeOx1ZAQEpX+qmniYaup6RIXXKL4XH3CjhaP1ShO2zv1yGb2/2vvzcMkqcp8/+85JyIys5as3ld6QVQWQUVQQHCEn0iLIKNz1UEdFh1xFLgiDCo8qOBc2x4FlQEHx3F3HJc76igDOLSyXkb2xQ1oaGnopukCuqursqpyiYhzzu+PE3EyIiurupbMqszK9/M88VQukSdPZFVXf+tdvm+fV50D/vhoS4q+ZtAp10kQ40FCkiCIcZmtCKUdORdFtOImHAEY0+5BDTfnIShWwB0OJ+tB+qazOyj6kH5oTcgXd+UAFgkcraDLJWjfhyyWIEtlCKURFEbAMx6cwIgzb2EfZCk91k/6CkyYZpd4FnhMsn5PBxoSEjIAykOllIVQWAnhdRuBVRooQ3gCTHD7uuT1J+EiMjKPmnJUKKMIJ4cCoAJp1gkBNxc1tYQKSmrrURmWg2qnduRtCcQzvTmUtSKqnqOUsql5FWCfJD8TraqpexJXRLvQDLsesv8hCIKoQ7MjlLbLt/a+1ABkKgIJRMIpNNG+4p4RFJ4rgAuG3U88j5dsOBzMdSFLZchyBSKbQThSRGVoBLllixCWKmB+CJHxTISzXEFY8aNGlsgvsiJtDWEyVctrvBKZyyBcY6/DHWEMxh2OynAZXAoUB0oQDgd3eTSdxojS8epCpa9sc07cva6VsUiKU9tajO0RZpyBR19ZIv0NRLOxEXd+m9fGpuZaaZuGt3PCI9GpZNrWJhbUIjHVxta5cjVmGk+zEBM0BxEEMbuQkCQIYtI0S0zGFjI6MN3EwXC1hjAsSxslC8tBSlAO7dgLv2jqGHuWdRtfxpwLb906sGwOI/sfDscfxa78weiTu+FKH8+5a7C6+AS49LE3vw4VZOGyAL3l3Vi/4w9gKgQqFey96x6AM3AhsPP+P8PJmF+Xo7uLyC00/pFORqBvzeJoKo1AZlEeTk83GGPY+9g2hGUTLeWOQHHPiDlPmEk+nDMopTH6YtF2cCuZFJQhwkqIsCKjZhkTSZRKo7y3YiOMYana0AMYIelkHPijPpyssLZBPcu7AQCZXpPa7lpi7IFMOrwc3ZZRo48RoypUGN35TPSctqlt7ZjvEwD7lQkGXemsSAzR/nBo8AZHEBu9XqtDQpIgiCnRjA7vZGq3dmZxbMYdlHzrn+h2ZaoTaAC4XS7cnAsZmMd23353lLK9BbnFeaw/4f+DfnYboBQyrzoOxe6lcMIKhnUeeyq9yIkAQcZFd/czYDIAunrBhIDTlYHyTY6XOxxhxUQUY3GmQgV/pIxMPgcVRqbppTK451oBGZNsfOGRPySHmQgTE6e0hVedeBN7Uiqpo8R29Jkl0tWAEXJel4tsX868d/x5Sm27tO0+oq5w8x7VKCZgUt/ccey5dm9O/UYjMuMmiM6GhCRBENOikdFJlkiVJkcOxhEw6SqUBstwcy6cjIAaLkP6ISrDJh1dHqzYWkQujE1P3IAysmsAzn13IxgehQxC9AkBT2vwxcvQk9+GtT2LEXrd8EYL4P3boUtFQEqU9hTgljyIrAcZmNnamR6BSqGc2rvwHIisB8Y4ZMW3j8fRPdMYVJ14o6SGDBWYitLHSoHJSMRJDScrIsNyUyMpXF71jUyktG1zjMdt2tu8r4pEorKTdmSgEFbMPirD5VREEuBwuzK2WUf6IYTn2Kam5PcnmeqPkSUFFo6tI20mycYnSm0TM4GhCV3bFJEkCIKYHI0Sk7XNJrFgiWc3cyeaelMJrZejlhqVId/WG4r1RoAFpQADT+1ORSxf3GK6lxlnKL4wBOE5yC7sRc/6VcgsW45MGKWHwwDa96GKJazYcByYmwGEgJfvgYjsdHJbtiOzoNv4NboOuOfA7TFp4+FndsHJBgAvov/3uwBUm3ZKz1dSUb1YnMVpfcCIQyfnQEsjnKUf+UQKhrAsoQLTUOMPBnaNsBjatURGwC8G9vMBIuEaGLskAFCB+bVv6kM1tFYQGQ8i64K7rrlOx4yHVEGIZ+97FkDk6VlUtsmotnaS5biNgk7VfHyqxD8TsyVcifkLNdvMHJrqRBDEjEh2ds+UpKiKSQoGleowTqfDZSBT4lFH1j0mHa0gfQkeG3FH87YBAOUSdKUMXSlDlcvQUkJrDUgJLUNovwIdzdhmrmuijGXfmIjHc60TqWGzIZ2qdxyPWIwlvR61VOO+NjY8r8V2vUfXnzQ3d7LGWqh2zTg9j8RXey1R13vsSQlUayHr7iuMzc6bn+JOWi+Nl26fTRr5808Q7QhFJAmCmDEzrZuMDcn9ARMZtGlup9rgUd5bscbeXq9roo/D0j4fVqT1PowFZRydAwAVKMgw6k6OUriVPYNwgxCq4kMFAXRoRKQOJbSUELkctJSo7B2GyHhAKKsR0agDOozenwsztlH6QSqNrZSyrejxdZoN61QaP75ur9sxzUUyXrea9mY1IjI5q9zWRAYK3OXggsEfDSGLpvs8nogjI5/LsFSObJM8ZJcuNH6crgPR0w0wBiYEtJTILsyAcRb5W1ajkbGIs+UHJWXT25ONRk4ncqkCjbAgbSTajf74YC6zvqSzBYnI9ocikjOHhCRBEA1jJqnuWFCNF9USHjf1gFHkT3AjZuL+bhVKaMWhlbIWPsnIHOMM0peQfmiFHpQyhuQjo8YSiEUej1pBlMpmzKDnRQswQJtxisJz0vY65QCKh8a7MYrwyUCCc26jhbVNKfXuA9WoIxM81VzDEpY85nqNkEp5cDpV0akAO0LRvoesys6R/kEAMCbv0ghn5ggzajGbhSpXoIPAptdrv1cK6YggdxhkoKccJZzO/OzYjql2D7MJiUiCMJCQJAiiocy0blIHyYiWQs+6HLjLke2rjjQ0qekQxf6yTX0/f/+AFRVBYfyZ2Hv/MGxv9x30LLjLbe3hIe96rbHaCSVELguRzUAnxiea9+aRDVEItyuDPU/2w82ZCOnQjiE7FUaWFGQsBENjlxMLx3hEog408i/rhXCqDTW5hTm4ORfFPUXAqVrrVArV6GowLK1wEzme8uAMymYdznmqI9zuX3BoqeyknPLgKLqWLwR3HSg/QDhasp9BWKrYLnXpj21qSYpX5jKw0Nx288JGKvclEJPm7pMl2ZiFWDyTCToxDSgiOXNISBIE0VQmIywnnK8sNQAjfJLRsbAsEQxLKyAyy107lzv/0m5oqeEXA4QFCZHjkCUFfyC0tX4q1NVO50Ttoaz4UH4IJSWySxZBR1FIk/4OERQrcLIutALCsp/YoxF8wjM+jNmFJpIZlENwzlMG50nR42RE9NWBSkQz4xQ05yyV1uaC1Y3CxUbhMbIiITKJqGn02QUF40HpdpnJN+VCBUsOXR9FUjWc7hyUH5hUdxDarvCgXEq9X1JAJh9LduBHO6veqvN9nqqIrH3PWKDHwpUgiNmFhCRBEE2lkX6TKojrJY2Ai61fUg0YnMPJOlCBhAgEdE6nahOTUTQZKCAwKWAtedRUwxGMluDxLoTFko1AqiCM0ucaKoxFSxh5V0a1nVKbpp6oVhOIIqyuqk6ASYhAFZqGIO6aekQemYkDsLOwmWDW8xHAmKaZWBg7UY1pXKvo5AWYq6qp9SiyqJQCB0+l/e2YRKVsfSjjHNIPzfvJqoCvjSAmo4OxiGx2N3UchVWhrvu5EsRkYawJ9j8NXq/VISFJEMSckxx5B6TT234hMOlrqZHJmygf45EdUDxpJdDoWZmDkhoL1vRh0ctWAQBGn9+LsBzAH60gKIUYyhWs8Cnt9DH06GjqfZ/4r0eqM6kTUUAVKDjZ50zzTKDgZE2kj7simktt9p/p9azw69uvL9prbPzN7f3uFQtsPWbXyiVgQkCFIXQoUXp+DwDA7RqyEVPGWTRf29wvPV+dCx43KMUwl8HJm07tMKqRZCFDsRBPrzGiq3upmc7DOUP/g1vRvbQXTtaF19tl9xyMlpBbmIMKJcKyTHXVx8IxjkLGc9IB4/MYf2+WHr7Q1pM+e8vzKREa7xMAhNnOuGUJ9cRrEopIEsTcQPY/BEG0FOOlbbXUppawZKKA0lcJEcKtyHvx8T2R8ApNRC2UEK6wKWQgYbtTk1Y1c6e1jd4lvRjrodV4jys7ZQdIT4gxCxr/RrMJbuyGkLbbiTvPjbVQ/V/V9T4rO7Kw5tpqrZWSHeBcMJQGRmwDTvz+wjPm7oxzhMWqYI3fY6K6ROsFGpmxa6XtnPLaWeXxV+aySaW6bSRyHKaTLic6k7hGstFHJ0ERSYIgGs5MG26StXS2kUQZ+x4mGHTZpGjjKJgMNILREEopCFdgz5adAAAna8Ymdi3uMbOuOYdy9x25qhWIwo3mSkcWOl5PBv5IxXZBS1SjpFGWG9wJIH1mOrwFQ1ipdotn8jk4WQ+aK2gpofzAfA1CKyCNCDZiLh6ZGFObHh8vrZvs7JZQNsWvQo2gGNiJOMaD04i9kV0D6F29BDKIutClRmW4bCN+yU7xOL1srYcS+0t2pceNPSow51oh74ytbZxM93bSW9T+fCSEZTPN0In5BTXbzJymCcmnn34a/+f//B/ceuut6O/vx6pVq/A3f/M3uOyyy+DFdhoAtm/fjvPOOw+33norcrkc3vve9+Kqq65KnUMQxPwmmQplLrOp7lgwcIchLEgMl0wq2o5QLCogOje7MAMA6Fvdh/x+iyH9ANnFfRjdtQe5xXm4XR5Gd4/aGsaRoFy7DQw9PmpFTtKA21vkQARGRIbFEGG5ai+Uybs24uhkqjOszThHB9zh4I5AJs+i0YMaC19xAJjrAkKY+kPGbF2iP7QVKpToWpKH19uFytAI3K4MRMaBcHk047v6H1WtiEx+ZkuPWGI8IysSw8+NwMu7Zg3B4PWYz0u4HE7GsfO8VagwsmsAYdlHZbhc7SZfloE/HJioIedmuo7D4C1wbXTTpvwFQ/FF8/mWBkrwiwE451j3lpVmlrgrIAOJnXc9n/qM4889/uwrzxsBmqxxrRWfwRyMSCTrH4Ko0jQh+fjjj0Mpha9//et46Utfij/+8Y8455xzMDo6iquuugoAIKXEKaecgqVLl+Kuu+7Cnj17cNZZZ0FrjWuvvbZZWyMIosWYTH3bvqamOBlhOp8jU/C4IUYrDeYICM+Fm3NtE8tUibu6bed1Iu3NxNgIhJtzI/Nynmhm0faIr4Z3dUMVR6MUsNmzk8siiGx4elYtgT9SBBemESfpDRlbACWpTfma91PWlkirtLG5itL41fPjlDqPzjV+lipyH9KBBjLV94qbd+LPhCVEZBI7G9wV9utkJ+Ekz6OxiEQjoYjkzGmakHzLW96Ct7zlLfb+S17yEmzZsgVf+9rXrJDcvHkzHn30UezYsQOrVpni+C996Us4++yzsXHjRuTz+THrVioVVCrVQvNCodCsSyAIYg5I1t3VjuVLPlcblWOcw825AIwIyi7sQjBcRKVQQnZhACeXqTav1BkzWEsy0idcAbfbRB6Dcmimz7gCwWhg0talav2gkzHvXxkuR00mobHScYww61rSC+WbrnPmOtVRjQB0EM3J1so0uJQq8IeLEJ4DGSgIT49bl5n6LGIDdM4wvGvE1CfGQpibud1hNvabZAii5yojPoJSgL79PJuqD0uhTa1XP3NZV9BppU1TTpdjZ4uHGQmvy7UCWgYSKrY22se87OQUIPP56EmLz2Yx36KRv8ofDMD83GwYeHSOd0O0I7NaIzk0NIRFixbZ+3fffTcOPfRQKyIBYMOGDahUKnjwwQdxwgknjFlj06ZN+OxnPzsr+yUIYnZIigO3V1jDbScvqmMTS6quybUONGSgUdxdRHmobOsYuSOglUJpsIzK8HYAwOD2IciSAndM+jzuDq/XERwMy2gdZuZVSwUtjag0zTfSRuyYiKbRRJ6PgELfmmXgDkemrwcA4C3qAxMC7uJFwOJlAOMoP/wglB8gu2p5NDlHYWj7bjhZI4jLg0Xb9BKUAqhAgrvCpoEB00QTX5MKNTJ9HtxuFyqQ2LttyHxeSmHR/gus0Baeg9Hdo8buR2rIQKVmhw89uxdaaZSHylYc+sNVQ/Rkt3ZMPHXIyQrIQMHtjUYyVqRJgwOQvrJ1rACw+JCFZj3OEJQCCJcjrEgUto2Y+emJSDV3GFTi+2NT3Ymfo/jnIvn9nKheMrefZ9cGgNGnK+OeOx9J1jHLxP35JpYngiKSM2fWurb//Oc/49prr8WHP/xh+1h/fz+WL1+eOm/hwoXwPA/9/f1117n00ksxNDRkjx07djR13wRBNB8ZiUQd6NTM5mQEcjKRqHhGtQykre0DTPq2MuJXhWgymjnOutxJG38rqVPd29YnUibEDmfW/iceoxjP5o4bakYe34rSQw+ieP995vVao7SzHzqe+S2rafAkjDNw15idu1kHbtaBcEXdzumwbOo4lUqYgUfm42ZUZLWpB6jWSXYv6YZMNAXFvp2Ms31+/tI3nermkLazOnmYz4jb6Ki5zuo+TMd81dKpdhZ5UrzWG6nJJ9n1nVxvX1HRJJ0ksAhiskxZSF5xxRVgjE14PPDAA6nXPPfcc3jLW96Cd73rXfjgBz+Yeo6xsf/otdZ1HweATCaDfD6fOgiCmH/oQNuoYHx/InjUWR2P8nNzrq0PlJXQGn3XipN9wVwGJ2s6r3lNSrwqJo3IlKGKrIOUneltDMzNdchSGSKXgdPTHQlDB8FwEcFoCcHgECp7Bm2Hs5N1baNOyjA8aoqJrzMWQfXEUDwiMf6atCGKbY7i65CBgptzwd20TVBcQ1nvc0t21Ksouhm/X60Q5w6zwtbuPZCQgUnjq0j8m4afyX9/UuUOqfGa+yYpcPcllDtFRHaedZICa/CRnOY0GdavX19XS5133nkAjCa64oorsGrVKuRyORx//PH405/+tM91r776ahx44IHI5XJYs2YNLrzwQpTLY+uXZ8qUU9vnn38+Tj/99AnPWb9+vb393HPP4YQTTsAxxxyDf/3Xf02dt2LFCtx7772px/bu3YsgCMZEKgmCmN/EKW3HZUA0jW8yU1Ji4RCMmgik8Ewtoj9q0pTlQTMS0MmaudRykr/kk36Mbs6FyJsOE+5WInNwbqJ+Nc0qSkWWRH60n4wHrTSCwghELhtdVwCnKwcmqqKtvHsQYdmPmnQUVOhHUU0GJ+vCHShaIaulhvB43Sk3uUU5e7+4u2hvZ3o8MwoyipKGlRBMcEhfQkSNSaO7R+0oSp0Qq1JqOF0OmBul+zmHSYam6xbjxhtZGVtDqUJt7JeUAudmso6ydZMKYVmmjOaTZQc60Pa7ljSrn0wkhLsslfJOCk2324GsxCKfDM2JueH++++HTEyP+uMf/4g3v/nNeNe73gUA+OIXv4gvf/nL+O53v4uXv/zl+NznPoc3v/nN2LJlC3p7e+uu+e///u+45JJL8O1vfxuvf/3r8cQTT+Dss88GAHzlK19p6P6nLCSXLFmCJUuWTOrcnTt34oQTTsARRxyB73znO/av4phjjjkGGzduxK5du7By5UoApgEnk8ngiCOOmOrWCIJoY2LxEBbSIkRO0t4lk3ftpJnYxFuFEsLj8EdDqKCaPrfCZ4LoVTIaOvrCqI3myUDZ7mQZSPiFau2gl4+8FgWzUciwZCIAXSsWQ2Q8Ix7jCKEjUCkU4fVkITIePNfBwFNPgQsGt9t0mHNXQLgc/qhpytFSIbc4C+FyBMUAXneiXjLjpLque1f22D0PPz8CLZWd6Q1U52+HJRM9DUYDBOUw5RNp7ZCEGNPskpxoU36h+jlkl7kp38mY8m4/9Vgm71ox7mQFvC432lvRvE+NaIyF5bjlCNHjS45YYLvzZagw2l+015OsgxzdUa5GVSf4WZiv0cj4ujqxNjKmFUYkLl26NHX/H//xH3HAAQfgjW98I7TWuPrqq3HZZZfhr/7qrwAA3/ve97B8+XL88Ic/xN/93d/VXfPuu+/Gsccei/e+970ATIDvPe95D+67775pXNHENK1G8rnnnsPxxx+PNWvW4KqrrsKLL76I/v7+VO3jSSedhEMOOQRnnHEGHn74Ydxyyy24+OKLcc4551DKmiA6jJnaujDBwXk8T7uaWlay2rGcFEJTSW9L30TMbP2fMl9r6/dqiVPc0g/trG5Z8eHvHbLH6IvDCMsBZMVHee+wTZPHtYJx+lf60gq/mPo1mybCZ18XNdJUP6f0RBt7fhSBlCVlG12SdY1aVutWYzP42rrWiT7T2o57FeqUH2fPsm7IUNU9f7qoRKS43nqNeI/5wKnhlo4Ukc2mUCikjqTjzHj4vo8f/OAH+MAHPgDGGLZt24b+/n6cdNJJ9pxMJoM3vvGN+O1vfzvuOscddxwefPBBKxyfeuop3HTTTTjllFNmfmE1NK1re/Pmzdi6dSu2bt2K/fbbL/VcPA5MCIEbb7wR5557Lo499tiUITlBEJ2DLCqILg4VaDB3ajWMbt74EWbzmSgSydC1uMfWJoaVEGFF2o7iWHC53Y6NkAHVNHr83kljb+FxW4MpXJPSZoJBcw0VmhR2arKK1CgPlWwnN+PcmIqX/chQXKFn//3Au7uw4IW9poGmOwcnl7HvxUTNNJvYvkdUPRvjDvU4Fe12uVBSI06YJ8dCcidq+onrNf2qz2Zy/GFyfrntjO6OTd89ax8UC+cxvpWBHpMmjrvKayOa8fcikzf1rHEEFoCNSNpzJxE5jCOSWiqEUqX+iKg9Z7K1lCSw5jdMazDd4IhktN6aNWtSj19++eW44oorJnztL37xCwwODto0dBx8qy33W758OZ555plx1zn99NPx4osv4rjjjoPWGmEY4iMf+QguueSSKV7NvmmakDz77LPtBzERa9euxQ033NCsbRAE0SbEKexkWhWoWrSIHE+YWZvpLMUXysgtzoAJMzVGuKY+slIoVevtAoVgNIhGAVYbQmRFTrpjV0WWPizqyra+ioB9fy6YFWeAGQvIRTzNJsRI/yCE51hh6XS9CJHxMPzcQNTlPRxFMM0aYVnavTLB4BcCK9761vWCOwJMSARF8z4QDJURH9l8xtZsBpG/pT9SqdY7Rp9BfA1ut7EEslNrYh9Kx3wfvLxrU/kAUBky4jue3W2nDCXEo8hxsLD6uNtrxH5YSEdx47IAvxCga3EXvB5v7FzyfRALw4PfeyBUKMEdgeKeEWilbDkAc6uRIFVHnI4Hicj5TzPtf3bs2JHKrmYymX2+9lvf+hZOPvnklC0iMLYxeaKmZAC4/fbbsXHjRlx33XU46qijsHXrVlxwwQVYuXIlPv3pT0/lcvYJzdomCKLl0IFpjEmKPB1owGgeyEDBiWr24kktWinIqEwvab4t3Go0kSsGGYuzRFNPvQkx8XsqROni6HXJqKY9T+oxLTwm8ifAQuM3GRuUx3sLyz4W7L+iuoYaWwuabEwxaya6xCFtGjx+jAk+Jp2f2qdKR01jM/WgHEJkhJlXnpidLXLcpvCdLgdBOUyJ/PFIpsVTn+U4c8HN569SIyanSlj2EZYDEw0eLFX3ElbrYqfSUEMikpgpU3WWeeaZZ/Cb3/wGP//5z+1jK1aY3xH9/f22lwQAXnjhhQmbkj/96U/jjDPOsE45hx12GEZHR/GhD30Il1122ZielZlAQpIgiJaiGiUa+59+WDRCRrjCiqsF64zRds+KBeCuC+E5KO8dRqavGyKXxeDWnfBHysgu6MbQs3tNpJCzaP5zCFmRyC7KQEV1gvF7eF0uiv1lMJchk3cxsqtkLWySv4R1YjxishEnrEgIqSGjYBh3BVigjI2QY1Ldwzt3ozRYRu+KPIRnfh3HkT8uGGQAa5mT9E2UoRHSSmk4WTMnW/oSuQVZZPtM13YsyJysi4GnXgRgRBZ3gfJABSIjIKWpd5QlBe1Uax1Fr7A1kLHw01Kn9hB3YMcko7smkinG1EXWTiry8q691t4VeThZF0HRr77nOMbicRSSuQxutNfuZX0IihVTb+qHtpve6/FsvWmFB/C7Qvt5JkVxbXTyBudAEpMdgEltN7Zjf7qp8u985ztYtmxZqo5x//33x4oVK/DrX/8ahx9+OABTR3nHHXfgC1/4wrhrFYvFMWJRCAGttS0vbBQkJAmCaDmSXbnxZBvuMIgch+MKm+YNhiUqw2WoUMLrKUN4IbT0IP0QxReH0Ls2i6BYsbWTsV+hQtVsGzBCJizraCqLNFFApW10TkUiSgYaLDRp35g4RayVNqn1SFgW91SjYpxzO/kFAJycAxUqcMc8VtwzgmxfDlqZPXDBkMlnUdpr6iy5KzBUGLb1hYwboRqWQix6yUIwzhFWQuQWdlkhxR2B4kARjDOM9BfTdZ4ZYetD4+ivTDTLxB3rtcIvFoM60PBLQer53Mpq2m50R9l+z3rW5RCUQ3AA7hIPTlZYs3QumI2oDj4zAO4KaySfjBiPR261ZwVt4dk98Ed9KyAZZ3Bz1f/iVCTw44k7IsfNz1YsgKnxhphDlFL4zne+g7POOguOU/25ZYzhYx/7GD7/+c/jZS97GV72spfh85//PLq6umxHNgCceeaZWL16NTZt2gQAeNvb3oYvf/nLOPzww21q+9Of/jROO+00CCHGvP9MICFJEETDSY5emw51R92FGizU8AdCm/a2wqcUpNK20jcd0qPP7TYCz3NsvSQQN6ykO6Bjw/H4r/hYPMapbaA6GjC+DcDWYiZr++rV+SlZTRlL3zQBcSkgKyGUMNNmZFDdk6yENmXORHXWtMhxhOUwMj7X9v1MpFNAeBpO1rV7SqWzA2XHFNq9umPrRN1eYacN8SjiB5gUt4Qyn/+wBkrmdvxZxJ6MyUac5GhF0+1uakyZrEY6WVTzOpn6SO4y+/2Pv1dG5Fc71DO9WTgZB26XZyKcbhmANH8oRJHSfdXGUjSyM2iVEYm/+c1vsH37dnzgAx8Y89wnPvEJlEolnHvuudi7dy+OOuoobN68OeUhuX379lQE8lOf+hQYY/jUpz6FnTt3YunSpXjb296GjRs3Tu+iJoCEJEEQLU2qHi+Xfo65zKZwM/mo6znjmUaLkTJyS/vgj5TRvawP3HXgbB+AE3V3P//sqBUUJbcCWVLw8q41Nrep2lDDLwaQJRVFIyOxkzBNj6k7XcZhkJAQGQEW12om6hdZJADLhQqcjIDwzBhEkXEgItNw4XDz/i4DSsq+zojFaE1H2PGHsek4FwxSabgJr0kjLjlCpxp1jGsak6le5jLoRK2jnX1dqnp+xtE84Van1sTWPqY5iiHT51kxy11urw8w1kZOVhjrJkcg0+OZKURRI09c0yiLCm5eVLvoc9x2pvuDgdlbNPYx/mMhrJj7QSmAm3NRKoem+ckV0FxDZIDSs9WufYKYS0466aRxU86MMVxxxRUTdnzffvvtqfuO4+Dyyy/H5Zdf3sBd1oeEJEEQLUtsQA2kR9glbWTCShiZc1cg/RBOl4lGul0ZeAvy6F5RgZPLgAuBbD6TmsGdhDss5TeJOk0h+2Iqc5uTTSXpaKq0tj61FkC1+2Lc1FvGayTXjJ9T0ShEFnlGMmHse6xAHK5a+XCHgeWqUb6JPDfjSKQONJAz6XsJCbfbseUIMdXmJBV5V5qaUe4KMxox6i4PSoEdZRnDHQbtVq2Ykk0zYlm1ISt+j6R5u3BNyr88WIGTc1Ap+Cmro/GgaGTnwKAaXyM5xRGJ7Q4JSYIgWprkqELrceiY+jlZNNY+yuOp2dZuVwY961bBefnBCAp3Q5Z9aG7SyW7ONb6O0Xg8AcDNOlCuNhGzHId2qp6SsW1NHI1LpnJrPROTYjf5uBFA0l5LHCFkgiO3IJsYW2iihHGq2t52RcqaJ67vNHOpla3/DMu+MT33QzDO4I/61QhdZCekVNVEPBaQMvbQdKp1ibZDPKhGJG0TTI2gDQsSmcUCmT4PMlDoWZ+DiOsxvbQYTorjkedG7dq5xSbKqgKJ/Y5aBe5wW5bQs3IRKkNmupA/Yuov3a4M/vzrJ+117P3zoN1zfm0PhMtRLgQISyGGnhy1It9NNBIlIfFIENODhCRBEA1lpvWR4zGe5YxWZkJKpVCync/c4QiGR+DsfRFOVw4imwG0RvfSXjhZ41XYvXTYRicrhcA2f/gDoU15q8A0YcQCLiYpQpL7EolhYbXm2zFJ+xs351qhxx0BzzEROgBRs4hrvyaJLYi4C7hdxmdTRTZD8XqCM+QW5BCUAhP1i0zUXc+IZpGrRiKTorLWoidltJ6Mtkap/rj5JjnisDxYqfpUdrkAAht9jNPawuUQ1jBdRvPQHahAgjscXk/WzisPS5WozlWhZ+UieAt6oSp+ddRlqCEywprDa6URFIPq5JyoUQoAys9XazZjSER2Lq1SI9nOkJAkCKJhNENEjuc9mCTuyo4je0HRx+hzu+H0dENLCTAGJoSN3nHHpFURCUnhcaiysiKHuQyY4cjGesSCNJN3x6RwY9wuNxE5NVNwTCON2ZuXd+F2uXYMogrHptHMRB0Of7Sc8ryUgYQMgNyCDCqOSf/WS8XXRiOT1JYYxM03trbU+mRK2yUeXyuPvlaGffBeD7IiTZ2ryyA8M1Pczblwsp7xhLRTeEIIz0GmrwfBaAnlPYPILV1k6h1jgbjbr/pF+tXpPcmIaO20HIJgugmp7Qav1+qQkCQIoqmcGm6ZkcCURWX7q0XXWBPdeCIL49zOtjYTZDzs+u0f0bduGbRWUH6I8lARQdFEt0oDJWR6PYiMAyZ82+FcTzzJkrKd5HLMs0mq/4F4i6L0dZSSLu307do6MBE0Jhi8RJo7FrKcMxQHipCBAufGIsfWJEoTbQNMantox16oKKXvZIrgTnX6T2XEtx3ewuMQMDWTSuqUWExGWGv9FJOfeW61l0p1xyn6uNEmFpOx1ZCWGpVhvzpNKPLRNFN2fPSs6rYp8O4lPZEdErdiP44wP3X7VnhdLoTHUSkEEB5Hea8Pf8B4fsqigr+nWvu4Z09hzDWMF9GmaCRBzAwSkgRBtB216VZdUtj9xG442ThVWgATHE5GwOvJmu7dom+jd4wz9CzvRtfiHgjPQf8fnrMTYSaKxu2LZLQutqix9ZBuOj2ulAIHh/SV6dyGAsDtfGzGOZwMh3A5vG4P2UUZ6ynpZEyaV8vIcDuqJVShhJNxIAMJf9SISACp0ZDW8DxOZaOakk9OtQGiZqdEWj/ueFZKQbjGxkdJDSFEyrpIlRVQrq7jdbnRPiS4cMCEmWSDqL5VSY3uJYA/6ltD9di6h3FjyeREnpAL1uUx8vwovLyLsCARFCaW9kB1/GZtNJJEJEGp7ZlDQpIgiLZhvLpDoOrdyASHlgrC4ehZ1ovsoh6MPDcQNbOEcOBAcmMTY+oKqyKr0VjPyUQ3eOzbKMa5DnMtYyOvWmogsvyJxynKmrQ242a2d1AyEcs4+sdF/T7SumntOh6etZ97PPM8tbcEyak31utRpbur7fvFApczLFi3BGHZR25xPtqfgttVNTp3cy5e+N2e1ASdiSChSBDNh4QkQRBtQywc6tnsMMGs56LiDD3Le83YRCHAHQEnCziZAD3L82CcI9Mbonf1YgAmEqZCiRf+uAeyqFIiChib7h0PG/kCqmnXKG0cT1RhLkMl0fCR7MYGgNzyTCL9W7225HjICmCnwkhfontJF0Z3xx3QyppzAybNbJtOItEWjIYIhmVdYZ68dh5FUeP9ed2OtRNyu02UUbgclWHfjpi0r41im/u9bj8wzm0nOWDGNrpdGTzx34/ZPez58x68+PiLcLtdCOd5K5K1NAbqg08O2+970usyhkQjMR3MiMQGRyQbvF6rQ0KSIIim0qwubmP0DVSeN6P6CluNkBI5jq4VWQztHMLI88MAgNEXS2CCWV9BxrntDlahmYbCuOlA9hY7VrAk6+6mSq2Beb2pOLG5dvIxr9uBk3GgEt6Sbs5Faa/x5RGegJYKTHBIX6J3RQ8Y5xBOkJoOI1xuo4BuN0dYCsGyzIpJ7pgo5XjiLGmXY/fvCnAXpu4yWjsoBqZusxyCc279KuOUflgO4GTNDPT4q9vbBe66tjteRJZGuUVZ89kFCnsfLcDJC4QF05BT+70g4UgQrcHY/AlBEEQDadZ/+BOlNeNUsgyVFWTxSMG427k2LRzWjPfbV6d4I4inwCSpNSHnkaek8ASc7MR/++tEmriW+DMxkVuWErbA2BrO5OOASW+rwFgMaamhpYKW1ainDnTqPeLubbcrA+4IBMUKgmIFbncO3HXNJB6Xwcu7EK4wM7grEjJQ8Id9ayu0r/Q1QcyEuGu70UcnQRFJgiCaymz4SiYtguLxerHI0RLILsygUjCNGyLqJrbrKIWwYgSSqefbd/PGZKgVQLGJtw50XYEUX4/0JbRUqdS2n/BEFG41Vc0EQ2mwHF2Heb25FmW6tyvSfg72feIpN8kIZELM1hPQzDUNL15PJqopVSY6yZntGE/5bAYS0ueQgYKTdU0TUNaIx+KLg+heuRhBqWyM3l1jH1QpaNv1ndyblxco7aRRhgTRqpCQJAiibYhrEJNSLzYNjx8LChJFt2Kfd/ICbq8ws7QXuKgMG1HCBcPg9gFoqSFD05wjK9LOidaJ8Yz2fWa412SHcRx39GtG9sURSpHjNu2dbF6x60cejP6wb8zJo7R2pVAVXTKQ4NEUHxWoaNa16ZLu2i9rPwfpK7teEh1ouIkoqD9SARPm9T3Lu2zTjwoVsvmMte/pW7MII/2DAEx0NLuw13aWZxYvgLtyJQDgNefmUHphL8qDo9j6X0+N+ZzGs46itDbRKKhre+aQkCQIYt6RFH2xTyJzWSrlqhJ2OAI8le51ux0bHWvmHmubeng0uzreR1xzCAC6Eo1rLIZVsRnXMwqWsD6CtTICjM1QfC3JedQxjJvPRWRESqxyzoFMOk2eTLtzwSAVbLmAVgqoGPPx8mDR+kBKPwR3fHh9PXB7uqC1RrBrF0RPN4ae2mVNx2M2DDyauk+ikWgmZEg+c0hIEgTREejA1PYlO4u1FVu65QvGmcv26W3JBAcTJtXMBYMMqvY7SeLnVVQ3al7LbKc1YOoeg3IIQNgGGmuYLlhk+s4QlAIbmQSMWI2f444wfpg5kxIXXTnwXA6spxfyxRfsCMSYWhFJEETrQ0KSIIh5jSwpmyoNhiW615iULhMMoztL9jyR45AlBVlSKJVMajyODCaNuqea4p6I5FpxdDJ+L38ghMiZSGqcak9eE5CeSuN2O8bkPBKOTDB0LTbm3loqdC/tttN/tNIoDZbNCMZAVusxXcDtdsGjKKVbkVhx2Go751pkPciyD600etYsR/nFvQCAsOyjuHvY1kEO7xpEUDRd5LkFOdsdX95TQHlwFP6oDy4YinuKthmKRCQxF5D9z8whIUkQRMeQbCSJU9wxsYiMidPHtV3V3GUNFZP7QuS4qZF0qwbfyX3KkjJWSIkaR6UUhBC20caMX6zOvdZKw82Zmd5McGgVdaxHKW/uCqhoUo3blYGTyyAsVaBDCeEZ/0h/0FgrxdZJXUt6q3v2HFRGfEBpZBd0I9PXA6enC3u3bIf0Q6hQQkXByNfeeXdTPjeCIGaHVs/mEATRRrRDPZtSxuC6dsIKkO60Hs/+ZzZFZNyBzsTYvSRHOcY2QhOlvu0Un6jpJU5H11oFaZVM/StIP0AwWoL0AzDOwV0H4AxKmvVExoOTyxp/yO4cnK4M3JwL4Zrxjpl8Dk53Dtxz4Y+UrVE6ABxx+2+n/+EQRANgUE05OgmKSBIE0TCaZfUzVURX1YNQ5Lg1s1ahRvHpatq6nvCaTaFY932jDnTuMhSfrtT1e7Spbafq8eiXQri9Vauc2tcN541hezylRpaUvf7csgyU1GDc+EMGpSBqwuEIywG4Y96vPDhk0uGhxO4nd1tvTsYZ9j/+5SjtKYBxhmWHvwyLitWyAae3BwN/eBIyUHYCz+vuuqcJnyJBELMNCUmCIOYd+2pKqaVeB3UrEEdIa2154prJ2B4IAASqtZOxiIyfr03Px9Ni7PqcgQPILsggrEgIh0NEKXAzjcZFUDQCXCtt0tOJyKIMFLJLF6I0MAyAQwUBRMYz/pG5DF588DFbn8k4o3Q20TpoAI2uaeysEkkSkgRBzG9STSqJOdpmUks0LrAFRaTI8TECEEik3J30JBpZUul0NwAkail5r2kaisWmP5DumOaO8ZPMLsyYBphKCK/Hg9ttGnZUWITb5aE0MALuCHi9XlRvqRAUAxS2PWc6tLMu3L48wpFRcEdABSG6ly+0kcxDr7+tgZ8SQRBzDQlJgiA6iqR4bEUBOR5x9/h4JBtwkkzGNihem9mGHtO1bfwoJRjjEJ6DsByga0keXm8XRl4Yhptz4I/6CMsSQdGH8BwTuVTKRCClBHcdOLkMwDkO+N4N0/8ACKIJkI/kzCEhSRDEvCUeSxjDa+ZJ1wqsuaqPrEdyCk4yelpLrRi2QhmwIxkBWFP2ONKZvPbsogxUYMYyZvMZCM+BCs3caygNpzcDtzsLFYRR045G334LzezsnIdMbxZeTxbc4Rh8ZjdGn30e+YMPQDg4hKf++0GoUIJxjsWN/YgIYsbQZJuZQ0KSIIh5C3PHRvGSc5zj2shWEpD7YjJRVF6ntjJVb5n4TJjLEIyGZrKPYJHno0RYkSgNlGx3t6yYJh4VhAiKldREGjNmMURu6WJ0jZTRs34VtJRwFi+Cm3OhVXXqDkEQ8wsSkgRBzGu4w1LzrmNBVft4uwnKyRJ3r8df6xHbC5l53RyAgnA58qt7EZYDMKcUPR/ZEUVTayrDZTgZM8UmLPt44ffPILewCzqUgJBgUtZ9P4JoGZqQ2galtgmCIKZOs6x/khG46Qi9OCLJo7Ru3MnMXIagIO2arSwik3ubzD7jc3RQ03wTpbTjju34eeHyqBtboTJcBuMcYSWECqT1leSOQH71QuMT2Z3DjnueNq/1zOcpfRV5RO7FyPMF69NZ2luClhqvf/CBBnwSBEG0GvNGSP7uLzdg6ZIeALB/KR92w+1zuymCIBoGcxkwRbGnawSYyKFaH1ia4IXzBCcvoANtvwLmcxSusEbm3GFwcvF/BQG4Y6KOWmlwV8DNuRh6dgjdS7vhdGUAZYRo9TUxJooJANzhEJ6x+3Gyjn2cIFoOrZtg/9O6f5Q2g3nzrzuezhD/9cw4wx9POwF/PO2EudwWQXQErWJEHlOvNjBmqh6T7UwcfeSc2ygk5xxaxlFG85hwoiht9HtUuBzSlwjLIYJSgMUvXVodsZgzIxOdjDCm5dy8XngcMlAIy6a+UvqhEazR7+SH3nTsHHwCBEE0m3kTkVShhD/qY+nBq+HluzH0dD8Gtw/M9bYIgpgGyWaRuGNZTMGqRxYTNUqBhpsXUGE1MhdH4pKd0fOR8vMBAKAEP/V4bcPOaLcJzyqlwPaWIDyB3MIctNIo7imisHMY/nCAoR1DCMsSTlagMuTbTnAAeNnJL0dxdwEyUOhe2gvhOXCyHoTngDtizChGgmgFyP5n5swbISkDU58z+sIQwrIP6Yd2QgNBEO0JdxhkoCG6ONxekRaIUyCuk0yOBQzG8V3sBGrrLP3BIHkPnHMEowGcrIA/GkJLDa/XhdvtIrsgAy01wrKEyJg0uFIK/kgZYcVEIYXnINPXDcY5vJ4sAMDJurN1eQRBzCLzRmVxziBcDrfLg5P17F/AR9z+27neGkEQUyT2O0yN8WugefhExt6dSK23plIKSmrbMAMgfVtp22SjlBHnWil0Le6Bk3XhZD0wRwBx6tszMYv+T5wxS1dEEJODad2Uo5OYNxFJJswvrMLOvWB8EP6oT/NcCaLNqbXoIZoDdxjgMATDEk6ijjI+mGDggoFzhrAioaVCUI6ij0JARt8lFSpoZUSljkzIc4vzEBkjLCuDw3N8pQRRg1aNt+uh1HZ78ur/+jXy+fxcb4MgOo5mNNrIooKOzMTjVHRYkOOacdf6JCZT4LHtD2AEU3lPWHeNTqa0MzYb16lRi26vsNFbkeMYfa4MIGnqHla/P+UAShoRGZYD9KxfDS0l+u99DE7WBXcE9v/WL2fzsgiCmAXmjZAkCGL+MNkZ2EkvxMmkvimlPT7xlJ+Y2tneIsdTNabMZeac+NxIRDLOzajEx5+G8BwUB4q2w5sgWg1qtpk5JCQJgmhpUjWSdbwfraAhkThtaptvuDO+6IvFuw40ZBQFVqFGpjeLsOyDO1XLn6BYQWmgAww7CaKDISFJEETLYYVNQuDIooK3OP0rS9c8P95aYWTz08rTa1oBFWgg0JAwUWEWVsdJxunv+DN38sI+BwB7nzF2a1ppDO8q2DVLeyrgDsMJW38/W5dBEJOGQYOhsb8XGr1eqzNvurYJgph95sKInDtswojZeJCInBzcZakUd+y7ua8SAq00uhZ1oWtRDiLjQKnq500ikiDG54orrgBjLHWsWLEidc5jjz2G0047DX19fejt7cXRRx+N7du3T7ju4OAgzjvvPKxcuRLZbBYHH3wwbrrppobvnyKSBEFMi7mcZpM0wp5MSptE5PSpZ7+UvJ38/P1RHyqQ4K6Ak3HM7WmIfoKYNVqka/sVr3gFfvOb39j7Qgh7+89//jOOO+44/O3f/i0++9nPoq+vD4899hiy2ey46/m+jze/+c1YtmwZfvrTn2K//fbDjh070NvbO+W97QsSkgRBtA2ypKp2QFGUjERiY0l9nhN8trWlBHtKQ8it9iIz89CWE8z36UEE0QgcxxkThYy57LLL8Na3vhVf/OIX7WMveclLJlzv29/+NgYGBvDb3/4WrmuGAaxbt65xG05AqW2CINoSEpGtB+ccTFTtlgDg1HDLHO6IICammYbkhUIhdVQqlXH38eSTT2LVqlXYf//9cfrpp+Opp54CYAz/b7zxRrz85S/Hhg0bsGzZMhx11FH4xS9+MeF1XX/99TjmmGNw3nnnYfny5Tj00EPx+c9/HlI2/g87EpIEQbQdmgRkS+IPBvALAfyBEBsGHsWGgUfneksEMTFaV9PbDTvM76c1a9agr6/PHps2baq7haOOOgrf//73cfPNN+Mb3/gG+vv78frXvx579uzBCy+8gJGREfzjP/4j3vKWt2Dz5s14xzvegb/6q7/CHXfcMe5lPfXUU/jpT38KKSVuuukmfOpTn8KXvvQlbNy4seEfIdO6vWf5FAoF9PX1YWhoiAzJCWIWmcsayRjuMopKtiAUhSQmw1z+/x2/97O3/gfyPV2NXXukiP3+v3dhx44dqevKZDLIZDL7fP3o6CgOOOAAfOITn8Dpp5+O1atX4z3veQ9++MMf2nNOO+00dHd340c/+lHdNV7+8pejXC5j27Zttt7yy1/+Mq688krs2rVrhleYhmokCYJoW2ITbRKTrQEJSKLt0NpGEBu6JoB8Pj8tgdzd3Y3DDjsMTz75JJYsWQLHcXDIIYekzjn44INx1113jbvGypUr4bpuqmnn4IMPRn9/P3zfh+d5U97XeDQ1tX3aaadh7dq1yGazWLlyJc444ww899xzqXO2b9+Ot73tbeju7saSJUvw0Y9+FL7vN3NbBEE0gFYRDSQiCYKYT1QqFTz22GNYuXIlPM/Da1/7WmzZkv59+8QTT0zYPHPsscdi69atUEqlXhOv2UiaKiRPOOEE/N//+3+xZcsW/OxnP8Of//xnvPOd77TPSylxyimnYHR0FHfddRd+/OMf42c/+xn+/u//vpnbIghinsBdBm+xM+mRikTzaJU/LAhiKjAoOyaxYQemZv9z8cUX44477sC2bdtw77334p3vfCcKhQLOOussAMDHP/5x/OQnP8E3vvENbN26FV/96lfxX//1Xzj33HPtGmeeeSYuvfRSe/8jH/kI9uzZgwsuuABPPPEEbrzxRnz+85/Heeed15gPLkFTU9sXXnihvb1u3TpccsklePvb344gCOC6LjZv3oxHH30UO3bswKpVqwAAX/rSl3D22Wdj48aNVPNIEC1MK9RIAsYSiCAIol159tln8Z73vAe7d+/G0qVLcfTRR+Oee+6xEcd3vOMd+Jd/+Rds2rQJH/3oR3HggQfiZz/7GY477ji7xvbt28F5NTa4Zs0abN68GRdeeCFe+cpXYvXq1bjgggvwyU9+suH7n7Vmm4GBAXzkIx/Bzp07bV7/M5/5DH75y1/id7/7nT1v7969WLRoEW699VaccMIJY9apVCqpFvpCoYA1a9ZQsw1BzCKtIiKTkUhKcc8dFI0kpkMrNNvs/M2PkO9ucLPNaBGrT3xPx+iSptv/fPKTn0R3dzcWL16M7du345e//KV9rr+/H8uXL0+dv3DhQnieh/7+/rrrbdq0KdVOv2bNmqbunyCINK0iIgmCIIi5Z8pCst5MyNrjgQcesOd//OMfx8MPP4zNmzdDCIEzzzwTySAoY2Nrm7TWdR8HgEsvvRRDQ0P22LFjx1QvgSCINsVb7MBb7CC3n4eel2XR+7Iu9B3UjQWH9Mz11giCaEMaXh8ZHZ3ElGskzz//fJx++ukTnrN+/Xp7e8mSJViyZAle/vKX4+CDD8aaNWtwzz334JhjjsGKFStw7733pl67d+9eBEEwJlIZM1kfJoIg5h/x3Ob4q3DN38JMULMNQRDToEVmbbczUxaSsTCcDnEkMq5xPOaYY7Bx40bs2rULK1euBABs3rwZmUwGRxxxxLTegyCI+Q1zGViiNlJ4RkxSveTsQ7WRBEE0rWv7vvvuw3333YfjjjsOCxcuxFNPPYXPfOYzOOCAA3DMMccAAE466SQccsghOOOMM3DllVdiYGAAF198Mc4555yOKFAlCGJqMJdVo5Kcw8k5YJyikQRBTI/kbOxGrtlJNK3ZJpfL4ec//zne9KY34cADD8QHPvABHHroobjjjjtsaloIgRtvvBHZbBbHHnss3v3ud+Ptb387rrrqqmZtiyCIGTKXUSi3u/q3r1IK0pdztpdOh6KRBEEATYxIHnbYYbj11lv3ed7atWtxww03NGsbBEHMI5RSEBkBJhi01HCyjq2TjGEuAyi13VRIRBLzBqXM0eg1OwiatU0QRNvgD4QATLONCjWC0RBut2MEZo7b1Lfba+bLxvdHn65MtCwxBUhEEgSRhIQkQRBtRSwidaChHQ1ZkWMacOLbcT0lYJpxqAmHIIgUWpuj0Wt2ECQkCYKYMqeGW+bEmFyWFLTD4OQFwkBC5DicrvjXmIlWMpdB5NLpbprFPXMoEkkQRD1ISBIE0VbE0UjmmsgkgFSdpA40kEvcJmYMiUhi3kI+kjOGhCRBEG2DLCpwl0GWFJjLkF3ooWtJFxhn8IsBOOdggkEGEpxzIGPMypkbAADcHEdQMJ3eootDFjvrF/5UIQFJzHfI/mfmNH3WNkEQRKOoTVEzzvbpI8nF2HpJYt+QiCQIYjJQRJIgiLYibqzhDoOTc6CVhnC5jUZywaBlTY0kicgpQSKS6BgotT1jSEgSBDFlZrPRxltsfk2JHEfl+QA60AgDk55+4fm9U1qLuwz5A7sAANmFGZT3VqwnJWB8KuO6SllSNoXu7wkbdTktD4lIgiCmAglJgiDakpkYj7Mo3R1/rbt2CSlLIYIg5iFaNyEi2Vk1kiQkCYKYEnNh+1Obmp6JwBtPPALVLm8daNsdThAEQYwPCUmCmCViAbav1GE9odbJ6cawIMcVjm5eWM/IpAm5LKUjDH0H9AIAcguy8Loz0Eqja0kv/JEytNLQ0UizyrC5DwAjL4xCBebxvX8YafyFtSCd/HNGdCbUtT1zSEgSRJOpFYbjCcqJIn03OAd27H/yKYE4yQihCvW4DTZxlzd3hL3NeDRSkXNoJcF43LTDrLCc73TqzxdBEDODhCRBEG3PvlLdnDPIUEHZQ0L6YRSNNBFJ7ghopSADBS4YpG9udwIkIomORSlzNHrNDoKEJEE0kfkWZZyTsYiRabhMPhhFJrPrM8j0eQCAhesXAACE5yAoBdY/UngOnKyLsBwgt6gHTlcGsuwjt2wR/MIIGONQQQDmCDhZF0HRB3c4Bp8pQFZS7zovabefQYJoKDRre8aQITlBNJGJ/pOufW4q5xJV4qiikubQSlsRyTiDk3UhPCcSlB4Y4+COAHeEPYdxnng8qrkUrJpWn4fd26eGW+jniiCIGUMRSYJoIU4Nt4yJ+tF/9lPDpKclGOcQ3NQ4qlCZekjOIDzza49nPDgZDyKXgQpCMMaggsDWRGpJXdsEMe8hQ/IZQ0KSIJpMLAQn27VNwnFiaqOD3OXggsHJRALR4WDcRBXjtLbwHKhQgQsB7iZ+7fF0M40VkVGN03z1kaSfMYIgGgUJSYKYJdr9P++5qI+shwp0SkxqqQHBkFvUY7qtHYHy4Ki97fXkoEIJxjW4IyByWTAnAHccOLksmBDQUgLMrGnOZSjv9sfYCM0H2v3nkCAaCtVIzhgSkgRBtC3MZWCCRbWRCgCH9ENIP7S1j1qZtLbTlYHT0wV3YR/C4RHwrhx4GEL5AZQfANG5ADrG8ocgCGKmkJAkCKJtkSUFvsAISQAJX0hmG2dY1FQjXMekvKPIow4iEVnxoYLQprnns4ikaCRB1KCbYP9DNZIEQRBpWiWtHaMSTTDSN7+092x9AYAxFc8tyEIrDcYZwmIF2YW9YJEBeTg4hGCkCFXxEZbKkOUAKggAAIWdeyH9EIAZkzhfmm1IQBIE0SxISBIEMSGtJiKTxEJPBlXzcOEi6tSWUKGACiXCig/mR6nryIBcK4WwVDHrRKIziQrbX0SSgCSIfUBd2zOGhCRBEG2LCuunouPxh8kO7uqTDFCADiV0KKN1qmMRA1ldL458tqOPJIlIgiBmAxKSBEGMSytHIwFA5DicrEBYNoKQRw02leEyGGeQfohKoQS5c8C+xh/1AZhubxYZl8fRzNEXiwgL0VoOg04IyFhMqllOd5MgJIgmQl3bM4aEJEEQbYsOtBWRWmkoAEwpKMnAAYQVU+8Yz8+2tzmDUtqO9kpGNVWowR02JrU92wKSIIhZgGZtzxgSkgRBtB2ii0MHGk7epLD31WnNBTMRykhEMsGgQwVpp9hE87wj38j5UB9JEAQxG9CsbYIg6tLqaW0A4FH9o/GMZDa1nZy1PaaJRmkz/lAqeyiZFo7caZ2ayHb4PhBE2xKntht9dBAUkSQIou2oteVhgkEFElpwKKUhXA+MMztje3jXCABASQ3hcjg586svkzc2QcI1grRvvz4b3RzcMQTARDMHt4yAuVGHeHH201aTHa9JEAQx21BEkiCIMbR6FEwF2hxKmdrIQIG7wkYlucPBIyNyxpmZxx3N5NZK2yikCqWdfFM1MY8OwSA8ASZ4auZ2O3ZwEwQxDlpXLYAadswsIrlp0yYwxvCxj30MABAEAT75yU/isMMOQ3d3N1atWoUzzzwTzz333ITrfPe73wVjbMxRLpdntL9aKCJJEETbwmutfSJMVNFEDhnnqQ7t2lR3TPLx8c4hCIJoJvfffz/+9V//Fa985SvtY8ViEQ899BA+/elP41WvehX27t2Lj33sYzjttNPwwAMPTLhePp/Hli3pTEY2m23onklIEgSRotWjkUn8wQAiZyKGbrebEoBJk/H86l4IV0BJjWxfzs7hjp93uzKp2dzJUYmMM4Sl0EQ+pcbI06VUKoe6uQmijVHaHI1ecxqMjIzgfe97H77xjW/gc5/7nH28r68Pv/71r1PnXnvttXjd616H7du3Y+3ateOuyRjDihUrprWfyUKpbYIgABgB2coikrssdYguIyDjtLNwuO3IrttkE6Wyw3IAFSqEZT8xAccc0g9Ms47nROlxIzaFZ35VcsFsI07yvQmCIGopFAqpo1KpTHj+eeedh1NOOQUnnnjiPtceGhoCYwwLFiyY8LyRkRGsW7cO++23H0499VQ8/PDDU7mESUFCkiCIlhaQ+yJuvFFK245sFVajinGEUYUSMlB2PGIcfRyznh2jOH5UgQQkQcwTGl4fWR25uGbNGvT19dlj06ZN427jxz/+MR566KEJz4kpl8u45JJL8N73vhf5fH7c8w466CB897vfxfXXX48f/ehHyGazOPbYY/Hkk09O/XOaAEptEwTRNogcT93uWZkDdwXcnAsnY5prsn1dUNHoQ+E54I5AdlEPgpEytFLILc5DBiGE64B7LsJiBcJzAM4gywGcrgy460D6AYTnAjB1ltIPo3fejaAc2n2Udvr29lx0dBMEMQOaaEi+Y8eOlNDLZDJ1T9+xYwcuuOACbN68eZ/1i0EQ4PTTT4dSCtddd92E5x599NE4+uij7f1jjz0Wr3nNa3DttdfimmuumezV7BMSkgRBtAUix1NCsjYqGNdExmlqxnnUla2h/NCKSxmE0KFE4IfglQD+SAnCc8A4hz9ShlfJgjsCQdFHUDQiMShWIAMJJ2N+ZQpXzNJVVyHrH4JoL/L5/IQRw5gHH3wQL7zwAo444gj7mJQSd955J7761a+iUqlACIEgCPDud78b27Ztw6233jqptZNwzvHa176WIpIEQRDMNbWKTCSEZVQTKf0wMhhXEIqDcY6gWIkEpoLrhwjLPlSo4GRdqFABCG3zjVYKKgo4xqlv7phGndp0twzkbFwuiUiCaBYtMGv7TW96E/7whz+kHnv/+9+Pgw46CJ/85CdTIvLJJ5/EbbfdhsWLF09jWxqPPPIIDjvssCm/diJISBIE0XboQAMOi0Yb8lSXNYBEDaQRlLGIrD4f1VVGPpJaMTAezesOFbgDG8GMxaVWCgrcTsHRkrq1CYKYOb29vTj00ENTj3V3d2Px4sU49NBDEYYh3vnOd+Khhx7CDTfcACkl+vv7AQCLFi2C53kAgDPPPBOrV6+2dZaf/exncfTRR+NlL3sZCoUCrrnmGjzyyCP453/+54bun4QkQRAtD3cZvEUOREZYP0jhcjgZJ6qRdFJC0s2ZX6zCiyfYdEFGkUjuORBRyps73KbEk4JRKwbhOVHKmyEsB9ClAFpJaKkRjJqQJXfYmCk7jYaikQTRRBLNMQ1ds4E8++yzuP766wEAr371q1PP3XbbbTj++OMBANu3b0956w4ODuJDH/oQ+vv70dfXh8MPPxx33nknXve61zV0fyQkCYLAqeGWtuvc1lGXNgKJkDMrCGXgQ7gmTR2UfGPnEwlG6YcIixXbxZ1cK/aRBKJUdijtdBzhOXAyzpiZ3MGwWaMZXpIkIAmic7n99tvt7fXr10NPIl2efA0AfOUrX8FXvvKVBu9sLCQkCYJoabjLzDjEUENkkJpSExPb/ABxnWPVTDxpMB4fxjMytOfGc7njNeLayOpXPUZExqhA27GJZE5OEG1GCxmStyskJAmCaHm4ba4xgs3JCghPGIEHY4jLEikdN+fa27FY1EohrIQoD45aMVkeKtnIJHeMjZAKFaQfolIo2dR4caAIf9R0cJd2VSBL6dQVCUiCIDoVEpIEQbQNcTRSS42wFIIJBi4YwsQ5nDOE7thZC3FqGzATauKOa+4IaKWiqTUC3OFwsh6Cog/uCDBu3kM4Zk3mMqDU3OuktDZBzA5aK+gG1zQ2er1Wh4QkQRBtQZzaBmAjk1wYCyCeGIdYHZE4dnKNkhoslNCKIaxEQlIoa+3DOLN1kabzO5H6jtJV8YjERkPikSDmAN2E1Haj7YRaHBKSBEG0NHHaWAcaslJtkOGCQUsGJmI7nsjz0RUoDZar53GGCsyM2/KQ+Wo6sSWcrLARTuFxSF+BCQbhCYSlEE4u7toOUR4wr1UhNdYQBEHEkJAkCKLt4FFEUqs41a1sMwx3kWq2UaoabbTnROvErweiaGWUKo/NzeOvXDQ2CknCkSBahDaw/2l1SEgSBAGg9S2AZElBhRrcYZAZBaUUhCvAo74a4ZmUNOcM8a9xHgnJWkHIuGnc4S43TTtS2Sk5jDNwzuBE3pTxa+NIpA50ejzjPhptSDQSBDGfISFJEISl1cVkDBMMPIoraqmBOEIpFeBUG23iaCQAG5FMRhe11DYlbh9TGuAM0pfRuYlpNjWisZ4ZOQlHgmgf4iEEjV6zk5gVIVmpVHDUUUfhd7/7HR5++OGUM/v27dtx3nnn4dZbb0Uul8N73/teXHXVVXbkD0EQs0OrC0hZUmAhgwQgctU+bd7rIixL5Fd3mfuRjQ8A23QTe0Z2LQqgo0imktqajsfiMigFtuEmk89AuAJO1sXeZ/ZC5DiQA07c+cdZv3aCIIhWZVaE5Cc+8QmsWrUKv/vd71KPSylxyimnYOnSpbjrrruwZ88enHXWWdBa49prr52NrREEgdYXkUDUdBNFAP0BIyRFjiNwze3k/Gwg7SPJHW6tfFSo7OjDeEyiCk2HtpN1o8eMJVB8rtftobinyZ4/BEHMPlo3vsuaurYby69+9Sts3rwZP/vZz/CrX/0q9dzmzZvx6KOPYseOHVi1ahUA4Etf+hLOPvtsbNy4Efl8vtnbIwiiTVGhhhqWtl5x8JkCAJP2XnV4T8rOR3iOtfUB4kgli8YnVh8vD47a5/2RMsJKGI1aDCBLCm96+g+zeIUEQRCtz1jX3gby/PPP45xzzsG//du/oaura8zzd999Nw499FArIgFgw4YNqFQqePDBB+uuWalUUCgUUgdBENOnHaKRtcRNN/XQUiMsB5B+aGZrl317Oz5UKK1BufQDBMUKpG/S3vE5MUEpsLdvWX9Y06+NIIhZRGlAqQYfFJFsCFprnH322fjwhz+MI488Ek8//fSYc/r7+7F8+fLUYwsXLoTneejv76+77qZNm/DZz362GVsmCKJNkEWF2FHST821MVSL3Xki+sggPMccGQ8i60GWzfQanjE12cIbhvQDeL1dKO8dgfAqkH6IrkVdeO2dd8/OxREEMXtQanvGTDkiecUVV4AxNuHxwAMP4Nprr0WhUMCll1464XqMjY0qaK3rPg4Al156KYaGhuyxY8eOqV4CQRDzHOE5cLKeTW3Hc7iF54A5Zka3jhptYowlkIDwTJ2k8ByoUMLtMuN0/ufwI+bkWgiCIFqZKUckzz//fJx++ukTnrN+/Xp87nOfwz333INMJpN67sgjj8T73vc+fO9738OKFStw7733pp7fu3cvgiAYE6mMyWQyY9YkCIJIprpffPxFe9vtdsEj30g35yLTmwVghGPPioVmFGLFj87Ngbvm16LX1wOvtws840GFO+H1FnH/XxxDkUmCmEeQ/c/MmbKQXLJkCZYsWbLP86655hp87nOfs/efe+45bNiwAT/5yU9w1FFHAQCOOeYYbNy4Ebt27cLKlSsBmAacTCaDI46gv/4Jotm0Y31kLbJofmnHndym+ca3t5M+koxzOBlzXnZBtxWN3HPg9nTD6e0B747qubWGGNgLFYToWbkIQNwRThAEQcQ0rUZy7dq1qfs9PT0AgAMOOAD77bcfAOCkk07CIYccgjPOOANXXnklBgYGcPHFF+Occ86hjm2CaDLzQURORNzNHU+xqXtOPPHGdcEcAeY6YLku6FIRUAph0Vj+KClxwPdumJ2NEwQxeyjd+OYYaraZPYQQuPHGG3Huuefi2GOPTRmSEwRBTId42kz8VQYKjjC1kMLl1iMybrphjoDb22OEpBBApQzW1Q0sXIpMVK9d7N8zZ9dDEATRysyakFy/fj10nU6mtWvX4oYb6C99gpht2mUc4mQJCtW0syxVa5SYa+x7uMNQHqiAuQycc7jdg+Ai3aznZKq/Et0uF1636eY+6D9+3cytEwQxR2itoHWDayQbvF6rQ7O2CaKDmW9iMomKIpLCrZ/WBmBnb8eztFVNSooEJEEQxMSQkCSIDmW+CsjxUKHGCVt/j1vWHwbtaLjdDo657/653hZBEHMJ1UjOGBKSBEHMO+JoJGC6unkUlfxV/mD7ePmFADcvOgQAsGHg0dndIEEQrYFW5mj0mh1EU0ckEgRBtAIq0FCBhk4cgIlSAjT6kCAIYrqQkCQIoiPgLqtaArksJSZ1oPGb1YfO5fYIgpgDtNJNOToJSm0TBNERqEADgQZPiMjYzFwHnfWLnyAIolGQkCSIDqTTGm3Gg0/Q0U0QRAegFdDokYZUI0kQxHzn1HDLXG+BIAiCmAdQRJIgOhCKSI6FUXSSIDoOrXXdYSkzXbOToIgkQRAdRdIaSFFtJEEQxIygiCRBdBAUiUzDE13cJxcem+PdEAQx66gm1Eg2er0Wh4QkQXQIJCKrqEBTnShBEE2x6+k0+x9KbRME0XGQiCQIgmgMFJEkCKIjIPFIEMQYtG7CiESKSBIEQcwrSEQSBEE0BxKSBNEhkJgiCIJIQyMSZw4JSYLoIEhMEgRBtBabNm3Ca1/7WvT29mLZsmV4+9vfji1b0r+rR0ZGcP7552O//fZDLpfDwQcfjK997WsTrvvzn/8cRx55JBYsWIDu7m68+tWvxr/92781fP9UI0kQHQJ1bRMEQaTRSkE32K5nquvdcccdOO+88/Da174WYRjisssuw0knnYRHH30U3d3dAIALL7wQt912G37wgx9g/fr12Lx5M84991ysWrUKf/mXf1l33UWLFuGyyy7DQQcdBM/zcMMNN+D9738/li1bhg0bNsz4OmNISBJEB0AikiAIojX57//+79T973znO1i2bBkefPBB/MVf/AUA4O6778ZZZ52F448/HgDwoQ99CF//+tfxwAMPjCsk43NjLrjgAnzve9/DXXfd1VAhSaltgiAIgiA6E6WbcwAoFAqpo1KpTGpLQ0NDAExEMea4447D9ddfj507d0Jrjdtuuw1PPPHEpAWh1hq33HILtmzZYsVpo6CIJEHMczo9Gkl1oQRBjIfWCrrB9j/xemvWrEk9fvnll+OKK67Yx2s1LrroIhx33HE49NBD7ePXXHMNzjnnHOy3335wHAecc3zzm9/EcccdN+F6Q0NDWL16NSqVCoQQuO666/DmN795ehc2DiQkCYIgCIIgGsyOHTuQz+ft/Uwms8/XnH/++fj973+Pu+66K/X4Nddcg3vuuQfXX3891q1bhzvvvBPnnnsuVq5ciRNPPHHc9Xp7e/HII49gZGQEt9xyCy666CK85CUvGZP2nglM6/Z2ziwUCujr68PQ0FDqG0YQRJV2jUrGs7BVoO3t+P5kXvfW0uPN2xxBEDNiLv//jt9726VnoTfrNXTt4bKP/Td9b8rX9b//9//GL37xC9x5553Yf//97eOlUgl9fX34z//8T5xyyin28Q9+8IN49tlnx9RYTsQHP/hB7NixAzfffPOkX7MvqEaSIDqAdk/vxsKQuQwsISgJgiDaHa01zj//fPz85z/HrbfemhKRABAEAYIgAOdpySaEgJpih7jWetK1mpOFUtsE0QG0a0QyyXgCst1FMkEQc4hWQIPtf6Y6cvG8887DD3/4Q/zyl79Eb28v+vv7AQB9fX3I5XLI5/N44xvfiI9//OPI5XJYt24d7rjjDnz/+9/Hl7/8ZbvOmWeeidWrV2PTpk0AjD/lkUceiQMOOAC+7+Omm27C97///X36T04VEpIEMc9pNxGZTGEzl0HkzF/h/p4wdR4JSIIg5gOxsKutW/zOd76Ds88+GwDw4x//GJdeeine9773YWBgAOvWrcPGjRvx4Q9/2J6/ffv2VNRydHQU5557Lp599lnkcjkcdNBB+MEPfoC//uu/buj+qUaSIOY581FIkogkiPanFWokn/rE36A30+AayYqPl3zxBx2jS6hGkiAIgiAIgpgWlNomiHlKu0UiY1Id2dFtHX3lLqNObIIgGkYrjEhsd0hIEsQ8o10FZD24y6yIBIzIvCl3EFSgKb1NEMSM0Vqj0RV+bV4xOGUotU0QREuS9JCsfQyYX4KZIAiiXaGIJEEQc05SIIochwqjVLbD4C2q/r3r5IV5nHPIisT/HH4EgnIIzjnc7uqvs2Puu3+Wdk4QRFujmmD/02GpbYpIEgQx58RG49MxG4/tLrSsRi4fetOxDdsbQRAEMT4kJAlinjHfageTIlO4AsIVYIIh0+fB7XbhdjvI5F30LO9G95Iu+zoSkwRB7AutdFOOToKEJEHMQ9pNTMqigiwq6EBDlhS4Y/wjmcvgdjv2EC63BxMMWipwwaCkRrlQgZtz0bOsG7kFOeQW5Ob6sgiCIOY9VCNJEPOUWEzO16YULhiYMH8LOzUpccZZx0UFCIKYOlqh4b8rpjghse0hIUkQ85j5ICJN5NH8ohceh5IaXDBwV0C4Rkhyx9wWngMZSPM6PvV6S4IgCGJqkJAkiHlKO4nI2rGIcdONyHFwwQBRfZ5Ht3lCKGql4XVnoJWGChW0S9FIgiD2DRmSzxwSkgQxD2knEQnAztMGjJB0e4W9LX3zS5mJ6m1zX0GAI6yEYMJ8FS5HUAwQFIPZvQCCIIgOhYQkQRBzjgo1uGMijDrQVR9JAMiYc7TUCKW0r9FKI4xqIb1eARVKaKVsKvyI2387y1dBEES70Ywu606rzyYhSRBESxCLR6A6W1sBUGEIwJiTxylvHWgopeBmHThZE72UgYlWVoZ9CE/M4s4JgmhXKLU9c0hIEsQ8o9XS2rX1j0lEjqcEImAEY3KyTTBsopDaYVDD5nEdaIgchywpu45wjXh8w+8fat7FEARBEClISBIEMWvEkcakcFShhnAZdKDBXCMikxHJ5HlAJDTj+1FKPAwkjt/5u9m6DIIg5glaNyG1rSm1TRAEMSvEglE7OnW/3jmAEY9xlWRcU9lZSSSCIIjWgoQkQRBNRdURhwg0uMusCFTD1SYa7jAEBZlKideuxV0GGWi8tfR4M7ZMEESnoLU5Gr1mB0FCkiCIlkRFYrMeJCAJgiBaA5q1TRDzjHaYsz2eQATS3dsq0KkDaI/rIwiiPYi7tht9dBIkJAmCIAiCIIhp0VQhuX79ejDGUscll1ySOmf79u1429vehu7ubixZsgQf/ehH4ft+M7dFEMQcE0cYZVHVPcaDopEEQTSS2JC80Ucn0fQayX/4h3/AOeecY+/39PTY21JKnHLKKVi6dCnuuusu7NmzB2eddRa01rj22mubvTWCIAiCIDoYMiSfOU0Xkr29vVixYkXd5zZv3oxHH30UO3bswKpVqwAAX/rSl3D22Wdj48aNyOfzY15TqVRQqVTs/UKh0JyNEwRBEARBEBPS9BrJL3zhC1i8eDFe/epXY+PGjam09d13341DDz3UikgA2LBhAyqVCh588MG6623atAl9fX32WLNmTbMvgSDaDkoBEwRB7BtKbc+cpkYkL7jgArzmNa/BwoULcd999+HSSy/Ftm3b8M1vfhMA0N/fj+XLl6des3DhQnieh/7+/rprXnrppbjooovs/UKhQGKSIOY5JIwJgiBakykLySuuuAKf/exnJzzn/vvvx5FHHokLL7zQPvbKV74SCxcuxDvf+U4bpQQAxsbagGit6z4OAJlMBplMZqrbJgiiDSEBSRBEM2lGBJEikvvg/PPPx+mnnz7hOevXr6/7+NFHHw0A2Lp1KxYvXowVK1bg3nvvTZ2zd+9eBEEwJlJJEETnQAKSIAiiPZiykFyyZAmWLFkyrTd7+OGHAQArV64EABxzzDHYuHEjdu3aZR/bvHkzMpkMjjjiiGm9B0EQ7Uu7CsjbXvpKe5u5DDrQYJHpOufVUnQmzGNaajDB8IbfPzS7GyUIIgV1bc+cptVI3n333bjnnntwwgknoK+vD/fffz8uvPBCnHbaaVi7di0A4KSTTsIhhxyCM844A1deeSUGBgZw8cUX45xzzqnbsU0QBNEK3LL+MHCHpabwAGZOuCwpcMeISRVqaMecU3tuvE5SdHp5l8QlQRBtRdO6tjOZDH7yk5/g+OOPxyGHHILPfOYzOOecc/CjH/3IniOEwI033ohsNotjjz0W7373u/H2t78dV111VbO2RRAdQztG925wDpzrLeyT2176SnAnXcOtAw0dJEY71hGNMbWvrbc+QRCzA3Vtz5ymRSRf85rX4J577tnneWvXrsUNN9zQrG0QBEHMmNsPfhWEKwDARg8BQLgmAslcZgVi/FVkBETGpLO5YAjKIdys+ZUrfQVZkQAABVgRGhZDBMMSm5e/Aic9/6fZujyC6Fi00lCSmm1mAs3aJoh5SjtE99qRZM2jDjREztxXoUlRJ4VmjPRNzZSS5j8tpVQqaqlCPWEUkyAIolVp+mQbgiCIqRAL4FZJzd9+8KugAw0JE0GUJSMKuWNEoyypalo7Z77EYlJ43IpIAJBBdQ1ZUtGKQFiQ9qsKSFASxGxhUtGNbrbprH/DFJEkiHlKqwix+UYyAhnfrxeJZIKlRCSAVB0lsO96SYIgiFaHhCRBzGPaWUy2Smr++Md+N0YkcofZzuw4QgkAwhVwsw6EK6Dr1F0l16mtqUzSzt83gmgnqNlm5pCQJIh5TjuLklYSk0niCGTsGQkYQRgWQ/jDgfk6GKSO0k4f/kAIfyBE5fnA3i4/H0AFGm8tPY63lh5v6+8XQRBT584778Tb3vY2rFq1Cowx/OIXvxj33L/7u78DYwxXX331hGt+4xvfwBve8AYsXLgQCxcuxIknnoj77ruvsRuPICFJEAQxCY5/7Hc2AhkfSQ9IFaafi4VifB8wNZBxPaQKtK2HJPFIEHNDK0QkR0dH8apXvQpf/epXJzzvF7/4Be69916sWrVqn2vefvvteM973oPbbrsNd999N9auXYuTTjoJO3funNLeJgM12xBEB3BquKVlontTodUE1glbfw/AGIkDRjyO5x8Z11LWgwQkQcx/CoVC6n4mk0Emkxlz3sknn4yTTz55wrV27tyJ888/HzfffDNOOeWUfb73v//7v6fuf+Mb38BPf/pT3HLLLTjzzDMnsfvJQ0KSIIiW5QbnwJYUW296+g8TPn/zokOsqIyFpgp0S14LQXQyzahpjNdbs2ZN6vHLL78cV1xxxZTXU0rhjDPOwMc//nG84hWvmNaeisUigiDAokWLpvX6iSAhSRAE0WA2DDw611sgCGISNHPW9o4dO1LjnutFIyfDF77wBTiOg49+9KPT3tMll1yC1atX48QTT5z2GuNBQpIgOoR2TW8TBEG0I/l8PiUkp8ODDz6If/qnf8JDDz0ExqZnF/bFL34RP/rRj3D77bcjm83OaD/1oGYbgiBamhucA0kAEwTRFFqh2WYi/t//+3944YUXsHbtWjiOA8dx8Mwzz+Dv//7vsX79+n2+/qqrrsLnP/95bN68Ga985Ssbtq8kFJEkiA4irtFrR2HWqvWSBEEQzeKMM84Yk47esGEDzjjjDLz//e+f8LVXXnklPve5z+Hmm2/GkUce2bQ9kpAkCIIgiAZR7480+gOodVFSQ/HGNtuoOsMIJmJkZARbt26197dt24ZHHnkEixYtwtq1a7F48eLU+a7rYsWKFTjwwOrP2plnnonVq1dj06ZNAEw6+9Of/jR++MMfYv369ejv7wcA9PT0oKenZ7qXVhcSkgTRgbRrZLLV5nATBLDvf0cTPU8/y8QDDzyAE044wd6/6KKLAABnnXUWvvvd705qje3bt4PzarXiddddB9/38c53vjN13nQ7xyeCaa3bepZPoVBAX18fhoaGZlzUShCdSrsJyhgemYG/tfT4HO+E6FQa9W+nEwXlXP7/Hb/3/5x4LHrcxsbURoIQx/7mfzpGl1CzDUEQbU3tHGyCaEfa9Y85gqDUNkEQbc+v8gfD7RX2fnKqTDyNhiCaQSNttaihbPbRugk+krqx67U6JCQJgpjXHpO3vfSVqahlcqRhPAMbAE7c+cdZ3Rcxf2hkzTGJydmlmZNtOgUSkgRBAKhfo9Xq4jIpEFNzrhOPcWesiIxfx0JKixONI/lvaCb/dqipjGgnSEgSBDEurRap5HXqIZNCMUlSROpAW/EoSwoopdPfBEF0JkpqKDa39j/tDglJgiAmpF2tguoJTOYyOK6JVyZT3ATRaGb674aikUS7QEKSIIhJ0YqCMikW42YbFepJdXIzl4FHX49/7HfN2iLR4dRLd8eRdTXOHzMkImcPqpGcOZTbIQhiSpwabpmz/+hUoKGiNHXtMV1IRBKzRfzvJv45nugcgmgXKCJJEMS0aFRjwVQQXWP/9k1GJcnqh2h1SCi2Flo1wf6nweu1OiQkCYKYMXMhKmshEUkQBDH7kJAkCKKhjBdxaYTArLXv0YHGic//acbrEgQxder9m263iKuWGrrBXduaurYJgiAaTys26xAEMT3G+3fcbh6YWqLh9j9aNnS5loeEJEEQs0ozI5YEQTSfm3IH7fMcmtDTOZCQJAiiJaj9T6eesIw7XU8tPT4reyIIoj7J4QDMZXV9WW/KHYS3tvi/Va2bYP+jKbVNEAQx51A0gyDag4nM/dtBTBIzg3wkCYIgCIKYNBMJw3qjRyeTCp8rlNRNOToJEpIEQRAEQUyJWjEZDwaIJ0vVHr/KH4xf5Q+eo90SzYSEJEEQBEEQU2Zfkcl68+5bDS1VU45OgoQkQRAEQRDT4q2lx+sKSh1oqLCzUrydCglJgiAIgiBmxMmFx1L364nI2nNaAa10U45OgoQkQRAEQRAz5uTCYxN2cLdinSQ128wcEpIEQRAEQcyYVu7OJpoH+UgSBEEQBNEURI5DlqrNJ63WgKOlhgbN2p4JFJEkCIIgCGLGxE03OtD2SIpIoH7tJNHeUESSIAiCIIiGwtzxI4+/yh/cMo03SmqoBo80VNRsQxAEQRAE0RjqpbNbremGmD4UkSQIgiAIoqEku7db2Z5bBxqaN7hGkiKSBEEQBEEQU+MG50CoOvY/yZrJmFZJbRMzhyKSBEEQBEHMiBucAyd9biuJSBVqqAZHJDutRpKEJEEQBEEQU2Yq4rFVodT2zCEhSRAEQRDElJhIRNZLb1smeo5oS0hIEgRBEATRdE4Nt8z1FsagpG54KrrRdkKtDglJgiAIgiCaQiuKR6KxkJAkCIIgCGJKnBpumSc1kgqaNXZso9atbHjUeNpeSOoohFwoFOZ4JwRBEATROfzFwP37PGei/5vj53SHpYLnG20vJPfs2QMAWLNmzRzvhCAIgiCIqTI8PIy+vr45eW8daijW4K7taQrj6667DldeeSV27dqFV7ziFbj66qvxhje8Ydzz77jjDlx00UX405/+hFWrVuETn/gEPvzhD09329Om7YXkokWLAADbt2+fsx/E2aBQKGDNmjXYsWMH8vn8XG+nqXTKtXbKdQKdc610nfOPTrnWubhOrTWGh4exatWqWXm/VuYnP/kJPvaxj+G6667Dsccei69//es4+eST8eijj2Lt2rVjzt+2bRve+ta34pxzzsEPfvAD/M///A/OPfdcLF26FP/rf/2vWd172wtJzs1wnr6+vnn9jzwmn893xHUCnXOtnXKdQOdcK13n/KNTrnW2r3OuA0A60NAtEJH88pe/jL/927/FBz/4QQDA1VdfjZtvvhlf+9rXsGnTpjHn/8u//AvWrl2Lq6++GgBw8MEH44EHHsBVV11FQpIgCIIgCGI2KEIBDS7RLEbTxWvrQzOZDDKZzJjzfd/Hgw8+iEsuuST1+EknnYTf/va3dd/j7rvvxkknnZR6bMOGDfjWt76FIAjguu5MLmFKkJAkCIIgCKKj8DwPK1aswNn925qyfk9Pz5jejcsvvxxXXHHFmHN3794NKSWWL1+eenz58uXo7++vu35/f3/d88MwxO7du7Fy5cqZXcAUaHshmclkcPnll9dV+fOJTrlOoHOutVOuE+ica6XrnH90yrV2ynXGZLNZbNu2Db7vN2V9rTVYja3Qvj7b2vPrrbGv8+s93myYpr57giAIgiCIOcH3fXR1deE//uM/8I53vMM+fsEFF+CRRx7BHXfcMeY1f/EXf4HDDz8c//RP/2Qf+8///E+8+93vRrFYnNXUNp+1dyIIgiAIgiBSeJ6HI444Ar/+9a9Tj//617/G61//+rqvOeaYY8acv3nzZhx55JGzKiIBEpIEQRAEQRBzykUXXYRvfvOb+Pa3v43HHnsMF154IbZv3259IS+99FKceeaZ9vwPf/jDeOaZZ3DRRRfhsccew7e//W1861vfwsUXXzzre2/7GkmCIAiCIIh25q//+q+xZ88e/MM//AN27dqFQw89FDfddBPWrVsHANi1axe2b99uz99///1x00034cILL8Q///M/Y9WqVbjmmmtm3foHoBpJgiAIgiAIYppQapsgCIIgCIKYFiQkCYIgCIIgiGlBQpIgCIIgCIKYFiQkCYIgCIIgiGlBQpIgCIIgCIKYFiQkCYIgCIIgiGlBQpIgCIIgCIKYFiQkCYIgCIIgiGlBQpIgCIIgCIKYFiQkCYIgCIIgiGlBQpIgCIIgCIKYFv8/e9By/DG0KSsAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, - "nbformat": 4, - "nbformat_minor": 5 + { + "data": { + "text/plain": [ + "(
, )" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 4 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Raster Dimension", + "id": "ec7a3eb96e15551b" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:36.285692Z", + "start_time": "2024-12-06T23:34:36.282140Z" + } + }, + "cell_type": "code", + "source": "print(dataset.cell_size)", + "id": "ebaffeba1f880bfc", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.1\n" + ] + } + ], + "execution_count": 6 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:37.241839Z", + "start_time": "2024-12-06T23:34:37.238815Z" + } + }, + "cell_type": "code", + "source": "print(f\"Rows , Columns = {dataset.rows}, {dataset.columns}\")", + "id": "e8a7621323b4cce3", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rows , Columns = 780, 850\n" + ] + } + ], + "execution_count": 7 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:38.536931Z", + "start_time": "2024-12-06T23:34:38.532409Z" + } + }, + "cell_type": "code", + "source": "print(dataset.shape)", + "id": "21100af16eab8f7b", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 780, 850)\n" + ] + } + ], + "execution_count": 8 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:39.734414Z", + "start_time": "2024-12-06T23:34:39.731300Z" + } + }, + "cell_type": "code", + "source": "print(dataset.band_count)", + "id": "b6a201ff7f7a8865", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n" + ] + } + ], + "execution_count": 9 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Band Information", + "id": "2be31b991f61a7a7" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:42.329045Z", + "start_time": "2024-12-06T23:34:42.324968Z" + } + }, + "cell_type": "code", + "source": "print(dataset.band_names)", + "id": "31ea6a6093b3ee8d", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Band_1']\n" + ] + } + ], + "execution_count": 10 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:44.206850Z", + "start_time": "2024-12-06T23:34:44.203443Z" + } + }, + "cell_type": "code", + "source": "print(dataset.dtype)", + "id": "d13257b3a22dc5e7", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['float32']\n" + ] + } + ], + "execution_count": 11 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:45.527787Z", + "start_time": "2024-12-06T23:34:45.524398Z" + } + }, + "cell_type": "code", + "source": "print(dataset.band_units)", + "id": "b8e307ac9bc6eee8", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['']\n" + ] + } + ], + "execution_count": 12 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:46.988935Z", + "start_time": "2024-12-06T23:34:46.985480Z" + } + }, + "cell_type": "code", + "source": "print(dataset.scale)", + "id": "be127eb59fd24b76", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.0]\n" + ] + } + ], + "execution_count": 13 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:48.324865Z", + "start_time": "2024-12-06T23:34:48.321402Z" + } + }, + "cell_type": "code", + "source": "print(dataset.offset)", + "id": "afe47c772ba613db", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0]\n" + ] + } + ], + "execution_count": 14 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Geospatial Information", + "id": "a24bfb5254c0a501" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:50.676182Z", + "start_time": "2024-12-06T23:34:50.671632Z" + } + }, + "cell_type": "code", + "source": [ + "print(dataset.geotransform)\n", + "print(dataset.top_left_corner)" + ], + "id": "327b72ea6ad3c355", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(-110.0, 0.1, 0.0, 18.1, 0.0, -0.1)\n", + "(-110.0, 18.1)\n" + ] + } + ], + "execution_count": 15 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:51.968267Z", + "start_time": "2024-12-06T23:34:51.955319Z" + } + }, + "cell_type": "code", + "source": "print(dataset.bounds)", + "id": "14ce8f2ea24f28cf", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " geometry\n", + "0 POLYGON ((-110 18.1, -110 -59.9, -25 -59.9, -2...\n" + ] + } + ], + "execution_count": 16 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:53.301364Z", + "start_time": "2024-12-06T23:34:53.298326Z" + } + }, + "cell_type": "code", + "source": "print(dataset.bbox)", + "id": "fe4f3ed89a9f8d64", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-110.0, -59.9, -25.0, 18.1]\n" + ] + } + ], + "execution_count": 17 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:54.598802Z", + "start_time": "2024-12-06T23:34:54.595729Z" + } + }, + "cell_type": "code", + "source": [ + "print(dataset.epsg)\n", + "print(dataset.crs)" + ], + "id": "51359d0f096e6601", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4326\n", + "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]\n" + ] + } + ], + "execution_count": 18 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:55.869656Z", + "start_time": "2024-12-06T23:34:55.865941Z" + } + }, + "cell_type": "code", + "source": "print(dataset.no_data_value)", + "id": "44dfdd3e7f3f80c", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-9999.0]\n" + ] + } + ], + "execution_count": 19 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:57.256832Z", + "start_time": "2024-12-06T23:34:57.249024Z" + } + }, + "cell_type": "code", + "source": "print(dataset.lon)", + "id": "71a267e8e2481bee", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-109.95 -109.85 -109.75 -109.65 -109.55 -109.45 -109.35 -109.25 -109.15\n", + " -109.05 -108.95 -108.85 -108.75 -108.65 -108.55 -108.45 -108.35 -108.25\n", + " -108.15 -108.05 -107.95 -107.85 -107.75 -107.65 -107.55 -107.45 -107.35\n", + " -107.25 -107.15 -107.05 -106.95 -106.85 -106.75 -106.65 -106.55 -106.45\n", + " -106.35 -106.25 -106.15 -106.05 -105.95 -105.85 -105.75 -105.65 -105.55\n", + " -105.45 -105.35 -105.25 -105.15 -105.05 -104.95 -104.85 -104.75 -104.65\n", + " -104.55 -104.45 -104.35 -104.25 -104.15 -104.05 -103.95 -103.85 -103.75\n", + " -103.65 -103.55 -103.45 -103.35 -103.25 -103.15 -103.05 -102.95 -102.85\n", + " -102.75 -102.65 -102.55 -102.45 -102.35 -102.25 -102.15 -102.05 -101.95\n", + " -101.85 -101.75 -101.65 -101.55 -101.45 -101.35 -101.25 -101.15 -101.05\n", + " -100.95 -100.85 -100.75 -100.65 -100.55 -100.45 -100.35 -100.25 -100.15\n", + " -100.05 -99.95 -99.85 -99.75 -99.65 -99.55 -99.45 -99.35 -99.25\n", + " -99.15 -99.05 -98.95 -98.85 -98.75 -98.65 -98.55 -98.45 -98.35\n", + " -98.25 -98.15 -98.05 -97.95 -97.85 -97.75 -97.65 -97.55 -97.45\n", + " -97.35 -97.25 -97.15 -97.05 -96.95 -96.85 -96.75 -96.65 -96.55\n", + " -96.45 -96.35 -96.25 -96.15 -96.05 -95.95 -95.85 -95.75 -95.65\n", + " -95.55 -95.45 -95.35 -95.25 -95.15 -95.05 -94.95 -94.85 -94.75\n", + " -94.65 -94.55 -94.45 -94.35 -94.25 -94.15 -94.05 -93.95 -93.85\n", + " -93.75 -93.65 -93.55 -93.45 -93.35 -93.25 -93.15 -93.05 -92.95\n", + " -92.85 -92.75 -92.65 -92.55 -92.45 -92.35 -92.25 -92.15 -92.05\n", + " -91.95 -91.85 -91.75 -91.65 -91.55 -91.45 -91.35 -91.25 -91.15\n", + " -91.05 -90.95 -90.85 -90.75 -90.65 -90.55 -90.45 -90.35 -90.25\n", + " -90.15 -90.05 -89.95 -89.85 -89.75 -89.65 -89.55 -89.45 -89.35\n", + " -89.25 -89.15 -89.05 -88.95 -88.85 -88.75 -88.65 -88.55 -88.45\n", + " -88.35 -88.25 -88.15 -88.05 -87.95 -87.85 -87.75 -87.65 -87.55\n", + " -87.45 -87.35 -87.25 -87.15 -87.05 -86.95 -86.85 -86.75 -86.65\n", + " -86.55 -86.45 -86.35 -86.25 -86.15 -86.05 -85.95 -85.85 -85.75\n", + " -85.65 -85.55 -85.45 -85.35 -85.25 -85.15 -85.05 -84.95 -84.85\n", + " -84.75 -84.65 -84.55 -84.45 -84.35 -84.25 -84.15 -84.05 -83.95\n", + " -83.85 -83.75 -83.65 -83.55 -83.45 -83.35 -83.25 -83.15 -83.05\n", + " -82.95 -82.85 -82.75 -82.65 -82.55 -82.45 -82.35 -82.25 -82.15\n", + " -82.05 -81.95 -81.85 -81.75 -81.65 -81.55 -81.45 -81.35 -81.25\n", + " -81.15 -81.05 -80.95 -80.85 -80.75 -80.65 -80.55 -80.45 -80.35\n", + " -80.25 -80.15 -80.05 -79.95 -79.85 -79.75 -79.65 -79.55 -79.45\n", + " -79.35 -79.25 -79.15 -79.05 -78.95 -78.85 -78.75 -78.65 -78.55\n", + " -78.45 -78.35 -78.25 -78.15 -78.05 -77.95 -77.85 -77.75 -77.65\n", + " -77.55 -77.45 -77.35 -77.25 -77.15 -77.05 -76.95 -76.85 -76.75\n", + " -76.65 -76.55 -76.45 -76.35 -76.25 -76.15 -76.05 -75.95 -75.85\n", + " -75.75 -75.65 -75.55 -75.45 -75.35 -75.25 -75.15 -75.05 -74.95\n", + " -74.85 -74.75 -74.65 -74.55 -74.45 -74.35 -74.25 -74.15 -74.05\n", + " -73.95 -73.85 -73.75 -73.65 -73.55 -73.45 -73.35 -73.25 -73.15\n", + " -73.05 -72.95 -72.85 -72.75 -72.65 -72.55 -72.45 -72.35 -72.25\n", + " -72.15 -72.05 -71.95 -71.85 -71.75 -71.65 -71.55 -71.45 -71.35\n", + " -71.25 -71.15 -71.05 -70.95 -70.85 -70.75 -70.65 -70.55 -70.45\n", + " -70.35 -70.25 -70.15 -70.05 -69.95 -69.85 -69.75 -69.65 -69.55\n", + " -69.45 -69.35 -69.25 -69.15 -69.05 -68.95 -68.85 -68.75 -68.65\n", + " -68.55 -68.45 -68.35 -68.25 -68.15 -68.05 -67.95 -67.85 -67.75\n", + " -67.65 -67.55 -67.45 -67.35 -67.25 -67.15 -67.05 -66.95 -66.85\n", + " -66.75 -66.65 -66.55 -66.45 -66.35 -66.25 -66.15 -66.05 -65.95\n", + " -65.85 -65.75 -65.65 -65.55 -65.45 -65.35 -65.25 -65.15 -65.05\n", + " -64.95 -64.85 -64.75 -64.65 -64.55 -64.45 -64.35 -64.25 -64.15\n", + " -64.05 -63.95 -63.85 -63.75 -63.65 -63.55 -63.45 -63.35 -63.25\n", + " -63.15 -63.05 -62.95 -62.85 -62.75 -62.65 -62.55 -62.45 -62.35\n", + " -62.25 -62.15 -62.05 -61.95 -61.85 -61.75 -61.65 -61.55 -61.45\n", + " -61.35 -61.25 -61.15 -61.05 -60.95 -60.85 -60.75 -60.65 -60.55\n", + " -60.45 -60.35 -60.25 -60.15 -60.05 -59.95 -59.85 -59.75 -59.65\n", + " -59.55 -59.45 -59.35 -59.25 -59.15 -59.05 -58.95 -58.85 -58.75\n", + " -58.65 -58.55 -58.45 -58.35 -58.25 -58.15 -58.05 -57.95 -57.85\n", + " -57.75 -57.65 -57.55 -57.45 -57.35 -57.25 -57.15 -57.05 -56.95\n", + " -56.85 -56.75 -56.65 -56.55 -56.45 -56.35 -56.25 -56.15 -56.05\n", + " -55.95 -55.85 -55.75 -55.65 -55.55 -55.45 -55.35 -55.25 -55.15\n", + " -55.05 -54.95 -54.85 -54.75 -54.65 -54.55 -54.45 -54.35 -54.25\n", + " -54.15 -54.05 -53.95 -53.85 -53.75 -53.65 -53.55 -53.45 -53.35\n", + " -53.25 -53.15 -53.05 -52.95 -52.85 -52.75 -52.65 -52.55 -52.45\n", + " -52.35 -52.25 -52.15 -52.05 -51.95 -51.85 -51.75 -51.65 -51.55\n", + " -51.45 -51.35 -51.25 -51.15 -51.05 -50.95 -50.85 -50.75 -50.65\n", + " -50.55 -50.45 -50.35 -50.25 -50.15 -50.05 -49.95 -49.85 -49.75\n", + " -49.65 -49.55 -49.45 -49.35 -49.25 -49.15 -49.05 -48.95 -48.85\n", + " -48.75 -48.65 -48.55 -48.45 -48.35 -48.25 -48.15 -48.05 -47.95\n", + " -47.85 -47.75 -47.65 -47.55 -47.45 -47.35 -47.25 -47.15 -47.05\n", + " -46.95 -46.85 -46.75 -46.65 -46.55 -46.45 -46.35 -46.25 -46.15\n", + " -46.05 -45.95 -45.85 -45.75 -45.65 -45.55 -45.45 -45.35 -45.25\n", + " -45.15 -45.05 -44.95 -44.85 -44.75 -44.65 -44.55 -44.45 -44.35\n", + " -44.25 -44.15 -44.05 -43.95 -43.85 -43.75 -43.65 -43.55 -43.45\n", + " -43.35 -43.25 -43.15 -43.05 -42.95 -42.85 -42.75 -42.65 -42.55\n", + " -42.45 -42.35 -42.25 -42.15 -42.05 -41.95 -41.85 -41.75 -41.65\n", + " -41.55 -41.45 -41.35 -41.25 -41.15 -41.05 -40.95 -40.85 -40.75\n", + " -40.65 -40.55 -40.45 -40.35 -40.25 -40.15 -40.05 -39.95 -39.85\n", + " -39.75 -39.65 -39.55 -39.45 -39.35 -39.25 -39.15 -39.05 -38.95\n", + " -38.85 -38.75 -38.65 -38.55 -38.45 -38.35 -38.25 -38.15 -38.05\n", + " -37.95 -37.85 -37.75 -37.65 -37.55 -37.45 -37.35 -37.25 -37.15\n", + " -37.05 -36.95 -36.85 -36.75 -36.65 -36.55 -36.45 -36.35 -36.25\n", + " -36.15 -36.05 -35.95 -35.85 -35.75 -35.65 -35.55 -35.45 -35.35\n", + " -35.25 -35.15 -35.05 -34.95 -34.85 -34.75 -34.65 -34.55 -34.45\n", + " -34.35 -34.25 -34.15 -34.05 -33.95 -33.85 -33.75 -33.65 -33.55\n", + " -33.45 -33.35 -33.25 -33.15 -33.05 -32.95 -32.85 -32.75 -32.65\n", + " -32.55 -32.45 -32.35 -32.25 -32.15 -32.05 -31.95 -31.85 -31.75\n", + " -31.65 -31.55 -31.45 -31.35 -31.25 -31.15 -31.05 -30.95 -30.85\n", + " -30.75 -30.65 -30.55 -30.45 -30.35 -30.25 -30.15 -30.05 -29.95\n", + " -29.85 -29.75 -29.65 -29.55 -29.45 -29.35 -29.25 -29.15 -29.05\n", + " -28.95 -28.85 -28.75 -28.65 -28.55 -28.45 -28.35 -28.25 -28.15\n", + " -28.05 -27.95 -27.85 -27.75 -27.65 -27.55 -27.45 -27.35 -27.25\n", + " -27.15 -27.05 -26.95 -26.85 -26.75 -26.65 -26.55 -26.45 -26.35\n", + " -26.25 -26.15 -26.05 -25.95 -25.85 -25.75 -25.65 -25.55 -25.45\n", + " -25.35 -25.25 -25.15 -25.05]\n" + ] + } + ], + "execution_count": 20 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:34:58.987854Z", + "start_time": "2024-12-06T23:34:58.978983Z" + } + }, + "cell_type": "code", + "source": "print(dataset.lat)", + "id": "4a5f97fdb4676f48", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1.805e+01 1.795e+01 1.785e+01 1.775e+01 1.765e+01 1.755e+01\n", + " 1.745e+01 1.735e+01 1.725e+01 1.715e+01 1.705e+01 1.695e+01\n", + " 1.685e+01 1.675e+01 1.665e+01 1.655e+01 1.645e+01 1.635e+01\n", + " 1.625e+01 1.615e+01 1.605e+01 1.595e+01 1.585e+01 1.575e+01\n", + " 1.565e+01 1.555e+01 1.545e+01 1.535e+01 1.525e+01 1.515e+01\n", + " 1.505e+01 1.495e+01 1.485e+01 1.475e+01 1.465e+01 1.455e+01\n", + " 1.445e+01 1.435e+01 1.425e+01 1.415e+01 1.405e+01 1.395e+01\n", + " 1.385e+01 1.375e+01 1.365e+01 1.355e+01 1.345e+01 1.335e+01\n", + " 1.325e+01 1.315e+01 1.305e+01 1.295e+01 1.285e+01 1.275e+01\n", + " 1.265e+01 1.255e+01 1.245e+01 1.235e+01 1.225e+01 1.215e+01\n", + " 1.205e+01 1.195e+01 1.185e+01 1.175e+01 1.165e+01 1.155e+01\n", + " 1.145e+01 1.135e+01 1.125e+01 1.115e+01 1.105e+01 1.095e+01\n", + " 1.085e+01 1.075e+01 1.065e+01 1.055e+01 1.045e+01 1.035e+01\n", + " 1.025e+01 1.015e+01 1.005e+01 9.950e+00 9.850e+00 9.750e+00\n", + " 9.650e+00 9.550e+00 9.450e+00 9.350e+00 9.250e+00 9.150e+00\n", + " 9.050e+00 8.950e+00 8.850e+00 8.750e+00 8.650e+00 8.550e+00\n", + " 8.450e+00 8.350e+00 8.250e+00 8.150e+00 8.050e+00 7.950e+00\n", + " 7.850e+00 7.750e+00 7.650e+00 7.550e+00 7.450e+00 7.350e+00\n", + " 7.250e+00 7.150e+00 7.050e+00 6.950e+00 6.850e+00 6.750e+00\n", + " 6.650e+00 6.550e+00 6.450e+00 6.350e+00 6.250e+00 6.150e+00\n", + " 6.050e+00 5.950e+00 5.850e+00 5.750e+00 5.650e+00 5.550e+00\n", + " 5.450e+00 5.350e+00 5.250e+00 5.150e+00 5.050e+00 4.950e+00\n", + " 4.850e+00 4.750e+00 4.650e+00 4.550e+00 4.450e+00 4.350e+00\n", + " 4.250e+00 4.150e+00 4.050e+00 3.950e+00 3.850e+00 3.750e+00\n", + " 3.650e+00 3.550e+00 3.450e+00 3.350e+00 3.250e+00 3.150e+00\n", + " 3.050e+00 2.950e+00 2.850e+00 2.750e+00 2.650e+00 2.550e+00\n", + " 2.450e+00 2.350e+00 2.250e+00 2.150e+00 2.050e+00 1.950e+00\n", + " 1.850e+00 1.750e+00 1.650e+00 1.550e+00 1.450e+00 1.350e+00\n", + " 1.250e+00 1.150e+00 1.050e+00 9.500e-01 8.500e-01 7.500e-01\n", + " 6.500e-01 5.500e-01 4.500e-01 3.500e-01 2.500e-01 1.500e-01\n", + " 5.000e-02 -5.000e-02 -1.500e-01 -2.500e-01 -3.500e-01 -4.500e-01\n", + " -5.500e-01 -6.500e-01 -7.500e-01 -8.500e-01 -9.500e-01 -1.050e+00\n", + " -1.150e+00 -1.250e+00 -1.350e+00 -1.450e+00 -1.550e+00 -1.650e+00\n", + " -1.750e+00 -1.850e+00 -1.950e+00 -2.050e+00 -2.150e+00 -2.250e+00\n", + " -2.350e+00 -2.450e+00 -2.550e+00 -2.650e+00 -2.750e+00 -2.850e+00\n", + " -2.950e+00 -3.050e+00 -3.150e+00 -3.250e+00 -3.350e+00 -3.450e+00\n", + " -3.550e+00 -3.650e+00 -3.750e+00 -3.850e+00 -3.950e+00 -4.050e+00\n", + " -4.150e+00 -4.250e+00 -4.350e+00 -4.450e+00 -4.550e+00 -4.650e+00\n", + " -4.750e+00 -4.850e+00 -4.950e+00 -5.050e+00 -5.150e+00 -5.250e+00\n", + " -5.350e+00 -5.450e+00 -5.550e+00 -5.650e+00 -5.750e+00 -5.850e+00\n", + " -5.950e+00 -6.050e+00 -6.150e+00 -6.250e+00 -6.350e+00 -6.450e+00\n", + " -6.550e+00 -6.650e+00 -6.750e+00 -6.850e+00 -6.950e+00 -7.050e+00\n", + " -7.150e+00 -7.250e+00 -7.350e+00 -7.450e+00 -7.550e+00 -7.650e+00\n", + " -7.750e+00 -7.850e+00 -7.950e+00 -8.050e+00 -8.150e+00 -8.250e+00\n", + " -8.350e+00 -8.450e+00 -8.550e+00 -8.650e+00 -8.750e+00 -8.850e+00\n", + " -8.950e+00 -9.050e+00 -9.150e+00 -9.250e+00 -9.350e+00 -9.450e+00\n", + " -9.550e+00 -9.650e+00 -9.750e+00 -9.850e+00 -9.950e+00 -1.005e+01\n", + " -1.015e+01 -1.025e+01 -1.035e+01 -1.045e+01 -1.055e+01 -1.065e+01\n", + " -1.075e+01 -1.085e+01 -1.095e+01 -1.105e+01 -1.115e+01 -1.125e+01\n", + " -1.135e+01 -1.145e+01 -1.155e+01 -1.165e+01 -1.175e+01 -1.185e+01\n", + " -1.195e+01 -1.205e+01 -1.215e+01 -1.225e+01 -1.235e+01 -1.245e+01\n", + " -1.255e+01 -1.265e+01 -1.275e+01 -1.285e+01 -1.295e+01 -1.305e+01\n", + " -1.315e+01 -1.325e+01 -1.335e+01 -1.345e+01 -1.355e+01 -1.365e+01\n", + " -1.375e+01 -1.385e+01 -1.395e+01 -1.405e+01 -1.415e+01 -1.425e+01\n", + " -1.435e+01 -1.445e+01 -1.455e+01 -1.465e+01 -1.475e+01 -1.485e+01\n", + " -1.495e+01 -1.505e+01 -1.515e+01 -1.525e+01 -1.535e+01 -1.545e+01\n", + " -1.555e+01 -1.565e+01 -1.575e+01 -1.585e+01 -1.595e+01 -1.605e+01\n", + " -1.615e+01 -1.625e+01 -1.635e+01 -1.645e+01 -1.655e+01 -1.665e+01\n", + " -1.675e+01 -1.685e+01 -1.695e+01 -1.705e+01 -1.715e+01 -1.725e+01\n", + " -1.735e+01 -1.745e+01 -1.755e+01 -1.765e+01 -1.775e+01 -1.785e+01\n", + " -1.795e+01 -1.805e+01 -1.815e+01 -1.825e+01 -1.835e+01 -1.845e+01\n", + " -1.855e+01 -1.865e+01 -1.875e+01 -1.885e+01 -1.895e+01 -1.905e+01\n", + " -1.915e+01 -1.925e+01 -1.935e+01 -1.945e+01 -1.955e+01 -1.965e+01\n", + " -1.975e+01 -1.985e+01 -1.995e+01 -2.005e+01 -2.015e+01 -2.025e+01\n", + " -2.035e+01 -2.045e+01 -2.055e+01 -2.065e+01 -2.075e+01 -2.085e+01\n", + " -2.095e+01 -2.105e+01 -2.115e+01 -2.125e+01 -2.135e+01 -2.145e+01\n", + " -2.155e+01 -2.165e+01 -2.175e+01 -2.185e+01 -2.195e+01 -2.205e+01\n", + " -2.215e+01 -2.225e+01 -2.235e+01 -2.245e+01 -2.255e+01 -2.265e+01\n", + " -2.275e+01 -2.285e+01 -2.295e+01 -2.305e+01 -2.315e+01 -2.325e+01\n", + " -2.335e+01 -2.345e+01 -2.355e+01 -2.365e+01 -2.375e+01 -2.385e+01\n", + " -2.395e+01 -2.405e+01 -2.415e+01 -2.425e+01 -2.435e+01 -2.445e+01\n", + " -2.455e+01 -2.465e+01 -2.475e+01 -2.485e+01 -2.495e+01 -2.505e+01\n", + " -2.515e+01 -2.525e+01 -2.535e+01 -2.545e+01 -2.555e+01 -2.565e+01\n", + " -2.575e+01 -2.585e+01 -2.595e+01 -2.605e+01 -2.615e+01 -2.625e+01\n", + " -2.635e+01 -2.645e+01 -2.655e+01 -2.665e+01 -2.675e+01 -2.685e+01\n", + " -2.695e+01 -2.705e+01 -2.715e+01 -2.725e+01 -2.735e+01 -2.745e+01\n", + " -2.755e+01 -2.765e+01 -2.775e+01 -2.785e+01 -2.795e+01 -2.805e+01\n", + " -2.815e+01 -2.825e+01 -2.835e+01 -2.845e+01 -2.855e+01 -2.865e+01\n", + " -2.875e+01 -2.885e+01 -2.895e+01 -2.905e+01 -2.915e+01 -2.925e+01\n", + " -2.935e+01 -2.945e+01 -2.955e+01 -2.965e+01 -2.975e+01 -2.985e+01\n", + " -2.995e+01 -3.005e+01 -3.015e+01 -3.025e+01 -3.035e+01 -3.045e+01\n", + " -3.055e+01 -3.065e+01 -3.075e+01 -3.085e+01 -3.095e+01 -3.105e+01\n", + " -3.115e+01 -3.125e+01 -3.135e+01 -3.145e+01 -3.155e+01 -3.165e+01\n", + " -3.175e+01 -3.185e+01 -3.195e+01 -3.205e+01 -3.215e+01 -3.225e+01\n", + " -3.235e+01 -3.245e+01 -3.255e+01 -3.265e+01 -3.275e+01 -3.285e+01\n", + " -3.295e+01 -3.305e+01 -3.315e+01 -3.325e+01 -3.335e+01 -3.345e+01\n", + " -3.355e+01 -3.365e+01 -3.375e+01 -3.385e+01 -3.395e+01 -3.405e+01\n", + " -3.415e+01 -3.425e+01 -3.435e+01 -3.445e+01 -3.455e+01 -3.465e+01\n", + " -3.475e+01 -3.485e+01 -3.495e+01 -3.505e+01 -3.515e+01 -3.525e+01\n", + " -3.535e+01 -3.545e+01 -3.555e+01 -3.565e+01 -3.575e+01 -3.585e+01\n", + " -3.595e+01 -3.605e+01 -3.615e+01 -3.625e+01 -3.635e+01 -3.645e+01\n", + " -3.655e+01 -3.665e+01 -3.675e+01 -3.685e+01 -3.695e+01 -3.705e+01\n", + " -3.715e+01 -3.725e+01 -3.735e+01 -3.745e+01 -3.755e+01 -3.765e+01\n", + " -3.775e+01 -3.785e+01 -3.795e+01 -3.805e+01 -3.815e+01 -3.825e+01\n", + " -3.835e+01 -3.845e+01 -3.855e+01 -3.865e+01 -3.875e+01 -3.885e+01\n", + " -3.895e+01 -3.905e+01 -3.915e+01 -3.925e+01 -3.935e+01 -3.945e+01\n", + " -3.955e+01 -3.965e+01 -3.975e+01 -3.985e+01 -3.995e+01 -4.005e+01\n", + " -4.015e+01 -4.025e+01 -4.035e+01 -4.045e+01 -4.055e+01 -4.065e+01\n", + " -4.075e+01 -4.085e+01 -4.095e+01 -4.105e+01 -4.115e+01 -4.125e+01\n", + " -4.135e+01 -4.145e+01 -4.155e+01 -4.165e+01 -4.175e+01 -4.185e+01\n", + " -4.195e+01 -4.205e+01 -4.215e+01 -4.225e+01 -4.235e+01 -4.245e+01\n", + " -4.255e+01 -4.265e+01 -4.275e+01 -4.285e+01 -4.295e+01 -4.305e+01\n", + " -4.315e+01 -4.325e+01 -4.335e+01 -4.345e+01 -4.355e+01 -4.365e+01\n", + " -4.375e+01 -4.385e+01 -4.395e+01 -4.405e+01 -4.415e+01 -4.425e+01\n", + " -4.435e+01 -4.445e+01 -4.455e+01 -4.465e+01 -4.475e+01 -4.485e+01\n", + " -4.495e+01 -4.505e+01 -4.515e+01 -4.525e+01 -4.535e+01 -4.545e+01\n", + " -4.555e+01 -4.565e+01 -4.575e+01 -4.585e+01 -4.595e+01 -4.605e+01\n", + " -4.615e+01 -4.625e+01 -4.635e+01 -4.645e+01 -4.655e+01 -4.665e+01\n", + " -4.675e+01 -4.685e+01 -4.695e+01 -4.705e+01 -4.715e+01 -4.725e+01\n", + " -4.735e+01 -4.745e+01 -4.755e+01 -4.765e+01 -4.775e+01 -4.785e+01\n", + " -4.795e+01 -4.805e+01 -4.815e+01 -4.825e+01 -4.835e+01 -4.845e+01\n", + " -4.855e+01 -4.865e+01 -4.875e+01 -4.885e+01 -4.895e+01 -4.905e+01\n", + " -4.915e+01 -4.925e+01 -4.935e+01 -4.945e+01 -4.955e+01 -4.965e+01\n", + " -4.975e+01 -4.985e+01 -4.995e+01 -5.005e+01 -5.015e+01 -5.025e+01\n", + " -5.035e+01 -5.045e+01 -5.055e+01 -5.065e+01 -5.075e+01 -5.085e+01\n", + " -5.095e+01 -5.105e+01 -5.115e+01 -5.125e+01 -5.135e+01 -5.145e+01\n", + " -5.155e+01 -5.165e+01 -5.175e+01 -5.185e+01 -5.195e+01 -5.205e+01\n", + " -5.215e+01 -5.225e+01 -5.235e+01 -5.245e+01 -5.255e+01 -5.265e+01\n", + " -5.275e+01 -5.285e+01 -5.295e+01 -5.305e+01 -5.315e+01 -5.325e+01\n", + " -5.335e+01 -5.345e+01 -5.355e+01 -5.365e+01 -5.375e+01 -5.385e+01\n", + " -5.395e+01 -5.405e+01 -5.415e+01 -5.425e+01 -5.435e+01 -5.445e+01\n", + " -5.455e+01 -5.465e+01 -5.475e+01 -5.485e+01 -5.495e+01 -5.505e+01\n", + " -5.515e+01 -5.525e+01 -5.535e+01 -5.545e+01 -5.555e+01 -5.565e+01\n", + " -5.575e+01 -5.585e+01 -5.595e+01 -5.605e+01 -5.615e+01 -5.625e+01\n", + " -5.635e+01 -5.645e+01 -5.655e+01 -5.665e+01 -5.675e+01 -5.685e+01\n", + " -5.695e+01 -5.705e+01 -5.715e+01 -5.725e+01 -5.735e+01 -5.745e+01\n", + " -5.755e+01 -5.765e+01 -5.775e+01 -5.785e+01 -5.795e+01 -5.805e+01\n", + " -5.815e+01 -5.825e+01 -5.835e+01 -5.845e+01 -5.855e+01 -5.865e+01\n", + " -5.875e+01 -5.885e+01 -5.895e+01 -5.905e+01 -5.915e+01 -5.925e+01\n", + " -5.935e+01 -5.945e+01 -5.955e+01 -5.965e+01 -5.975e+01 -5.985e+01]\n" + ] + } + ], + "execution_count": 21 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:00.384926Z", + "start_time": "2024-12-06T23:35:00.377718Z" + } + }, + "cell_type": "code", + "source": "print(dataset.x)", + "id": "f05fe8d538a86680", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-109.95 -109.85 -109.75 -109.65 -109.55 -109.45 -109.35 -109.25 -109.15\n", + " -109.05 -108.95 -108.85 -108.75 -108.65 -108.55 -108.45 -108.35 -108.25\n", + " -108.15 -108.05 -107.95 -107.85 -107.75 -107.65 -107.55 -107.45 -107.35\n", + " -107.25 -107.15 -107.05 -106.95 -106.85 -106.75 -106.65 -106.55 -106.45\n", + " -106.35 -106.25 -106.15 -106.05 -105.95 -105.85 -105.75 -105.65 -105.55\n", + " -105.45 -105.35 -105.25 -105.15 -105.05 -104.95 -104.85 -104.75 -104.65\n", + " -104.55 -104.45 -104.35 -104.25 -104.15 -104.05 -103.95 -103.85 -103.75\n", + " -103.65 -103.55 -103.45 -103.35 -103.25 -103.15 -103.05 -102.95 -102.85\n", + " -102.75 -102.65 -102.55 -102.45 -102.35 -102.25 -102.15 -102.05 -101.95\n", + " -101.85 -101.75 -101.65 -101.55 -101.45 -101.35 -101.25 -101.15 -101.05\n", + " -100.95 -100.85 -100.75 -100.65 -100.55 -100.45 -100.35 -100.25 -100.15\n", + " -100.05 -99.95 -99.85 -99.75 -99.65 -99.55 -99.45 -99.35 -99.25\n", + " -99.15 -99.05 -98.95 -98.85 -98.75 -98.65 -98.55 -98.45 -98.35\n", + " -98.25 -98.15 -98.05 -97.95 -97.85 -97.75 -97.65 -97.55 -97.45\n", + " -97.35 -97.25 -97.15 -97.05 -96.95 -96.85 -96.75 -96.65 -96.55\n", + " -96.45 -96.35 -96.25 -96.15 -96.05 -95.95 -95.85 -95.75 -95.65\n", + " -95.55 -95.45 -95.35 -95.25 -95.15 -95.05 -94.95 -94.85 -94.75\n", + " -94.65 -94.55 -94.45 -94.35 -94.25 -94.15 -94.05 -93.95 -93.85\n", + " -93.75 -93.65 -93.55 -93.45 -93.35 -93.25 -93.15 -93.05 -92.95\n", + " -92.85 -92.75 -92.65 -92.55 -92.45 -92.35 -92.25 -92.15 -92.05\n", + " -91.95 -91.85 -91.75 -91.65 -91.55 -91.45 -91.35 -91.25 -91.15\n", + " -91.05 -90.95 -90.85 -90.75 -90.65 -90.55 -90.45 -90.35 -90.25\n", + " -90.15 -90.05 -89.95 -89.85 -89.75 -89.65 -89.55 -89.45 -89.35\n", + " -89.25 -89.15 -89.05 -88.95 -88.85 -88.75 -88.65 -88.55 -88.45\n", + " -88.35 -88.25 -88.15 -88.05 -87.95 -87.85 -87.75 -87.65 -87.55\n", + " -87.45 -87.35 -87.25 -87.15 -87.05 -86.95 -86.85 -86.75 -86.65\n", + " -86.55 -86.45 -86.35 -86.25 -86.15 -86.05 -85.95 -85.85 -85.75\n", + " -85.65 -85.55 -85.45 -85.35 -85.25 -85.15 -85.05 -84.95 -84.85\n", + " -84.75 -84.65 -84.55 -84.45 -84.35 -84.25 -84.15 -84.05 -83.95\n", + " -83.85 -83.75 -83.65 -83.55 -83.45 -83.35 -83.25 -83.15 -83.05\n", + " -82.95 -82.85 -82.75 -82.65 -82.55 -82.45 -82.35 -82.25 -82.15\n", + " -82.05 -81.95 -81.85 -81.75 -81.65 -81.55 -81.45 -81.35 -81.25\n", + " -81.15 -81.05 -80.95 -80.85 -80.75 -80.65 -80.55 -80.45 -80.35\n", + " -80.25 -80.15 -80.05 -79.95 -79.85 -79.75 -79.65 -79.55 -79.45\n", + " -79.35 -79.25 -79.15 -79.05 -78.95 -78.85 -78.75 -78.65 -78.55\n", + " -78.45 -78.35 -78.25 -78.15 -78.05 -77.95 -77.85 -77.75 -77.65\n", + " -77.55 -77.45 -77.35 -77.25 -77.15 -77.05 -76.95 -76.85 -76.75\n", + " -76.65 -76.55 -76.45 -76.35 -76.25 -76.15 -76.05 -75.95 -75.85\n", + " -75.75 -75.65 -75.55 -75.45 -75.35 -75.25 -75.15 -75.05 -74.95\n", + " -74.85 -74.75 -74.65 -74.55 -74.45 -74.35 -74.25 -74.15 -74.05\n", + " -73.95 -73.85 -73.75 -73.65 -73.55 -73.45 -73.35 -73.25 -73.15\n", + " -73.05 -72.95 -72.85 -72.75 -72.65 -72.55 -72.45 -72.35 -72.25\n", + " -72.15 -72.05 -71.95 -71.85 -71.75 -71.65 -71.55 -71.45 -71.35\n", + " -71.25 -71.15 -71.05 -70.95 -70.85 -70.75 -70.65 -70.55 -70.45\n", + " -70.35 -70.25 -70.15 -70.05 -69.95 -69.85 -69.75 -69.65 -69.55\n", + " -69.45 -69.35 -69.25 -69.15 -69.05 -68.95 -68.85 -68.75 -68.65\n", + " -68.55 -68.45 -68.35 -68.25 -68.15 -68.05 -67.95 -67.85 -67.75\n", + " -67.65 -67.55 -67.45 -67.35 -67.25 -67.15 -67.05 -66.95 -66.85\n", + " -66.75 -66.65 -66.55 -66.45 -66.35 -66.25 -66.15 -66.05 -65.95\n", + " -65.85 -65.75 -65.65 -65.55 -65.45 -65.35 -65.25 -65.15 -65.05\n", + " -64.95 -64.85 -64.75 -64.65 -64.55 -64.45 -64.35 -64.25 -64.15\n", + " -64.05 -63.95 -63.85 -63.75 -63.65 -63.55 -63.45 -63.35 -63.25\n", + " -63.15 -63.05 -62.95 -62.85 -62.75 -62.65 -62.55 -62.45 -62.35\n", + " -62.25 -62.15 -62.05 -61.95 -61.85 -61.75 -61.65 -61.55 -61.45\n", + " -61.35 -61.25 -61.15 -61.05 -60.95 -60.85 -60.75 -60.65 -60.55\n", + " -60.45 -60.35 -60.25 -60.15 -60.05 -59.95 -59.85 -59.75 -59.65\n", + " -59.55 -59.45 -59.35 -59.25 -59.15 -59.05 -58.95 -58.85 -58.75\n", + " -58.65 -58.55 -58.45 -58.35 -58.25 -58.15 -58.05 -57.95 -57.85\n", + " -57.75 -57.65 -57.55 -57.45 -57.35 -57.25 -57.15 -57.05 -56.95\n", + " -56.85 -56.75 -56.65 -56.55 -56.45 -56.35 -56.25 -56.15 -56.05\n", + " -55.95 -55.85 -55.75 -55.65 -55.55 -55.45 -55.35 -55.25 -55.15\n", + " -55.05 -54.95 -54.85 -54.75 -54.65 -54.55 -54.45 -54.35 -54.25\n", + " -54.15 -54.05 -53.95 -53.85 -53.75 -53.65 -53.55 -53.45 -53.35\n", + " -53.25 -53.15 -53.05 -52.95 -52.85 -52.75 -52.65 -52.55 -52.45\n", + " -52.35 -52.25 -52.15 -52.05 -51.95 -51.85 -51.75 -51.65 -51.55\n", + " -51.45 -51.35 -51.25 -51.15 -51.05 -50.95 -50.85 -50.75 -50.65\n", + " -50.55 -50.45 -50.35 -50.25 -50.15 -50.05 -49.95 -49.85 -49.75\n", + " -49.65 -49.55 -49.45 -49.35 -49.25 -49.15 -49.05 -48.95 -48.85\n", + " -48.75 -48.65 -48.55 -48.45 -48.35 -48.25 -48.15 -48.05 -47.95\n", + " -47.85 -47.75 -47.65 -47.55 -47.45 -47.35 -47.25 -47.15 -47.05\n", + " -46.95 -46.85 -46.75 -46.65 -46.55 -46.45 -46.35 -46.25 -46.15\n", + " -46.05 -45.95 -45.85 -45.75 -45.65 -45.55 -45.45 -45.35 -45.25\n", + " -45.15 -45.05 -44.95 -44.85 -44.75 -44.65 -44.55 -44.45 -44.35\n", + " -44.25 -44.15 -44.05 -43.95 -43.85 -43.75 -43.65 -43.55 -43.45\n", + " -43.35 -43.25 -43.15 -43.05 -42.95 -42.85 -42.75 -42.65 -42.55\n", + " -42.45 -42.35 -42.25 -42.15 -42.05 -41.95 -41.85 -41.75 -41.65\n", + " -41.55 -41.45 -41.35 -41.25 -41.15 -41.05 -40.95 -40.85 -40.75\n", + " -40.65 -40.55 -40.45 -40.35 -40.25 -40.15 -40.05 -39.95 -39.85\n", + " -39.75 -39.65 -39.55 -39.45 -39.35 -39.25 -39.15 -39.05 -38.95\n", + " -38.85 -38.75 -38.65 -38.55 -38.45 -38.35 -38.25 -38.15 -38.05\n", + " -37.95 -37.85 -37.75 -37.65 -37.55 -37.45 -37.35 -37.25 -37.15\n", + " -37.05 -36.95 -36.85 -36.75 -36.65 -36.55 -36.45 -36.35 -36.25\n", + " -36.15 -36.05 -35.95 -35.85 -35.75 -35.65 -35.55 -35.45 -35.35\n", + " -35.25 -35.15 -35.05 -34.95 -34.85 -34.75 -34.65 -34.55 -34.45\n", + " -34.35 -34.25 -34.15 -34.05 -33.95 -33.85 -33.75 -33.65 -33.55\n", + " -33.45 -33.35 -33.25 -33.15 -33.05 -32.95 -32.85 -32.75 -32.65\n", + " -32.55 -32.45 -32.35 -32.25 -32.15 -32.05 -31.95 -31.85 -31.75\n", + " -31.65 -31.55 -31.45 -31.35 -31.25 -31.15 -31.05 -30.95 -30.85\n", + " -30.75 -30.65 -30.55 -30.45 -30.35 -30.25 -30.15 -30.05 -29.95\n", + " -29.85 -29.75 -29.65 -29.55 -29.45 -29.35 -29.25 -29.15 -29.05\n", + " -28.95 -28.85 -28.75 -28.65 -28.55 -28.45 -28.35 -28.25 -28.15\n", + " -28.05 -27.95 -27.85 -27.75 -27.65 -27.55 -27.45 -27.35 -27.25\n", + " -27.15 -27.05 -26.95 -26.85 -26.75 -26.65 -26.55 -26.45 -26.35\n", + " -26.25 -26.15 -26.05 -25.95 -25.85 -25.75 -25.65 -25.55 -25.45\n", + " -25.35 -25.25 -25.15 -25.05]\n" + ] + } + ], + "execution_count": 22 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:01.555824Z", + "start_time": "2024-12-06T23:35:01.547691Z" + } + }, + "cell_type": "code", + "source": "print(dataset.y)", + "id": "af1545aded83ad42", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1.805e+01 1.795e+01 1.785e+01 1.775e+01 1.765e+01 1.755e+01\n", + " 1.745e+01 1.735e+01 1.725e+01 1.715e+01 1.705e+01 1.695e+01\n", + " 1.685e+01 1.675e+01 1.665e+01 1.655e+01 1.645e+01 1.635e+01\n", + " 1.625e+01 1.615e+01 1.605e+01 1.595e+01 1.585e+01 1.575e+01\n", + " 1.565e+01 1.555e+01 1.545e+01 1.535e+01 1.525e+01 1.515e+01\n", + " 1.505e+01 1.495e+01 1.485e+01 1.475e+01 1.465e+01 1.455e+01\n", + " 1.445e+01 1.435e+01 1.425e+01 1.415e+01 1.405e+01 1.395e+01\n", + " 1.385e+01 1.375e+01 1.365e+01 1.355e+01 1.345e+01 1.335e+01\n", + " 1.325e+01 1.315e+01 1.305e+01 1.295e+01 1.285e+01 1.275e+01\n", + " 1.265e+01 1.255e+01 1.245e+01 1.235e+01 1.225e+01 1.215e+01\n", + " 1.205e+01 1.195e+01 1.185e+01 1.175e+01 1.165e+01 1.155e+01\n", + " 1.145e+01 1.135e+01 1.125e+01 1.115e+01 1.105e+01 1.095e+01\n", + " 1.085e+01 1.075e+01 1.065e+01 1.055e+01 1.045e+01 1.035e+01\n", + " 1.025e+01 1.015e+01 1.005e+01 9.950e+00 9.850e+00 9.750e+00\n", + " 9.650e+00 9.550e+00 9.450e+00 9.350e+00 9.250e+00 9.150e+00\n", + " 9.050e+00 8.950e+00 8.850e+00 8.750e+00 8.650e+00 8.550e+00\n", + " 8.450e+00 8.350e+00 8.250e+00 8.150e+00 8.050e+00 7.950e+00\n", + " 7.850e+00 7.750e+00 7.650e+00 7.550e+00 7.450e+00 7.350e+00\n", + " 7.250e+00 7.150e+00 7.050e+00 6.950e+00 6.850e+00 6.750e+00\n", + " 6.650e+00 6.550e+00 6.450e+00 6.350e+00 6.250e+00 6.150e+00\n", + " 6.050e+00 5.950e+00 5.850e+00 5.750e+00 5.650e+00 5.550e+00\n", + " 5.450e+00 5.350e+00 5.250e+00 5.150e+00 5.050e+00 4.950e+00\n", + " 4.850e+00 4.750e+00 4.650e+00 4.550e+00 4.450e+00 4.350e+00\n", + " 4.250e+00 4.150e+00 4.050e+00 3.950e+00 3.850e+00 3.750e+00\n", + " 3.650e+00 3.550e+00 3.450e+00 3.350e+00 3.250e+00 3.150e+00\n", + " 3.050e+00 2.950e+00 2.850e+00 2.750e+00 2.650e+00 2.550e+00\n", + " 2.450e+00 2.350e+00 2.250e+00 2.150e+00 2.050e+00 1.950e+00\n", + " 1.850e+00 1.750e+00 1.650e+00 1.550e+00 1.450e+00 1.350e+00\n", + " 1.250e+00 1.150e+00 1.050e+00 9.500e-01 8.500e-01 7.500e-01\n", + " 6.500e-01 5.500e-01 4.500e-01 3.500e-01 2.500e-01 1.500e-01\n", + " 5.000e-02 -5.000e-02 -1.500e-01 -2.500e-01 -3.500e-01 -4.500e-01\n", + " -5.500e-01 -6.500e-01 -7.500e-01 -8.500e-01 -9.500e-01 -1.050e+00\n", + " -1.150e+00 -1.250e+00 -1.350e+00 -1.450e+00 -1.550e+00 -1.650e+00\n", + " -1.750e+00 -1.850e+00 -1.950e+00 -2.050e+00 -2.150e+00 -2.250e+00\n", + " -2.350e+00 -2.450e+00 -2.550e+00 -2.650e+00 -2.750e+00 -2.850e+00\n", + " -2.950e+00 -3.050e+00 -3.150e+00 -3.250e+00 -3.350e+00 -3.450e+00\n", + " -3.550e+00 -3.650e+00 -3.750e+00 -3.850e+00 -3.950e+00 -4.050e+00\n", + " -4.150e+00 -4.250e+00 -4.350e+00 -4.450e+00 -4.550e+00 -4.650e+00\n", + " -4.750e+00 -4.850e+00 -4.950e+00 -5.050e+00 -5.150e+00 -5.250e+00\n", + " -5.350e+00 -5.450e+00 -5.550e+00 -5.650e+00 -5.750e+00 -5.850e+00\n", + " -5.950e+00 -6.050e+00 -6.150e+00 -6.250e+00 -6.350e+00 -6.450e+00\n", + " -6.550e+00 -6.650e+00 -6.750e+00 -6.850e+00 -6.950e+00 -7.050e+00\n", + " -7.150e+00 -7.250e+00 -7.350e+00 -7.450e+00 -7.550e+00 -7.650e+00\n", + " -7.750e+00 -7.850e+00 -7.950e+00 -8.050e+00 -8.150e+00 -8.250e+00\n", + " -8.350e+00 -8.450e+00 -8.550e+00 -8.650e+00 -8.750e+00 -8.850e+00\n", + " -8.950e+00 -9.050e+00 -9.150e+00 -9.250e+00 -9.350e+00 -9.450e+00\n", + " -9.550e+00 -9.650e+00 -9.750e+00 -9.850e+00 -9.950e+00 -1.005e+01\n", + " -1.015e+01 -1.025e+01 -1.035e+01 -1.045e+01 -1.055e+01 -1.065e+01\n", + " -1.075e+01 -1.085e+01 -1.095e+01 -1.105e+01 -1.115e+01 -1.125e+01\n", + " -1.135e+01 -1.145e+01 -1.155e+01 -1.165e+01 -1.175e+01 -1.185e+01\n", + " -1.195e+01 -1.205e+01 -1.215e+01 -1.225e+01 -1.235e+01 -1.245e+01\n", + " -1.255e+01 -1.265e+01 -1.275e+01 -1.285e+01 -1.295e+01 -1.305e+01\n", + " -1.315e+01 -1.325e+01 -1.335e+01 -1.345e+01 -1.355e+01 -1.365e+01\n", + " -1.375e+01 -1.385e+01 -1.395e+01 -1.405e+01 -1.415e+01 -1.425e+01\n", + " -1.435e+01 -1.445e+01 -1.455e+01 -1.465e+01 -1.475e+01 -1.485e+01\n", + " -1.495e+01 -1.505e+01 -1.515e+01 -1.525e+01 -1.535e+01 -1.545e+01\n", + " -1.555e+01 -1.565e+01 -1.575e+01 -1.585e+01 -1.595e+01 -1.605e+01\n", + " -1.615e+01 -1.625e+01 -1.635e+01 -1.645e+01 -1.655e+01 -1.665e+01\n", + " -1.675e+01 -1.685e+01 -1.695e+01 -1.705e+01 -1.715e+01 -1.725e+01\n", + " -1.735e+01 -1.745e+01 -1.755e+01 -1.765e+01 -1.775e+01 -1.785e+01\n", + " -1.795e+01 -1.805e+01 -1.815e+01 -1.825e+01 -1.835e+01 -1.845e+01\n", + " -1.855e+01 -1.865e+01 -1.875e+01 -1.885e+01 -1.895e+01 -1.905e+01\n", + " -1.915e+01 -1.925e+01 -1.935e+01 -1.945e+01 -1.955e+01 -1.965e+01\n", + " -1.975e+01 -1.985e+01 -1.995e+01 -2.005e+01 -2.015e+01 -2.025e+01\n", + " -2.035e+01 -2.045e+01 -2.055e+01 -2.065e+01 -2.075e+01 -2.085e+01\n", + " -2.095e+01 -2.105e+01 -2.115e+01 -2.125e+01 -2.135e+01 -2.145e+01\n", + " -2.155e+01 -2.165e+01 -2.175e+01 -2.185e+01 -2.195e+01 -2.205e+01\n", + " -2.215e+01 -2.225e+01 -2.235e+01 -2.245e+01 -2.255e+01 -2.265e+01\n", + " -2.275e+01 -2.285e+01 -2.295e+01 -2.305e+01 -2.315e+01 -2.325e+01\n", + " -2.335e+01 -2.345e+01 -2.355e+01 -2.365e+01 -2.375e+01 -2.385e+01\n", + " -2.395e+01 -2.405e+01 -2.415e+01 -2.425e+01 -2.435e+01 -2.445e+01\n", + " -2.455e+01 -2.465e+01 -2.475e+01 -2.485e+01 -2.495e+01 -2.505e+01\n", + " -2.515e+01 -2.525e+01 -2.535e+01 -2.545e+01 -2.555e+01 -2.565e+01\n", + " -2.575e+01 -2.585e+01 -2.595e+01 -2.605e+01 -2.615e+01 -2.625e+01\n", + " -2.635e+01 -2.645e+01 -2.655e+01 -2.665e+01 -2.675e+01 -2.685e+01\n", + " -2.695e+01 -2.705e+01 -2.715e+01 -2.725e+01 -2.735e+01 -2.745e+01\n", + " -2.755e+01 -2.765e+01 -2.775e+01 -2.785e+01 -2.795e+01 -2.805e+01\n", + " -2.815e+01 -2.825e+01 -2.835e+01 -2.845e+01 -2.855e+01 -2.865e+01\n", + " -2.875e+01 -2.885e+01 -2.895e+01 -2.905e+01 -2.915e+01 -2.925e+01\n", + " -2.935e+01 -2.945e+01 -2.955e+01 -2.965e+01 -2.975e+01 -2.985e+01\n", + " -2.995e+01 -3.005e+01 -3.015e+01 -3.025e+01 -3.035e+01 -3.045e+01\n", + " -3.055e+01 -3.065e+01 -3.075e+01 -3.085e+01 -3.095e+01 -3.105e+01\n", + " -3.115e+01 -3.125e+01 -3.135e+01 -3.145e+01 -3.155e+01 -3.165e+01\n", + " -3.175e+01 -3.185e+01 -3.195e+01 -3.205e+01 -3.215e+01 -3.225e+01\n", + " -3.235e+01 -3.245e+01 -3.255e+01 -3.265e+01 -3.275e+01 -3.285e+01\n", + " -3.295e+01 -3.305e+01 -3.315e+01 -3.325e+01 -3.335e+01 -3.345e+01\n", + " -3.355e+01 -3.365e+01 -3.375e+01 -3.385e+01 -3.395e+01 -3.405e+01\n", + " -3.415e+01 -3.425e+01 -3.435e+01 -3.445e+01 -3.455e+01 -3.465e+01\n", + " -3.475e+01 -3.485e+01 -3.495e+01 -3.505e+01 -3.515e+01 -3.525e+01\n", + " -3.535e+01 -3.545e+01 -3.555e+01 -3.565e+01 -3.575e+01 -3.585e+01\n", + " -3.595e+01 -3.605e+01 -3.615e+01 -3.625e+01 -3.635e+01 -3.645e+01\n", + " -3.655e+01 -3.665e+01 -3.675e+01 -3.685e+01 -3.695e+01 -3.705e+01\n", + " -3.715e+01 -3.725e+01 -3.735e+01 -3.745e+01 -3.755e+01 -3.765e+01\n", + " -3.775e+01 -3.785e+01 -3.795e+01 -3.805e+01 -3.815e+01 -3.825e+01\n", + " -3.835e+01 -3.845e+01 -3.855e+01 -3.865e+01 -3.875e+01 -3.885e+01\n", + " -3.895e+01 -3.905e+01 -3.915e+01 -3.925e+01 -3.935e+01 -3.945e+01\n", + " -3.955e+01 -3.965e+01 -3.975e+01 -3.985e+01 -3.995e+01 -4.005e+01\n", + " -4.015e+01 -4.025e+01 -4.035e+01 -4.045e+01 -4.055e+01 -4.065e+01\n", + " -4.075e+01 -4.085e+01 -4.095e+01 -4.105e+01 -4.115e+01 -4.125e+01\n", + " -4.135e+01 -4.145e+01 -4.155e+01 -4.165e+01 -4.175e+01 -4.185e+01\n", + " -4.195e+01 -4.205e+01 -4.215e+01 -4.225e+01 -4.235e+01 -4.245e+01\n", + " -4.255e+01 -4.265e+01 -4.275e+01 -4.285e+01 -4.295e+01 -4.305e+01\n", + " -4.315e+01 -4.325e+01 -4.335e+01 -4.345e+01 -4.355e+01 -4.365e+01\n", + " -4.375e+01 -4.385e+01 -4.395e+01 -4.405e+01 -4.415e+01 -4.425e+01\n", + " -4.435e+01 -4.445e+01 -4.455e+01 -4.465e+01 -4.475e+01 -4.485e+01\n", + " -4.495e+01 -4.505e+01 -4.515e+01 -4.525e+01 -4.535e+01 -4.545e+01\n", + " -4.555e+01 -4.565e+01 -4.575e+01 -4.585e+01 -4.595e+01 -4.605e+01\n", + " -4.615e+01 -4.625e+01 -4.635e+01 -4.645e+01 -4.655e+01 -4.665e+01\n", + " -4.675e+01 -4.685e+01 -4.695e+01 -4.705e+01 -4.715e+01 -4.725e+01\n", + " -4.735e+01 -4.745e+01 -4.755e+01 -4.765e+01 -4.775e+01 -4.785e+01\n", + " -4.795e+01 -4.805e+01 -4.815e+01 -4.825e+01 -4.835e+01 -4.845e+01\n", + " -4.855e+01 -4.865e+01 -4.875e+01 -4.885e+01 -4.895e+01 -4.905e+01\n", + " -4.915e+01 -4.925e+01 -4.935e+01 -4.945e+01 -4.955e+01 -4.965e+01\n", + " -4.975e+01 -4.985e+01 -4.995e+01 -5.005e+01 -5.015e+01 -5.025e+01\n", + " -5.035e+01 -5.045e+01 -5.055e+01 -5.065e+01 -5.075e+01 -5.085e+01\n", + " -5.095e+01 -5.105e+01 -5.115e+01 -5.125e+01 -5.135e+01 -5.145e+01\n", + " -5.155e+01 -5.165e+01 -5.175e+01 -5.185e+01 -5.195e+01 -5.205e+01\n", + " -5.215e+01 -5.225e+01 -5.235e+01 -5.245e+01 -5.255e+01 -5.265e+01\n", + " -5.275e+01 -5.285e+01 -5.295e+01 -5.305e+01 -5.315e+01 -5.325e+01\n", + " -5.335e+01 -5.345e+01 -5.355e+01 -5.365e+01 -5.375e+01 -5.385e+01\n", + " -5.395e+01 -5.405e+01 -5.415e+01 -5.425e+01 -5.435e+01 -5.445e+01\n", + " -5.455e+01 -5.465e+01 -5.475e+01 -5.485e+01 -5.495e+01 -5.505e+01\n", + " -5.515e+01 -5.525e+01 -5.535e+01 -5.545e+01 -5.555e+01 -5.565e+01\n", + " -5.575e+01 -5.585e+01 -5.595e+01 -5.605e+01 -5.615e+01 -5.625e+01\n", + " -5.635e+01 -5.645e+01 -5.655e+01 -5.665e+01 -5.675e+01 -5.685e+01\n", + " -5.695e+01 -5.705e+01 -5.715e+01 -5.725e+01 -5.735e+01 -5.745e+01\n", + " -5.755e+01 -5.765e+01 -5.775e+01 -5.785e+01 -5.795e+01 -5.805e+01\n", + " -5.815e+01 -5.825e+01 -5.835e+01 -5.845e+01 -5.855e+01 -5.865e+01\n", + " -5.875e+01 -5.885e+01 -5.895e+01 -5.905e+01 -5.915e+01 -5.925e+01\n", + " -5.935e+01 -5.945e+01 -5.955e+01 -5.965e+01 -5.975e+01 -5.985e+01]\n" + ] + } + ], + "execution_count": 23 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Driver information and metadata", + "id": "1437541ca3b43730" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:04.004315Z", + "start_time": "2024-12-06T23:35:04.000800Z" + } + }, + "cell_type": "code", + "source": "print(dataset.meta_data)", + "id": "78a369841fe44d44", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'AREA_OR_POINT': 'Area'}\n" + ] + } + ], + "execution_count": 24 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:05.081567Z", + "start_time": "2024-12-06T23:35:05.077118Z" + } + }, + "cell_type": "code", + "source": "print(dataset.block_size)", + "id": "65209ab3e8e19872", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[850, 2]]\n" + ] + } + ], + "execution_count": 25 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:06.274526Z", + "start_time": "2024-12-06T23:35:06.270760Z" + } + }, + "cell_type": "code", + "source": "print(dataset.file_name)", + "id": "4725c7e8c6fbd9b5", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "../../examples/data/geotiff/south-america-mswep_1979010100.tif\n" + ] + } + ], + "execution_count": 26 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:08.628838Z", + "start_time": "2024-12-06T23:35:08.624113Z" + } + }, + "cell_type": "code", + "source": "print(dataset.driver_type)", + "id": "887fd837131f0433", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "geotiff\n" + ] + } + ], + "execution_count": 27 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Create a copy of the dataset", + "id": "d6a48b516fec3ed2" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:11.641272Z", + "start_time": "2024-12-06T23:35:11.634522Z" + } + }, + "cell_type": "code", + "source": [ + "dataset_copy = dataset.copy()\n", + "print(dataset_copy)" + ], + "id": "e3176c9df1484eea", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.1\n", + " Dimension: 780 * 850\n", + " EPSG: 4326\n", + " Number of Bands: 1\n", + " Band names: ['Band_1']\n", + " Mask: -9999.0\n", + " Data type: float32\n", + " File: \n", + " \n" + ] + } + ], + "execution_count": 28 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Add a new band ", + "id": "e49e62422d7456e5" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:13.550374Z", + "start_time": "2024-12-06T23:35:13.534696Z" + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "new_band = np.random.rand(dataset.rows, dataset.columns)\n", + "new_dataset = dataset.add_band(new_band, unit=\"mm\")\n", + "print(new_dataset)" + ], + "id": "5343d34e85aa9c65", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.1\n", + " Dimension: 780 * 850\n", + " EPSG: 4326\n", + " Number of Bands: 2\n", + " Band names: ['Band_1', 'Band_2']\n", + " Mask: -9999.0\n", + " Data type: float32\n", + " File: \n", + " \n" + ] + } + ], + "execution_count": 29 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Read band values", + "id": "bf049dd2270e5c37" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:15.269756Z", + "start_time": "2024-12-06T23:35:15.265225Z" + } + }, + "cell_type": "code", + "source": [ + "arr = dataset.read_array()\n", + "print(arr.shape)" + ], + "id": "a6c0b68ea1e3b289", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(780, 850)\n" + ] + } + ], + "execution_count": 30 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:17.012144Z", + "start_time": "2024-12-06T23:35:17.006947Z" + } + }, + "cell_type": "code", + "source": "arr", + "id": "c7db63cf1b26288b", + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", + " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", + " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", + " ...,\n", + " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", + " [-9999., -9999., -9999., ..., -9999., -9999., -9999.],\n", + " [-9999., -9999., -9999., ..., -9999., -9999., -9999.]],\n", + " dtype=float32)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 31 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:20.354199Z", + "start_time": "2024-12-06T23:35:20.350519Z" + } + }, + "cell_type": "code", + "source": [ + "block = dataset.read_array(band=0, window=(0, 0, 100, 100))\n", + "print(block.shape)\n", + "print(block)" + ], + "id": "cb697dcbbee72d52", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(100, 100)\n", + "[[-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", + " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", + " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", + " ...\n", + " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", + " [-9999. -9999. -9999. ... -9999. -9999. -9999.]\n", + " [-9999. -9999. -9999. ... -9999. -9999. -9999.]]\n" + ] + } + ], + "execution_count": 32 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:23.049361Z", + "start_time": "2024-12-06T23:35:23.038531Z" + } + }, + "cell_type": "code", + "source": "dataset.get_block_arrangement(x_block_size=100, y_block_size=100)", + "id": "464e1c4eb4ca69bf", + "outputs": [ + { + "data": { + "text/plain": [ + " x_offset y_offset window_xsize window_ysize\n", + "0 0 0 100 100\n", + "1 100 0 100 100\n", + "2 200 0 100 100\n", + "3 300 0 100 100\n", + "4 400 0 100 100\n", + ".. ... ... ... ...\n", + "67 400 700 100 80\n", + "68 500 700 100 80\n", + "69 600 700 100 80\n", + "70 700 700 100 80\n", + "71 800 700 50 80\n", + "\n", + "[72 rows x 4 columns]" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
x_offsety_offsetwindow_xsizewindow_ysize
000100100
11000100100
22000100100
33000100100
44000100100
...............
6740070010080
6850070010080
6960070010080
7070070010080
718007005080
\n", + "

72 rows × 4 columns

\n", + "
" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 33 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## — Band statistics", + "id": "67c1914ee4b32399" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:25.612441Z", + "start_time": "2024-12-06T23:35:25.601393Z" + } + }, + "cell_type": "code", + "source": [ + "stats = dataset.stats(band=0)\n", + "stats" + ], + "id": "e169a148d608af59", + "outputs": [ + { + "data": { + "text/plain": [ + " min max mean std\n", + "Band_1 -9998.992188 65.326111 -1949.050171 3413.121826" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
minmaxmeanstd
Band_1-9998.99218865.326111-1949.0501713413.121826
\n", + "
" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 34 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Attribute Table ", + "id": "422fccda4368824f" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## — read band attribute table", + "id": "629f81c8e5a5b7d3" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:28.853417Z", + "start_time": "2024-12-06T23:35:28.848398Z" + } + }, + "cell_type": "code", + "source": [ + "df = dataset.get_attribute_table(band=0)\n", + "print(df)" + ], + "id": "c864150edf00c6b0", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Precipitation Range (mm) Category Description\n", + "0 0-50 Low Very low precipitation\n", + "1 51-100 Moderate Moderate precipitation\n", + "2 101-200 High High precipitation\n", + "3 201-500 Very High Very high precipitation\n", + "4 >500 Extreme Extreme precipitation\n" + ] + } + ], + "execution_count": 35 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## — Set attribute table", + "id": "8d6c4296a5075e6f" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T23:35:31.448782Z", + "start_time": "2024-12-06T23:35:31.442471Z" + } + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "attribute_table = {\n", + " 'Precipitation Range (mm)': ['0-50', '51-100', '101-200', '201-500', '>500'],\n", + " 'Category': ['Low', 'Moderate', 'High', 'Very High', 'Extreme'],\n", + " 'Description': [\n", + " 'Very low precipitation',\n", + " 'Moderate precipitation',\n", + " 'High precipitation',\n", + " 'Very high precipitation',\n", + " 'Extreme precipitation'\n", + " ]\n", + "}\n", + "df = pd.DataFrame(attribute_table)\n", + "dataset.set_attribute_table(df, band=0)\n" + ], + "id": "a4a0ad7c33abfd4", + "outputs": [], + "execution_count": 36 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/pyramids/datacube.py b/pyramids/datacube.py index 273e2600a..1d3c31107 100644 --- a/pyramids/datacube.py +++ b/pyramids/datacube.py @@ -154,6 +154,7 @@ def read_multiple_files( >>> "MSWEP_1979.01.02.tif" >>> ... >>> "MSWEP_1979.01.20.tif" + regex_string: [str] a regex string that we can use to locate the date in the file names.Default is r"\d{4}.\d{ 2}.\d{2}". @@ -165,12 +166,14 @@ def read_multiple_files( - if there is a number at the beginning of the name >>> fname = "1_MSWEP_YYYY_M_D.tif" >>> regex_string = r"\d+" + date: [bool] True if the number in the file name is a date. Default is True. file_name_data_fmt : [str] if the files names' have a date and you want to read them ordered .Default is None >>> "MSWEP_YYYY.MM.DD.tif" >>> file_name_data_fmt = "%Y.%m.%d" + start: [str] start date if you want to read the input raster for a specific period only and not all rasters, if not given all rasters in the given path will be read. @@ -480,7 +483,7 @@ def plot(self, band: int = 0, exclude_value: Any = None, **kwargs): "The current funcrion uses cleopatra package to for plotting, please install it manually, for more info " "check https://github.com/Serapieum-of-alex/cleopatra" ) - from cleopatra.array import Array + from cleopatra.array_glyph import ArrayGlyph data = self.values @@ -490,7 +493,7 @@ def plot(self, band: int = 0, exclude_value: Any = None, **kwargs): else [self.base.no_data_value[band]] ) - cleo = Array(data, exclude_value=exclude_value) + cleo = ArrayGlyph(data, exclude_value=exclude_value) time = list(range(self.time_length)) cleo.animate(time, **kwargs) return cleo @@ -507,6 +510,7 @@ def to_file( path: [str/list] a path includng the name of the raster and extention. >>> path = "data/cropped.tif" + driver: [str] driver = "geotiff". band: [int] @@ -818,7 +822,7 @@ def align(self, alignment_src: Dataset): >>> dem_path = "01GIS/inputs/4000/acc4000.tif" >>> prec_in_path = "02Precipitation/CHIRPS/Daily/" >>> prec_out_path = "02Precipitation/4km/" - >>> Dataset.align(dem_path,prec_in_path,prec_out_path) + >>> Dataset.align(dem_path, prec_in_path, prec_out_path) """ if not isinstance(alignment_src, Dataset): raise TypeError("alignment_src input should be a Dataset object") diff --git a/pyramids/dataset.py b/pyramids/dataset.py index 7dd95dc0a..c2229d84a 100644 --- a/pyramids/dataset.py +++ b/pyramids/dataset.py @@ -1740,7 +1740,7 @@ def plot( "The current function uses cleopatra package to for plotting, please install it manually, for more info " "check https://github.com/Serapieum-of-alex/cleopatra" ) - from cleopatra.array import Array + from cleopatra.array_glyph import ArrayGlyph no_data_value = [np.nan if i is None else i for i in self.no_data_value] if overview: @@ -1772,7 +1772,7 @@ def plot( else [no_data_value[band]] ) - cleo = Array( + cleo = ArrayGlyph( arr, exclude_value=exclude_value, extent=self.bbox, @@ -5889,7 +5889,7 @@ def _set_color_table(self, color_df: DataFrame, overwrite: bool = False): from cleopatra.colors import Colors color = Colors(color_df["color"].tolist()) - color_rgb = color.get_rgb(normalized=False) + color_rgb = color.to_rgb(normalized=False) color_df = color_df.copy(deep=True) color_df.loc[:, ["red", "green", "blue"]] = color_rgb diff --git a/pyramids/featurecollection.py b/pyramids/featurecollection.py index d24fd30bc..df0a43a43 100644 --- a/pyramids/featurecollection.py +++ b/pyramids/featurecollection.py @@ -163,9 +163,9 @@ def column(self) -> List: @property def file_name(self) -> str: """Get file name in case of the base object is an ogr.Datasource or gdal.Dataset.""" - if isinstance(self.feature, DataSource): - file_name = self.feature.name - elif isinstance(self.feature, gdal.Dataset): + if isinstance(self.feature, gdal.Dataset) or isinstance( + self.feature, DataSource + ): file_name = self.feature.GetFileList()[0] else: file_name = "" diff --git a/requirements-optional-packages.txt b/requirements-optional-packages.txt index 429dde07c..8d986808b 100644 --- a/requirements-optional-packages.txt +++ b/requirements-optional-packages.txt @@ -1,11 +1,11 @@ -cleopatra >=0.4.2 -gdal ==3.9.0 -geopandas >=0.14.1 +cleopatra >=0.5.1 +gdal ==3.10.0 +geopandas >=1.0.1 hpc-utils >=0.1.4 loguru >=0.7.2 -numpy >=2.0.0 -pandas >=2.1.0 -pip >=24.0.0 -pyproj >=3.6.1 -PyYAML >=6.0.1 -Shapely >=2.0.2 +numpy >=2.1.3 +pandas >=2.2.3 +pip >=24.3.1 +pyproj >=3.7.0 +PyYAML >=6.0.2 +Shapely >=2.0.6 diff --git a/requirements.txt b/requirements.txt index ede497ad9..77f3959b5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,10 +1,10 @@ -gdal ==3.9.0 -geopandas >=0.14.1 +gdal ==3.10.0 +geopandas >=1.0.1 hpc-utils >=0.1.4 loguru >=0.7.2 -numpy >=2.0.0 -pandas >=2.1.0 -pip >=24.0.0 -pyproj >=3.6.1 -PyYAML >=6.0.1 -Shapely >=2.0.2 +numpy >=2.1.3 +pandas >=2.2.3 +pip >=24.3.1 +pyproj >=3.7.0 +PyYAML >=6.0.2 +Shapely >=2.0.6 diff --git a/setup.py b/setup.py index a5a0cf4ee..41f4e6119 100644 --- a/setup.py +++ b/setup.py @@ -14,7 +14,7 @@ setup( name="pyramids-gis", - version="0.7.0", + version="0.7.1", description="GIS utility package", author="Mostafa Farrag", author_email="moah.farag@gmail.com", diff --git a/tests/dataset/test_plot.py b/tests/dataset/test_plot.py index 81e303268..edca68abe 100644 --- a/tests/dataset/test_plot.py +++ b/tests/dataset/test_plot.py @@ -57,13 +57,13 @@ def test_geotiff( rasters_folder_rasters_number: int, rasters_folder_dim: tuple, ): - from cleopatra.array import Array + from cleopatra.array_glyph import ArrayGlyph from matplotlib.animation import FuncAnimation cube = Datacube.read_multiple_files(rasters_folder_path, with_order=False) cube.open_datacube() cleo = cube.plot() - assert isinstance(cleo, Array) + assert isinstance(cleo, ArrayGlyph) class TestColorTable: diff --git a/tests/feature/conftest.py b/tests/feature/conftest.py index e8bff92d5..14145fe90 100644 --- a/tests/feature/conftest.py +++ b/tests/feature/conftest.py @@ -6,7 +6,7 @@ from geopandas.geodataframe import GeoDataFrame from osgeo import ogr from shapely import wkt -from osgeo.ogr import DataSource +from osgeo.gdal import Dataset @pytest.fixture(scope="module") @@ -30,12 +30,12 @@ def test_vector_path() -> str: @pytest.fixture(scope="module") -def data_source(test_vector_path: str) -> DataSource: +def data_source(test_vector_path: str) -> Dataset: return ogr.Open(test_vector_path) @pytest.fixture(scope="module") -def coello_gauges_ds() -> DataSource: +def coello_gauges_ds() -> Dataset: return ogr.Open("tests/data/coello-gauges.geojson") diff --git a/tests/feature/test_feature.py b/tests/feature/test_feature.py index e374ed174..3acc374c7 100644 --- a/tests/feature/test_feature.py +++ b/tests/feature/test_feature.py @@ -80,6 +80,14 @@ def test_dtypes_ds(self, coello_gauges_ds: DataSource): "y": "float64", } + def test_file_name_gdf(self, gdf: GeoDataFrame): + feature = FeatureCollection(gdf) + assert feature.file_name == "" + + def test_file_name_ds(self, data_source: DataSource): + feature = FeatureCollection(data_source) + assert feature.file_name == "tests/data/test_vector.geojson" + class TestReadFile: def test_open_geodataframe(self, test_vector_path: str): @@ -125,14 +133,12 @@ def test_create_memory_data_source( assert isinstance( ds, DataSource ), "the in memory ogr data source object was not created correctly" - assert ds.name == "memData" def test_copy_driver_to_memory(data_source: DataSource): name = "test_copy_datasource" ds = FeatureCollection._copy_driver_to_memory(data_source, name) assert isinstance(ds, DataSource) - assert ds.name == name class TestConvert: From 602d50404881a8129d0c6a0e531393444d317a8a Mon Sep 17 00:00:00 2001 From: Mostafa Farrag Date: Sat, 7 Dec 2024 21:25:44 +0100 Subject: [PATCH 2/4] separate testing notebooks to different workflow --- .../workflows/jupyter-notebooks-examples.yml | 40 +++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 .github/workflows/jupyter-notebooks-examples.yml diff --git a/.github/workflows/jupyter-notebooks-examples.yml b/.github/workflows/jupyter-notebooks-examples.yml new file mode 100644 index 000000000..8952f6a62 --- /dev/null +++ b/.github/workflows/jupyter-notebooks-examples.yml @@ -0,0 +1,40 @@ +name: test-jupyter-notebooks + +on: + workflow_run: + workflows: + - conda-deployment + types: + - completed + branches: + - '**' + +jobs: + Test-Jupyter-Notebooks: + if: ${{ github.event.workflow_run.conclusion == 'success' }} + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - uses: conda-incubator/setup-miniconda@v3 + with: + mamba-version: "*" + use-mamba: true + auto-update-conda: false + auto-activate-base: false + environment-file: environment-optional-packages.yml + activate-environment: test + python-version: 3.12 + channels: conda-forge,defaults + channel-priority: true + show-channel-urls: true + + - name: Install dev-dependencies + run: | + pip install .[dev] --no-deps + + - name: Test Jupyter Notebook + shell: bash -el {0} + run: | + conda activate test + pip install -e . + pytest --nbval -k ".ipynb" From dca8f925b126fecc36a783b24cdbe16fc79bdd33 Mon Sep 17 00:00:00 2001 From: Mostafa Farrag Date: Sat, 7 Dec 2024 21:33:33 +0100 Subject: [PATCH 3/4] remove the notebook testing from the conda-deployment.yml --- .github/workflows/conda-deployment.yml | 7 ------- 1 file changed, 7 deletions(-) diff --git a/.github/workflows/conda-deployment.yml b/.github/workflows/conda-deployment.yml index 53bbc5ceb..8243c71ae 100644 --- a/.github/workflows/conda-deployment.yml +++ b/.github/workflows/conda-deployment.yml @@ -77,10 +77,3 @@ jobs: conda config --show-sources conda config --show pytest -sv - - - name: test Jupyter notebook - shell: bash -el {0} - run: | - conda activate test - pip install -e . - pytest --nbval -k ".ipynb" From e84092018208817255447b36b351871b43d7f36f Mon Sep 17 00:00:00 2001 From: Mostafa Farrag Date: Sun, 8 Dec 2024 19:25:29 +0100 Subject: [PATCH 4/4] pyproject.toml (#103) * pyproject.toml files the pypi version and the poetry version * replace the setup.py by a pyproject.toml * replace the requirements.txt and the requirements-dev.txt file in the workflow by pip install * update notebooks * remove the requirements.txt * remove the requirements.txt * remove the requirements-dev.txt from the conda-deployment.yml workflow * fix testing jupyter notebooks * link jupyter kernel to the conda environment * use shell: bash -el {0} in the steps * remove the jupyter notebook tests from the conda-deployment.yml workflow * separate jupyter notebooks to a separate workflow * correct workflow * return the workflow dependency * correct the trigger key * add branched to the workflow_run * merge the .flake8 config file to the pyproject.toml * merge the pytest.ini file to the pytroject.toml * use workflow_call instead of workflow_run * add fix to the conda-deployment.yml * add fix to the conda-deployment.yml * add fix 2 * use the entire path to the workflow * update path to reusable workflow * use uses instead of steps * remove the secret: inheret * fix initialization issue * connect the notbook testing with the pypi-deployment * fix issue * use caching * unify path * return notebook tests to conda-deployment.yml workflow * return notebook tests to conda-deployment.yml workflow * install the package in normal mode * remove the --no-deps in the dev installation * update examples * move the package to src root dir * add include dir in the pyproject.toml * remove unnecessary pass statement * change the where statement in the pyproject.toml * Revert "change the where statement in the pyproject.toml" This reverts commit 06b692ce2d2ad56131179ea7998ca8e7154db951. * update conda-workflow * add package-dir * add install statement in the test step * add install statement in the test step * remove the package-dir from pytproject.toml * use python -m build instead of setup.py install * remove the setup.py and use new command for the pyproject.toml * remove poetry file --- .flake8 | 5 - .github/workflows/conda-deployment.yml | 17 +- .../workflows/jupyter-notebooks-examples.yml | 40 - .github/workflows/pypi-deployment.yml | 9 +- .github/workflows/pypi-release.yml | 3 +- .pre-commit-config.yaml | 8 +- HISTORY.rst | 7 + conda-lock.yml | 9076 ----------------- docs/source/installation.rst | 2 +- examples/data/raster_like_saved.tif | Bin 637 -> 636 bytes examples/notebooks/01dataset.ipynb | 1480 +-- .../02spatial-operation-methods.ipynb | 126 +- examples/notebooks/03convert-longitude.ipynb | 50 +- examples/notebooks/04datacube.ipynb | 84 +- examples/notebooks/south-america.ipynb | 206 +- pyproject.toml | 109 + pytest.ini | 6 - requirements-dev.txt | 13 - requirements-optional-packages.txt | 11 - requirements.txt | 10 - setup.py | 49 - {pyramids => src/pyramids}/__init__.py | 0 {pyramids => src/pyramids}/_errors.py | 18 - {pyramids => src/pyramids}/_io.py | 0 {pyramids => src/pyramids}/_utils.py | 0 .../pyramids}/abstract_dataset.py | 0 {pyramids => src/pyramids}/config.py | 0 {pyramids => src/pyramids}/config.yaml | 0 {pyramids => src/pyramids}/datacube.py | 0 {pyramids => src/pyramids}/dataset.py | 0 .../pyramids}/featurecollection.py | 0 {pyramids => src/pyramids}/gdal_drivers.yaml | 0 {pyramids => src/pyramids}/netcdf.py | 0 {pyramids => src/pyramids}/ogr_drivers.yaml | 0 34 files changed, 1113 insertions(+), 10216 deletions(-) delete mode 100644 .flake8 delete mode 100644 .github/workflows/jupyter-notebooks-examples.yml delete mode 100644 conda-lock.yml create mode 100644 pyproject.toml delete mode 100644 pytest.ini delete mode 100644 requirements-dev.txt delete mode 100644 requirements-optional-packages.txt delete mode 100644 requirements.txt delete mode 100644 setup.py rename {pyramids => src/pyramids}/__init__.py (100%) rename {pyramids => src/pyramids}/_errors.py (94%) rename {pyramids => src/pyramids}/_io.py (100%) rename {pyramids => src/pyramids}/_utils.py (100%) rename {pyramids => src/pyramids}/abstract_dataset.py (100%) rename {pyramids => src/pyramids}/config.py (100%) rename {pyramids => src/pyramids}/config.yaml (100%) rename {pyramids => src/pyramids}/datacube.py (100%) rename {pyramids => src/pyramids}/dataset.py (100%) rename {pyramids => src/pyramids}/featurecollection.py (100%) rename {pyramids => src/pyramids}/gdal_drivers.yaml (100%) rename {pyramids => src/pyramids}/netcdf.py (100%) rename {pyramids => src/pyramids}/ogr_drivers.yaml (100%) diff --git a/.flake8 b/.flake8 deleted file mode 100644 index a4e7ef97d..000000000 --- a/.flake8 +++ /dev/null @@ -1,5 +0,0 @@ -[flake8] -ignore = E203, E266, E501, W503, E722, C901, E741, E731 -max-line-length = 88 -max-complexity = 18 -select = B,C,E,F,W,T4 diff --git a/.github/workflows/conda-deployment.yml b/.github/workflows/conda-deployment.yml index 8243c71ae..9c02b6d43 100644 --- a/.github/workflows/conda-deployment.yml +++ b/.github/workflows/conda-deployment.yml @@ -23,13 +23,13 @@ jobs: environment-file: environment.yml activate-environment: test python-version: ${{ matrix.python-version }} - channels: conda-forge,defaults + channels: conda-forge channel-priority: true show-channel-urls: true - name: Install dev-dependencies run: | - python -m pip install -r requirements-dev.txt + pip install .[dev] - name: Generate coverage report shell: bash -el {0} @@ -38,6 +38,7 @@ jobs: conda list conda config --show-sources conda config --show + pip install . pytest -sv -m "not plot" Optional-packages: @@ -60,13 +61,13 @@ jobs: environment-file: environment-optional-packages.yml activate-environment: test python-version: ${{ matrix.python-version }} - channels: conda-forge,defaults + channels: conda-forge channel-priority: true show-channel-urls: true - name: Install dev-dependencies run: | - python -m pip install -r requirements-dev.txt + pip install .[dev] - name: Generate coverage report shell: bash -el {0} @@ -76,4 +77,12 @@ jobs: conda list conda config --show-sources conda config --show + pip install . pytest -sv + + - name: test Jupyter notebook + shell: bash -el {0} + run: | + conda activate test + pip install . + pytest --nbval -k ".ipynb" diff --git a/.github/workflows/jupyter-notebooks-examples.yml b/.github/workflows/jupyter-notebooks-examples.yml deleted file mode 100644 index 8952f6a62..000000000 --- a/.github/workflows/jupyter-notebooks-examples.yml +++ /dev/null @@ -1,40 +0,0 @@ -name: test-jupyter-notebooks - -on: - workflow_run: - workflows: - - conda-deployment - types: - - completed - branches: - - '**' - -jobs: - Test-Jupyter-Notebooks: - if: ${{ github.event.workflow_run.conclusion == 'success' }} - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v4 - - uses: conda-incubator/setup-miniconda@v3 - with: - mamba-version: "*" - use-mamba: true - auto-update-conda: false - auto-activate-base: false - environment-file: environment-optional-packages.yml - activate-environment: test - python-version: 3.12 - channels: conda-forge,defaults - channel-priority: true - show-channel-urls: true - - - name: Install dev-dependencies - run: | - pip install .[dev] --no-deps - - - name: Test Jupyter Notebook - shell: bash -el {0} - run: | - conda activate test - pip install -e . - pytest --nbval -k ".ipynb" diff --git a/.github/workflows/pypi-deployment.yml b/.github/workflows/pypi-deployment.yml index c9995f10c..4865a83c8 100644 --- a/.github/workflows/pypi-deployment.yml +++ b/.github/workflows/pypi-deployment.yml @@ -33,8 +33,7 @@ jobs: - name: Install dependencies run: | - pip install -r requirements.txt -r requirements-dev.txt - python setup.py install + pip install .[dev] - name: Generate coverage report run: | @@ -73,12 +72,12 @@ jobs: - name: Install dependencies run: | - pip install -r requirements-optional-packages.txt -r requirements-dev.txt - python setup.py install + pip install .[dev,viz] - - name: Generate coverage report + - name: Run Tests run: | python -m pytest -v --cov=pyramids --cov-report=xml - name: Upload coverage reports to Codecov with GitHub Action uses: codecov/codecov-action@v3 + diff --git a/.github/workflows/pypi-release.yml b/.github/workflows/pypi-release.yml index 74c44c1c5..4aad0e55e 100644 --- a/.github/workflows/pypi-release.yml +++ b/.github/workflows/pypi-release.yml @@ -27,5 +27,6 @@ jobs: TWINE_USERNAME: ${{ secrets.PYPI_USERS }} TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} run: | - python setup.py sdist bdist_wheel + pip install build + python -m build twine upload dist/* diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 5466ca0c8..e0d379d27 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,7 +1,7 @@ fail_fast: true repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.6.0 + rev: v5.0.0 hooks: - id: end-of-file-fixer name: "[py - check] validate yaml" @@ -58,11 +58,11 @@ repos: files: ^pyramids/ - repo: https://github.com/pycqa/flake8 - rev: 7.1.0 + rev: 7.1.1 hooks: - id: flake8 + additional_dependencies: [Flake8-pyproject] name: "[py - check] flake8" -# language_version: python3.9 exclude: ^(examples/|tests/) #- repo: https://github.com/psf/black @@ -70,7 +70,7 @@ repos: # hooks: # - id: black - repo: https://github.com/ambv/black - rev: 24.4.2 + rev: 24.10.0 hooks: - id: black name: "[py - format] black" diff --git a/HISTORY.rst b/HISTORY.rst index 92538a68a..80c31a0c0 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -236,3 +236,10 @@ is deprecated. * update the miniconda workflow in ci. * update gdal to 3.10 and update the DataSource to Dataset in the `FeatureCollection.file_name`. * add `libgdal-netcdf` and `libgdal-hdf4` to the conda dependencies. + +0.7.2 (2024-12-**) +------------------ + +Dev +""" +* replace the setup.py with pyproject.toml diff --git a/conda-lock.yml b/conda-lock.yml deleted file mode 100644 index 704a17e26..000000000 --- a/conda-lock.yml +++ /dev/null @@ -1,9076 +0,0 @@ -# This lock file was generated by conda-lock (https://github.com/conda-incubator/conda-lock). DO NOT EDIT! -# -# A "lock file" contains a concrete list of package versions (with checksums) to be installed. Unlike -# e.g. `conda env create`, the resulting environment will not change as new package versions become -# available, unless you explicitly update the lock file. -# -# Install this environment as "YOURENV" with: -# conda-lock install -n YOURENV --file conda-lock.yml -# To update a single package to the latest version compatible with the version constraints in the source: -# conda-lock lock --lockfile conda-lock.yml --update PACKAGE -# To re-solve the entire environment, e.g. after changing a version constraint in the source file: -# conda-lock -f C:\gdrive\01Algorithms\gis\pyramids\environment.yml --lockfile conda-lock.yml -metadata: - channels: - - url: conda-forge - used_env_vars: [] - content_hash: - linux-64: b4dfa00fc67c07e1cd8bdef273bb2030a001e78463c75c35a9ba95e7f1609778 - osx-64: 3830396266912d5ea6dce1386533cc91b305eabf5bdc573e611df8e1f10a2598 - win-64: d508e23cea9b75f3e54b283e78e63ce4768afc5494621c5ec75d4890be9be4da - platforms: - - linux-64 - - osx-64 - - win-64 - sources: - - C:\gdrive\01Algorithms\gis\pyramids\environment.yml -package: -- category: main - dependencies: {} - hash: - md5: d7c89558ba9fa0495403155b64376d81 - sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726 - manager: conda - name: _libgcc_mutex - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - version: '0.1' -- category: main - dependencies: {} - hash: - md5: ff9f73d45c4a07d6f424495288a26080 - sha256: 8f6c81b0637771ae0ea73dc03a6d30bec3326ba3927f2a7b91931aa2d59b1789 - manager: conda - name: ca-certificates - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2022.12.7-ha878542_0.conda - version: 2022.12.7 -- category: main - dependencies: {} - hash: - md5: 0c96522c6bdaed4b1566d11387caaf45 - sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b - manager: conda - name: font-ttf-dejavu-sans-mono - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - version: '2.37' -- category: main - dependencies: {} - hash: - md5: 34893075a5c9e55cdafac56607368fc6 - sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c - manager: conda - name: font-ttf-inconsolata - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 - version: '3.000' -- category: main - dependencies: {} - hash: - md5: 4d59c254e01d9cde7957100457e2d5fb - sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139 - manager: conda - name: font-ttf-source-code-pro - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 - version: '2.038' -- category: main - dependencies: {} - hash: - md5: 19410c3df09dfb12d1206132a1d357c5 - sha256: 470d5db54102bd51dbb0c5990324a2f4a0bc976faa493b22193338adb9882e2e - manager: conda - name: font-ttf-ubuntu - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-hab24e00_0.tar.bz2 - version: '0.83' -- category: main - dependencies: {} - hash: - md5: 7aca3059a1729aa76c597603f10b0dd3 - sha256: f6cc89d887555912d6c61b295d398cff9ec982a3417d38025c45d5dd9b9e79cd - manager: conda - name: ld_impl_linux-64 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h41732ed_0.conda - version: '2.40' -- category: main - dependencies: {} - hash: - md5: 164b4b1acaedc47ee7e658ae6b308ca3 - sha256: 03ea784edd12037dc3a7a0078ff3f9c3383feabb34d5ba910bb2fd7a21a2d961 - manager: conda - name: libgfortran5 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-12.2.0-h337968e_19.tar.bz2 - version: 12.2.0 -- category: main - dependencies: {} - hash: - md5: 1030b1f38c129f2634eae026f704fe60 - sha256: 0289e6a7b9a5249161a3967909e12dcfb4ab4475cdede984635d3fb65c606f08 - manager: conda - name: libstdcxx-ng - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-12.2.0-h46fd767_19.tar.bz2 - version: 12.2.0 -- category: main - dependencies: {} - hash: - md5: d8d7293c5b37f39b2ac32940621c6592 - sha256: 2f227e17b3c0346112815faa605502b66c1c4511a856127f2899abf15a98a2cf - manager: conda - name: poppler-data - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda - version: 0.4.12 -- category: main - dependencies: {} - hash: - md5: 4eb33d14d794b0f4be116443ffed3853 - sha256: bcb15db27eb6fbc0fe15d23aa60dcfa58ef451d92771441068d4a911aea7bb9f - manager: conda - name: python_abi - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.10-3_cp310.conda - version: '3.10' -- category: main - dependencies: {} - hash: - md5: 939e3e74d8be4dac89ce83b20de2492a - sha256: 0449138224adfa125b220154408419ec37c06b0b49f63c5954724325903ecf55 - manager: conda - name: tzdata - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2023c-h71feb2d_0.conda - version: 2023c -- category: main - dependencies: - font-ttf-dejavu-sans-mono: '' - font-ttf-inconsolata: '' - font-ttf-source-code-pro: '' - font-ttf-ubuntu: '' - hash: - md5: f766549260d6815b0c52253f1fb1bb29 - sha256: 53f23a3319466053818540bcdf2091f253cbdbab1e0e9ae7b9e509dcaa2a5e38 - manager: conda - name: fonts-conda-forge - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - libgfortran5: 12.2.0 h337968e_19 - hash: - md5: cd7a806282c16e1f2d39a7e80d3a3e0d - sha256: c7d061f323e80fbc09564179073d8af303bf69b953b0caddcf79b47e352c746f - manager: conda - name: libgfortran-ng - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-12.2.0-h69a702a_19.tar.bz2 - version: 12.2.0 -- category: main - dependencies: - _libgcc_mutex: 0.1 conda_forge - hash: - md5: cedcee7c064c01c403f962c9e8d3c373 - sha256: 81a76d20cfdee9fe0728b93ef057ba93494fd1450d42bc3717af4e468235661e - manager: conda - name: libgomp - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-12.2.0-h65d4601_19.tar.bz2 - version: 12.2.0 -- category: main - dependencies: - _libgcc_mutex: 0.1 conda_forge - libgomp: '>=7.5.0' - hash: - md5: 73aaf86a425cc6e73fcf236a5a46396d - sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 - manager: conda - name: _openmp_mutex - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - version: '4.5' -- category: main - dependencies: - fonts-conda-forge: '' - hash: - md5: fee5683a3f04bd15cbd8318b096a27ab - sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61 - manager: conda - name: fonts-conda-ecosystem - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - _libgcc_mutex: 0.1 conda_forge - _openmp_mutex: '>=4.5' - hash: - md5: e4c94f80aef025c17ab0828cd85ef535 - sha256: f3899c26824cee023f1e360bd0859b0e149e2b3e8b1668bc6dd04bfc70dcd659 - manager: conda - name: libgcc-ng - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-12.2.0-h65d4601_19.tar.bz2 - version: 12.2.0 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: be733e69048951df1e4b4b7bb8c7666f - sha256: 2c0a618d0fa695e4e01a30e7ff31094be540c52e9085cbd724edb132c65cf9cd - manager: conda - name: alsa-lib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.8-h166bdaf_0.tar.bz2 - version: 1.2.8 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: d9c69a24ad678ffce24c6543a0176b00 - sha256: 82c13b1772c21fc4a17441734de471d3aabf82b61db9b11f4a1bd04a9c4ac324 - manager: conda - name: attr - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2 - version: 2.5.1 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: a1fd65c7ccbf10880423d82bca54eb54 - sha256: cb521319804640ff2ad6a9f118d972ed76d86bea44e5626c09a13d38f562e1fa - manager: conda - name: bzip2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h7f98852_4.tar.bz2 - version: 1.0.8 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - hash: - md5: f26ef8098fab1f719c91eb760d63381a - sha256: ee735e60d2cf68e5635df17847e97b505a752985d10581d2438203e7c0f44c15 - manager: conda - name: c-ares - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.18.1-h7f98852_0.tar.bz2 - version: 1.18.1 -- category: main - dependencies: - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=10.4.0' - libstdcxx-ng: '>=12' - hash: - md5: d7407e695358f068a2a7f8295cde0567 - sha256: 8b735848df623fab555a6d7fc400636116d6ed5686ae0e50adb7df4c1c3a9cef - manager: conda - name: fftw - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf0379b8_106.conda - version: 3.3.10 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 897e772a157faf3330d72dd291486f62 - sha256: 26045196e00b5787276c60ff83acfa8808cae550a20832f11104069e5f7f3f05 - manager: conda - name: freexl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/freexl-1.0.6-h166bdaf_1.tar.bz2 - version: 1.0.6 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: 917b9a50001fffdd89b321b5dba31e55 - sha256: 836f3362ba45d104efecbdb3991c1e01b8152978b194d84202c25c8f2c5fce6f - manager: conda - name: geos - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/geos-3.11.1-h27087fc_0.tar.bz2 - version: 3.11.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 14947d8770185e5153fdd04d4673ed37 - sha256: 4fcfedc44e4c9a053f0416f9fc6ab6ed50644fca3a761126dbd00d09db1f546a - manager: conda - name: gettext - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.21.1-h27087fc_0.tar.bz2 - version: 0.21.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 96f3b11872ef6fad973eac856cd2624f - sha256: 41ec165704ccce2faa0437f4f53c03c06261a2cc9ff7614828e51427d9261f4b - manager: conda - name: giflib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.1-h0b41bf4_3.conda - version: 5.2.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 879c93426c9d0b84a9de4513fbce5f4f - sha256: c4fdbaaeb66eed280ef6875c6a4b6916ed168166277e9317fbe25b15d3758897 - manager: conda - name: gstreamer-orc - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/gstreamer-orc-0.4.33-h166bdaf_0.tar.bz2 - version: 0.4.33 -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - libstdcxx-ng: '>=10.3.0' - hash: - md5: 87473a15119779e021c314249d4b4aed - sha256: 1d7950f3be4637ab915d886304e57731d39a41ab705ffc95c4681655c459374a - manager: conda - name: icu - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/icu-70.1-h27087fc_0.tar.bz2 - version: '70.1' -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: ee8b844357a0946870901c7c6f418268 - sha256: 0110ee167e8fe386f9019f98757e299a0c42dc6ccdcce161c9bb552b79e459a3 - manager: conda - name: jpeg - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/jpeg-9e-h166bdaf_2.tar.bz2 - version: 9e -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - hash: - md5: 0e2bca6857cb73acec30387fef7c3142 - sha256: 9ef1471c6ac050f274c344452b461c9db967f6abd569d4e6b71b6d974c5fd42f - manager: conda - name: json-c - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/json-c-0.16-hc379101_0.tar.bz2 - version: '0.16' -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - hash: - md5: 30186d27e2c9fa62b45fb1476b7200e3 - sha256: 150c05a6e538610ca7c43beb3a40d65c90537497a4f6a5f4d15ec0451b6f5ebb - manager: conda - name: keyutils - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - version: 1.6.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: a8832b479f93521a9e7b5b743803be51 - sha256: aad2a703b9d7b038c0f745b853c6bb5f122988fe1a7a096e0e606d9cbec4eaab - manager: conda - name: lame - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2 - version: '3.100' -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: 76bbff344f0134279f225174e9064c8f - sha256: cb55f36dcd898203927133280ae1dc643368af041a48bcf7c026acb7c47b0c12 - manager: conda - name: lerc - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: 0f683578378cddb223e7fd24f785ab2a - sha256: 4df6a29b71264fb25462065e8cddcf5bca60776b1801974af8cbd26b7425fcda - manager: conda - name: libaec - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libaec-1.0.6-hcb278e6_1.conda - version: 1.0.6 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 9194c9bf9428035a05352d031462eae4 - sha256: ddc961a36d498aaafd5b71078836ad5dd247cc6ba7924157f3801a2f09b77b14 - manager: conda - name: libbrotlicommon - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.0.9-h166bdaf_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - libstdcxx-ng: '>=9.3.0' - hash: - md5: 3f3258d8f841fbac63b36b75bdac1afd - sha256: 21fac1012ff05b131d4b5d284003dbbe7b5c4c652aa9e401b46279ed5a784372 - manager: conda - name: libdb - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libdb-6.2.32-h9c3ff4c_0.tar.bz2 - version: 6.2.32 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 5cc781fd91968b11a8a7fdbee0982676 - sha256: f9983a8ea03531f2c14bce76c870ca325c0fddf0c4e872bff1f78bc52624179c - manager: conda - name: libdeflate - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.17-h0b41bf4_0.conda - version: '1.17' -- category: main - dependencies: - libgcc-ng: '>=7.5.0' - hash: - md5: 6f8720dff19e17ce5d48cfe7f3d2f0a3 - sha256: 8c9635aa0ea28922877dc96358f9547f6a55fc7e2eb75a556b05f1725496baf9 - manager: conda - name: libev - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-h516909a_1.tar.bz2 - version: '4.33' -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 6305a3dd2752c76335295da4e581f2fd - sha256: 74c98a563777ae2ad71f1f74d458a8ab043cee4a513467c159ccf159d0e461f3 - manager: conda - name: libexpat - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.5.0-hcb278e6_1.conda - version: 2.5.0 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - hash: - md5: d645c6d2ac96843a2bfaccd2d62b3ac3 - sha256: ab6e9856c21709b7b517e940ae7028ae0737546122f83c2aa5d692860c3b149e - manager: conda - name: libffi - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - version: 3.4.2 -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - hash: - md5: b62b52da46c39ee2bc3c162ac7f1804d - sha256: 6a81ebac9f1aacdf2b4f945c87ad62b972f0f69c8e0981d68e111739e6720fd7 - manager: conda - name: libiconv - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-h166bdaf_0.tar.bz2 - version: '1.17' -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 1edd9e67bdb90d78cea97733ff6b54e6 - sha256: b19de7bda34eac4fa931be11fa8d7640cdf1441dfd51c91786586a4a4c64c92f - manager: conda - name: libjpeg-turbo - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-h0b41bf4_0.conda - version: 2.1.5.1 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - hash: - md5: 39b1328babf85c7c3a61636d9cd50206 - sha256: 32f4fb94d99946b0dabfbbfd442b25852baf909637f2eed1ffe3baea15d02aad - manager: conda - name: libnsl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.0-h7f98852_0.tar.bz2 - version: 2.0.0 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: 6e8cc2173440d77708196c5b93771680 - sha256: b88afeb30620b11bed54dac4295aa57252321446ba4e6babd7dce4b9ffde9b25 - manager: conda - name: libogg - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.4-h7f98852_1.tar.bz2 - version: 1.3.4 -- category: main - dependencies: - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=10.4.0' - hash: - md5: 8c5963a49b6035c40646a763293fbb35 - sha256: 018372af663987265cb3ca8f37ac8c22b5f39219f65a0c162b056a30af11bba0 - manager: conda - name: libopenblas - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.21-pthreads_h78a6416_3.tar.bz2 - version: 0.3.21 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: 15345e56d527b330e1cacbdf58676e8f - sha256: 0e1c2740ebd1c93226dc5387461bbcf8142c518f2092f3ea7551f77755decc8f - manager: conda - name: libopus - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2 - version: 1.3.1 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - libstdcxx-ng: '>=9.3.0' - hash: - md5: d87fbe9c0ff589e802ff13872980bfd9 - sha256: 588fbd0c11bc44e354365d5f836183216a4ed17d680b565ff416a93b839f1a8b - manager: conda - name: libspatialindex - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libspatialindex-1.9.3-h9c3ff4c_4.tar.bz2 - version: 1.9.3 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - hash: - md5: 16e143a1ed4b4fd169536373957f6fee - sha256: eadbb80c922dce355c0f8f7fc560f20f61263245799d076a1d5251d147d0d250 - manager: conda - name: libtool - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtool-2.4.6-h9c3ff4c_1008.tar.bz2 - version: 2.4.6 -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - hash: - md5: 174243089ec111479298a5b7099b64b5 - sha256: e9ef9cb1d34a2f02f68c4778986f1f8be3015fec272523fd2dde3723c120f038 - manager: conda - name: libudev1 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libudev1-252-h166bdaf_0.tar.bz2 - version: '252' -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 40b61aab5c7ba9ff276c41cfffe6b80b - sha256: 787eb542f055a2b3de553614b25f09eefb0a0931b0c87dbcce6efdfd92f04f18 - manager: conda - name: libuuid - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - version: 2.38.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 0d4a7508d8c6c65314f2b9c1f56ad408 - sha256: ac3e073ea77803da71eb77e7fcef07defb345bda95eee3327c73ddf85b5714da - manager: conda - name: libwebp-base - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.0-h0b41bf4_0.conda - version: 1.3.0 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: f3f9de449d32ca9b9c66a22863c96f41 - sha256: 22f3663bcf294d349327e60e464a51cd59664a71b8ed70c28a9f512d10bc77dd - manager: conda - name: libzlib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-h166bdaf_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: 318b08df404f9c9be5712aaa5a6f0bb0 - sha256: 1b4c105a887f9b2041219d57036f72c4739ab9e9fe5a1486f094e58c76b31f5f - manager: conda - name: lz4-c - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - version: 1.9.4 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: 0af513b75f78a701a152568a31303bdf - sha256: 3bb69d4435d1986d688d35ec3f25d174235a5bbe1730c8085aa7dbf8be4dede3 - manager: conda - name: mpg123 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.31.1-h27087fc_0.tar.bz2 - version: 1.31.1 -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - hash: - md5: 4acfc691e64342b9dae57cf2adc63238 - sha256: b801e8cf4b2c9a30bce5616746c6c2a4e36427f045b46d9fc08a4ed40a9f7065 - manager: conda - name: ncurses - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.3-h27087fc_1.tar.bz2 - version: '6.3' -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: da0ec11a6454ae19bff5b02ed881a2b1 - sha256: 8fadeebb2b7369a4f3b2c039a980d419f65c7b18267ba0c62588f9f894396d0c - manager: conda - name: nspr - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda - version: '4.35' -- category: main - dependencies: - ca-certificates: '' - libgcc-ng: '>=12' - hash: - md5: 2d833be81a21128e317325a01326d36f - sha256: d378afcec34b86fef4da3ebd622b3e614cb3f71e54b6a5a10adb1d23745ecc72 - manager: conda - name: openssl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.1.0-h0b41bf4_0.conda - version: 3.1.0 -- category: main - dependencies: - libgcc-ng: '>=7.5.0' - hash: - md5: 660e72c82f2e75a6b3fe6a6e75c79f19 - sha256: 6a0630fff84b5a683af6185a6c67adc8bdfa2043047fcb251add0d352ef60e79 - manager: conda - name: pixman - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.40.0-h36c2ea0_0.tar.bz2 - version: 0.40.0 -- category: main - dependencies: - libgcc-ng: '>=7.5.0' - hash: - md5: 22dad4df6e8630e8dff2428f6f6a7036 - sha256: 67c84822f87b641d89df09758da498b2d4558d47b920fd1d3fe6d3a871e000ff - manager: conda - name: pthread-stubs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2 - version: '0.4' -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: e6d228cd0bb74a51dd18f5bfce0b4115 - sha256: 02219f2382b4fe39250627dade087a4412d811936a5a445636b7260477164eac - manager: conda - name: snappy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-h9fff704_0.conda - version: 1.1.10 -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - hash: - md5: 0c0533894f21c3d35697cb8378d390e2 - sha256: 62b0d3eee4260d310f578015305834b8a588377f796e5e290ec267da8a51a027 - manager: conda - name: tzcode - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tzcode-2023c-h0b41bf4_0.conda - version: 2023c -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: 4b230e8381279d76131116660f5a241a - sha256: e90b0a6a5d41776f11add74aa030f789faf4efd3875c31964d6f9cfa63a10dd1 - manager: conda - name: xorg-kbproto - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2 - version: 1.0.7 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: d6b0b50b49eccfe0be0373be628be0f3 - sha256: f15ce1dff16823888bcc2be1738aadcb36699be1e2dd2afa347794c7ec6c1587 - manager: conda - name: xorg-libice - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.0.10-h7f98852_0.tar.bz2 - version: 1.0.10 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: bf6f803a544f26ebbdc3bfff272eb179 - sha256: 9e9b70c24527289ac7ae31925d1eb3b0c1e9a78cb7b8f58a3110cc8bbfe51c26 - manager: conda - name: xorg-libxau - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.9-h7f98852_0.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: be93aabceefa2fac576e971aef407908 - sha256: 4df7c5ee11b8686d3453e7f3f4aa20ceef441262b49860733066c52cfd0e4a77 - manager: conda - name: xorg-libxdmcp - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2 - version: 1.1.3 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: 06feff3d2634e3097ce2fe681474b534 - sha256: 38942930f233d1898594dd9edf4b0c0786f3dbc12065a0c308634c37fd936034 - manager: conda - name: xorg-renderproto - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-h7f98852_1002.tar.bz2 - version: 0.11.1 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: bce9f945da8ad2ae9b1d7165a64d0f87 - sha256: b8dda3b560e8a7830fe23be1c58cc41f407b2e20ae2f3b6901eb5842ba62b743 - manager: conda - name: xorg-xextproto - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda - version: 7.3.0 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - hash: - md5: b4a4381d54784606820704f7b5f05a15 - sha256: f197bb742a17c78234c24605ad1fe2d88b1d25f332b75d73e5ba8cf8fbc2a10d - manager: conda - name: xorg-xproto - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2 - version: 7.0.31 -- category: main - dependencies: - libgcc-ng: '>=12' - hash: - md5: 2161070d867d1b1204ea749c8eec4ef0 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - manager: conda - name: xz - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - version: 5.2.6 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - hash: - md5: 4cb3ad778ec2d5a7acbdf254eb1c42ae - sha256: a4e34c710eeb26945bdbdaba82d3d74f60a78f54a874ec10d373811a5d217535 - manager: conda - name: yaml - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - version: 0.2.5 -- category: main - dependencies: - libexpat: 2.5.0 hcb278e6_1 - libgcc-ng: '>=12' - hash: - md5: 8b9b5aca60558d02ddaa09d599e55920 - sha256: 36dfeb4375059b3bba75ce9b38c29c69fd257342a79e6cf20e9f25c1523f785f - manager: conda - name: expat - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/expat-2.5.0-hcb278e6_1.conda - version: 2.5.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: c3e9338e15d90106f467377017352b97 - sha256: 8ad0e739f106e2937e36a2177d012165bc2173fac0f0b941c5796d85f854f9be - manager: conda - name: hdf4 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h501b40f_6.conda - version: 4.2.15 -- category: main - dependencies: - alsa-lib: '>=1.2.8,<1.2.9.0a0' - libdb: '>=6.2.32,<6.3.0a0' - libgcc-ng: '>=12' - libopus: '>=1.3.1,<2.0a0' - libstdcxx-ng: '>=12' - hash: - md5: 7b36a10b58964d4444fcba44244710c5 - sha256: 9cb85438715e4c0f5993458c5363b8706c0961bc0f90907b92ca133d5837365f - manager: conda - name: jack - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/jack-1.9.21-h583fa2b_2.conda - version: 1.9.21 -- category: main - dependencies: - libopenblas: '>=0.3.21,<1.0a0' - hash: - md5: d9b7a8639171f6c6fa0a983edabcfe2b - sha256: 4e4c60d3fe0b95ffb25911dace509e3532979f5deef4364141c533c5ca82dd39 - manager: conda - name: libblas - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - libbrotlicommon: 1.0.9 h166bdaf_8 - libgcc-ng: '>=12' - hash: - md5: 4ae4d7795d33e02bd20f6b23d91caf82 - sha256: d88ba07c3be27c89cb4975cc7edf63ee7b1c62d01f70d5c3f7efeb987c82b052 - manager: conda - name: libbrotlidec - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.0.9-h166bdaf_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libbrotlicommon: 1.0.9 h166bdaf_8 - libgcc-ng: '>=12' - hash: - md5: 04bac51ba35ea023dc48af73c1c88c25 - sha256: a0468858b2f647f51509a32040e93512818a8f9980f20b3554cccac747bcc4be - manager: conda - name: libbrotlienc - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.0.9-h166bdaf_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - attr: '>=2.5.1,<2.6.0a0' - libgcc-ng: '>=12' - hash: - md5: 2d7665abd0997f1a6d4b7596bc27b657 - sha256: db113b0bacb45533ec6f5c13a548054af8bd0ca2f7583e8bc5989f17e1e1638b - manager: conda - name: libcap - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.66-ha37c62d_0.tar.bz2 - version: '2.66' -- category: main - dependencies: - libgcc-ng: '>=7.5.0' - ncurses: '>=6.2,<7.0.0a0' - hash: - md5: 4d331e44109e3f0e19b4cb8f9b82f3e1 - sha256: a57d37c236d8f7c886e01656f4949d9dcca131d2a0728609c6f7fa338b65f1cf - manager: conda - name: libedit - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2 - version: 3.1.20191231 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - openssl: '>=3.0.0,<4.0a0' - hash: - md5: 4a049fc560e00e43151dc51368915fdd - sha256: 31ac7124c92628cd1c6bea368e38d7f43f8ec68d88128ecdc177773e6d00c60a - manager: conda - name: libevent - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.10-h28343ad_4.tar.bz2 - version: 2.1.10 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - libgcc-ng: '>=12' - libogg: '>=1.3.4,<1.4.0a0' - libstdcxx-ng: '>=12' - hash: - md5: 7daf72d8e2a8e848e11d63ed6d1026e0 - sha256: 095cfa4e2df8622b8f9eebec3c60710ea0f4732c64cd24769ccf9ed63fd45545 - manager: conda - name: libflac - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.2-h27087fc_0.tar.bz2 - version: 1.4.2 -- category: main - dependencies: - gettext: '>=0.19.8.1,<1.0a0' - libgcc-ng: '>=10.3.0' - libstdcxx-ng: '>=10.3.0' - hash: - md5: 839aeb24ab885a7b902247a6d943d02f - sha256: c07f9d38bd4e3ad13afa985b31262cc3f12a4ea158eb48c2afae7272099fb800 - manager: conda - name: libgpg-error - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.45-hc0c96e0_0.tar.bz2 - version: '1.45' -- category: main - dependencies: - c-ares: '>=1.18.1,<2.0a0' - libev: '>=4.33,<4.34.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - hash: - md5: 613955a50485812985c059e7b269f42e - sha256: ecd6b08c2b5abe7d1586428c4dd257dcfa00ee53700d79cdc8bca098fdfbd79a - manager: conda - name: libnghttp2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.52.0-h61bc06f_0.conda - version: 1.52.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: e1c890aebdebbfbf87e2c917187b4416 - sha256: a32b36d34e4f2490b99bddbc77d01a674d304f667f0e62c89e02c961addef462 - manager: conda - name: libpng - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.39-h753d276_0.conda - version: 1.6.39 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: d2047c6de84b07a1db9cbe1683939956 - sha256: 0d6a97cdb1c573bbc3464c47eb0d57da1cd6434689b9dc253d03fca6710d0c22 - manager: conda - name: librttopo - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-ha49c73b_12.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 2e5f9a37d487e1019fd4d8113adb2f9f - sha256: 6008a0b914bd1a3510a3dba38eada93aa0349ebca3a21e5fa276833c8205bf49 - manager: conda - name: libsqlite - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.40.0-h753d276_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: d85acad4b47dff4e3def14a769a97906 - sha256: 9a9a01f35d2d50326eb8ca7c0a92d0c45b2d0f77d9ea117680c70094ff480c0c - manager: conda - name: libssh2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.10.0-hf14f497_3.tar.bz2 - version: 1.10.0 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - libogg: '>=1.3.4,<1.4.0a0' - libstdcxx-ng: '>=9.3.0' - hash: - md5: 309dec04b70a3cc0f1e84a4013683bc0 - sha256: 53080d72388a57b3c31ad5805c93a7328e46ff22fab7c44ad2a86d712740af33 - manager: conda - name: libvorbis - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2 - version: 1.3.7 -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - pthread-stubs: '' - xorg-libxau: '' - xorg-libxdmcp: '' - hash: - md5: b3653fdc58d03face9724f602218a904 - sha256: 8d5d24cbeda9282dd707edd3156e5fde2e3f3fe86c802fa7ce08c8f1e803bfd9 - manager: conda - name: libxcb - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.13-h7f98852_1004.tar.bz2 - version: '1.13' -- category: main - dependencies: - icu: '>=70.1,<71.0a0' - libgcc-ng: '>=12' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - hash: - md5: bb808b654bdc3c783deaf107a2ffb503 - sha256: d4170f1fe356768758b13a51db123f990bff81b0eae0d5a0ba11c7ca6b9536f4 - manager: conda - name: libxml2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.10.3-hca2bb57_4.conda - version: 2.10.3 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libgcc-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: 5b122b50e738c4be5c3f2899f010d7cf - sha256: e2dbd5239f62fbac4f00f828b1de0ea5898d6ed5c1f3049baaf4dfcc4ebdbe7c - manager: conda - name: libzip - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libzip-1.9.2-hc929e4a_1.tar.bz2 - version: 1.9.2 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: 6c531bc30d49ae75b9c7c7f65bd62e3c - sha256: 2da35b51279bb4839a040296ed56f43bcfc0bb065bba423429804f88a15eef5f - manager: conda - name: mysql-common - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.0.31-h26416b9_0.tar.bz2 - version: 8.0.31 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libgcc-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 69e2c796349cd9b273890bee0febfe1b - sha256: 7a29ec847556eed4faa1646010baae371ced69059a4ade43851367a076d6108a - manager: conda - name: pcre2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2 - version: '10.40' -- category: main - dependencies: - libgcc-ng: '>=12' - ncurses: '>=6.3,<7.0a0' - hash: - md5: 47d31b792659ce70f470b5c82fdfb7a4 - sha256: 5435cf39d039387fbdc977b0a762357ea909a7694d9528ab40f005e9208744d7 - manager: conda - name: readline - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - version: '8.2' -- category: main - dependencies: - libgcc-ng: '>=9.4.0' - libzlib: '>=1.2.11,<1.3.0a0' - hash: - md5: 5b8c42eb62e9fc961af70bdd6a26e168 - sha256: 032fd769aad9d4cad40ba261ab222675acb7ec951a8832455fce18ef33fa8df0 - manager: conda - name: tk - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.12-h27826a3_0.tar.bz2 - version: 8.6.12 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - libuuid: '>=2.32.1,<3.0a0' - xorg-libice: 1.0.* - hash: - md5: 9e856f78d5c80d5a78f61e72d1d473a3 - sha256: bdb350539521ddc1f30cc721b6604eced8ef72a0ec146e378bfe89e2be17ab35 - manager: conda - name: xorg-libsm - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.3-hd9c2040_1000.tar.bz2 - version: 1.2.3 -- category: main - dependencies: - libgcc-ng: '>=12' - libzlib: 1.2.13 h166bdaf_4 - hash: - md5: 4b11e365c0275b808be78b30f904e295 - sha256: 282ce274ebe6da1fbd52efbb61bd5a93dec0365b14d64566e6819d1691b75300 - manager: conda - name: zlib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-h166bdaf_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 6b63daed8feeca47be78f323e793d555 - sha256: fbe49a8c8df83c2eccb37c5863ad98baeb29796ec96f2c503783d7b89bf80c98 - manager: conda - name: zstd - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.2-h3eb15da_6.conda - version: 1.5.2 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - snappy: '>=1.1.9,<2.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: bcf0664a2dbbbb86cbd4c1e6ff10ddd6 - sha256: cc2b8e83ac6bf26413141900b187d5d6d6bd89581247c5ddf880740d12e7073b - manager: conda - name: blosc - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.3-hafa529b_0.conda - version: 1.21.3 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - icu: '>=70.1,<71.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 09be6b4c66c7881e2b24214c6f6841c9 - sha256: 7f88fff764eee5c95afa8d71864caa1a9fe862940699bceee1ec1f8e1e023174 - manager: conda - name: boost-cpp - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/boost-cpp-1.78.0-h5adbc97_2.conda - version: 1.78.0 -- category: main - dependencies: - libbrotlidec: 1.0.9 h166bdaf_8 - libbrotlienc: 1.0.9 h166bdaf_8 - libgcc-ng: '>=12' - hash: - md5: e5613f2bc717e9945840ff474419b8e4 - sha256: ab1994e03bdd88e4b27f9f802ac18e45ed29b92cce25e1fd86da43b89734950f - manager: conda - name: brotli-bin - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.0.9-h166bdaf_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libgcc-ng: '>=12' - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: e1232042de76d24539a436d37597eb06 - sha256: 1eb913727b54e9aa63c6d9a1177db4e2894cee97c5f26910a2b61899d5ac904f - manager: conda - name: freetype - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-hca18f0e_1.conda - version: 2.12.1 -- category: main - dependencies: - keyutils: '>=1.6.1,<2.0a0' - libedit: '>=3.1.20191231,<4.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - openssl: '>=3.0.7,<4.0a0' - hash: - md5: 89a41adce7106749573d883b2f657d78 - sha256: 51a346807ce981e1450eb04c3566415b05eed705bc9e6c98c198ec62367b7c62 - manager: conda - name: krb5 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.20.1-h81ceb04_0.conda - version: 1.20.1 -- category: main - dependencies: - libblas: 3.9.0 16_linux64_openblas - hash: - md5: 20bae26d0a1db73f758fc3754cab4719 - sha256: e4ceab90a49cb3ac1af20177016dc92066aa278eded19646bb928d261b98367f - manager: conda - name: libcblas - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - libgcc-ng: '>=10.3.0' - libgpg-error: '>=1.44,<2.0a0' - hash: - md5: f967fc95089cd247ceed56eda31de3a9 - sha256: 8fd7e6db1021cd9298d9896233454de204116840eb66a06fcb712e1015ff132a - manager: conda - name: libgcrypt - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.1-h166bdaf_0.tar.bz2 - version: 1.10.1 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' - libiconv: '>=1.17,<2.0a0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - pcre2: '>=10.40,<10.41.0a0' - hash: - md5: ed5349aa96776e00b34eccecf4a948fe - sha256: 3cbad3d63cff2dd9ac1dc9cce54fd3d657f3aff53df41bfe5bae9d760562a5af - manager: conda - name: libglib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.74.1-h606061b_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - libblas: 3.9.0 16_linux64_openblas - hash: - md5: 955d993f41f9354bf753d29864ea20ad - sha256: f5f30b8049dfa368599e5a08a4f35cb1966af0abc539d1fd1f50d93db76a74e6 - manager: conda - name: liblapack - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 201168ef66095bbd565e124ee2c56a20 - sha256: 68a90e26dd56024c1c723605fd50817faf890f18acf91f1d36da3f8403474b52 - manager: conda - name: libllvm15 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.6-h63197d8_0.conda - version: 15.0.6 -- category: main - dependencies: - lame: '>=3.100,<3.101.0a0' - libflac: '>=1.4.2,<1.5.0a0' - libgcc-ng: '>=12' - libogg: '>=1.3.4,<1.4.0a0' - libopus: '>=1.3.1,<2.0a0' - libstdcxx-ng: '>=12' - libvorbis: '>=1.3.7,<1.4.0a0' - mpg123: '>=1.31.1,<1.32.0a0' - hash: - md5: d7a07b1f5974bce4735112aaef0c1467 - sha256: dfeffd12d5dd987f54d68f8ae53b14d665cd96578485c8f83aef0233520d69f5 - manager: conda - name: libsndfile - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.1.0-hcb278e6_1.conda - version: 1.1.0 -- category: main - dependencies: - lerc: '>=4.0.0,<5.0a0' - libdeflate: '>=1.17,<1.18.0a0' - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libstdcxx-ng: '>=12' - libwebp-base: '>=1.2.4,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: d2343e6594c2a4a654a475a6131ef20d - sha256: a72a167d66ad041e9d2561e368d50c7e1e6aac3113b06fd0081b3473f2d7fa28 - manager: conda - name: libtiff - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.5.0-hddfeb54_5.conda - version: 4.5.0 -- category: main - dependencies: - libgcc-ng: '>=7.5.0' - libstdcxx-ng: '>=7.5.0' - libxml2: '>=2.9.10,<2.11.0a0' - hash: - md5: f9dbabc7e01c459ed7a1d1d64b206e9b - sha256: 64d37e16c694714ca08a96f9864a35ba9ee38b8e222f8ee646e10976250d966d - manager: conda - name: libxkbcommon - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.0.3-he3ba5ed_0.tar.bz2 - version: 1.0.3 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - mysql-common: 8.0.31 h26416b9_0 - openssl: '>=3.0.5,<4.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: da9633eee814d4e910fe42643a356315 - sha256: a44bd116a4b0ee57532661d63bc1926ef13d4ec2bd00b57130467ca185d4647c - manager: conda - name: mysql-libs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.0.31-hbc51c84_0.tar.bz2 - version: 8.0.31 -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - libgcc-ng: '>=12' - libsqlite: '>=3.40.0,<4.0a0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - nspr: '>=4.35,<5.0a0' - hash: - md5: 2745719a58eeaab6657256a3f142f099 - sha256: 6d512e4a7ffae4fed9feac2cb2037398c78ade47e5358fc79ac3e58494de0cad - manager: conda - name: nss - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/nss-3.89-he45b914_0.conda - version: '3.89' -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - ld_impl_linux-64: '>=2.36.1' - libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' - libnsl: '>=2.0.0,<2.1.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libuuid: '>=2.32.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.3,<7.0a0' - openssl: '>=3.1.0,<4.0a0' - readline: '>=8.2,<9.0a0' - tk: '>=8.6.12,<8.7.0a0' - tzdata: '' - xz: '>=5.2.6,<6.0a0' - hash: - md5: de25afc7041c103c7f510c746bb63435 - sha256: 67748307da3fa057d17d4e991f3c60f87595a517b98f4b323a17b5f3dc287159 - manager: conda - name: python - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.10-he550d4f_0_cpython.conda - version: 3.10.10 -- category: main - dependencies: - libgcc-ng: '>=12' - libsqlite: 3.40.0 h753d276_0 - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.3,<7.0a0' - readline: '>=8.1.2,<9.0a0' - hash: - md5: bb11803129cbbb53ed56f9506ff74145 - sha256: baf0e77938e5215653aa6609ff154cb94aeb0a08083ff8dec2d3ba8dd62263e9 - manager: conda - name: sqlite - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.40.0-h4ff8645_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - hash: - md5: 384e7fcb3cd162ba3e4aed4b687df566 - sha256: 292dee40f8390aea0e6a0abbf2f255f179c777326831ed9e1ad7db53665c8562 - manager: conda - name: xcb-util - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-h166bdaf_0.tar.bz2 - version: 0.4.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - hash: - md5: 637054603bb7594302e3bf83f0a99879 - sha256: 6a2c0f38b360a2fda57b2349d2cbeeb7583576a4914a3e4ce17977601ac87613 - manager: conda - name: xcb-util-keysyms - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h166bdaf_0.tar.bz2 - version: 0.4.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - hash: - md5: 732e22f1741bccea861f5668cf7342a7 - sha256: 19d27b7af8fb8047e044de2b87244337343c51fe7caa0fbaa9c53c2215787188 - manager: conda - name: xcb-util-renderutil - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.9-h166bdaf_0.tar.bz2 - version: 0.3.9 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - hash: - md5: 0a8e20a8aef954390b9481a527421a8c - sha256: a76af35297f233982b58de1f55f1900d8a8ae44018a55d2a94f3084ab97d6c80 - manager: conda - name: xcb-util-wm - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.1-h166bdaf_0.tar.bz2 - version: 0.4.1 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - xorg-kbproto: '' - xorg-xextproto: '>=7.3.0,<8.0a0' - xorg-xproto: '' - hash: - md5: ea8fbfeb976ac49cbeb594e985393514 - sha256: 3c6862a01a39cdea3870b132706ad7256824299947a3a94ae361d863d402d704 - manager: conda - name: xorg-libx11 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.4-h0b41bf4_0.conda - version: 1.8.4 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 466dc5c1b75c93180efbd81d99dc29b0 - sha256: f3d58687fb000acc5d5f773d6e633ffb382575895abbc8db3d9b8e3996b05d39 - manager: conda - name: affine - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/affine-2.3.1-pyhd8ed1ab_0.tar.bz2 - version: 2.3.1 -- category: main - dependencies: - python: '' - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - manager: conda - name: appdirs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - python: '>=3.5' - hash: - md5: 8b76db7818a4e401ed4486c4c1635cd9 - sha256: 3a58d4a4933fa8735471c782d35326ab78e0bcfce84756408515f82a94e4dec4 - manager: conda - name: attrs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/attrs-22.2.0-pyh71513ae_0.conda - version: 22.2.0 -- category: main - dependencies: - brotli-bin: 1.0.9 h166bdaf_8 - libbrotlidec: 1.0.9 h166bdaf_8 - libbrotlienc: 1.0.9 h166bdaf_8 - libgcc-ng: '>=12' - hash: - md5: 2ff08978892a3e8b954397c461f18418 - sha256: 74c0fa22ea7c62d2c8f7a7aea03a3bd4919f7f3940ef5b027ce0dfb5feb38c06 - manager: conda - name: brotli - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-1.0.9-h166bdaf_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: fb9addc3db06e56abe03e0e9f21a63e6 - sha256: 5e22af4776700200fab2c1df41a2188ab9cfe90a50c4f388592bb978562c88ec - manager: conda - name: certifi - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2022.12.7-pyhd8ed1ab_0.conda - version: 2022.12.7 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7fcff9f6f123696e940bda77bd4d6551 - sha256: 06cd371fc98f076797d6450f6f337cb679b1060c99680fb7e044591493333194 - manager: conda - name: charset-normalizer - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.1.0-pyhd8ed1ab_0.conda - version: 3.1.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 3faab06a954c2a04039983f2c4a50d99 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - manager: conda - name: colorama - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - version: 0.4.6 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a50559fad0affdbb33729a68669ca1cb - sha256: 3b594bc8aa0b9a51269d54c7a4ef6af777d7fad4bee16b05695e1124de6563f6 - manager: conda - name: cycler - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.11.0-pyhd8ed1ab_0.tar.bz2 - version: 0.11.0 -- category: main - dependencies: - expat: '>=2.4.2,<3.0a0' - libgcc-ng: '>=9.4.0' - libglib: '>=2.70.2,<3.0a0' - hash: - md5: ecfff944ba3960ecb334b9a2663d708d - sha256: 8f5f995699a2d9dbdd62c61385bfeeb57c82a681a7c8c5313c395aa0ccab68a5 - manager: conda - name: dbus - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2 - version: 1.13.6 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7312299d7a0ea4993159229b7d2dceb2 - sha256: f073c3ba993912f1c0027bc34a54975642885f0a4cd5f9dc42a17ca945df2c18 - manager: conda - name: exceptiongroup - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.1-pyhd8ed1ab_0.conda - version: 1.1.1 -- category: main - dependencies: - expat: '>=2.5.0,<3.0a0' - freetype: '>=2.12.1,<3.0a0' - libgcc-ng: '>=12' - libuuid: '>=2.32.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 0f69b688f52ff6da70bccb7ff7001d1d - sha256: 155d534c9037347ea7439a2c6da7c24ffec8e5dd278889b4c57274a1d91e0a83 - manager: conda - name: fontconfig - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda - version: 2.14.2 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 6880e7100ebae550a33ce26663316d85 - sha256: 41cb296c4513bc72c687a4beaf0c59719bb900fe0ab6d822ff8b31c4dad38b63 - manager: conda - name: geographiclib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/geographiclib-1.52-pyhd8ed1ab_0.tar.bz2 - version: '1.52' -- category: main - dependencies: - libgcc-ng: '>=12' - libglib: 2.74.1 h606061b_1 - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 5f442e6bc9d89ba236eb25a25c5c2815 - sha256: 029533e2e1cb03a80ae07a0a1a6bdd76b524e8f551d82e832a4d846a77b615c9 - manager: conda - name: glib-tools - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.74.1-h6239696_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 34272b248891bddccc64479f9a7fffed - sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09 - manager: conda - name: idna - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2 - version: '3.4' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: f800d2da156d08e289b14e87e43c1ae5 - sha256: 38740c939b668b36a50ef455b077e8015b8c9cf89860d421b3fff86048f49666 - manager: conda - name: iniconfig - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda - version: 2.0.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: ad5647e517ba68e2868ef2e6e6ff7723 - sha256: f56d1772472b90ddda6fd0963a80dcf1960f1277b9653667a9bde62ae125f972 - manager: conda - name: kiwisolver - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.4-py310hbf28c38_1.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - hash: - md5: 980d8aca0bc23ca73fa8caa3e7c84c28 - sha256: 0d88e0e7f8dbf8f01788e21dd63dd49b89433ce7dfd10f53839441396f6481cd - manager: conda - name: lcms2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-haa2dc70_1.conda - version: '2.15' -- category: main - dependencies: - libgcc-ng: '>=12' - libllvm15: '>=15.0.6,<15.1.0a0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 535dd0ca1dcb165b6a8ffa10d01945fe - sha256: 0a8130d1f13225389d791e14b92654b488c82a8c6ec5cddc7c606389f02d6737 - manager: conda - name: libclang13 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libclang13-15.0.6-default_h3a83d3e_0.conda - version: 15.0.6 -- category: main - dependencies: - krb5: '>=1.19.3,<1.20.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 3b88f1d0fe2580594d58d7e44d664617 - sha256: 293b4be657b9bb534c58b2add62c5088fdbd2e943ff5aea5b4595564cc15e681 - manager: conda - name: libcups - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h3e49a29_2.tar.bz2 - version: 2.3.3 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libgcc-ng: '>=12' - libnghttp2: '>=1.52.0,<2.0a0' - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.1.0,<4.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 3d1189864d1c0ed2a5919cb067b5903d - sha256: 500c08e61871df6dc4fc87913c99cb799f5fa8333db991201be32b657e9dcdb1 - manager: conda - name: libcurl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libcurl-7.88.1-hdc1c0ab_1.conda - version: 7.88.1 -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - expat: '>=2.4.8,<3.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.12,<1.3.0a0' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 37d3747dd24d604f63d2610910576e63 - sha256: c435a9674717eac87e283ffdfe841635ecc025403c824f8ab5fa04e591e5b820 - manager: conda - name: libkml - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-h37653c0_1015.tar.bz2 - version: 1.3.0 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - hash: - md5: 4654b17eccaba55b8581d6b9c77f53cc - sha256: 5693c492ca0280e62edd114d91b7aa9c81fa60276b594f31d18a852636603f9e - manager: conda - name: libpq - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libpq-15.2-hb675445_0.conda - version: '15.2' -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - libcap: '>=2.66,<2.67.0a0' - libgcc-ng: '>=12' - libgcrypt: '>=1.10.1,<2.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 3c5ae9f61f663b3d5e1bf7f7da0c85f5 - sha256: a181e25a04207179da598a5a89747a026642341e193dca125620f5f4e268804a - manager: conda - name: libsystemd0 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-252-h2a991cd_0.tar.bz2 - version: '252' -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 9e0d689557f3fdcb521c1239c13d29ec - sha256: 287c1968e9d5b5b25adb43f9a72a8b249ef5c80fc35fd6e182fdd04d9366ab8b - manager: conda - name: loguru - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/loguru-0.7.0-py310hff52083_0.conda - version: 0.7.0 -- category: main - dependencies: - libgcc-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: a1f0db6709778b77b5903541eeac4032 - sha256: f62b2aeafe968472b20b6935fa7b2290d27ac38b65d98b2708c7cf0b689f9f19 - manager: conda - name: markupsafe - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.2-py310h1fa729e_0.conda - version: 2.1.2 -- category: main - dependencies: - python: '' - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - manager: conda - name: munkres - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - version: 1.1.4 -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 254f787d5068bc89f578bf63893ce8b4 - sha256: 6b955c8530985fa727ad3323653a54af44ecf453cfdb1b549b3edff609bd3728 - manager: conda - name: networkx - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/networkx-3.1-pyhd8ed1ab_0.conda - version: '3.1' -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libgcc-ng: '>=12' - liblapack: '>=3.9.0,<4.0a0' - libstdcxx-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: c532c5df0bef4d138b2b0bdde99ab53e - sha256: 975c6d4e680b1fc13fbd7a2f9c59f1f147b3ebe7a4688d3cfdbfe01a647d4345 - manager: conda - name: numpy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.24.1-py310h8deb116_0.conda - version: 1.24.1 -- category: main - dependencies: - libgcc-ng: '>=12' - libpng: '>=1.6.39,<1.7.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 5ce6a42505c6e9e6151c54c3ec8d68ea - sha256: 3cbfb1fe9bb492dcb672f98f0ddc7b4e029f51f77101d9c301caa3acaea8cba2 - manager: conda - name: openjpeg - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-hfec8fc6_2.conda - version: 2.5.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 1ff2e3ca41f0ce16afec7190db28288b - sha256: 00288f5e5e841711e8b8fef1f1242c858d8ef99ccbe5d7e0df4789d5d8d40645 - manager: conda - name: packaging - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.0-pyhd8ed1ab_0.conda - version: '23.0' -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 7d301a0d25f424d96175f810935f0da9 - sha256: c25e1757e4e90638bb1e778aba3ee5f3c01fae9752e3c3929f9be7d367f6c7f3 - manager: conda - name: pluggy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pluggy-1.0.0-pyhd8ed1ab_5.tar.bz2 - version: 1.0.0 -- category: main - dependencies: - python: '' - hash: - md5: 7205635cd71531943440fbfe3b6b5727 - sha256: 2cd6fae8f9cbc806b7f828f006ae4a83c23fac917cacfd73c37ce322d4324e53 - manager: conda - name: ply - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2 - version: '3.11' -- category: main - dependencies: - python: 2.7.*|>=3.4 - hash: - md5: 076becd9e05608f8dc72757d5f3a91ff - sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc - manager: conda - name: pycparser - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2 - version: '2.21' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: e8fbc1b54b25f4b08281467bc13b70cc - sha256: 4acc7151cef5920d130f2e0a7615559cce8bfb037aeecb14d4d359ae3d9bc51b - manager: conda - name: pyparsing - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.0.9-pyhd8ed1ab_0.tar.bz2 - version: 3.0.9 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 2590495f608a63625e165915fb4e2e34 - sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6 - manager: conda - name: python-tzdata - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: d3076b483092a435832603243567bc31 - sha256: e4999484f21763ca4b8f92c95b22cb6d1edc1b61d0a2bb073ee2bd11f39401b9 - manager: conda - name: pytz - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - libgcc-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - yaml: '>=0.2.5,<0.3.0a0' - hash: - md5: 9e68d2ff6d98737c855b65f48dd3c597 - sha256: 602d68ee4544274b12fb6d13b8d5fc61d0ebbee190292c21d8be10a4e68185bd - manager: conda - name: pyyaml - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0-py310h5764c6d_5.tar.bz2 - version: '6.0' -- category: main - dependencies: - libspatialindex: '>=1.9.3,<1.9.4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 49ad4035b71bbf7289ac1523f8023ebe - sha256: 9d0c89343253cbf6cd669e86d5afe2f16a79d2f8cd80ed9c588eef87fe7ba620 - manager: conda - name: rtree - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/rtree-1.0.1-py310hbdcdc62_1.tar.bz2 - version: 1.0.1 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 6c443cccff3daa3d83b2b807b0a298ce - sha256: 6595024174d318848468c0e61899ff3c2f08a3545c85727b9a2871d6f8d0062a - manager: conda - name: setuptools - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/setuptools-67.6.1-pyhd8ed1ab_0.conda - version: 67.6.1 -- category: main - dependencies: - python: '' - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - manager: conda - name: six - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a2995ee828f65687ac5b1e71a2ab1e0c - sha256: c7a964811ba49c545236f7d6c2486b2ed493931660048a06fe94ecc851dd0b82 - manager: conda - name: threadpoolctl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2 - version: 3.1.0 -- category: main - dependencies: - python: '>=2.7' - hash: - md5: f832c45a477c78bebd107098db465095 - sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1 - manager: conda - name: toml - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2 - version: 0.10.2 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 5844808ffab9ebdb694585b50ba02a96 - sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f - manager: conda - name: tomli - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2 - version: 2.0.1 -- category: main - dependencies: - libgcc-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - hash: - md5: 4d86cd6dbdc1185f4e72d974f1f1f852 - sha256: 1d981fbc569e0359ff8e8575e174c6039a869e3b6d1fdc93aa225d436e90638d - manager: conda - name: tornado - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.2-py311hd4cff14_1.tar.bz2 - version: '6.2' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 43e7d9e50261fb11deb76e17d8431aac - sha256: f81eee64fcdfb379e27d01773b34041fbf7f9e86f33b157c9925d19e0a442452 - manager: conda - name: typing_extensions - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.5.0-pyha770c72_0.conda - version: 4.5.0 -- category: main - dependencies: - libgcc-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: e972c5a1f472561cf4a91962cb01f4b4 - sha256: 332732c2b87445c3e071c86cacfbc72a99ba4ea55d0b9d65416894253782ca02 - manager: conda - name: unicodedata2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.0.0-py310h5764c6d_0.tar.bz2 - version: 15.0.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 49bb0d9e60ce1db25e151780331bb5f3 - sha256: 79b4d29b0c004014a2abd5fc2c9fcd35cc6256222b960c2a317a27c4b0d8884d - manager: conda - name: wheel - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.40.0-pyhd8ed1ab_0.conda - version: 0.40.0 -- category: main - dependencies: - __win: '' - python: '>=3.6' - hash: - md5: 30878ecc4bd36e8deeea1e3c151b2e0b - sha256: a11ae693a0645bf6c7b8a47bac030be9c0967d0b1924537b9ff7458e832c0511 - manager: conda - name: win_inet_pton - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyhd8ed1ab_6.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - xcb-util: '>=0.4.0,<0.5.0a0' - hash: - md5: c9b568bd804cb2903c6be6f5f68182e4 - sha256: 6db358d4afa0eb1225e24871f6c64c1b6c433f203babdd43508b0d61252467d1 - manager: conda - name: xcb-util-image - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-h166bdaf_0.tar.bz2 - version: 0.4.0 -- category: main - dependencies: - libgcc-ng: '>=12' - xorg-libx11: '>=1.7.2,<2.0a0' - xorg-xextproto: '' - hash: - md5: 82b6df12252e6f32402b96dacc656fec - sha256: 73e5cfbdff41ef8a844441f884412aa5a585a0f0632ec901da035a03e1fe1249 - manager: conda - name: xorg-libxext - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda - version: 1.3.4 -- category: main - dependencies: - libgcc-ng: '>=9.3.0' - xorg-libx11: '>=1.7.0,<2.0a0' - xorg-renderproto: '' - hash: - md5: f59c1242cc1dd93e72c2ee2b360979eb - sha256: 7d907ed9e2ec5af5d7498fb3ab744accc298914ae31497ab6dcc6ef8bd134d00 - manager: conda - name: xorg-libxrender - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.10-h7f98852_1003.tar.bz2 - version: 0.9.10 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: df61644536ee98e50e1e022489588b32 - sha256: 295003c201788280aa9b9a201333c07154837f7ecb3f1eda94b609e4a4d88872 - manager: conda - name: xyzservices - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/xyzservices-2023.2.0-pyhd8ed1ab_0.conda - version: 2023.2.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 13018819ca8f5b7cc675a8faf1f5fedf - sha256: 241de30545299be9bcea3addf8a2c22a3b3d4ba6730890e150ab690ac937a3d2 - manager: conda - name: zipp - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.15.0-pyhd8ed1ab_0.conda - version: 3.15.0 -- category: main - dependencies: - fontconfig: '>=2.13.96,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - icu: '>=70.1,<71.0a0' - libgcc-ng: '>=12' - libglib: '>=2.72.1,<3.0a0' - libpng: '>=1.6.38,<1.7.0a0' - libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - pixman: '>=0.40.0,<1.0a0' - xorg-libice: '' - xorg-libsm: '' - xorg-libx11: '' - xorg-libxext: '' - xorg-libxrender: '' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: d1a88f3ed5b52e1024b80d4bcd26a7a0 - sha256: f062cf56e6e50d3ad4b425ebb3765ca9138c6ebc52e6a42d1377de8bc8d954f6 - manager: conda - name: cairo - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.16.0-ha61ee94_1014.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' - pycparser: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 800596144bb613cd7ac58b80900ce835 - sha256: f223c8782195f19dbe7cfd27e329de8b0e2205a090ee2a6891e0695d4d634854 - manager: conda - name: cffi - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.15.1-py310h255011f_3.conda - version: 1.15.1 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libcurl: '>=7.86.0,<8.0a0' - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=10.4.0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 8c57a9adbafd87f5eff842abde599cb4 - sha256: 6409d15f09ae1a1673c971c8f45fc87272d1af569d027efbe16b689a1a8afd0d - manager: conda - name: cfitsio - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.2.0-hd9d235c_0.conda - version: 4.2.0 -- category: main - dependencies: - libgcc-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 94ce7a76b0c912279f6958e0b6b21d2b - sha256: fc5ff45e357bb63ca586b326e5cdd27f97934d45224af4501023e842436e3794 - manager: conda - name: cftime - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.2-py310hde88566_1.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - __win: '' - colorama: '' - python: '>=3.8' - hash: - md5: 6b58680207b526c42dcff68b543803dd - sha256: 84e80a33e9a8e5398d3e97209366b57f635462a5b894f8076ec8c95e56672c44 - manager: conda - name: click - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.3-win_pyhd8ed1ab_2.tar.bz2 - version: 8.1.3 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.16' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 7bf9d8c765b6b04882c719509652c6d6 - sha256: 670b736e895ed1b37187e0cbc73fd528414076f370068975135db2420af8663d - manager: conda - name: contourpy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.0.7-py310hdf3cbec_0.conda - version: 1.0.7 -- category: main - dependencies: - libgcc-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tomli: '' - hash: - md5: 3eb11d1ed20480b4515094af8ae24c64 - sha256: 36eab767863d079ca0c528d0575f150a18420c4d4a917c5b5c58e35ace76735c - manager: conda - name: coverage - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/coverage-7.2.3-py310h1fa729e_0.conda - version: 7.2.3 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libcurl: 7.88.1 hdc1c0ab_1 - libgcc-ng: '>=12' - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.1.0,<4.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 2016c398f234cfa354ea704c6731b5d5 - sha256: b52a3b97e4c3d2acca8380d405da49c2fdc2f770fcbb9dd842eb6058f8476def - manager: conda - name: curl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/curl-7.88.1-hdc1c0ab_1.conda - version: 7.88.1 -- category: main - dependencies: - brotli: '' - libgcc-ng: '>=12' - munkres: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - unicodedata2: '>=14.0.0' - hash: - md5: 4f39f656d6ff2761d698e69af952be82 - sha256: 9c3765958a18d9bfc33e42d78a554aff00041d3da474db3045d6ce95ef6a4643 - manager: conda - name: fonttools - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.39.3-py310h1fa729e_0.conda - version: 4.39.3 -- category: main - dependencies: - geographiclib: <2,>=1.49 - python: '>=3.5' - hash: - md5: 529faeecd6eee3a3b782566ddf05ce92 - sha256: 98e34031f7e0b0f32edb8208762fd4f919cc6cc2f90daf16519125d8e075ad30 - manager: conda - name: geopy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopy-2.3.0-pyhd8ed1ab_0.tar.bz2 - version: 2.3.0 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - glib-tools: 2.74.1 h6239696_1 - libgcc-ng: '>=12' - libglib: 2.74.1 h606061b_1 - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - python: '*' - hash: - md5: f3220a9e9d3abcbfca43419a219df7e4 - sha256: bc3f1d84e976a62ae8388e3b44f260d867beb7a307c18147048a8301a3c12e47 - manager: conda - name: glib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/glib-2.74.1-h6239696_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - libaec: '>=1.0.6,<2.0a0' - libcurl: '>=7.87.0,<8.0a0' - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=10.4.0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.7,<4.0a0' - hash: - md5: 162a25904af6586b234b2dd52ee99c61 - sha256: f83472851e0fc2834c881f6962e324cd0c7a96afe9d575f9cce599dd19436446 - manager: conda - name: hdf5 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.12.2-nompi_h4df4325_101.conda - version: 1.12.2 -- category: main - dependencies: - numpy: 1.24.1 - python: '>=3.9,<3.11' - hash: - md5: e57176d1746df4393dfc4ae2793710d8 - sha256: 3f3af2e2597ed7931d4b6757a91d8ab4d2299a05d19ed5b7e601fc608c61af01 - manager: conda - name: hpc - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/hpc-0.1.0-pyhd8ed1ab_0.conda - version: 0.1.0 -- category: main - dependencies: - python: '>=3.8' - zipp: '>=0.5' - hash: - md5: c63decd397ca639c4b17f6ea5d26bd4d - sha256: 26a56c66c95389e9e2bd95e88f023fd94d4a60e4817bcbe4103f6220d0c17d86 - manager: conda - name: importlib-metadata - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.3.0-pyha770c72_0.conda - version: 6.3.0 -- category: main - dependencies: - markupsafe: '>=2.0' - python: '>=3.7' - hash: - md5: c8490ed5c70966d232fdd389d0dbed37 - sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5 - manager: conda - name: jinja2 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2 - version: 3.1.2 -- category: main - dependencies: - python: '>=3.6' - setuptools: '' - hash: - md5: 7583652522d71ad78ba536bba06940eb - sha256: 0c21351871df2c0a53168575597dd9c881e2a9fa4c42fe89a9bcd7fab37f462c - manager: conda - name: joblib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2 - version: 1.2.0 -- category: main - dependencies: - libclang13: 15.0.6 default_h3a83d3e_0 - libgcc-ng: '>=12' - libllvm15: '>=15.0.6,<15.1.0a0' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 1b2cee49acc5b03c73ad0f68bfe04bb8 - sha256: 3bf9a2d398492a017f7be21d2fb22a824302773fd2b3a7d143617917146a1b64 - manager: conda - name: libclang - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.6-default_h2e3cab8_0.conda - version: 15.0.6 -- category: main - dependencies: - python: '' - setuptools: '>=17.1' - six: '' - hash: - md5: 31d9e9be500e25ff0050bc9f57a6bcd7 - sha256: bd885bec8b012abf0c5ca5d6225caf0e88e5b2b0af8fa5a4e4d339604d3e9cd1 - manager: conda - name: munch - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/munch-2.5.0-py_0.tar.bz2 - version: 2.5.0 -- category: main - dependencies: - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.15,<3.0a0' - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openjpeg: '>=2.5.0,<3.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tk: '>=8.6.12,<8.7.0a0' - hash: - md5: 58ea77873883be5b59328e29ca50997e - sha256: ca081b2a1af2dcab802dece28ac1a95e873c9ee278bbd50a5c2882b621dd0d99 - manager: conda - name: pillow - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pillow-9.5.0-py310h065c6d2_0.conda - version: 9.5.0 -- category: main - dependencies: - python: '>=3.7' - setuptools: '' - wheel: '' - hash: - md5: 8025ca83b8ba5430b640b83917c2a6f7 - sha256: e1698cbf4964cd60a2885c0edbc654133cd0db5ac4cb568412250e577dbc42ad - manager: conda - name: pip - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pip-23.0.1-pyhd8ed1ab_0.conda - version: 23.0.1 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libgcc-ng: '>=12' - libpq: 15.2 hb675445_0 - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - readline: '>=8.1.2,<9.0a0' - tzcode: '' - tzdata: '' - zlib: '' - hash: - md5: 4dbd6c4bc33369751a4d728b392943ba - sha256: e5f035c9ef675b059ea2175a86cf60387e38ef614a1bebe46616b7c9836c1038 - manager: conda - name: postgresql - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/postgresql-15.2-h3248436_0.conda - version: '15.2' -- category: main - dependencies: - libcurl: '>=7.87.0,<8.0a0' - libgcc-ng: '>=12' - libsqlite: '>=3.40.0,<4.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.5.0,<4.6.0a0' - sqlite: '' - hash: - md5: c264aea0e16bba26afa0a0940e954492 - sha256: c9fcbf2cab7a354394c2c91a0d57c324fd88234b59042c58b1012999ace00834 - manager: conda - name: proj - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/proj-9.1.1-h8ffa02c_2.conda - version: 9.1.1 -- category: main - dependencies: - alsa-lib: '>=1.2.8,<1.2.9.0a0' - dbus: '>=1.13.6,<2.0a0' - fftw: '>=3.3.10,<4.0a0' - gstreamer-orc: '>=0.4.32,<0.5.0a0' - jack: '>=1.9.21,<1.10.0a0' - libcap: '>=2.66,<2.67.0a0' - libgcc-ng: '>=12' - libglib: '>=2.74.1,<3.0a0' - libsndfile: '>=1.1.0,<1.2.0a0' - libsystemd0: '>=251' - libtool: '>=2.4.6,<3.0a0' - libudev1: '>=251' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: e4b74b33e13dd146e7d8b5078fc9ad30 - sha256: d356aff10f0b63199fb5895c7c4fcdddc9b0a7a43be682d51bd5041418b9a845 - manager: conda - name: pulseaudio - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-16.1-h126f2b6_0.tar.bz2 - version: '16.1' -- category: main - dependencies: - __win: '' - python: '>=3.8' - win_inet_pton: '' - hash: - md5: 56cd9fe388baac0e90c7149cfac95b60 - sha256: b3a612bc887f3dd0fb7c4199ad8e342bd148cf69a9b74fd9468a18cf2bef07b7 - manager: conda - name: pysocks - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2 - version: 1.7.1 -- category: main - dependencies: - python: '>=3.6' - six: '>=1.5' - hash: - md5: dd999d1cc9f79e67dbb855c8924c7984 - sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da - manager: conda - name: python-dateutil - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2 - version: 2.8.2 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - libgcc-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: c4a3707d6a630facb6cf7ed8e0d37326 - sha256: 31f71ea8786ce6a0cd649ffa270feace395cc7a8a758413f11e69d03c36a8efe - manager: conda - name: shapely - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/shapely-1.8.5-py310h5b266fc_2.tar.bz2 - version: 1.8.5 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - packaging: '' - ply: '' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - toml: '' - hash: - md5: f6dd6ba47e2380b9c715fc45f0d45e62 - sha256: dab9a88cad97a93672489130d370229738747f470bfa4858ebc9d593dd8c0e59 - manager: conda - name: sip - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.5-py311ha362b79_0.conda - version: 6.7.5 -- category: main - dependencies: - numpy: '' - pyparsing: '>=2.1.6' - python: '' - hash: - md5: cb83a3d6ecf73f50117635192414426a - sha256: ebb8f5f9e362f186fb7d732e656f85c969b86309494436eba51cc3b8b96683f7 - manager: conda - name: snuggs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2 - version: 1.4.7 -- category: main - dependencies: - typing_extensions: 4.5.0 pyha770c72_0 - hash: - md5: b3c594fde1a80a1fc3eb9cc4a5dfe392 - sha256: 6da5e15fa533620ae2e7aca9a7d16013eed3a73ac64c47d7c3bf3deec39b63b9 - manager: conda - name: typing-extensions - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.5.0-hd8ed1ab_0.conda - version: 4.5.0 -- category: main - dependencies: - icu: '>=70.1,<71.0a0' - libcurl: '>=7.85.0,<8.0a0' - libgcc-ng: '>=12' - libnsl: '>=2.0.0,<2.1.0a0' - libstdcxx-ng: '>=12' - hash: - md5: d127dc8efe24033b306180939e51e6af - sha256: 63a799ef355a4d01f6789ecf31fbfa1b96f8a6bbee1a3b4be6d5d34158eb32a5 - manager: conda - name: xerces-c - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.4-h55805fa_1.tar.bz2 - version: 3.2.4 -- category: main - dependencies: - jinja2: '' - python: '>=3.7' - setuptools: '' - hash: - md5: f4cc65697763ef8c2f7555f1ec355a6b - sha256: 46175d4dd94e458b2c5303a4cd816db6c45ff302b1b1852c1fd37411ce171f05 - manager: conda - name: branca - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/branca-0.6.0-pyhd8ed1ab_0.tar.bz2 - version: 0.6.0 -- category: main - dependencies: - cffi: '>=1.0.0' - libgcc-ng: '>=12' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 87669c3468dff637bbd0363bc0f895cf - sha256: a37f9a00170f48e71b67bb4547e8bf352dcee4e4a79a55f087b512022cc64a0d - manager: conda - name: brotlipy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/brotlipy-0.7.0-py310h5764c6d_1005.tar.bz2 - version: 0.7.0 -- category: main - dependencies: - click: '>=3.0' - python: '' - hash: - md5: 4fd2c6b53934bd7d96d1f3fdaf99b79f - sha256: ddef6e559dde6673ee504b0e29dd814d36e22b6b9b1f519fa856ee268905bf92 - manager: conda - name: click-plugins - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2 - version: 1.1.1 -- category: main - dependencies: - click: '>=4.0' - python: <4.0 - hash: - md5: a29b7c141d6b2de4bb67788a5f107734 - sha256: 97bd58f0cfcff56a0bcda101e26f7d936625599325beba3e3a1fa512dd7fc174 - manager: conda - name: cligj - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2 - version: 0.7.2 -- category: main - dependencies: - cffi: '>=1.12' - libgcc-ng: '>=12' - openssl: '>=3.1.0,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: deafd9206c2e307874f3777a33cafb79 - sha256: 7c06c658b23968bd867dae33b32ba38badd2c5fbecf37607e47c435fc0c907ea - manager: conda - name: cryptography - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/cryptography-40.0.1-py310h34c0648_0.conda - version: 40.0.1 -- category: main - dependencies: - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - zlib: '' - hash: - md5: 1a9fe902dfcbdb159dd2ea85cce2f847 - sha256: 97672dfa0e46205cf314c1d1e87da56ac264664e10ad4fbfb605c31ea12a45ab - manager: conda - name: geotiff - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.1-hb963b44_7.conda - version: 1.7.1 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - glib: '>=2.74.1,<3.0a0' - libgcc-ng: '>=12' - libglib: '>=2.74.1,<3.0a0' - libstdcxx-ng: '>=12' - hash: - md5: 3ae425efddb9da5fb35edda331e4dff7 - sha256: cc6e396dd7a84902507872308abcdf5e4bf9b81d622d0ab551709db8018bc63b - manager: conda - name: gstreamer - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.21.2-hd4edc92_0.conda - version: 1.21.2 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - hash: - md5: c948b920f45fd81a2dde8b1ab514cc84 - sha256: 092e44e2a672c6366170d4414c41eed5cdf864f6cbc76b83be785117b8a66ed4 - manager: conda - name: kealib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.0-ha7026e8_0.conda - version: 1.5.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - libgcc-ng: '>=12' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libstdcxx-ng: '>=12' - libxml2: '>=2.10.3,<2.11.0a0' - libzip: '>=1.9.2,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: f2c2b7f450f14a2a2d2891183b7bff52 - sha256: 921fc17bfd048b3cf15d2411bd7840484cb4a96beecda9e28c463f445e67d014 - manager: conda - name: libnetcdf - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.1-nompi_hd2e9713_102.conda - version: 4.9.1 -- category: main - dependencies: - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - libgcc-ng: '>=12' - librttopo: '>=1.1.0,<1.2.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libstdcxx-ng: '>=12' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - sqlite: '' - zlib: '' - hash: - md5: 859297085081cfbc123dc60015864f6b - sha256: e2f6aae81ddb2ad63c4d06516de89da601dadd0b1aa2de3670f434f0501882ce - manager: conda - name: libspatialite - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.0.1-h221c8f1_23.conda - version: 5.0.1 -- category: main - dependencies: - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - kiwisolver: '>=1.0.1' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - packaging: '>=20.0' - pillow: '>=6.2.0' - pyparsing: '>=2.3.1' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.7' - python_abi: 3.10.* *_cp310 - tk: '>=8.6.12,<8.7.0a0' - hash: - md5: 68b2dd34c69d08b05a9db5e3596fe3ee - sha256: d2be8ac0a90aa12ba808f8777d1837b5aa983fc3c7c60c600e8fe6bd9352541c - manager: conda - name: matplotlib-base - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.7.1-py310he60537e_0.conda - version: 3.7.1 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.8.1' - python-tzdata: '>=2022a' - python_abi: 3.10.* *_cp310 - pytz: '>=2020.1' - hash: - md5: 38dd747dcb3403c0958c4f510ed4316e - sha256: 1757d0991592083172a63fc79a576dd16e94cb4a353da4d00ac7280806e5dd30 - manager: conda - name: pandas - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.0.0-py310h9b08913_0.conda - version: 2.0.0 -- category: main - dependencies: - python: '>=3.7' - typing-extensions: '>=4.5' - hash: - md5: f10c2cf447ca96f12a326b83c75b8e33 - sha256: 51816d5471cc42059cc7a8616c8899b6fda7347999359c3979fefd0035ab274c - manager: conda - name: platformdirs - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.2.0-pyhd8ed1ab_0.conda - version: 3.2.0 -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - cairo: '>=1.16.0,<2.0a0' - fontconfig: '>=2.14.2,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - gettext: '>=0.21.1,<1.0a0' - lcms2: '>=2.15,<3.0a0' - libcurl: '>=7.88.1,<8.0a0' - libgcc-ng: '>=12' - libglib: '>=2.74.1,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - nss: '>=3.89,<4.0a0' - openjpeg: '>=2.5.0,<3.0a0' - poppler-data: '' - hash: - md5: b00bc64aabfb7fa00f8a570e1d227d99 - sha256: 191baac5064e10bae6fd468be7e15ece7e50bb02df5878c83cb6550a231e2709 - manager: conda - name: poppler - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/poppler-23.03.0-hf052cbe_1.conda - version: 23.03.0 -- category: main - dependencies: - certifi: '' - libgcc-ng: '>=12' - proj: '>=9.1.1,<9.1.2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 149f0ca5c143206eb12ad5ef2a6457ab - sha256: c62a177174d19a3dcb53249e9b30d3836b242229779b5494a3c45fff20ba73a1 - manager: conda - name: pyproj - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.5.0-py310h15e2413_0.conda - version: 3.5.0 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - packaging: '' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - sip: '' - toml: '' - hash: - md5: d250de3c3013c210865cc033164d6b60 - sha256: c37c0647d463051f1647d8cce5b7ad1aa6a13fb5446ed110bdf590f5bfc51051 - manager: conda - name: pyqt5-sip - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.11.0-py311ha362b79_2.tar.bz2 - version: 12.11.0 -- category: main - dependencies: - colorama: '' - exceptiongroup: '' - importlib-metadata: '>=0.12' - iniconfig: '' - packaging: '' - pluggy: '>=0.12,<2.0' - python: '>=3.8' - tomli: '>=1.0.0' - hash: - md5: 425ee1712dbbb194edf0997d46202405 - sha256: 23c23a56db2c623d241e898999493e18c0ee97530700111a3adec7658cb6ce52 - manager: conda - name: pytest - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-7.3.0-pyhd8ed1ab_0.conda - version: 7.3.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openssl: '>=3.0.7,<4.0a0' - zlib: '' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 6d97164f19dbd27575ef1899b02dc1e0 - sha256: 406bf59089f80d553981a624c7c163b479f883f2f661a6aca3eb95aabebeb490 - manager: conda - name: tiledb - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.13.2-hd532e3d_0.conda - version: 2.13.2 -- category: main - dependencies: - packaging: '' - pandas: '>=1.0.5' - pyproj: '>=2.6.1.post1' - python: '>=3.8' - shapely: '>=1.7' - hash: - md5: cf04d066b97dfe698f0d01ebf4af6163 - sha256: 1c35e0191bc7d8dc2a545710c73324c8c07dc2636ec484df224e7c722eaa1985 - manager: conda - name: geopandas-base - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-base-0.12.2-pyha770c72_0.conda - version: 0.12.2 -- category: main - dependencies: - alsa-lib: '>=1.2.8,<1.2.9.0a0' - gettext: '>=0.21.1,<1.0a0' - gstreamer: 1.21.2 hd4edc92_0 - libgcc-ng: '>=12' - libglib: '>=2.74.1,<3.0a0' - libopus: '>=1.3.1,<2.0a0' - libpng: '>=1.6.38,<1.7.0a0' - libstdcxx-ng: '>=12' - libvorbis: '>=1.3.7,<1.4.0a0' - libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 52cbed7e92713cf01b76445530396695 - sha256: ad89ab25095820b88f93d675730f47fc3b3d9807fb9f653f21fee505af6cb7ec - manager: conda - name: gst-plugins-base - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.21.2-h3e40eee_0.conda - version: 1.21.2 -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - blosc: '>=1.21.3,<2.0a0' - cfitsio: '>=4.2.0,<4.2.1.0a0' - expat: '>=2.5.0,<3.0a0' - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - geotiff: '>=1.7.1,<1.8.0a0' - giflib: '>=5.2.1,<5.3.0a0' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - icu: '>=70.1,<71.0a0' - json-c: '>=0.16,<0.17.0a0' - kealib: '>=1.5.0,<1.6.0a0' - lerc: '>=4.0.0,<5.0a0' - libcurl: '>=7.88.1,<8.0a0' - libdeflate: '>=1.17,<1.18.0a0' - libgcc-ng: '>=12' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libkml: '>=1.3.0,<1.4.0a0' - libnetcdf: '>=4.9.1,<4.9.2.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libpq: '>=15.2,<16.0a0' - libspatialite: '>=5.0.1,<5.1.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libstdcxx-ng: '>=12' - libtiff: '>=4.5.0,<4.6.0a0' - libuuid: '>=2.32.1,<3.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openjpeg: '>=2.5.0,<3.0a0' - openssl: '>=3.0.8,<4.0a0' - pcre2: '>=10.40,<10.41.0a0' - poppler: '>=23.3.0,<23.4.0a0' - postgresql: '' - proj: '>=9.1.1,<9.1.2.0a0' - tiledb: '>=2.13.2,<2.14.0a0' - xerces-c: '>=3.2.4,<3.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 3f80f1ad7b15d5c497d0d70513934c39 - sha256: 051d1a5eb60c513c49e0b2c91ca5bd51829e349e7a5d63b4fc87948c841475d9 - manager: conda - name: libgdal - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.6.3-hb7af45b_0.conda - version: 3.6.3 -- category: main - dependencies: - cftime: '' - hdf5: '>=1.12.2,<1.12.3.0a0' - libgcc-ng: '>=12' - libnetcdf: '>=4.8.1,<4.8.2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - hash: - md5: 4dd7aa28fb7d9a6de061c9579a30e7dd - sha256: 9a81799b1c22ae749037919a534b14b172924358e036c1e50c1d27ffca645272 - manager: conda - name: netcdf4 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.6.2-nompi_py310h55e1e36_100.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - cryptography: '>=38.0.0,<41' - python: '>=3.6' - hash: - md5: 0b34aa3ab7e7ccb1765a03dd9ed29938 - sha256: 458428cb867f70f2af2a4ed59d382291ea3eb3f10490196070a15d1d71d5432a - manager: conda - name: pyopenssl - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyopenssl-23.1.1-pyhd8ed1ab_0.conda - version: 23.1.1 -- category: main - dependencies: - coverage: '>=5.2.1' - pytest: '>=4.6' - python: '>=3.6' - toml: '' - hash: - md5: c9e3f8bfdb9bfc34aa1836a6ed4b25d7 - sha256: 2e00bbdb00b2514faba50ddcb6ecf1d6e4f2d5af346f9cd1240aacb1b61dccb6 - manager: conda - name: pytest-cov - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.0.0-pyhd8ed1ab_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - libgcc-ng: '>=12' - libgdal: 3.6.3 hb7af45b_0 - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - openssl: '>=3.0.8,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: d07c064ef2e791be8967c97bc517ee0c - sha256: 357483a064d267dc7d5544facbbbbb0bbe725d1720c2f895e14386831398bf96 - manager: conda - name: gdal - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/gdal-3.6.3-py310hc1b7723_0.conda - version: 3.6.3 -- category: main - dependencies: - __glibc: '>=2.17,<3.0.a0' - alsa-lib: '>=1.2.8,<1.2.9.0a0' - dbus: '>=1.13.6,<2.0a0' - expat: '>=2.5.0,<3.0a0' - fontconfig: '>=2.14.1,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - gst-plugins-base: '>=1.21.2,<1.22.0a0' - gstreamer: '>=1.21.2,<1.22.0a0' - icu: '>=70.1,<71.0a0' - jpeg: '>=9e,<10a' - krb5: '>=1.19.3,<1.20.0a0' - libclang: '>=15.0.6,<16.0a0' - libclang13: '>=15.0.6' - libcups: '>=2.3.3,<2.4.0a0' - libevent: '>=2.1.10,<2.1.11.0a0' - libgcc-ng: '>=12' - libglib: '>=2.74.1,<3.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libpq: '>=15.1,<16.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libstdcxx-ng: '>=12' - libxcb: '>=1.13,<1.14.0a0' - libxkbcommon: '>=1.0.3,<2.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - mysql-libs: '>=8.0.31,<8.1.0a0' - nspr: '>=4.35,<5.0a0' - nss: '>=3.82,<4.0a0' - openssl: '>=3.0.7,<4.0a0' - pulseaudio: '>=16.1,<16.2.0a0' - xcb-util: '' - xcb-util-image: '' - xcb-util-keysyms: '' - xcb-util-renderutil: '' - xcb-util-wm: '' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 21aebd05a269577f91156c29be790c9e - sha256: 8f24d864266c032eb0e7f9a1d64dadcbe67f41ac8b73426ec651865c45e793d1 - manager: conda - name: qt-main - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.6-hafeba50_4.conda - version: 5.15.6 -- category: main - dependencies: - affine: '' - attrs: '' - certifi: '' - click: '>=4' - click-plugins: '' - cligj: '>=0.5' - libgcc-ng: '>=12' - libgdal: '>=3.6.0,<3.7.0a0' - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - proj: '>=9.1.0,<9.1.1.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '>=0.9.8' - snuggs: '>=1.4.1' - hash: - md5: e7d96b020ff846c1658afa1a08cee7bc - sha256: 1c798fd4a5b51f4e44dc634dc47c3e7ca6ff25edac78451e41b86c6a8289ace6 - manager: conda - name: rasterio - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.4-py310hfc14bbd_0.tar.bz2 - version: 1.3.4 -- category: main - dependencies: - brotlipy: '>=0.6.0' - certifi: '' - cryptography: '>=1.3.4' - idna: '>=2.0.0' - pyopenssl: '>=0.14' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: <4.0 - hash: - md5: 27db656619a55d727eaf5a6ece3d2fd6 - sha256: 213bdf6c3a5d721fa83b45d527d3ecd340f9547c0d6bbd0b8d9d746ec9a1fb4b - manager: conda - name: urllib3 - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.15-pyhd8ed1ab_0.conda - version: 1.26.15 -- category: main - dependencies: - attrs: '>=17' - click: '>=4.0' - click-plugins: '>=1.0' - cligj: '>=0.5' - gdal: '' - importlib-metadata: '' - libgcc-ng: '>=12' - libgdal: '>=3.6.3,<3.7.0a0' - libstdcxx-ng: '>=12' - munch: '' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - shapely: '' - six: '>=1.7' - hash: - md5: 612c0935aa627804826a1bd38694c0d3 - sha256: b5fb73ab2cba0329de9030abb109fc1a4bd12dd9c819674e39a8243a490c02ab - manager: conda - name: fiona - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.3-py310ha325b7b_0.conda - version: 1.9.3 -- category: main - dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - pyqt5-sip: 12.11.0 py311ha362b79_2 - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - qt-main: '>=5.15.6,<5.16.0a0' - sip: '>=6.7.2,<6.8.0a0' - hash: - md5: 5bf133633260e9d8d3f9a50ef78b49b2 - sha256: eba707ca93805a98fd1adff13a92a7bb12be02f74c0a2806fb286a50eae8a15c - manager: conda - name: pyqt - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.7-py311h3408d8f_2.tar.bz2 - version: 5.15.7 -- category: main - dependencies: - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - idna: '>=2.5,<4' - python: '>=3.7,<4.0' - urllib3: '>=1.21.1,<1.27' - hash: - md5: 3bfbd6ead1d7299ed46dab3a7bf0bc8c - sha256: 9a7c3410970217fa035cca7f72c175989e1c8b22f855b852b9d5fde07c3550dd - manager: conda - name: requests - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.28.2-pyhd8ed1ab_1.conda - version: 2.28.2 -- category: main - dependencies: - branca: '>=0.6.0' - jinja2: '>=2.9' - numpy: '' - python: '>=3.6' - requests: '' - hash: - md5: 48c8bb19df0d0268f1a9d30ffc56c5b0 - sha256: 60c51dacc4edb33ba02a7224ddec9d938200f89588eb34b0ccdffc96155795fe - manager: conda - name: folium - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/folium-0.14.0-pyhd8ed1ab_0.conda - version: 0.14.0 -- category: main - dependencies: - matplotlib-base: '>=3.6.2,<3.6.3.0a0' - pyqt: '>=5' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - tornado: '>=5' - hash: - md5: 190a1bc60c0f7053daad403fa745fef3 - sha256: 28312355e5fd4d353ccc5f1e1ca8b9682e8852903af74ed8d4a8db9d35c6d4c0 - manager: conda - name: matplotlib - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.6.2-py311h38be061_0.tar.bz2 - version: 3.6.2 -- category: main - dependencies: - packaging: '>=20.0' - platformdirs: '>=2.5.0' - python: '>=3.7' - requests: '>=2.19.0' - hash: - md5: 5936894aade8240c867d292aa0d980c6 - sha256: 64e4d633803df2e36fd141d9bf269568fbe179a313248e1dac4d364c02debdef - manager: conda - name: pooch - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/pooch-1.7.0-pyha770c72_3.conda - version: 1.7.0 -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=11.3.0' - liblapack: '>=3.9.0,<4.0a0' - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - pooch: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 4c9604c5ec179c21f8f0a09e3c164480 - sha256: b8c02af3b4ed2ed9567f5133e81b24efcb843713f7d5364145b299d1ec2da01e - manager: conda - name: scipy - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.10.1-py310h8deb116_0.conda - version: 1.10.1 -- category: main - dependencies: - joblib: '>=1.1.1' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - scipy: '' - threadpoolctl: '>=2.0.0' - hash: - md5: 7d06046647be68f5cbf331532d020a71 - sha256: 3514c45a29f44aa8c298af1c27a19764cd5ccf67033c65a7eca295ffcb50f86c - manager: conda - name: scikit-learn - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.2.2-py310h41b6a48_1.conda - version: 1.2.2 -- category: main - dependencies: - networkx: '' - numpy: '>=1.3' - pandas: '>=1.0' - python: '>=3.6' - scikit-learn: '' - scipy: '>=1.0' - hash: - md5: db1aeaff6e248db425e049feffded7a9 - sha256: 78aadbd9953976678b6e3298ac26a63cf9390a8794db3ff71f3fe5b6d13a35ca - manager: conda - name: mapclassify - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/mapclassify-2.5.0-pyhd8ed1ab_1.conda - version: 2.5.0 -- category: main - dependencies: - fiona: '' - folium: '' - geopandas-base: 0.12.2 pyha770c72_0 - mapclassify: '>=2.4.0' - matplotlib-base: '' - python: '>=3.8' - rtree: '' - xyzservices: '' - hash: - md5: ee3b330f13297f5839d46e1ca3e57d56 - sha256: 51660094efee2a74b24ab535e03005a6ddedc9e160c0d573cfaf2724312d171c - manager: conda - name: geopandas - optional: false - platform: linux-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-0.12.2-pyhd8ed1ab_0.conda - version: 0.12.2 -- category: main - dependencies: {} - hash: - md5: 37edc4e6304ca87316e160f5ca0bd1b5 - sha256: 60ba4c64f5d0afca0d283c7addba577d3e2efc0db86002808dadb0498661b2f2 - manager: conda - name: bzip2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h0d85af4_4.tar.bz2 - version: 1.0.8 -- category: main - dependencies: {} - hash: - md5: 00b3e98a61e6430808fe7a2534681f28 - sha256: 1cb663c9916aab52a90a80505fec8c1a89fab21f58f3c5a949a2f286e92cb16c - manager: conda - name: c-ares - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/c-ares-1.18.1-h0d85af4_0.tar.bz2 - version: 1.18.1 -- category: main - dependencies: {} - hash: - md5: af2bdcd68f16ce030ca957cdeb83d88a - sha256: 898276d86de89fb034ecfae05103045d0a0d6a356ced1b6d1832cdbd07a8fc18 - manager: conda - name: ca-certificates - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2022.12.7-h033912b_0.conda - version: 2022.12.7 -- category: main - dependencies: {} - hash: - md5: 0c96522c6bdaed4b1566d11387caaf45 - sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b - manager: conda - name: font-ttf-dejavu-sans-mono - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - version: '2.37' -- category: main - dependencies: {} - hash: - md5: 34893075a5c9e55cdafac56607368fc6 - sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c - manager: conda - name: font-ttf-inconsolata - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 - version: '3.000' -- category: main - dependencies: {} - hash: - md5: 4d59c254e01d9cde7957100457e2d5fb - sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139 - manager: conda - name: font-ttf-source-code-pro - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 - version: '2.038' -- category: main - dependencies: {} - hash: - md5: 19410c3df09dfb12d1206132a1d357c5 - sha256: 470d5db54102bd51dbb0c5990324a2f4a0bc976faa493b22193338adb9882e2e - manager: conda - name: font-ttf-ubuntu - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-hab24e00_0.tar.bz2 - version: '0.83' -- category: main - dependencies: {} - hash: - md5: 4fc494f8539871247167bbe4167f3277 - sha256: 8ef3816b290c09e313460f099d30984070766a700920265d3eb6f20106b574e3 - manager: conda - name: freexl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/freexl-1.0.6-hb7f2c08_1.tar.bz2 - version: 1.0.6 -- category: main - dependencies: {} - hash: - md5: aca150b0186836f893ebac79019e5498 - sha256: 47515e0874bcf67e438e1d5d093b074c1781f055067195f0d00a7790a56d446d - manager: conda - name: giflib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/giflib-5.2.1-hb7f2c08_3.conda - version: 5.2.1 -- category: main - dependencies: {} - hash: - md5: 60d90a3f5803660c5c2a2e9d883df0a6 - sha256: 3bb611fc9fa6a5669aa371ac8b10e0e420689f69f0b7993955d76d8ddddc5e5d - manager: conda - name: jpeg - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/jpeg-9e-hac89ed1_2.tar.bz2 - version: 9e -- category: main - dependencies: {} - hash: - md5: 6696477dbfcb5b7ea8559865e7f9dbef - sha256: 9db9901379d952a491f02f4325f3fb19ebb01b4dcc554472e4706a3d1d6abdad - manager: conda - name: json-c - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/json-c-0.16-h01d06f9_0.tar.bz2 - version: '0.16' -- category: main - dependencies: {} - hash: - md5: 37157d273eaf3bc7d6862104161d9ec9 - sha256: c983101653f5bffea605c4423d84fd5ca28ee36b290cdb6207ec246e293f7d94 - manager: conda - name: libbrotlicommon - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.0.9-hb7f2c08_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: {} - hash: - md5: afc5f19a789b39d1c3d8fcd88d57c6f5 - sha256: 6684ffa237a03ceb26f6f5821edacad4c89460a3321b141528c70fda92196252 - manager: conda - name: libcxx - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libcxx-16.0.1-h71dddab_0.conda - version: 16.0.1 -- category: main - dependencies: {} - hash: - md5: e3894420cf8b6abbf6c4d3d9742fbb4a - sha256: b322e190fd6fe631e1f4836ef99cbfb8352c03c30b51cb5baa216f7c9124d82e - manager: conda - name: libdeflate - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.17-hac1461d_0.conda - version: '1.17' -- category: main - dependencies: {} - hash: - md5: 79dc2be110b2a3d1e97ec21f691c50ad - sha256: c4154d424431898d84d6afb8b32e3ba749fe5d270d322bb0af74571a3cb09c6b - manager: conda - name: libev - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libev-4.33-haf1e3a3_1.tar.bz2 - version: '4.33' -- category: main - dependencies: {} - hash: - md5: 6c81cb022780ee33435cca0127dd43c9 - sha256: 80024bd9f44d096c4cc07fb2bac76b5f1f7553390112dab3ad6acb16a05f0b96 - manager: conda - name: libexpat - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.5.0-hf0c8a7f_1.conda - version: 2.5.0 -- category: main - dependencies: {} - hash: - md5: ccb34fb14960ad8b125962d3d79b31a9 - sha256: 7a2d27a936ceee6942ea4d397f9c7d136f12549d86f7617e8b6bad51e01a941f - manager: conda - name: libffi - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2 - version: 3.4.2 -- category: main - dependencies: {} - hash: - md5: 691d103d11180486154af49c037b7ed9 - sha256: 4a3294037d595754f7da7c11a41f3922f995aaa333f3cb66f02d8afa032a7bc2 - manager: conda - name: libiconv - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libiconv-1.17-hac89ed1_0.tar.bz2 - version: '1.17' -- category: main - dependencies: {} - hash: - md5: d7309a152b9b79799063b8bb47e34a3a - sha256: 38288e83201639983d3e158a1e8f638334298a0ca3a59dbb188651c874fd6077 - manager: conda - name: libjpeg-turbo - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-2.1.5.1-hb7f2c08_0.conda - version: 2.1.5.1 -- category: main - dependencies: {} - hash: - md5: 18981e4c840126d6118d8952485fea51 - sha256: 5ed0b7f127f578ddd28e3af86af278df8d5341416935a09ae772a57579cbb11b - manager: conda - name: libwebp-base - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.3.0-hb7f2c08_0.conda - version: 1.3.0 -- category: main - dependencies: {} - hash: - md5: 35eb3fce8d51ed3c1fd4122bad48250b - sha256: 0d954350222cc12666a1f4852dbc9bcf4904d8e467d29505f2b04ded6518f890 - manager: conda - name: libzlib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.2.13-hfd90126_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: {} - hash: - md5: 9ca35b33f7569472b5a16ef597cec793 - sha256: 1fa7212463d19f22e7c29bcdc3abf3c7333936dbc19f7fde8a2e22c18e292dc4 - manager: conda - name: llvm-openmp - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-16.0.1-h61d9ccf_0.conda - version: 16.0.1 -- category: main - dependencies: {} - hash: - md5: 76217ebfbb163ff2770a261f955a5861 - sha256: 9794a23d03586c99cac49d4ae3d5337faaa6bfc256b31d2662ff4ad5972be143 - manager: conda - name: ncurses - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.3-h96cf925_1.tar.bz2 - version: '6.3' -- category: main - dependencies: {} - hash: - md5: 09a583a6f172715be21d93aaa1b42d71 - sha256: 50646988679b823958bd99983a9e66fce58a7368fa2bab5712efb5c7ce6199af - manager: conda - name: pixman - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pixman-0.40.0-hbcb3906_0.tar.bz2 - version: 0.40.0 -- category: main - dependencies: {} - hash: - md5: d8d7293c5b37f39b2ac32940621c6592 - sha256: 2f227e17b3c0346112815faa605502b66c1c4511a856127f2899abf15a98a2cf - manager: conda - name: poppler-data - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda - version: 0.4.12 -- category: main - dependencies: {} - hash: - md5: addd19059de62181cd11ae8f4ef26084 - sha256: 6e3900bb241bcdec513d4e7180fe9a19186c1a38f0b4080ed619d26014222c53 - manager: conda - name: pthread-stubs - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-hc929b4f_1001.tar.bz2 - version: '0.4' -- category: main - dependencies: {} - hash: - md5: 42da9b0138e911cd5b2f75b0278e26dc - sha256: 0a66852c47be6b28b70bde29891a71d047730c723355d44b0da48db79fb99eb1 - manager: conda - name: python_abi - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.10-3_cp310.conda - version: '3.10' -- category: main - dependencies: {} - hash: - md5: a7ba8e96323b9d8ce4f0edc4f4dab27f - sha256: 0d4b111314bea267454f48691debc1ff4c0ce8cb91491d2be30381de498ac59e - manager: conda - name: tzcode - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/tzcode-2023c-hb7f2c08_0.conda - version: 2023c -- category: main - dependencies: {} - hash: - md5: 939e3e74d8be4dac89ce83b20de2492a - sha256: 0449138224adfa125b220154408419ec37c06b0b49f63c5954724325903ecf55 - manager: conda - name: tzdata - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2023c-h71feb2d_0.conda - version: 2023c -- category: main - dependencies: {} - hash: - md5: c5049997b2e98edfbcdd294582f66281 - sha256: 6dcdbfcdb87c21cb615cd1a0a7fab7e657a443c771e80c771524f7d9b8443304 - manager: conda - name: xorg-libxau - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.9-h35c211d_0.tar.bz2 - version: 1.0.9 -- category: main - dependencies: {} - hash: - md5: 86ac76d6bf1cbb9621943eb3bd9ae36e - sha256: 485421c16f03a01b8ed09984e0b2ababdbb3527e1abf354ff7646f8329be905f - manager: conda - name: xorg-libxdmcp - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.3-h35c211d_0.tar.bz2 - version: 1.1.3 -- category: main - dependencies: {} - hash: - md5: a72f9d4ea13d55d745ff1ed594747f10 - sha256: eb09823f34cc2dd663c0ec4ab13f246f45dcd52e5b8c47b9864361de5204a1c8 - manager: conda - name: xz - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2 - version: 5.2.6 -- category: main - dependencies: {} - hash: - md5: d7e08fcf8259d742156188e8762b4d20 - sha256: 5301417e2c8dea45b401ffee8df3957d2447d4ce80c83c5ff151fc6bfe1c4148 - manager: conda - name: yaml - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h0d85af4_2.tar.bz2 - version: 0.2.5 -- category: main - dependencies: - libexpat: 2.5.0 hf0c8a7f_1 - hash: - md5: e12630038077877cbb6c7851e139c17c - sha256: 15c04a5a690b337b50fb7550cce057d843cf94dd0109d576ec9bc3448a8571d0 - manager: conda - name: expat - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/expat-2.5.0-hf0c8a7f_1.conda - version: 2.5.0 -- category: main - dependencies: - font-ttf-dejavu-sans-mono: '' - font-ttf-inconsolata: '' - font-ttf-source-code-pro: '' - font-ttf-ubuntu: '' - hash: - md5: f766549260d6815b0c52253f1fb1bb29 - sha256: 53f23a3319466053818540bcdf2091f253cbdbab1e0e9ae7b9e509dcaa2a5e38 - manager: conda - name: fonts-conda-forge - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - libcxx: '>=14.0.6' - hash: - md5: b8ac0c20383087c33ac8e5e330072832 - sha256: 6e6bbc66cf21e23f13910b4c96847f8598b699ca52d2c735c8f57f354f91f2e6 - manager: conda - name: geos - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/geos-3.11.1-hf0c8a7f_0.tar.bz2 - version: 3.11.1 -- category: main - dependencies: - libiconv: '>=1.17,<2.0a0' - hash: - md5: 1e3aff29ce703d421c43f371ad676cc5 - sha256: 915d3cd2d777b9b3fc2e87a25901b8e4a6aa1b2b33cf2ba54e9e9ed4f6b67d94 - manager: conda - name: gettext - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/gettext-0.21.1-h8a4c099_0.tar.bz2 - version: 0.21.1 -- category: main - dependencies: - libcxx: '>=14.0.6' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: c13d8841112ba7f5931d1d60631394f3 - sha256: 74a309f9c885aa2b0acf4adb9a9bf6c6e8869496a6a8a79833a2796940ed0a1c - manager: conda - name: hdf4 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/hdf4-4.2.15-h9804679_6.conda - version: 4.2.15 -- category: main - dependencies: - libcxx: '>=12.0.1' - hash: - md5: 376635049e9b9b0bb875efd39dcd7b3b - sha256: 0807aa3fd93804ab239808d149e7f210a83e1c61bc59bb84818f4ef9f6036d86 - manager: conda - name: icu - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/icu-70.1-h96cf925_0.tar.bz2 - version: '70.1' -- category: main - dependencies: - libcxx: '>=13.0.1' - hash: - md5: f9d6a4c82889d5ecedec1d90eb673c55 - sha256: e41790fc0f4089726369b3c7f813117bbc14b533e0ed8b94cf75aba252e82497 - manager: conda - name: lerc - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - libcxx: '>=14.0.6' - hash: - md5: 7c0f82f435ab4c48d65dc9b28db2ad9e - sha256: 38d32f4c7efddc204e53f43cd910122d3e6a997de1a3cd15f263217b225a9cdf - manager: conda - name: libaec - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libaec-1.0.6-hf0c8a7f_1.conda - version: 1.0.6 -- category: main - dependencies: - libbrotlicommon: 1.0.9 hb7f2c08_8 - hash: - md5: 7f952a036d9014b4dab96c6ea0f8c2a7 - sha256: 52d8e8929b2476cf13fd397d88cefd911f805de00e77090fdc50b8fb11c372ca - manager: conda - name: libbrotlidec - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlidec-1.0.9-hb7f2c08_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libbrotlicommon: 1.0.9 hb7f2c08_8 - hash: - md5: b36a3bfe866d9127f25f286506982166 - sha256: be7e794c6208e7e12982872922df13fbf020ab594d516b7bc306a384ac7d3ac6 - manager: conda - name: libbrotlienc - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.0.9-hb7f2c08_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - ncurses: '>=6.2,<7.0.0a0' - hash: - md5: 6016a8a1d0e63cac3de2c352cd40208b - sha256: dbd3c3f2eca1d21c52e4c03b21930bbce414c4592f8ce805801575b9e9256095 - manager: conda - name: libedit - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20191231-h0678c8f_2.tar.bz2 - version: 3.1.20191231 -- category: main - dependencies: - llvm-openmp: '>=8.0.0' - hash: - md5: 5a544130e584b1f204ac896ff071d5b3 - sha256: 42ae06bbb3cf7f7c3194482894f4287fad7bc39214d1a0dbf0c43f8efb8d3c1a - manager: conda - name: libgfortran5 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-12.2.0-he409387_31.conda - version: 12.2.0 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 35e4928794c5391aec14ffdf1deaaee5 - sha256: 5ad9f5e96e6770bfc8b0a826f48835e7f337c2d2e9512d76027a62f9c120b2a3 - manager: conda - name: libpng - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.39-ha978bb4_0.conda - version: 1.6.39 -- category: main - dependencies: - libcxx: '>=11.1.0' - hash: - md5: b1c13764417c32fa87fac733caa82a64 - sha256: 443db45215e08fbf134a019486c20540d9903c1d9b14ac28ba299f8a730069da - manager: conda - name: libspatialindex - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libspatialindex-1.9.3-he49afe7_4.tar.bz2 - version: 1.9.3 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: ceb13b6726534b96e3b4e3dda91e9050 - sha256: ae19f866188cc0c514fed754468460ae9e8dd763ebbd7b7afc4e818d71844297 - manager: conda - name: libsqlite - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.40.0-ha978bb4_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - pthread-stubs: '' - xorg-libxau: '' - xorg-libxdmcp: '' - hash: - md5: eb7860935e14aec936065cbc21a1a962 - sha256: 00e962ea91deae3dbed221c960c3bffab4172d87bc883b615298333fe336a5c6 - manager: conda - name: libxcb - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.13-h0d85af4_1004.tar.bz2 - version: '1.13' -- category: main - dependencies: - libcxx: '>=14.0.6' - hash: - md5: aa04f7143228308662696ac24023f991 - sha256: 39aa0c01696e4e202bf5e337413de09dfeec061d89acd5f28e9968b4e93c3f48 - manager: conda - name: lz4-c - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/lz4-c-1.9.4-hf0c8a7f_0.conda - version: 1.9.4 -- category: main - dependencies: - libcxx: '>=14.0.6' - hash: - md5: a9e56c98d13d8b7ce72bf4357317c29b - sha256: da6e19bd0ff31e219760e647cfe1cc499a8cdfaff305f06c56d495ca062b86de - manager: conda - name: nspr - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/nspr-4.35-hea0b92c_0.conda - version: '4.35' -- category: main - dependencies: - ca-certificates: '' - hash: - md5: a7df3470c748a517663bf095c2ac0235 - sha256: 144050fa6d0a6e1239e9e46306edacd0008678ad0aae24dbffb8593792de85ca - manager: conda - name: openssl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.1.0-hfd90126_0.conda - version: 3.1.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - hash: - md5: e0f80c8f3a0352a54eddfe59cd2b25b1 - sha256: 60265b48c96decbea89a19a7bc34be88d9b95d4725fd4dbdae158529c601875a - manager: conda - name: pcre2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pcre2-10.40-h1c4e4bc_0.tar.bz2 - version: '10.40' -- category: main - dependencies: - ncurses: '>=6.3,<7.0a0' - hash: - md5: f17f77f2acf4d344734bda76829ce14e - sha256: 41e7d30a097d9b060037f0c6a2b1d4c4ae7e942c06c943d23f9d481548478568 - manager: conda - name: readline - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda - version: '8.2' -- category: main - dependencies: - libcxx: '>=14.0.6' - hash: - md5: 4320a8781f14cd959689b86e349f3b73 - sha256: 575915dc13152e446a84e2f88de70a14f8b6af1a870e708f9370bd4be105583b - manager: conda - name: snappy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/snappy-1.1.10-h225ccf5_0.conda - version: 1.1.10 -- category: main - dependencies: - libzlib: '>=1.2.11,<1.3.0a0' - hash: - md5: 8e9480d9c47061db2ed1b4ecce519a7f - sha256: 331aa1137a264fd9cc905f04f09a161c801fe504b93da08b4e6697bd7c9ae6a6 - manager: conda - name: tk - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.12-h5dbffcc_0.tar.bz2 - version: 8.6.12 -- category: main - dependencies: - libzlib: 1.2.13 hfd90126_4 - hash: - md5: be90e6223c74ea253080abae19b3bdb1 - sha256: 9db69bb5fc3e19093b550e25d1158cdf82f4f8eddc1f80f8d7d9de33eb8535a4 - manager: conda - name: zlib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/zlib-1.2.13-hfd90126_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: - libcxx: '>=14.0.6' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 40a188783d3c425bdccc9ae9104acbb8 - sha256: f845dafb0b488703ce81e25b6f27ed909ee9061b730c172e6b084fcf7156231f - manager: conda - name: zstd - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.2-hbc0c0cd_6.conda - version: 1.5.2 -- category: main - dependencies: - libcxx: '>=14.0.6' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - snappy: '>=1.1.9,<2.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 2e726e782e57ba3e70f2e85891377cd5 - sha256: 7a7b353be94c36461eacf181b574a0154a00f49d449c4b4046f332f132778959 - manager: conda - name: blosc - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/blosc-1.21.2-hebb52c4_0.conda - version: 1.21.2 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - icu: '>=70.1,<71.0a0' - libcxx: '>=12.0.1' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 6bd95c41e38d1f7e83e4be3619245807 - sha256: 5db86a66a10d4dc201a16f6613c7af0215bada1f858e03e92c31d1f2dcea045a - manager: conda - name: boost-cpp - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/boost-cpp-1.78.0-h31500c2_2.conda - version: 1.78.0 -- category: main - dependencies: - libbrotlidec: 1.0.9 hb7f2c08_8 - libbrotlienc: 1.0.9 hb7f2c08_8 - hash: - md5: aac5ad0d8f747ef7f871508146df75d9 - sha256: 36f79eb26da032c5d1ddc11e0bcac5526f249bf60d332e4743c8d48bb7334db0 - manager: conda - name: brotli-bin - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.0.9-hb7f2c08_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - fonts-conda-forge: '' - hash: - md5: fee5683a3f04bd15cbd8318b096a27ab - sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61 - manager: conda - name: fonts-conda-ecosystem - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 852224ea3e8991a8342228eab274840e - sha256: 0aea2b93d0da8bf022501857de93f2fc0e362fabcd83c4579be8d8f5bc3e17cb - manager: conda - name: freetype - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h3f81eb7_1.conda - version: 2.12.1 -- category: main - dependencies: - libcxx: '>=14.0.6' - libedit: '>=3.1.20191231,<4.0a0' - openssl: '>=3.0.7,<4.0a0' - hash: - md5: db11fa2968ef0837288fe2d7f5b77a50 - sha256: 41cfbf4c5cdb4a32eb5319943113d7ef1edb894ea0a5464233e510b59450c824 - manager: conda - name: krb5 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/krb5-1.20.1-h049b76e_0.conda - version: 1.20.1 -- category: main - dependencies: - libgfortran5: '' - hash: - md5: 97451338600bd9c5b535eb224ef6c471 - sha256: 55d3c81ce8cd931260c3cb8c85868e36223d2bd0d5e2f35a79503810ee172769 - manager: conda - name: libgfortran - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-11_3_0_h97931a8_31.conda - version: 5.0.0 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - libcxx: '>=14.0.4' - libffi: '>=3.4,<4.0a0' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - pcre2: '>=10.40,<10.41.0a0' - hash: - md5: 68a698fe240032c2ff587028ed51b155 - sha256: f9e2d0453b5ebc35022bc50c210728e56169ccd4fc2c5c9773dcb228a58868b0 - manager: conda - name: libglib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libglib-2.74.1-h4c723e1_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - c-ares: '>=1.18.1,<2.0a0' - libcxx: '>=14.0.6' - libev: '>=4.33,<4.34.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - hash: - md5: 12ac7d100bf260263e30a019517f42a2 - sha256: 093e4f3f62b3b07befa403e84a1f550cffe3b3961e435d42a75284f44be5f68a - manager: conda - name: libnghttp2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libnghttp2-1.52.0-he2ab024_0.conda - version: 1.52.0 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - libcxx: '>=14.0.6' - hash: - md5: cbf6767a38ffbc9be29cf26045e81faf - sha256: 16b4ac4a136411cac709a88dabc628bc9ca4971ba31820b29a67a13788a79db3 - manager: conda - name: librttopo - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/librttopo-1.1.0-h9461dca_12.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: 5a28624eeb7812b585b9e2d75f846ba2 - sha256: 3261dc7fa9cb928e8a0da4857b89bdd3e965766a6cd5b6456d4407cba6b25402 - manager: conda - name: libssh2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libssh2-1.10.0-h47af595_3.tar.bz2 - version: 1.10.0 -- category: main - dependencies: - lerc: '>=4.0.0,<5.0a0' - libcxx: '>=14.0.6' - libdeflate: '>=1.17,<1.18.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libwebp-base: '>=1.2.4,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 2a8205156778648e2663c906f83800c5 - sha256: 405b80ac8959d6e414f19630ff32dbc8ed1cd80e4490363e96fdea85bd6dcf19 - manager: conda - name: libtiff - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.5.0-hd920806_5.conda - version: 4.5.0 -- category: main - dependencies: - icu: '>=70.1,<71.0a0' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - hash: - md5: 2101dd548f0601be252e27e48fa532fa - sha256: e87dcf8c9af3451dad6c7cb2936a3d9843ee25561a3e25277e7ec835c0efe9c4 - manager: conda - name: libxml2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.10.3-h201ad9d_4.conda - version: 2.10.3 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - hash: - md5: ce732d37e479919f3d22b1ccdeb858ac - sha256: 1f8399c3d70a25b74fb682cdd32d50814aa3728b152192c7aef7d7fd7a215f8c - manager: conda - name: libzip - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libzip-1.9.2-h6db710c_1.tar.bz2 - version: 1.9.2 -- category: main - dependencies: - libcxx: '>=14.0.6' - libsqlite: '>=3.40.0,<4.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - nspr: '>=4.35,<5.0a0' - hash: - md5: 1eb1408ecae62d98a902636d46f5595c - sha256: 284f9d58f678e82a742aecff60fced40cc944f37e13b42887b364c294abe690e - manager: conda - name: nss - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/nss-3.89-h78b00b3_0.conda - version: '3.89' -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libffi: '>=3.4,<4.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.3,<7.0a0' - openssl: '>=3.1.0,<4.0a0' - readline: '>=8.2,<9.0a0' - tk: '>=8.6.12,<8.7.0a0' - tzdata: '' - xz: '>=5.2.6,<6.0a0' - hash: - md5: 6275017d92bafed547c9314e0d43920d - sha256: 5230c0161b035bd0d8cb2e4919a7405ef5e4c6f90ef6731e644abe255ea33978 - manager: conda - name: python - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.10-he7542f4_0_cpython.conda - version: 3.10.10 -- category: main - dependencies: - libsqlite: 3.40.0 ha978bb4_0 - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.3,<7.0a0' - readline: '>=8.1.2,<9.0a0' - hash: - md5: b66b0b11f1b901f3c2bce9406bedfd40 - sha256: 6dac7b1a5b2111a0781735050b3cf8dd1dbbf0253b0bd857863c1d9e6e26beab - manager: conda - name: sqlite - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/sqlite-3.40.0-h9ae0607_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 466dc5c1b75c93180efbd81d99dc29b0 - sha256: f3d58687fb000acc5d5f773d6e633ffb382575895abbc8db3d9b8e3996b05d39 - manager: conda - name: affine - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/affine-2.3.1-pyhd8ed1ab_0.tar.bz2 - version: 2.3.1 -- category: main - dependencies: - python: '' - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - manager: conda - name: appdirs - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - python: '>=3.5' - hash: - md5: 8b76db7818a4e401ed4486c4c1635cd9 - sha256: 3a58d4a4933fa8735471c782d35326ab78e0bcfce84756408515f82a94e4dec4 - manager: conda - name: attrs - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/attrs-22.2.0-pyh71513ae_0.conda - version: 22.2.0 -- category: main - dependencies: - brotli-bin: 1.0.9 hb7f2c08_8 - libbrotlidec: 1.0.9 hb7f2c08_8 - libbrotlienc: 1.0.9 hb7f2c08_8 - hash: - md5: 55f612fe4a9b5f6ac76348b6de94aaeb - sha256: 1272426370f1e8db1a8b245a7b522afe27413b09eab169990512a7676b802e3b - manager: conda - name: brotli - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/brotli-1.0.9-hb7f2c08_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: fb9addc3db06e56abe03e0e9f21a63e6 - sha256: 5e22af4776700200fab2c1df41a2188ab9cfe90a50c4f388592bb978562c88ec - manager: conda - name: certifi - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2022.12.7-pyhd8ed1ab_0.conda - version: 2022.12.7 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7fcff9f6f123696e940bda77bd4d6551 - sha256: 06cd371fc98f076797d6450f6f337cb679b1060c99680fb7e044591493333194 - manager: conda - name: charset-normalizer - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.1.0-pyhd8ed1ab_0.conda - version: 3.1.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 3faab06a954c2a04039983f2c4a50d99 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - manager: conda - name: colorama - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - version: 0.4.6 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a50559fad0affdbb33729a68669ca1cb - sha256: 3b594bc8aa0b9a51269d54c7a4ef6af777d7fad4bee16b05695e1124de6563f6 - manager: conda - name: cycler - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.11.0-pyhd8ed1ab_0.tar.bz2 - version: 0.11.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7312299d7a0ea4993159229b7d2dceb2 - sha256: f073c3ba993912f1c0027bc34a54975642885f0a4cd5f9dc42a17ca945df2c18 - manager: conda - name: exceptiongroup - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.1-pyhd8ed1ab_0.conda - version: 1.1.1 -- category: main - dependencies: - expat: '>=2.5.0,<3.0a0' - freetype: '>=2.12.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 86cc5867dfbee4178118392bae4a3c89 - sha256: f63e6d1d6aef8ba6de4fc54d3d7898a153479888d40ffdf2e4cfad6f92679d34 - manager: conda - name: fontconfig - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/fontconfig-2.14.2-h5bb23bf_0.conda - version: 2.14.2 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 6880e7100ebae550a33ce26663316d85 - sha256: 41cb296c4513bc72c687a4beaf0c59719bb900fe0ab6d822ff8b31c4dad38b63 - manager: conda - name: geographiclib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/geographiclib-1.52-pyhd8ed1ab_0.tar.bz2 - version: '1.52' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 34272b248891bddccc64479f9a7fffed - sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09 - manager: conda - name: idna - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2 - version: '3.4' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: f800d2da156d08e289b14e87e43c1ae5 - sha256: 38740c939b668b36a50ef455b077e8015b8c9cf89860d421b3fff86048f49666 - manager: conda - name: iniconfig - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda - version: 2.0.0 -- category: main - dependencies: - libcxx: '>=14.0.4' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: cc358fb878ac593c60cea08b28ac7423 - sha256: 6b48d27a14c68978d7bfd4e676a366db64264edd7d7bb5545e9c54aee2a8aea4 - manager: conda - name: kiwisolver - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.4-py310ha23aa8a_1.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - hash: - md5: f1df9b0c2d9fbe985e62f4b24773a9e4 - sha256: 5154e12ea600a0008ddb76a02e3f6edb373bf8c3eef47f7dd052d66b8d2fc35a - manager: conda - name: lcms2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.15-h2dcdeff_1.conda - version: '2.15' -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libnghttp2: '>=1.52.0,<2.0a0' - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.1.0,<4.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 1973ff6a22194ece3cb15caddf26db7c - sha256: 9f65ca0acfd50b3d5b68345cd6548a88c3d2687075d1b170ee47b07219fa79ff - manager: conda - name: libcurl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libcurl-7.88.1-h6df9250_1.conda - version: 7.88.1 -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - expat: '>=2.4.8,<3.0a0' - libcxx: '>=14.0.4' - libzlib: '>=1.2.12,<1.3.0a0' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: f1a092ddaedbde48dcf62a9455ce7e31 - sha256: 8ab0f6094e27d7fce097a83fccca60aa0dd5055a46335386e3fd4b417bc24d33 - manager: conda - name: libkml - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libkml-1.3.0-haeb80ef_1015.tar.bz2 - version: 1.3.0 -- category: main - dependencies: - libgfortran: 5.* - libgfortran5: '>=11.3.0' - llvm-openmp: '>=14.0.4' - hash: - md5: 968c46aa7f4032c3f3873f3452ed4c34 - sha256: a5a0b6ccef165ffb38e6a53e7b8808e33c77e081174315d2333ae93b593ae957 - manager: conda - name: libopenblas - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.21-openmp_h429af6e_3.tar.bz2 - version: 0.3.21 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - hash: - md5: 411d9cd4559a2f2b7ec37fb4932fe9b9 - sha256: bd37d2594e05592a25044bd5a340183a0f9c78638d9cf57673e330f114fc5a5a - manager: conda - name: libpq - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libpq-15.2-h3640bf0_0.conda - version: '15.2' -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 632a71feccc9f651c844c402efe61884 - sha256: cfba42cf3992305d44a3f80e39f0c8fc39a110307e6f2d7ff6ab42a6c8b1a1a1 - manager: conda - name: loguru - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/loguru-0.7.0-py310h2ec42d9_0.conda - version: 0.7.0 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: a230aa9172440ace9a1b33a74f7b6fbd - sha256: d71c23929c40f9fb1ed3dc03005ce720e091fd92559d649358f77a55b987f948 - manager: conda - name: markupsafe - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-2.1.2-py310h90acd4f_0.conda - version: 2.1.2 -- category: main - dependencies: - python: '' - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - manager: conda - name: munkres - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - version: 1.1.4 -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 254f787d5068bc89f578bf63893ce8b4 - sha256: 6b955c8530985fa727ad3323653a54af44ecf453cfdb1b549b3edff609bd3728 - manager: conda - name: networkx - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/networkx-3.1-pyhd8ed1ab_0.conda - version: '3.1' -- category: main - dependencies: - libcxx: '>=14.0.6' - libpng: '>=1.6.39,<1.7.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 299a29af9ac9f550ad459d655739280b - sha256: 2375eafbd5241d8249fb467e2a8e190646e8798c33059c72efa60f197cdf4944 - manager: conda - name: openjpeg - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.0-h13ac156_2.conda - version: 2.5.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 1ff2e3ca41f0ce16afec7190db28288b - sha256: 00288f5e5e841711e8b8fef1f1242c858d8ef99ccbe5d7e0df4789d5d8d40645 - manager: conda - name: packaging - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.0-pyhd8ed1ab_0.conda - version: '23.0' -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 7d301a0d25f424d96175f810935f0da9 - sha256: c25e1757e4e90638bb1e778aba3ee5f3c01fae9752e3c3929f9be7d367f6c7f3 - manager: conda - name: pluggy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pluggy-1.0.0-pyhd8ed1ab_5.tar.bz2 - version: 1.0.0 -- category: main - dependencies: - python: 2.7.*|>=3.4 - hash: - md5: 076becd9e05608f8dc72757d5f3a91ff - sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc - manager: conda - name: pycparser - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2 - version: '2.21' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: e8fbc1b54b25f4b08281467bc13b70cc - sha256: 4acc7151cef5920d130f2e0a7615559cce8bfb037aeecb14d4d359ae3d9bc51b - manager: conda - name: pyparsing - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.0.9-pyhd8ed1ab_0.tar.bz2 - version: 3.0.9 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 2590495f608a63625e165915fb4e2e34 - sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6 - manager: conda - name: python-tzdata - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: d3076b483092a435832603243567bc31 - sha256: e4999484f21763ca4b8f92c95b22cb6d1edc1b61d0a2bb073ee2bd11f39401b9 - manager: conda - name: pytz - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - yaml: '>=0.2.5,<0.3.0a0' - hash: - md5: e0ba2009f52ccda088c63dedf0d1c5ec - sha256: ab7b2b8fef9adc4211834054d004f3e286161bb3e1dcb17d4b974fae4f87b31b - manager: conda - name: pyyaml - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0-py310h90acd4f_5.tar.bz2 - version: '6.0' -- category: main - dependencies: - libspatialindex: '>=1.9.3,<1.9.4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 621e20dd837cb895f3bccaa7ade9e1dd - sha256: 556c17bb30b4eee6e31ad4fdb6ae0dcb08bb78e6e0dc3d782dd2f856156b6727 - manager: conda - name: rtree - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/rtree-1.0.1-py310had9ce37_1.tar.bz2 - version: 1.0.1 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 6c443cccff3daa3d83b2b807b0a298ce - sha256: 6595024174d318848468c0e61899ff3c2f08a3545c85727b9a2871d6f8d0062a - manager: conda - name: setuptools - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/setuptools-67.6.1-pyhd8ed1ab_0.conda - version: 67.6.1 -- category: main - dependencies: - python: '' - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - manager: conda - name: six - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a2995ee828f65687ac5b1e71a2ab1e0c - sha256: c7a964811ba49c545236f7d6c2486b2ed493931660048a06fe94ecc851dd0b82 - manager: conda - name: threadpoolctl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2 - version: 3.1.0 -- category: main - dependencies: - python: '>=2.7' - hash: - md5: f832c45a477c78bebd107098db465095 - sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1 - manager: conda - name: toml - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2 - version: 0.10.2 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 5844808ffab9ebdb694585b50ba02a96 - sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f - manager: conda - name: tomli - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2 - version: 2.0.1 -- category: main - dependencies: - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - hash: - md5: bc9918caedfa2de9e582104bf605d57d - sha256: 9cb49c8450de7d7b954485d0e35fa9d97ab98559ce2687b5d2743a446dc60177 - manager: conda - name: tornado - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.2-py311h5547dcb_1.tar.bz2 - version: '6.2' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 43e7d9e50261fb11deb76e17d8431aac - sha256: f81eee64fcdfb379e27d01773b34041fbf7f9e86f33b157c9925d19e0a442452 - manager: conda - name: typing_extensions - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.5.0-pyha770c72_0.conda - version: 4.5.0 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: b62adca3645b3bbc46940d5b1833d59b - sha256: 69e8397a2ee493eef2ccde8d5d877886a89be887111a6fc276fb27b6a86c4131 - manager: conda - name: unicodedata2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/unicodedata2-15.0.0-py310h90acd4f_0.tar.bz2 - version: 15.0.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 49bb0d9e60ce1db25e151780331bb5f3 - sha256: 79b4d29b0c004014a2abd5fc2c9fcd35cc6256222b960c2a317a27c4b0d8884d - manager: conda - name: wheel - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.40.0-pyhd8ed1ab_0.conda - version: 0.40.0 -- category: main - dependencies: - __win: '' - python: '>=3.6' - hash: - md5: 30878ecc4bd36e8deeea1e3c151b2e0b - sha256: a11ae693a0645bf6c7b8a47bac030be9c0967d0b1924537b9ff7458e832c0511 - manager: conda - name: win_inet_pton - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyhd8ed1ab_6.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: df61644536ee98e50e1e022489588b32 - sha256: 295003c201788280aa9b9a201333c07154837f7ecb3f1eda94b609e4a4d88872 - manager: conda - name: xyzservices - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/xyzservices-2023.2.0-pyhd8ed1ab_0.conda - version: 2023.2.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 13018819ca8f5b7cc675a8faf1f5fedf - sha256: 241de30545299be9bcea3addf8a2c22a3b3d4ba6730890e150ab690ac937a3d2 - manager: conda - name: zipp - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.15.0-pyhd8ed1ab_0.conda - version: 3.15.0 -- category: main - dependencies: - fontconfig: '>=2.13.96,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - icu: '>=70.1,<71.0a0' - libglib: '>=2.72.1,<3.0a0' - libpng: '>=1.6.38,<1.7.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - pixman: '>=0.40.0,<1.0a0' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 2e7b4350178ed52bb6fd2b1ecbeeed4f - sha256: a41a819cf32b87492098332c9f2a2c4b1055489efdad4a8be75a086ffc8573c5 - manager: conda - name: cairo - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/cairo-1.16.0-h904041c_1014.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - libffi: '>=3.4,<4.0a0' - pycparser: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 652082e4a6cf9d26e43d0d362590c276 - sha256: 67aa2bf58a98ed9e5bd693233f1de3cf7d499e9520dec7cbea0ee71e4d8f6895 - manager: conda - name: cffi - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.15.1-py310ha78151a_3.conda - version: 1.15.1 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libcurl: '>=7.86.0,<8.0a0' - libgfortran: 5.* - libgfortran5: '>=11.3.0' - libzlib: '>=1.2.13,<1.3.0a0' - hash: - md5: 28e03cefd79aa28ec0e313e5a9c71f5b - sha256: 9e4746e64dd54030777ee77f6cb729374e877da2322236c10563dff27b877660 - manager: conda - name: cfitsio - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/cfitsio-4.2.0-hd56cc12_0.conda - version: 4.2.0 -- category: main - dependencies: - __win: '' - colorama: '' - python: '>=3.8' - hash: - md5: 6b58680207b526c42dcff68b543803dd - sha256: 84e80a33e9a8e5398d3e97209366b57f635462a5b894f8076ec8c95e56672c44 - manager: conda - name: click - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.3-win_pyhd8ed1ab_2.tar.bz2 - version: 8.1.3 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tomli: '' - hash: - md5: 9f94502ef01e951d4136bf1b895905f6 - sha256: f7fee60d4256f2dbbabbaf8cd8e9691d62bbf98929d993dacbad974801b28427 - manager: conda - name: coverage - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/coverage-7.2.3-py310h90acd4f_0.conda - version: 7.2.3 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libcurl: 7.88.1 h6df9250_1 - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.1.0,<4.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 2cf75b9fb10c82425c94e12273ac7791 - sha256: 1419d559cd315de0fb82aa535d9f7789b663351503bbe55bdea28379311ef869 - manager: conda - name: curl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/curl-7.88.1-h6df9250_1.conda - version: 7.88.1 -- category: main - dependencies: - brotli: '' - munkres: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - unicodedata2: '>=14.0.0' - hash: - md5: bd5352a044be0a2ac87981439307dd1c - sha256: 917517093fcd4695f7e563d79753801a2ea3f145b84b3401e4e9b63a3cca0268 - manager: conda - name: fonttools - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.39.3-py310h90acd4f_0.conda - version: 4.39.3 -- category: main - dependencies: - geographiclib: <2,>=1.49 - python: '>=3.5' - hash: - md5: 529faeecd6eee3a3b782566ddf05ce92 - sha256: 98e34031f7e0b0f32edb8208762fd4f919cc6cc2f90daf16519125d8e075ad30 - manager: conda - name: geopy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopy-2.3.0-pyhd8ed1ab_0.tar.bz2 - version: 2.3.0 -- category: main - dependencies: - libaec: '>=1.0.6,<2.0a0' - libcurl: '>=7.87.0,<8.0a0' - libcxx: '>=13.0.1' - libgfortran: 5.* - libgfortran5: '>=9.5.0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.7,<4.0a0' - hash: - md5: 2ee4811ba5f72f7f12f69b3ec2d6cd96 - sha256: 8a74bdb6ca70ce7d702652e3e670cef2384b25a0fbe97b5abaab7df60aaf2b2d - manager: conda - name: hdf5 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/hdf5-1.12.2-nompi_h48135f9_101.conda - version: 1.12.2 -- category: main - dependencies: - python: '>=3.8' - zipp: '>=0.5' - hash: - md5: c63decd397ca639c4b17f6ea5d26bd4d - sha256: 26a56c66c95389e9e2bd95e88f023fd94d4a60e4817bcbe4103f6220d0c17d86 - manager: conda - name: importlib-metadata - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.3.0-pyha770c72_0.conda - version: 6.3.0 -- category: main - dependencies: - markupsafe: '>=2.0' - python: '>=3.7' - hash: - md5: c8490ed5c70966d232fdd389d0dbed37 - sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5 - manager: conda - name: jinja2 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2 - version: 3.1.2 -- category: main - dependencies: - python: '>=3.6' - setuptools: '' - hash: - md5: 7583652522d71ad78ba536bba06940eb - sha256: 0c21351871df2c0a53168575597dd9c881e2a9fa4c42fe89a9bcd7fab37f462c - manager: conda - name: joblib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2 - version: 1.2.0 -- category: main - dependencies: - libopenblas: '>=0.3.21,<1.0a0' - hash: - md5: 644d63e9379867490b67bace400b2a0f - sha256: 7678dab49b552957ddfa1fc5ddf3a09963c788bca81adb0cd9626f6385e205c5 - manager: conda - name: libblas - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-16_osx64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - python: '' - setuptools: '>=17.1' - six: '' - hash: - md5: 31d9e9be500e25ff0050bc9f57a6bcd7 - sha256: bd885bec8b012abf0c5ca5d6225caf0e88e5b2b0af8fa5a4e4d339604d3e9cd1 - manager: conda - name: munch - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/munch-2.5.0-py_0.tar.bz2 - version: 2.5.0 -- category: main - dependencies: - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.15,<3.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openjpeg: '>=2.5.0,<3.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tk: '>=8.6.12,<8.7.0a0' - hash: - md5: 5a5b74765d219a5d623a61db36dd2192 - sha256: c00d5133994f168d03f7eb49e6f63cfbb34e71f77425eb2b78d145c715db7695 - manager: conda - name: pillow - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pillow-9.5.0-py310h6b2f720_0.conda - version: 9.5.0 -- category: main - dependencies: - python: '>=3.7' - setuptools: '' - wheel: '' - hash: - md5: 8025ca83b8ba5430b640b83917c2a6f7 - sha256: e1698cbf4964cd60a2885c0edbc654133cd0db5ac4cb568412250e577dbc42ad - manager: conda - name: pip - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pip-23.0.1-pyhd8ed1ab_0.conda - version: 23.0.1 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libpq: 15.2 h3640bf0_0 - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - readline: '>=8.1.2,<9.0a0' - tzcode: '' - tzdata: '' - zlib: '' - hash: - md5: 4ffe00143090158bb7f5fc2f4f1a920c - sha256: 1cbd0cadcb64df486431a7b6cc63f26258fba6c02bfa21b719430aa63b0f6082 - manager: conda - name: postgresql - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/postgresql-15.2-hbea33b9_0.conda - version: '15.2' -- category: main - dependencies: - libcurl: '>=7.87.0,<8.0a0' - libcxx: '>=14.0.6' - libsqlite: '>=3.40.0,<4.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - sqlite: '' - hash: - md5: 96d16a3411f40f30f622f7594ddae222 - sha256: 05046230792b60895b23ebd715b8075ac390e2de507bf7d6cebd49648f986dc1 - manager: conda - name: proj - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/proj-9.1.1-hf909084_2.conda - version: 9.1.1 -- category: main - dependencies: - __win: '' - python: '>=3.8' - win_inet_pton: '' - hash: - md5: 56cd9fe388baac0e90c7149cfac95b60 - sha256: b3a612bc887f3dd0fb7c4199ad8e342bd148cf69a9b74fd9468a18cf2bef07b7 - manager: conda - name: pysocks - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2 - version: 1.7.1 -- category: main - dependencies: - python: '>=3.6' - six: '>=1.5' - hash: - md5: dd999d1cc9f79e67dbb855c8924c7984 - sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da - manager: conda - name: python-dateutil - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2 - version: 2.8.2 -- category: main - dependencies: - typing_extensions: 4.5.0 pyha770c72_0 - hash: - md5: b3c594fde1a80a1fc3eb9cc4a5dfe392 - sha256: 6da5e15fa533620ae2e7aca9a7d16013eed3a73ac64c47d7c3bf3deec39b63b9 - manager: conda - name: typing-extensions - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.5.0-hd8ed1ab_0.conda - version: 4.5.0 -- category: main - dependencies: - icu: '>=70.1,<71.0a0' - libcurl: '>=7.85.0,<8.0a0' - libcxx: '>=14.0.4' - hash: - md5: da5951ed1609c4fdd135db32c4c8ef36 - sha256: eadb97d75fb8d375474c31d9f3c622869a2413be5c048d3a830e1e4482d65283 - manager: conda - name: xerces-c - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/xerces-c-3.2.4-h2007e90_1.tar.bz2 - version: 3.2.4 -- category: main - dependencies: - jinja2: '' - python: '>=3.7' - setuptools: '' - hash: - md5: f4cc65697763ef8c2f7555f1ec355a6b - sha256: 46175d4dd94e458b2c5303a4cd816db6c45ff302b1b1852c1fd37411ce171f05 - manager: conda - name: branca - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/branca-0.6.0-pyhd8ed1ab_0.tar.bz2 - version: 0.6.0 -- category: main - dependencies: - cffi: '>=1.0.0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 63accc45f2b9ae1dad4db9cdfaa903b4 - sha256: de6e5b17631ef35c6acaeec0ba0143d0e77e0970704f0a3e947a5d59364f3c4a - manager: conda - name: brotlipy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/brotlipy-0.7.0-py310h90acd4f_1005.tar.bz2 - version: 0.7.0 -- category: main - dependencies: - click: '>=3.0' - python: '' - hash: - md5: 4fd2c6b53934bd7d96d1f3fdaf99b79f - sha256: ddef6e559dde6673ee504b0e29dd814d36e22b6b9b1f519fa856ee268905bf92 - manager: conda - name: click-plugins - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2 - version: 1.1.1 -- category: main - dependencies: - click: '>=4.0' - python: <4.0 - hash: - md5: a29b7c141d6b2de4bb67788a5f107734 - sha256: 97bd58f0cfcff56a0bcda101e26f7d936625599325beba3e3a1fa512dd7fc174 - manager: conda - name: cligj - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2 - version: 0.7.2 -- category: main - dependencies: - cffi: '>=1.12' - openssl: '>=3.1.0,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: d3687f7b12caf352e5462b14941a31fa - sha256: 7c8bdf79acd89d312d1b3c331983e37f5d9c499ed58d5f7957702811e8ce6975 - manager: conda - name: cryptography - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/cryptography-40.0.1-py310hdd0c95c_0.conda - version: 40.0.1 -- category: main - dependencies: - libcxx: '>=14.0.6' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - zlib: '' - hash: - md5: 2d28a0243deb2f3c1186d1753cc5f510 - sha256: 56653053052df3b797889fb0e53669a9969a2d426be6f2dd69c35eb3c82607a4 - manager: conda - name: geotiff - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/geotiff-1.7.1-h6d03f96_7.conda - version: 1.7.1 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - libcxx: '>=14.0.6' - hash: - md5: 4aab67daf291f97462a5a947aaad48ea - sha256: a61bfc6b1977a2d31d749b8061a9de93603326d1215ece0d6096fab10a735947 - manager: conda - name: kealib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/kealib-1.5.0-h5c1f988_0.conda - version: 1.5.0 -- category: main - dependencies: - libblas: 3.9.0 16_osx64_openblas - hash: - md5: 28592eab0f05bcf9969789e87f754e11 - sha256: 072a214ab1d596b99b985773bdb6f6e5f38774c7f73d70962700e0fc0d77d91f - manager: conda - name: libcblas - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-16_osx64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - libblas: 3.9.0 16_osx64_openblas - hash: - md5: 406ad426aade5578b90544cc2ed4a79b - sha256: 456a6e8bfc2e97846d9e157b5f51c23e0c4e9c922ccf7b2321be5362c835d35f - manager: conda - name: liblapack - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-16_osx64_openblas.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - libcxx: '>=14.0.6' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzip: '>=1.9.2,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: a4c0ee68a964e39e8fe562854d1427c6 - sha256: 4a5bb58f24a5841f9ab8590d8e3fbf540e557a0df9769ec3319a3615ef9010aa - manager: conda - name: libnetcdf - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libnetcdf-4.9.1-nompi_hb17d2b5_102.conda - version: 4.9.1 -- category: main - dependencies: - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - libcxx: '>=14.0.6' - libiconv: '>=1.17,<2.0a0' - librttopo: '>=1.1.0,<1.2.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - sqlite: '' - zlib: '' - hash: - md5: f8b8c912eca84fdb35215e02dcd4a0f4 - sha256: b1dd55a245abf123997b6e3c843724526fce5ae3e0ce47e2dbb6065ddaf951ca - manager: conda - name: libspatialite - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libspatialite-5.0.1-hd6e941a_23.conda - version: 5.0.1 -- category: main - dependencies: - python: '>=3.7' - typing-extensions: '>=4.5' - hash: - md5: f10c2cf447ca96f12a326b83c75b8e33 - sha256: 51816d5471cc42059cc7a8616c8899b6fda7347999359c3979fefd0035ab274c - manager: conda - name: platformdirs - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.2.0-pyhd8ed1ab_0.conda - version: 3.2.0 -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - cairo: '>=1.16.0,<2.0a0' - fontconfig: '>=2.14.2,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - gettext: '>=0.21.1,<1.0a0' - lcms2: '>=2.15,<3.0a0' - libcurl: '>=7.88.1,<8.0a0' - libcxx: '>=14.0.6' - libglib: '>=2.74.1,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - nss: '>=3.89,<4.0a0' - openjpeg: '>=2.5.0,<3.0a0' - poppler-data: '' - hash: - md5: 50eeb32c3a8937f47c6aac79380b46db - sha256: ccfcf9bdab38dcedb6eb088151d75200bd5af0e0494f39456a4094684f720840 - manager: conda - name: poppler - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/poppler-23.03.0-hc777cac_1.conda - version: 23.03.0 -- category: main - dependencies: - certifi: '' - proj: '>=9.1.1,<9.1.2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 91963fd936a1a7589be861d0c215b694 - sha256: 0368e47c8d3fa5a6b77f24c36e0b9d80cf2091ba946d86443e9bb5d2c1f81a83 - manager: conda - name: pyproj - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pyproj-3.5.0-py310ha48f28b_0.conda - version: 3.5.0 -- category: main - dependencies: - colorama: '' - exceptiongroup: '' - importlib-metadata: '>=0.12' - iniconfig: '' - packaging: '' - pluggy: '>=0.12,<2.0' - python: '>=3.8' - tomli: '>=1.0.0' - hash: - md5: 425ee1712dbbb194edf0997d46202405 - sha256: 23c23a56db2c623d241e898999493e18c0ee97530700111a3adec7658cb6ce52 - manager: conda - name: pytest - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-7.3.0-pyhd8ed1ab_0.conda - version: 7.3.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - libcxx: '>=14.0.6' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openssl: '>=3.0.7,<4.0a0' - zlib: '' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: a10738d4788cf6b0b0d9bff2e324b942 - sha256: 0165e3597571c80b5d50af7917a048ffe70e7419cd91caf4bf69999de5a0e01d - manager: conda - name: tiledb - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/tiledb-2.13.2-h8b9cbf0_0.conda - version: 2.13.2 -- category: main - dependencies: - blosc: '>=1.21.2,<2.0a0' - cfitsio: '>=4.2.0,<4.2.1.0a0' - expat: '>=2.5.0,<3.0a0' - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - geotiff: '>=1.7.1,<1.8.0a0' - giflib: '>=5.2.1,<5.3.0a0' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - icu: '>=70.1,<71.0a0' - json-c: '>=0.16,<0.17.0a0' - kealib: '>=1.5.0,<1.6.0a0' - lerc: '>=4.0.0,<5.0a0' - libcurl: '>=7.88.1,<8.0a0' - libcxx: '>=14.0.6' - libdeflate: '>=1.17,<1.18.0a0' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libkml: '>=1.3.0,<1.4.0a0' - libnetcdf: '>=4.9.1,<4.9.2.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libpq: '>=15.2,<16.0a0' - libspatialite: '>=5.0.1,<5.1.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openjpeg: '>=2.5.0,<3.0a0' - openssl: '>=3.0.8,<4.0a0' - pcre2: '>=10.40,<10.41.0a0' - poppler: '>=23.3.0,<23.4.0a0' - postgresql: '' - proj: '>=9.1.1,<9.1.2.0a0' - tiledb: '>=2.13.2,<2.14.0a0' - xerces-c: '>=3.2.4,<3.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: a1cee3becf81f65d985be644912d86ec - sha256: 6752984fe4d2a72450956ffabd82f460dd8a3583e8f421c2d87cf62a0d02bee8 - manager: conda - name: libgdal - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/libgdal-3.6.3-h4a4aa39_0.conda - version: 3.6.3 -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libcxx: '>=14.0.6' - liblapack: '>=3.9.0,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: fdc1dca5ea5064c9ea298c08b3dc786d - sha256: 9d2d75d378faba1bb07997fe72acad931afac3ec596638f91e5bc0fade0fccbc - manager: conda - name: numpy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/numpy-1.24.1-py310h788a5b3_0.conda - version: 1.24.1 -- category: main - dependencies: - cryptography: '>=38.0.0,<41' - python: '>=3.6' - hash: - md5: 0b34aa3ab7e7ccb1765a03dd9ed29938 - sha256: 458428cb867f70f2af2a4ed59d382291ea3eb3f10490196070a15d1d71d5432a - manager: conda - name: pyopenssl - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyopenssl-23.1.1-pyhd8ed1ab_0.conda - version: 23.1.1 -- category: main - dependencies: - coverage: '>=5.2.1' - pytest: '>=4.6' - python: '>=3.6' - toml: '' - hash: - md5: c9e3f8bfdb9bfc34aa1836a6ed4b25d7 - sha256: 2e00bbdb00b2514faba50ddcb6ecf1d6e4f2d5af346f9cd1240aacb1b61dccb6 - manager: conda - name: pytest-cov - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.0.0-pyhd8ed1ab_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: fcc07bec2f8577cc1a8009cef81f78ff - sha256: 42d23b93b93fdda51aa90601bb948c49a0e574f3eb974b3c3c825adb0343a33a - manager: conda - name: cftime - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/cftime-1.6.2-py310h936d966_1.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - libcxx: '>=14.0.6' - numpy: '>=1.16' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: bc714cc57ec6422105ed991167987a9d - sha256: 81cc479e4411d5833ed5798145c64490ccee6ad998c0712e57686d369ce90ba7 - manager: conda - name: contourpy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.0.7-py310ha23aa8a_0.conda - version: 1.0.7 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - libcxx: '>=14.0.6' - libgdal: 3.6.3 h4a4aa39_0 - numpy: '>=1.21.6,<2.0a0' - openssl: '>=3.0.8,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 6d5c60db3fee177b4306d8b95555d5dc - sha256: 951571374ba273f46f3c16cddf453f5aefc5f0cc767af9d256e081837fdbdd8c - manager: conda - name: gdal - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/gdal-3.6.3-py310h5abc6fc_0.conda - version: 3.6.3 -- category: main - dependencies: - numpy: 1.24.1 - python: '>=3.9,<3.11' - hash: - md5: e57176d1746df4393dfc4ae2793710d8 - sha256: 3f3af2e2597ed7931d4b6757a91d8ab4d2299a05d19ed5b7e601fc608c61af01 - manager: conda - name: hpc - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/hpc-0.1.0-pyhd8ed1ab_0.conda - version: 0.1.0 -- category: main - dependencies: - libcxx: '>=14.0.6' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.8.1' - python-tzdata: '>=2022a' - python_abi: 3.10.* *_cp310 - pytz: '>=2020.1' - hash: - md5: 702bf959150e4ed16723c71d13fa8f1d - sha256: 569595b01cc467fcedda0f788b99dd4376b0c3e746cc2575ee5eff78a42f9346 - manager: conda - name: pandas - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/pandas-2.0.0-py310hecf8f37_0.conda - version: 2.0.0 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 08ce2573d824243bcfc93ac076056c49 - sha256: 8b06369ae97d612734a56fc6f4e0eae4e45c2d2483a76a01fab02e7bb98d8940 - manager: conda - name: shapely - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/shapely-1.8.5-py310h4e43f2a_2.tar.bz2 - version: 1.8.5 -- category: main - dependencies: - numpy: '' - pyparsing: '>=2.1.6' - python: '' - hash: - md5: cb83a3d6ecf73f50117635192414426a - sha256: ebb8f5f9e362f186fb7d732e656f85c969b86309494436eba51cc3b8b96683f7 - manager: conda - name: snuggs - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2 - version: 1.4.7 -- category: main - dependencies: - brotlipy: '>=0.6.0' - certifi: '' - cryptography: '>=1.3.4' - idna: '>=2.0.0' - pyopenssl: '>=0.14' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: <4.0 - hash: - md5: 27db656619a55d727eaf5a6ece3d2fd6 - sha256: 213bdf6c3a5d721fa83b45d527d3ecd340f9547c0d6bbd0b8d9d746ec9a1fb4b - manager: conda - name: urllib3 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.15-pyhd8ed1ab_0.conda - version: 1.26.15 -- category: main - dependencies: - attrs: '>=17' - click: '>=4.0' - click-plugins: '>=1.0' - cligj: '>=0.5' - gdal: '' - importlib-metadata: '' - libcxx: '>=14.0.6' - libgdal: '>=3.6.3,<3.7.0a0' - munch: '' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - shapely: '' - six: '>=1.7' - hash: - md5: fc19900289ae050b06fd91d5b5faf8db - sha256: 998b176e3cc7098f4e1c44cef21a41afa633f6d9c6b53336981141a93ef3bcaf - manager: conda - name: fiona - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/fiona-1.9.3-py310h3963e5c_0.conda - version: 1.9.3 -- category: main - dependencies: - packaging: '' - pandas: '>=1.0.5' - pyproj: '>=2.6.1.post1' - python: '>=3.8' - shapely: '>=1.7' - hash: - md5: cf04d066b97dfe698f0d01ebf4af6163 - sha256: 1c35e0191bc7d8dc2a545710c73324c8c07dc2636ec484df224e7c722eaa1985 - manager: conda - name: geopandas-base - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-base-0.12.2-pyha770c72_0.conda - version: 0.12.2 -- category: main - dependencies: - __osx: '>=10.12' - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - kiwisolver: '>=1.0.1' - libcxx: '>=14.0.6' - numpy: '>=1.21.6,<2.0a0' - packaging: '>=20.0' - pillow: '>=6.2.0' - pyparsing: '>=2.3.1' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.7' - python_abi: 3.10.* *_cp310 - hash: - md5: 8b1caf6e250a7c8270711c301d8bcd2e - sha256: d65897175994c763913ee1871ff431234ef8264f05aaff5cfbb19187fd30a8cf - manager: conda - name: matplotlib-base - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.7.1-py310he725631_0.conda - version: 3.7.1 -- category: main - dependencies: - cftime: '' - hdf5: '>=1.12.2,<1.12.3.0a0' - libnetcdf: '>=4.8.1,<4.8.2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - hash: - md5: b4c85ff4b6cc1de70a50093380fd2c8a - sha256: e6cecd56beef04eb3abe6b9e8753bf101317fe183bc5d7c1b019891b574b5bea - manager: conda - name: netcdf4 - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/netcdf4-1.6.2-nompi_py310h6892ea4_100.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - affine: '' - attrs: '' - certifi: '' - click: '>=4' - click-plugins: '' - cligj: '>=0.5' - libcxx: '>=14.0.6' - libgdal: '>=3.6.0,<3.7.0a0' - numpy: '>=1.21.6,<2.0a0' - proj: '>=9.1.0,<9.1.1.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '>=0.9.8' - snuggs: '>=1.4.1' - hash: - md5: 7da5ee6dc29cb2f9e255de55a73a12d7 - sha256: b06161cd5de30c24194698b886ad699f7c0fec9f615f959ed3ab8cfdf831d158 - manager: conda - name: rasterio - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/rasterio-1.3.4-py310h3600f62_0.tar.bz2 - version: 1.3.4 -- category: main - dependencies: - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - idna: '>=2.5,<4' - python: '>=3.7,<4.0' - urllib3: '>=1.21.1,<1.27' - hash: - md5: 3bfbd6ead1d7299ed46dab3a7bf0bc8c - sha256: 9a7c3410970217fa035cca7f72c175989e1c8b22f855b852b9d5fde07c3550dd - manager: conda - name: requests - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.28.2-pyhd8ed1ab_1.conda - version: 2.28.2 -- category: main - dependencies: - branca: '>=0.6.0' - jinja2: '>=2.9' - numpy: '' - python: '>=3.6' - requests: '' - hash: - md5: 48c8bb19df0d0268f1a9d30ffc56c5b0 - sha256: 60c51dacc4edb33ba02a7224ddec9d938200f89588eb34b0ccdffc96155795fe - manager: conda - name: folium - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/folium-0.14.0-pyhd8ed1ab_0.conda - version: 0.14.0 -- category: main - dependencies: - matplotlib-base: '>=3.6.2,<3.6.3.0a0' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - tornado: '>=5' - hash: - md5: b3db01070d46627acacf2d9d582b4643 - sha256: e9d874e0f19d65a5823db658d9ee59739cb8e52cde90610f6d9d36ea44cbab08 - manager: conda - name: matplotlib - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.6.2-py311h6eed73b_0.tar.bz2 - version: 3.6.2 -- category: main - dependencies: - packaging: '>=20.0' - platformdirs: '>=2.5.0' - python: '>=3.7' - requests: '>=2.19.0' - hash: - md5: 5936894aade8240c867d292aa0d980c6 - sha256: 64e4d633803df2e36fd141d9bf269568fbe179a313248e1dac4d364c02debdef - manager: conda - name: pooch - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/pooch-1.7.0-pyha770c72_3.conda - version: 1.7.0 -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - libcxx: '>=14.0.6' - libgfortran: 5.* - libgfortran5: '>=11.3.0' - liblapack: '>=3.9.0,<4.0a0' - numpy: '>=1.21.6,<2.0a0' - pooch: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: 7782dea817887222538e8c322e1ba6e2 - sha256: 13b4a6408aecb07d022528ebda75993f127ad9a41601c679cc4471929b16e355 - manager: conda - name: scipy - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.10.1-py310h240c617_0.conda - version: 1.10.1 -- category: main - dependencies: - joblib: '>=1.1.1' - libcxx: '>=14.0.6' - llvm-openmp: '>=14.0.6' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - scipy: '' - threadpoolctl: '>=2.0.0' - hash: - md5: dd07ee9559f056614d7f7d65b4fa1d7c - sha256: 60e61dda5ad741b6ad88946d865784e4ae9f7acbe1b036771310df98d530ea52 - manager: conda - name: scikit-learn - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/osx-64/scikit-learn-1.2.2-py310h311060b_1.conda - version: 1.2.2 -- category: main - dependencies: - networkx: '' - numpy: '>=1.3' - pandas: '>=1.0' - python: '>=3.6' - scikit-learn: '' - scipy: '>=1.0' - hash: - md5: db1aeaff6e248db425e049feffded7a9 - sha256: 78aadbd9953976678b6e3298ac26a63cf9390a8794db3ff71f3fe5b6d13a35ca - manager: conda - name: mapclassify - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/mapclassify-2.5.0-pyhd8ed1ab_1.conda - version: 2.5.0 -- category: main - dependencies: - fiona: '' - folium: '' - geopandas-base: 0.12.2 pyha770c72_0 - mapclassify: '>=2.4.0' - matplotlib-base: '' - python: '>=3.8' - rtree: '' - xyzservices: '' - hash: - md5: ee3b330f13297f5839d46e1ca3e57d56 - sha256: 51660094efee2a74b24ab535e03005a6ddedc9e160c0d573cfaf2724312d171c - manager: conda - name: geopandas - optional: false - platform: osx-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-0.12.2-pyhd8ed1ab_0.conda - version: 0.12.2 -- category: main - dependencies: {} - hash: - md5: 31de4d9887dc8eaed9e6230a5dfbb9d6 - sha256: 405f3634e055e2e6b0502b1999bc9b7e7bb6b549b229a9a371b19d660f0b14f0 - manager: conda - name: ca-certificates - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2022.12.7-h5b45459_0.conda - version: 2022.12.7 -- category: main - dependencies: {} - hash: - md5: 0c96522c6bdaed4b1566d11387caaf45 - sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b - manager: conda - name: font-ttf-dejavu-sans-mono - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - version: '2.37' -- category: main - dependencies: {} - hash: - md5: 34893075a5c9e55cdafac56607368fc6 - sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c - manager: conda - name: font-ttf-inconsolata - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 - version: '3.000' -- category: main - dependencies: {} - hash: - md5: 4d59c254e01d9cde7957100457e2d5fb - sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139 - manager: conda - name: font-ttf-source-code-pro - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 - version: '2.038' -- category: main - dependencies: {} - hash: - md5: 19410c3df09dfb12d1206132a1d357c5 - sha256: 470d5db54102bd51dbb0c5990324a2f4a0bc976faa493b22193338adb9882e2e - manager: conda - name: font-ttf-ubuntu - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-hab24e00_0.tar.bz2 - version: '0.83' -- category: main - dependencies: {} - hash: - md5: 8ecf3a448f5a35bd30cb39ddc2a19058 - sha256: 6b3118357e20f5c23f36add253b53b4e978ddc6c308b720d15eb8076c0fb0323 - manager: conda - name: intel-openmp - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2023.0.0-h57928b3_25922.conda - version: 2023.0.0 -- category: main - dependencies: {} - hash: - md5: 636cc3cbbd2e28bcfd2f73b2044aac2c - sha256: 794b2a9be72f176a2767c299574d330ffb76b2ed75d7fd20bee3bbadce5886cf - manager: conda - name: libexpat - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.5.0-h63175ca_1.conda - version: 2.5.0 -- category: main - dependencies: {} - hash: - md5: b0309b72560df66f71a9d5e34a5efdfa - sha256: 99358d58d778abee4dca82ad29fb58058571f19b0f86138363c260049d4ac7f1 - manager: conda - name: msys2-conda-epoch - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/msys2-conda-epoch-20160418-1.tar.bz2 - version: '20160418' -- category: main - dependencies: {} - hash: - md5: d8d7293c5b37f39b2ac32940621c6592 - sha256: 2f227e17b3c0346112815faa605502b66c1c4511a856127f2899abf15a98a2cf - manager: conda - name: poppler-data - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda - version: 0.4.12 -- category: main - dependencies: {} - hash: - md5: f4cfd883c0d91bb17164d8e34f4900d5 - sha256: 8212c6f1a68d5a494bcde5cd64196626024059dcbe8995469c8a5ed32694efa0 - manager: conda - name: python_abi - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/python_abi-3.10-3_cp310.conda - version: '3.10' -- category: main - dependencies: {} - hash: - md5: 939e3e74d8be4dac89ce83b20de2492a - sha256: 0449138224adfa125b220154408419ec37c06b0b49f63c5954724325903ecf55 - manager: conda - name: tzdata - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2023c-h71feb2d_0.conda - version: 2023c -- category: main - dependencies: {} - hash: - md5: 72608f6cd3e5898229c3ea16deb1ac43 - sha256: f29cdaf8712008f6b419b8b1a403923b00ab2504bfe0fb2ba8eb60e72d4f14c6 - manager: conda - name: ucrt - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_0.tar.bz2 - version: 10.0.22621.0 -- category: main - dependencies: - libexpat: 2.5.0 h63175ca_1 - hash: - md5: 87c77fe1b445aedb5c6d207dd236fa3e - sha256: 3bcd88290cd462d5573c2923c796599d0dece2ff9d9c9d6c914d31e9c5881aaf - manager: conda - name: expat - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/expat-2.5.0-h63175ca_1.conda - version: 2.5.0 -- category: main - dependencies: - font-ttf-dejavu-sans-mono: '' - font-ttf-inconsolata: '' - font-ttf-source-code-pro: '' - font-ttf-ubuntu: '' - hash: - md5: f766549260d6815b0c52253f1fb1bb29 - sha256: 53f23a3319466053818540bcdf2091f253cbdbab1e0e9ae7b9e509dcaa2a5e38 - manager: conda - name: fonts-conda-forge - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - msys2-conda-epoch: '>=20160418' - hash: - md5: 53a1c73e1e3d185516d7e3af177596d9 - sha256: 7e3cd95f554660de45f8323fca359e904e8d203efaf07a4d311e46d611481ed1 - manager: conda - name: m2w64-gmp - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gmp-6.1.0-2.tar.bz2 - version: 6.1.0 -- category: main - dependencies: - msys2-conda-epoch: '>=20160418' - hash: - md5: 774130a326dee16f1ceb05cc687ee4f0 - sha256: f63a09b2cae7defae0480f1740015d6235f1861afa6fe2e2d3e10bd0d1314ee0 - manager: conda - name: m2w64-libwinpthread-git - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-libwinpthread-git-5.0.0.4634.697f757-2.tar.bz2 - version: 5.0.0.4634.697f757 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - hash: - md5: 25640086ba777e79e5d233d079d7c5fc - sha256: 3a23d4c98bdb87b06bd8af9e42eea34c39a9da52c3dd96ace706234c55422f2d - manager: conda - name: vs2015_runtime - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.34.31931-h4c5c07a_10.conda - version: 14.34.31931 -- category: main - dependencies: - fonts-conda-forge: '' - hash: - md5: fee5683a3f04bd15cbd8318b096a27ab - sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61 - manager: conda - name: fonts-conda-ecosystem - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 - version: '1' -- category: main - dependencies: - m2w64-gmp: '' - m2w64-libwinpthread-git: '' - msys2-conda-epoch: '>=20160418' - hash: - md5: 4289d80fb4d272f1f3b56cfe87ac90bd - sha256: 58afdfe859ed2e9a9b1cc06bc408720cb2c3a6a132e59d4805b090d7574f4ee0 - manager: conda - name: m2w64-gcc-libs-core - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-core-5.3.0-7.tar.bz2 - version: 5.3.0 -- category: main - dependencies: - vs2015_runtime: '>=14.34.31931' - hash: - md5: 52d246d8d14b83c516229be5bb03a163 - sha256: 05d5ae5859e8d097559f5445ffbaeac638c9875e4d2a0c5fd8c4bb1c010d35c1 - manager: conda - name: vc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-hb6edc58_10.conda - version: '14.3' -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: 7c03c66026944073040cb19a4f3ec3c9 - sha256: 5389dad4e73e4865bb485f460fc60b120bae74404003d457ecb1a62eb7abf0c1 - manager: conda - name: bzip2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h8ffe710_4.tar.bz2 - version: 1.0.8 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 97225394895a9c6939175c936ab1a4b0 - sha256: 15ca40f3dafbc8caecb6f38ddf55cac9ac303f81371690a84e9e953d000f0ffd - manager: conda - name: geos - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/geos-3.11.1-h1537add_0.tar.bz2 - version: 3.11.1 -- category: main - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 64073396a905b6df895ab2489fae3847 - sha256: 466ab9b92671198e833c0b508f78934bd98ae4c4dbd5f44c599833cc6a5603f8 - manager: conda - name: icu - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/icu-70.1-h0e60522_0.tar.bz2 - version: '70.1' -- category: main - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 733066523147548ce368a9bd0c8395af - sha256: 78d6cc57536f0fc1e824a0aebfd3b2524f0f1e8c2b908024b8c08464387f1fe2 - manager: conda - name: jpeg - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/jpeg-9e-h8ffe710_2.tar.bz2 - version: 9e -- category: main - dependencies: - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30037' - hash: - md5: 1900cb3cab5055833cfddb0ba233b074 - sha256: f4f39d7f6a2f9b407f8fb567a6c25755270421731d70f0ff331f5de4fa367488 - manager: conda - name: lerc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: f98474a8245f55f4a273889dbe7bf193 - sha256: 441f580f90279bd62bd27fb82d0bbbb2c2d9f850fcc4c8781f199c5287cd1499 - manager: conda - name: libaec - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libaec-1.0.6-h63175ca_1.conda - version: 1.0.6 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e8078e37208cd7d3e1eb5053f370ded8 - sha256: 0e771d447108219f43de770f7ca9428b2e3b5a4fd08475a27ac442ad310cb684 - manager: conda - name: libbrotlicommon - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.0.9-hcfcfb64_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: ae9dfb57bcb42093a2417aceabb530f7 - sha256: 76e642ca8a11da1b537506447f8089353b6607956c069c938a4bec4de36e1194 - manager: conda - name: libdeflate - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.17-hcfcfb64_0.conda - version: '1.17' -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: 2c96d1b6915b408893f9472569dee135 - sha256: 1951ab740f80660e9bc07d2ed3aefb874d78c107264fd810f24a1a6211d4b1a5 - manager: conda - name: libffi - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2 - version: 3.4.2 -- category: main - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 050119977a86e4856f0416e2edcf81bb - sha256: 657c2a992c896475021a25faebd9ccfaa149c5d70c7dc824d4069784b686cea1 - manager: conda - name: libiconv - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-h8ffe710_0.tar.bz2 - version: '1.17' -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: f2fad2ae9f1365e343e4329fdb1e9d63 - sha256: 42a874448d060b59f9b5c900b260c992df9543da55c2ac9537b442450d6e6497 - manager: conda - name: libjpeg-turbo - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-2.1.5.1-hcfcfb64_0.conda - version: 2.1.5.1 -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: 04286d905a0dcb7f7d4a12bdfe02516d - sha256: ef20f04ad2121a07e074b34bfc211587df18180e680963f5c02c54d1951b9ee6 - manager: conda - name: libogg - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libogg-1.3.4-h8ffe710_1.tar.bz2 - version: 1.3.4 -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: 51c172496e828258d04eba9971f2af1a - sha256: 88af7e2c9c5fc38be7cecd6ed41abbbb9cf5924dedb9c31f9c5426cb715753bb - manager: conda - name: libspatialindex - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libspatialindex-1.9.3-h39d44d4_4.tar.bz2 - version: 1.9.3 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 5e5a97795de72f8cc3baf3d9ea6327a2 - sha256: 4e50b3d90a351c9d47d239d3f90fce4870df2526e4f7fef35203ab3276a6dfc9 - manager: conda - name: libsqlite - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.40.0-hcfcfb64_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 381a3645c51cbf478872899b16490318 - sha256: 9355940270db76592a1cdbcb840740afb5f6b81d167ac4f2cb0fbb2c37397566 - manager: conda - name: libwebp-base - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.3.0-hcfcfb64_0.conda - version: 1.3.0 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 0cc5c5cc64ee1637f37f8540a175854c - sha256: 184da12b4296088a47086f4e69e65eb5f8537a824ee3131d8076775e1d1ea767 - manager: conda - name: libzlib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.2.13-hcfcfb64_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e34720eb20a33fc3bfb8451dd837ab7a - sha256: a0954b4b1590735ea5f3d0f4579c3883f8ac837387afd5b398b241fda85124ab - manager: conda - name: lz4-c - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/lz4-c-1.9.4-hcfcfb64_0.conda - version: 1.9.4 -- category: main - dependencies: - m2w64-gcc-libs-core: '' - msys2-conda-epoch: '>=20160418' - hash: - md5: 066552ac6b907ec6d72c0ddab29050dc - sha256: 9de95a7996d5366ae0808eef2acbc63f9b11b874aa42375f55379e6715845dc6 - manager: conda - name: m2w64-gcc-libgfortran - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libgfortran-5.3.0-6.tar.bz2 - version: 5.3.0 -- category: main - dependencies: - ca-certificates: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 4245a25fae1aaf85bc3fbf6fc29c2d5d - sha256: 86890410046907f3dc8450f0d1732638b5feac4c2b59ebcc706ad6543c757fc0 - manager: conda - name: openssl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/openssl-3.1.0-hcfcfb64_0.conda - version: 3.1.0 -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: 32b45d3fcffddc84cc1a014a0b5f0d58 - sha256: 7f0ceed590a717ddc7612f67657119df1e6df0d031a822b570d741a89a3ba784 - manager: conda - name: pixman - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pixman-0.40.0-h8ffe710_0.tar.bz2 - version: 0.40.0 -- category: main - dependencies: - vc: 14.* - hash: - md5: e2da8758d7d51ff6aa78a14dfb9dbed4 - sha256: 576a228630a72f25d255a5e345e5f10878e153221a96560f2498040cd6f54005 - manager: conda - name: pthreads-win32 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pthreads-win32-2.9.1-hfa6e2cd_3.tar.bz2 - version: 2.9.1 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: cff1df79c9cff719460eb2dd172568de - sha256: 2a195b38cb63f03ad9f73a82db52434ebefe216fb70f7ea3defe4ddf263d408a - manager: conda - name: snappy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/snappy-1.1.10-hfb803bf_0.conda - version: 1.1.10 -- category: main - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: c69a5047cc9291ae40afd4a1ad6f0c0f - sha256: 087795090a99a1d397ef1ed80b4a01fabfb0122efb141562c168e3c0a76edba6 - manager: conda - name: tk - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.12-h8ffe710_0.tar.bz2 - version: 8.6.12 -- category: main - dependencies: - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 8ba57760b15d0c2493192908317bdf5e - sha256: ac27817d829c1f0d2dcf4622c49807fc1c2974cde8a779b2adc7699bcdca68c1 - manager: conda - name: xerces-c - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/xerces-c-3.2.4-h63175ca_2.conda - version: 3.2.4 -- category: main - dependencies: - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 515d77642eaa3639413c6b1bc3f94219 - sha256: 54d9778f75a02723784dc63aff4126ff6e6749ba21d11a6d03c1f4775f269fe0 - manager: conda - name: xz - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2 - version: 5.2.6 -- category: main - dependencies: - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: adbfb9f45d1004a26763652246a33764 - sha256: 4e2246383003acbad9682c7c63178e2e715ad0eb84f03a8df1fbfba455dfedc5 - manager: conda - name: yaml - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h8ffe710_2.tar.bz2 - version: 0.2.5 -- category: main - dependencies: - libiconv: '>=1.17,<2.0.0a0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 7ddb6e879c46e78eec37f956b3ffe743 - sha256: 522a1ab55f891923f08d92e284cc1564c922f902c922101fa38121ee55535a87 - manager: conda - name: freexl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/freexl-1.0.6-h67ca5e6_1.tar.bz2 - version: 1.0.6 -- category: main - dependencies: - libiconv: '>=1.17,<2.0a0' - hash: - md5: 299d4fd6798a45337042ff5a48219e5f - sha256: 71c75b0a4dc2cf95d2860ea0076edf9f5558baeb4dacaeecb32643b199074616 - manager: conda - name: gettext - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/gettext-0.21.1-h5728263_0.tar.bz2 - version: 0.21.1 -- category: main - dependencies: - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 5777b72b13771944e15a839dd617c964 - sha256: 7114aa881e88ab0eb314f7612bef704ccf539e04965882e7b74a8c05230415b0 - manager: conda - name: hdf4 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/hdf4-4.2.15-h1334946_6.conda - version: 4.2.15 -- category: main - dependencies: - openssl: '>=3.0.7,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: a07b05ee8f451ab15698397185efe989 - sha256: 429edc4fa9e2420c55cdbd9febb154d2358bf662735efda4372f62142ff310cd - manager: conda - name: krb5 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/krb5-1.20.1-heb0366b_0.conda - version: 1.20.1 -- category: main - dependencies: - libbrotlicommon: 1.0.9 hcfcfb64_8 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 99839d9d81f33afa173c0fa82a702038 - sha256: 66814b8c0235bcc9124d32cb4b99845bcb2af0eba1d2ba609a501a6d8194e9a0 - manager: conda - name: libbrotlidec - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlidec-1.0.9-hcfcfb64_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libbrotlicommon: 1.0.9 hcfcfb64_8 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 88e62627120c20289bf8982b15e0a6a1 - sha256: 3abf0f0b124d54ad892bd74fe77089a712d6dad81a04583331a58728c58a69e0 - manager: conda - name: libbrotlienc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.0.9-hcfcfb64_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 393d6ec76308c7124568dd595f95d432 - sha256: fd54f65e225fb545ef373915073097beebfa81aaf5dc8efdf47ee45b686bd2ae - manager: conda - name: libclang13 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libclang13-15.0.6-default_h77d9078_0.conda - version: 15.0.6 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: ab6febdb2dbd9c00803609079db4de71 - sha256: 1f139a72109366ba1da69f5bdc569b0e6783f887615807c02d7bfcc2c7575067 - manager: conda - name: libpng - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.39-h19919ed_0.conda - version: 1.6.39 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 115a51fda72ff01d7b7eb275183d6c72 - sha256: d22fc13a91df3bbd21c7de063b220692b7ccddaedf1ec8de056bc6659733a64b - manager: conda - name: librttopo - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/librttopo-1.1.0-he22b5cd_12.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: c2b344e960a173c777bb3ed172c38cd8 - sha256: 93cc00b7ec3766d4313ff0795997a10745ce68f708811b2213a3655ca2c639b6 - manager: conda - name: libssh2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libssh2-1.10.0-h9a1e1f7_3.tar.bz2 - version: 1.10.0 -- category: main - dependencies: - libogg: '>=1.3.4,<1.4.0a0' - vc: '>=14.1,<15.0a0' - vs2015_runtime: '>=14.16.27012' - hash: - md5: e1a22282de0169c93e4ffe6ce6acc212 - sha256: 6cdc018a024908270205d8512d92f92cf0adaaa5401c2b403757189b138bf56a - manager: conda - name: libvorbis - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - version: 1.3.7 -- category: main - dependencies: - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: d9869d2d502cca6b6f73dd7030696b3c - sha256: 2c582c303e6030d21a0753bb3b39a6fa1fd694f280bdbdc7b7bfbe8a9707fbec - manager: conda - name: libxml2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.10.4-hc3477c8_0.conda - version: 2.10.4 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - openssl: '>=3.0.5,<4.0a0' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 9c3138e53e36c0c161a23d20db91297b - sha256: 7551ba06879206b81637ef4206b72a8d5d23752f0c6a5be82c9865f72ecc1c81 - manager: conda - name: libzip - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libzip-1.9.2-h519de47_1.tar.bz2 - version: 1.9.2 -- category: main - dependencies: - m2w64-gcc-libgfortran: '' - m2w64-gcc-libs-core: '' - m2w64-gmp: '' - m2w64-libwinpthread-git: '' - msys2-conda-epoch: '>=20160418' - hash: - md5: fe759119b8b3bfa720b8762c6fdc35de - sha256: 3bd1ab02b7c89a5b153a17be03b36d833f1517ff2a6a77ead7c4a808b88196aa - manager: conda - name: m2w64-gcc-libs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-5.3.0-7.tar.bz2 - version: 5.3.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 2519de0d9620dc2bc7e19caf6867136d - sha256: 5833c63548e4fae91da6d77739eab7dc9bf6542e43f105826b23c01bfdd9cb57 - manager: conda - name: pcre2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.40-h17e33f8_0.tar.bz2 - version: '10.40' -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libffi: '>=3.4,<4.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.1.0,<4.0a0' - tk: '>=8.6.12,<8.7.0a0' - tzdata: '' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - xz: '>=5.2.6,<6.0a0' - hash: - md5: 3f6ad634efe9e6fe40a916eb68cc3ee4 - sha256: 1a9165b13b11686dd3aff2a75f5f0706f6b55b5cc4137f32be40682c59b48878 - manager: conda - name: python - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/python-3.10.10-h4de0772_0_cpython.conda - version: 3.10.10 -- category: main - dependencies: - libsqlite: 3.40.0 hcfcfb64_0 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: c71d4be22d8402e7e17386aeb18b930e - sha256: c4c9d991ae95a61109d2c0038fcae58410b6b7ecdded0e29254ddb1bfae340f8 - manager: conda - name: sqlite - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/sqlite-3.40.0-hcfcfb64_0.tar.bz2 - version: 3.40.0 -- category: main - dependencies: - libzlib: 1.2.13 hcfcfb64_4 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: eed9fec3e6d2e8865135b09d24ca040c - sha256: 28e9fe3ca91ccc50080d777cb1642c64e385dbb8843162d7cadad418a12ef35d - manager: conda - name: zlib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/zlib-1.2.13-hcfcfb64_4.tar.bz2 - version: 1.2.13 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 62826565682d013b3e2346aaf7bded0e - sha256: ef23b2eb748b0b2139755e5a20d49a642340af1313017918dc91b4a4ce8f3bd9 - manager: conda - name: zstd - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.2-h12be248_6.conda - version: 1.5.2 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 466dc5c1b75c93180efbd81d99dc29b0 - sha256: f3d58687fb000acc5d5f773d6e633ffb382575895abbc8db3d9b8e3996b05d39 - manager: conda - name: affine - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/affine-2.3.1-pyhd8ed1ab_0.tar.bz2 - version: 2.3.1 -- category: main - dependencies: - python: '' - hash: - md5: 5f095bc6454094e96f146491fd03633b - sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 - manager: conda - name: appdirs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - python: '>=3.5' - hash: - md5: 8b76db7818a4e401ed4486c4c1635cd9 - sha256: 3a58d4a4933fa8735471c782d35326ab78e0bcfce84756408515f82a94e4dec4 - manager: conda - name: attrs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/attrs-22.2.0-pyh71513ae_0.conda - version: 22.2.0 -- category: main - dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - snappy: '>=1.1.9,<2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: b3fe9abd77808553a7d0a0cbf73b6ec9 - sha256: 9c283310850f7e8ab470ee04e290420fa05e9544b3a778ba723a01ad3bf1dca2 - manager: conda - name: blosc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/blosc-1.21.3-hdccc3a2_0.conda - version: 1.21.3 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 09805934b78b0cd1a28d9e72a2a4778b - sha256: bf4d718e17cb115ea27d52bc84b3dff963b7ade2dda01ddb7088372833092517 - manager: conda - name: boost-cpp - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/boost-cpp-1.78.0-h9f4b32c_3.conda - version: 1.78.0 -- category: main - dependencies: - libbrotlidec: 1.0.9 hcfcfb64_8 - libbrotlienc: 1.0.9 hcfcfb64_8 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e18b70ed349d96086fd60a9c642b1b58 - sha256: e8b55a51cb907f336c6f308d5d052483b0cad6a8b09040b811a7f12f4f199d67 - manager: conda - name: brotli-bin - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.0.9-hcfcfb64_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: fb9addc3db06e56abe03e0e9f21a63e6 - sha256: 5e22af4776700200fab2c1df41a2188ab9cfe90a50c4f388592bb978562c88ec - manager: conda - name: certifi - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2022.12.7-pyhd8ed1ab_0.conda - version: 2022.12.7 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7fcff9f6f123696e940bda77bd4d6551 - sha256: 06cd371fc98f076797d6450f6f337cb679b1060c99680fb7e044591493333194 - manager: conda - name: charset-normalizer - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.1.0-pyhd8ed1ab_0.conda - version: 3.1.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 3faab06a954c2a04039983f2c4a50d99 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - manager: conda - name: colorama - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - version: 0.4.6 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a50559fad0affdbb33729a68669ca1cb - sha256: 3b594bc8aa0b9a51269d54c7a4ef6af777d7fad4bee16b05695e1124de6563f6 - manager: conda - name: cycler - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/cycler-0.11.0-pyhd8ed1ab_0.tar.bz2 - version: 0.11.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 7312299d7a0ea4993159229b7d2dceb2 - sha256: f073c3ba993912f1c0027bc34a54975642885f0a4cd5f9dc42a17ca945df2c18 - manager: conda - name: exceptiongroup - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.1.1-pyhd8ed1ab_0.conda - version: 1.1.1 -- category: main - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 1b513009cd012591f3fdc9e03a74ec0a - sha256: fe027235660d9dfe7889c350a51e96bc0134c3f408827a4c58c4b0557409984c - manager: conda - name: freetype - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-h546665d_1.conda - version: 2.12.1 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 6880e7100ebae550a33ce26663316d85 - sha256: 41cb296c4513bc72c687a4beaf0c59719bb900fe0ab6d822ff8b31c4dad38b63 - manager: conda - name: geographiclib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/geographiclib-1.52-pyhd8ed1ab_0.tar.bz2 - version: '1.52' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 34272b248891bddccc64479f9a7fffed - sha256: 9887c35c374ec1847f167292d3fde023cb4c994a4ceeec283072b95440131f09 - manager: conda - name: idna - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.4-pyhd8ed1ab_0.tar.bz2 - version: '3.4' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: f800d2da156d08e289b14e87e43c1ae5 - sha256: 38740c939b668b36a50ef455b077e8015b8c9cf89860d421b3fff86048f49666 - manager: conda - name: iniconfig - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda - version: 2.0.0 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: c55fe943d5f212d49d27d08580f5a610 - sha256: 6e927eab8b735c7fcbd52dff8b7ecf9f98b9221cf0d21f8491f2aeaf5bcc49f3 - manager: conda - name: kiwisolver - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.4-py310h232114e_1.tar.bz2 - version: 1.4.4 -- category: main - dependencies: - libclang13: 15.0.6 default_h77d9078_0 - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: aa7825a9f921f0cbc96b9d30e71389fc - sha256: 8c86c3e3e0cdd70d77571018c9e60f27fbb351bb6f18e2d306336fed0b24dcd1 - manager: conda - name: libclang - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libclang-15.0.6-default_h77d9078_0.conda - version: 15.0.6 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e73c24dd32b88acab08e46ddeb173fee - sha256: da99c80a121206110f2c4018a9e7c67834daf08e9ae2e0ca14ffc9a6f8c5d910 - manager: conda - name: libcurl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libcurl-7.88.1-h68f0423_1.conda - version: 7.88.1 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - libffi: '>=3.4,<4.0a0' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - pcre2: '>=10.40,<10.41.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 09e1cbabfd9d733729843c3b35cb0b6d - sha256: bc6c2ffae7c9156b154ebf75d99c7cbded3dfc891eacac63dcd2ea5c9e00f7ee - manager: conda - name: libglib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libglib-2.74.1-he8f3873_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - libxml2: '>=2.10.3,<2.11.0a0' - pthreads-win32: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 6cbde93c514acb846762631c15c5d3c2 - sha256: 59f934833b703e72cf6be0e5c0370b6c62327e8e3921866529c8aff8ce63d570 - manager: conda - name: libhwloc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.9.0-h51c2c0f_0.conda - version: 2.9.0 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: dd4e0f2881b08f08b76c2c4d1763b38a - sha256: 4fff4a17264e4a2e1e16c4991524ba6ac6b82199ff643baddb29c481d05b4328 - manager: conda - name: libpq - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libpq-15.2-ha9684e8_0.conda - version: '15.2' -- category: main - dependencies: - lerc: '>=4.0.0,<5.0a0' - libdeflate: '>=1.17,<1.18.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 9415b560deaf13b6c8c22dfd6e596cd3 - sha256: 23c69fb7d04bb143061f1427da9525daeaaa884150db9246e104dffdbcdb0835 - manager: conda - name: libtiff - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.5.0-hc3b8658_5.conda - version: 4.5.0 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: d75d2a8a37db95ba86660bf57969b7e2 - sha256: f99b78cbbce778a8313950517fb5400c63b4606844b35fe3f7c2308b087531b7 - manager: conda - name: markupsafe - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/markupsafe-2.1.2-py310h8d17308_0.conda - version: 2.1.2 -- category: main - dependencies: - python: '' - hash: - md5: 2ba8498c1018c1e9c61eb99b973dfe19 - sha256: f86fb22b58e93d04b6f25e0d811b56797689d598788b59dcb47f59045b568306 - manager: conda - name: munkres - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 - version: 1.1.4 -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 254f787d5068bc89f578bf63893ce8b4 - sha256: 6b955c8530985fa727ad3323653a54af44ecf453cfdb1b549b3edff609bd3728 - manager: conda - name: networkx - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/networkx-3.1-pyhd8ed1ab_0.conda - version: '3.1' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 1ff2e3ca41f0ce16afec7190db28288b - sha256: 00288f5e5e841711e8b8fef1f1242c858d8ef99ccbe5d7e0df4789d5d8d40645 - manager: conda - name: packaging - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.0-pyhd8ed1ab_0.conda - version: '23.0' -- category: main - dependencies: - python: '>=3.8' - hash: - md5: 7d301a0d25f424d96175f810935f0da9 - sha256: c25e1757e4e90638bb1e778aba3ee5f3c01fae9752e3c3929f9be7d367f6c7f3 - manager: conda - name: pluggy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pluggy-1.0.0-pyhd8ed1ab_5.tar.bz2 - version: 1.0.0 -- category: main - dependencies: - python: '' - hash: - md5: 7205635cd71531943440fbfe3b6b5727 - sha256: 2cd6fae8f9cbc806b7f828f006ae4a83c23fac917cacfd73c37ce322d4324e53 - manager: conda - name: ply - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2 - version: '3.11' -- category: main - dependencies: - m2w64-gcc-libs: '' - hash: - md5: a1f820480193ea83582b13249a7e7bd9 - sha256: bb5a6ddf1a609a63addd6d7b488b0f58d05092ea84e9203283409bff539e202a - manager: conda - name: pthread-stubs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2 - version: '0.4' -- category: main - dependencies: - python: 2.7.*|>=3.4 - hash: - md5: 076becd9e05608f8dc72757d5f3a91ff - sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc - manager: conda - name: pycparser - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2 - version: '2.21' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: e8fbc1b54b25f4b08281467bc13b70cc - sha256: 4acc7151cef5920d130f2e0a7615559cce8bfb037aeecb14d4d359ae3d9bc51b - manager: conda - name: pyparsing - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.0.9-pyhd8ed1ab_0.tar.bz2 - version: 3.0.9 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: 2590495f608a63625e165915fb4e2e34 - sha256: 0108888507014fb24573c31e4deceb61c99e63d37776dddcadd7c89b2ecae0b6 - manager: conda - name: python-tzdata - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - python: '>=3.6' - hash: - md5: d3076b483092a435832603243567bc31 - sha256: e4999484f21763ca4b8f92c95b22cb6d1edc1b61d0a2bb073ee2bd11f39401b9 - manager: conda - name: pytz - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3-pyhd8ed1ab_0.conda - version: '2023.3' -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - yaml: '>=0.2.5,<0.3.0a0' - hash: - md5: d0daf3eed98dd2bf4337ed08d8011eb8 - sha256: 7d948a99bf7af50c9823a248267fce75ac555e4f357de166f65a75fab8549f3c - manager: conda - name: pyyaml - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0-py310h8d17308_5.tar.bz2 - version: '6.0' -- category: main - dependencies: - libspatialindex: '>=1.9.3,<1.9.4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - hash: - md5: da35b972cbb9b41a4a73db959b810ad8 - sha256: 1b79e0198b44363959d3cb0127b88fa15004f3ac1db046bf854041f4155b536c - manager: conda - name: rtree - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/rtree-1.0.1-py310h1cbd46b_1.tar.bz2 - version: 1.0.1 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 6c443cccff3daa3d83b2b807b0a298ce - sha256: 6595024174d318848468c0e61899ff3c2f08a3545c85727b9a2871d6f8d0062a - manager: conda - name: setuptools - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/setuptools-67.6.1-pyhd8ed1ab_0.conda - version: 67.6.1 -- category: main - dependencies: - python: '' - hash: - md5: e5f25f8dbc060e9a8d912e432202afc2 - sha256: a85c38227b446f42c5b90d9b642f2c0567880c15d72492d8da074a59c8f91dd6 - manager: conda - name: six - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - python: '>=3.6' - hash: - md5: a2995ee828f65687ac5b1e71a2ab1e0c - sha256: c7a964811ba49c545236f7d6c2486b2ed493931660048a06fe94ecc851dd0b82 - manager: conda - name: threadpoolctl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2 - version: 3.1.0 -- category: main - dependencies: - python: '>=2.7' - hash: - md5: f832c45a477c78bebd107098db465095 - sha256: f0f3d697349d6580e4c2f35ba9ce05c65dc34f9f049e85e45da03800b46139c1 - manager: conda - name: toml - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2 - version: 0.10.2 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 5844808ffab9ebdb694585b50ba02a96 - sha256: 4cd48aba7cd026d17e86886af48d0d2ebc67ed36f87f6534f4b67138f5a5a58f - manager: conda - name: tomli - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2 - version: 2.0.1 -- category: main - dependencies: - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: d10c673cd263e4f63c1355abb9082dff - sha256: c0f38afc78127478d1d42795fe3d3386562d328515d52750453e922961ec936e - manager: conda - name: tornado - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/tornado-6.2-py311ha68e1ae_1.tar.bz2 - version: '6.2' -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 43e7d9e50261fb11deb76e17d8431aac - sha256: f81eee64fcdfb379e27d01773b34041fbf7f9e86f33b157c9925d19e0a442452 - manager: conda - name: typing_extensions - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.5.0-pyha770c72_0.conda - version: 4.5.0 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 5d14ba562f7740b64be9c8059498cfbf - sha256: 4b93fa5ecf66df2c8558c224bb7404d9fd73e956c3c5db059fb01c1e4bd61ffa - manager: conda - name: unicodedata2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.0.0-py310h8d17308_0.tar.bz2 - version: 15.0.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 49bb0d9e60ce1db25e151780331bb5f3 - sha256: 79b4d29b0c004014a2abd5fc2c9fcd35cc6256222b960c2a317a27c4b0d8884d - manager: conda - name: wheel - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.40.0-pyhd8ed1ab_0.conda - version: 0.40.0 -- category: main - dependencies: - python: '>=3.5' - hash: - md5: dc80c0c2b01f7d6d6d5df4b63ef54f17 - sha256: b2c4dfa3dcf888b9449a4a2fd480b2db4e9167838d91df15fe745f9ba7adff95 - manager: conda - name: win32_setctime - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/win32_setctime-1.1.0-pyhd8ed1ab_0.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - __win: '' - python: '>=3.6' - hash: - md5: 30878ecc4bd36e8deeea1e3c151b2e0b - sha256: a11ae693a0645bf6c7b8a47bac030be9c0967d0b1924537b9ff7458e832c0511 - manager: conda - name: win_inet_pton - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyhd8ed1ab_6.tar.bz2 - version: 1.1.0 -- category: main - dependencies: - m2w64-gcc-libs: '' - hash: - md5: 9cef622e75683c17d05ae62d66e69e6c - sha256: 29f46932abfebfc32559d251b3aa0acbed8913c9ca05c1a89b8f6a37f74c4a11 - manager: conda - name: xorg-libxau - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.9-hcd874cb_0.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - m2w64-gcc-libs: '' - hash: - md5: 46878ebb6b9cbd8afcf8088d7ef00ece - sha256: f51205d33c07d744ec177243e5d9b874002910c731954f2c8da82459be462b93 - manager: conda - name: xorg-libxdmcp - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.3-hcd874cb_0.tar.bz2 - version: 1.1.3 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: df61644536ee98e50e1e022489588b32 - sha256: 295003c201788280aa9b9a201333c07154837f7ecb3f1eda94b609e4a4d88872 - manager: conda - name: xyzservices - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/xyzservices-2023.2.0-pyhd8ed1ab_0.conda - version: 2023.2.0 -- category: main - dependencies: - python: '>=3.7' - hash: - md5: 13018819ca8f5b7cc675a8faf1f5fedf - sha256: 241de30545299be9bcea3addf8a2c22a3b3d4ba6730890e150ab690ac937a3d2 - manager: conda - name: zipp - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.15.0-pyhd8ed1ab_0.conda - version: 3.15.0 -- category: main - dependencies: - brotli-bin: 1.0.9 hcfcfb64_8 - libbrotlidec: 1.0.9 hcfcfb64_8 - libbrotlienc: 1.0.9 hcfcfb64_8 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 2e661f21e1741c11506bdc7226e6b0bc - sha256: 6d2fc2f147c9fc6685124d984089683988729463193578ba1d62f80263bce3c5 - manager: conda - name: brotli - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/brotli-1.0.9-hcfcfb64_8.tar.bz2 - version: 1.0.9 -- category: main - dependencies: - pycparser: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: b7ca236d34501eb6a70691c1e29a0234 - sha256: 53c4ef7d7c3e7487a700c89a28a3afbbdb38fe2efa61ba8157fbb69f0b9d5297 - manager: conda - name: cffi - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/cffi-1.15.1-py310h628cb3f_3.conda - version: 1.15.1 -- category: main - dependencies: - libcurl: '>=7.86.0,<8.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: cccd314cbeea4f2f70f73c763d9660e8 - sha256: 18e893342e7ac8254741ea1dbae1b1f8e7771f2fdbb12e591e55f3a0519343ef - manager: conda - name: cfitsio - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/cfitsio-4.2.0-h9ebe7e4_0.conda - version: 4.2.0 -- category: main - dependencies: - __win: '' - colorama: '' - python: '>=3.8' - hash: - md5: 6b58680207b526c42dcff68b543803dd - sha256: 84e80a33e9a8e5398d3e97209366b57f635462a5b894f8076ec8c95e56672c44 - manager: conda - name: click - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.3-win_pyhd8ed1ab_2.tar.bz2 - version: 8.1.3 -- category: main - dependencies: - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tomli: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: fa5536bcc3a4026b95cf1508fa664c90 - sha256: 2721c3e66d77f8d8ef66f7e9ac53cbc380e315abeec9ce446e728a93bb105a4c - manager: conda - name: coverage - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/coverage-7.2.3-py310h8d17308_0.conda - version: 7.2.3 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libcurl: 7.88.1 h68f0423_1 - libssh2: '>=1.10.0,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 61bac43f1aad61a834f9eb718421a87c - sha256: b8bdf87d2fe8d715ae16b5e58c8d4357f291fb2013e3ce35a6df2f03f8852c08 - manager: conda - name: curl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/curl-7.88.1-h68f0423_1.conda - version: 7.88.1 -- category: main - dependencies: - expat: '>=2.5.0,<3.0a0' - freetype: '>=2.12.1,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 08767992f1a4f1336a257af1241034bd - sha256: 643f2b95be68abeb130c53d543dcd0c1244bebabd58c774a21b31e4b51ac3c96 - manager: conda - name: fontconfig - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.14.2-hbde0cde_0.conda - version: 2.14.2 -- category: main - dependencies: - geographiclib: <2,>=1.49 - python: '>=3.5' - hash: - md5: 529faeecd6eee3a3b782566ddf05ce92 - sha256: 98e34031f7e0b0f32edb8208762fd4f919cc6cc2f90daf16519125d8e075ad30 - manager: conda - name: geopy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopy-2.3.0-pyhd8ed1ab_0.tar.bz2 - version: 2.3.0 -- category: main - dependencies: - libglib: 2.74.1 he8f3873_1 - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: cd93cc622f2fa0f68ddc978cb67a5061 - sha256: 5b76c1e09c02b48b7b549c80be908c1a382391d4855bd5579c09cf0b05aaa0de - manager: conda - name: glib-tools - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.74.1-h12be248_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - libaec: '>=1.0.6,<2.0a0' - libcurl: '>=7.86.0,<8.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.7,<4.0a0' - vc: '>=14.1,<15' - vs2015_runtime: '>=14.16.27033' - hash: - md5: 3e2b84f2f7bcf6915d1baa21e5b1a862 - sha256: 10e067f7a896dae8fcd114566dedb729a44a39de4a80c4cd7a61c9c48039a219 - manager: conda - name: hdf5 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/hdf5-1.12.2-nompi_h57737ce_101.conda - version: 1.12.2 -- category: main - dependencies: - python: '>=3.8' - zipp: '>=0.5' - hash: - md5: c63decd397ca639c4b17f6ea5d26bd4d - sha256: 26a56c66c95389e9e2bd95e88f023fd94d4a60e4817bcbe4103f6220d0c17d86 - manager: conda - name: importlib-metadata - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-6.3.0-pyha770c72_0.conda - version: 6.3.0 -- category: main - dependencies: - markupsafe: '>=2.0' - python: '>=3.7' - hash: - md5: c8490ed5c70966d232fdd389d0dbed37 - sha256: b045faba7130ab263db6a8fdc96b1a3de5fcf85c4a607c5f11a49e76851500b5 - manager: conda - name: jinja2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.2-pyhd8ed1ab_1.tar.bz2 - version: 3.1.2 -- category: main - dependencies: - python: '>=3.6' - setuptools: '' - hash: - md5: 7583652522d71ad78ba536bba06940eb - sha256: 0c21351871df2c0a53168575597dd9c881e2a9fa4c42fe89a9bcd7fab37f462c - manager: conda - name: joblib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2 - version: 1.2.0 -- category: main - dependencies: - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: a76c36ad1b4b87f038d67890122d08ec - sha256: 24179aae324bcfa65ec983a389c5e048bd6b174f63afedf4cdd654da78cf9558 - manager: conda - name: lcms2 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/lcms2-2.15-h3e3b177_1.conda - version: '2.15' -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - expat: '>=2.4.8,<3.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 1f50b25e87cefda820cb71fb643bc021 - sha256: 4d136a0f5091dc988be0bd5648a36eb27df227e14f433ea2f5f022ba17137b42 - manager: conda - name: libkml - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libkml-1.3.0-hf2ab4e4_1015.tar.bz2 - version: 1.3.0 -- category: main - dependencies: - m2w64-gcc-libs: '' - pthread-stubs: '' - xorg-libxau: '' - xorg-libxdmcp: '' - hash: - md5: a6d7fd030532378ecb6ba435cd9f8234 - sha256: a6fe7468ed3b9898f7beaa75f7e3adff9c7b96b39a36a3f8399c37223ec6a9e8 - manager: conda - name: libxcb - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.13-hcd874cb_1004.tar.bz2 - version: '1.13' -- category: main - dependencies: - colorama: '>=0.3.4' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - win32_setctime: '>=1.0.0' - hash: - md5: 418204da701dc43d8992ba8131c17848 - sha256: d32391a4ca2d54917d41740df32171b6437ca7a667ed3abcfb52de842c177ad6 - manager: conda - name: loguru - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/loguru-0.7.0-py310h5588dad_0.conda - version: 0.7.0 -- category: main - dependencies: - python: '' - setuptools: '>=17.1' - six: '' - hash: - md5: 31d9e9be500e25ff0050bc9f57a6bcd7 - sha256: bd885bec8b012abf0c5ca5d6225caf0e88e5b2b0af8fa5a4e4d339604d3e9cd1 - manager: conda - name: munch - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/munch-2.5.0-py_0.tar.bz2 - version: 2.5.0 -- category: main - dependencies: - libpng: '>=1.6.39,<1.7.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: db0490689232e8e38c312281df6f31a2 - sha256: 1fb72db47e9b1cdb4980a1fd031e31fad2c6a4a632fc602e7d6fa74f4f491608 - manager: conda - name: openjpeg - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.0-ha2aaf27_2.conda - version: 2.5.0 -- category: main - dependencies: - python: '>=3.7' - setuptools: '' - wheel: '' - hash: - md5: 8025ca83b8ba5430b640b83917c2a6f7 - sha256: e1698cbf4964cd60a2885c0edbc654133cd0db5ac4cb568412250e577dbc42ad - manager: conda - name: pip - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pip-23.0.1-pyhd8ed1ab_0.conda - version: 23.0.1 -- category: main - dependencies: - krb5: '>=1.20.1,<1.21.0a0' - libpq: 15.2 ha9684e8_0 - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.8,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '' - hash: - md5: 9148e8b6b7ec9e7dedf9bf9987f606cd - sha256: b32ad30a1c90da0858f62a369c74b82b6ec525e806a241ebdda80452d3d3dc9c - manager: conda - name: postgresql - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/postgresql-15.2-hd87cd2b_0.conda - version: '15.2' -- category: main - dependencies: - libcurl: '>=7.87.0,<8.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - sqlite: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: eb88b5bc4d13493971408c3131022aec - sha256: 44ead9636b2fae1da4b9c6c135fea3e701f25539f0b79d474711f62c3c1e6250 - manager: conda - name: proj - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/proj-9.1.1-heca977f_2.conda - version: 9.1.1 -- category: main - dependencies: - __win: '' - python: '>=3.8' - win_inet_pton: '' - hash: - md5: 56cd9fe388baac0e90c7149cfac95b60 - sha256: b3a612bc887f3dd0fb7c4199ad8e342bd148cf69a9b74fd9468a18cf2bef07b7 - manager: conda - name: pysocks - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh0701188_6.tar.bz2 - version: 1.7.1 -- category: main - dependencies: - python: '>=3.6' - six: '>=1.5' - hash: - md5: dd999d1cc9f79e67dbb855c8924c7984 - sha256: 54d7785c7678166aa45adeaccfc1d2b8c3c799ca2dc05d4a82bb39b1968bd7da - manager: conda - name: python-dateutil - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2 - version: 2.8.2 -- category: main - dependencies: - packaging: '' - ply: '' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - toml: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 48c078009b8628c0259d9de3c03f417d - sha256: 3b793d923b171351fb6f0910c33e9827ed517323135d7d816b64df47408a7db6 - manager: conda - name: sip - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/sip-6.7.5-py311h12c1d0e_0.conda - version: 6.7.5 -- category: main - dependencies: - libhwloc: '>=2.9.0,<2.9.1.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e155410da447d8e37302a561b911dcb8 - sha256: 1f620d2440c51139ea1ad25bc6c60b3024322c4004677a611dc6fdd8a8527606 - manager: conda - name: tbb - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.8.0-h91493d7_0.conda - version: 2021.8.0 -- category: main - dependencies: - typing_extensions: 4.5.0 pyha770c72_0 - hash: - md5: b3c594fde1a80a1fc3eb9cc4a5dfe392 - sha256: 6da5e15fa533620ae2e7aca9a7d16013eed3a73ac64c47d7c3bf3deec39b63b9 - manager: conda - name: typing-extensions - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.5.0-hd8ed1ab_0.conda - version: 4.5.0 -- category: main - dependencies: - jinja2: '' - python: '>=3.7' - setuptools: '' - hash: - md5: f4cc65697763ef8c2f7555f1ec355a6b - sha256: 46175d4dd94e458b2c5303a4cd816db6c45ff302b1b1852c1fd37411ce171f05 - manager: conda - name: branca - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/branca-0.6.0-pyhd8ed1ab_0.tar.bz2 - version: 0.6.0 -- category: main - dependencies: - cffi: '>=1.0.0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 6cb010e0fa21d7b606a13038a89ccbc2 - sha256: 2631b26d291196d76694bf7d71ea77ba2abcfc46278c3a54730a2d5683ca6c2b - manager: conda - name: brotlipy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/brotlipy-0.7.0-py310h8d17308_1005.tar.bz2 - version: 0.7.0 -- category: main - dependencies: - fontconfig: '>=2.13.96,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - icu: '>=70.1,<71.0a0' - libglib: '>=2.72.1,<3.0a0' - libpng: '>=1.6.38,<1.7.0a0' - libzlib: '>=1.2.12,<1.3.0a0' - pixman: '>=0.40.0,<1.0a0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '>=1.2.12,<1.3.0a0' - hash: - md5: 91f08ed9ff25a969ddd06237454dae0d - sha256: 9f61fd45d0c9d27bd5e2bf4eeb3662d97691dc7d08b4007060776ce91f1a0d35 - manager: conda - name: cairo - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/cairo-1.16.0-hd694305_1014.tar.bz2 - version: 1.16.0 -- category: main - dependencies: - click: '>=3.0' - python: '' - hash: - md5: 4fd2c6b53934bd7d96d1f3fdaf99b79f - sha256: ddef6e559dde6673ee504b0e29dd814d36e22b6b9b1f519fa856ee268905bf92 - manager: conda - name: click-plugins - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2 - version: 1.1.1 -- category: main - dependencies: - click: '>=4.0' - python: <4.0 - hash: - md5: a29b7c141d6b2de4bb67788a5f107734 - sha256: 97bd58f0cfcff56a0bcda101e26f7d936625599325beba3e3a1fa512dd7fc174 - manager: conda - name: cligj - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2 - version: 0.7.2 -- category: main - dependencies: - cffi: '>=1.12' - openssl: '>=3.1.0,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: a282930b553a8d687efa2ae548bac522 - sha256: e8181fa489f40170b88ec7aef53263cc310f1e9c7f3975aa37019ad811b8998c - manager: conda - name: cryptography - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/cryptography-40.0.1-py310h6e82f81_0.conda - version: 40.0.1 -- category: main - dependencies: - brotli: '' - munkres: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - unicodedata2: '>=14.0.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 18c2d73815d91ee511ef9bd47839f6bf - sha256: c450a3f0bf6f54ddf7ca6737973f5784452f8cb70c0ac5ff746ead255638d0c2 - manager: conda - name: fonttools - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/fonttools-4.39.3-py310h8d17308_0.conda - version: 4.39.3 -- category: main - dependencies: - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '' - hash: - md5: 00c269145d4c1361fb3e8db3c70b66ec - sha256: 6f73dafb304e6626f25ef551b7f60b40ab7421d0e96e1b7db72537fa061bec6d - manager: conda - name: geotiff - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/geotiff-1.7.1-hb4c6682_7.conda - version: 1.7.1 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - glib-tools: 2.74.1 h12be248_1 - libglib: 2.74.1 he8f3873_1 - libzlib: '>=1.2.13,<1.3.0a0' - python: '*' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 7564888ab882b9d3aea46355ab7adaca - sha256: d962bca6e00aec9f8c3478e7c16e0f3d71034b8d39a68542d05fee5733c5d802 - manager: conda - name: glib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/glib-2.74.1-h12be248_1.tar.bz2 - version: 2.74.1 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 59e439387b2ca19699b8ce1f077ebe0a - sha256: 6b17e3de85f036bc0ae5a971798a81ab94b80f354b1acd17af2f0368905b5ffe - manager: conda - name: kealib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/kealib-1.5.0-h61be68b_0.conda - version: 1.5.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzip: '>=1.9.2,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 17d37c563b045f12956791bd4cee7975 - sha256: 7d0eca6bd6fcf7b9a82116038c46415805fcde4346f1a0b152b6bae967ae3227 - manager: conda - name: libnetcdf - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libnetcdf-4.9.1-nompi_h83fa41b_102.conda - version: 4.9.1 -- category: main - dependencies: - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - librttopo: '>=1.1.0,<1.2.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - proj: '>=9.1.1,<9.1.2.0a0' - sqlite: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '' - hash: - md5: 7661a11b21d23f6f21648a787045b825 - sha256: 95f6cc07df2bee285b3f1d48921f00a1dc1eff9b20bd7a9c16bac2e4a2145ecd - manager: conda - name: libspatialite - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libspatialite-5.0.1-hfdcade0_23.conda - version: 5.0.1 -- category: main - dependencies: - intel-openmp: '' - tbb: 2021.* - hash: - md5: 2ff89a7337a9636029b4db9466e9f8e3 - sha256: b130d13dba6a798cbcce8f19c52e9765b75b8668d2f8f95ba8210c63b6fa84eb - manager: conda - name: mkl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/mkl-2022.1.0-h6a75c08_874.tar.bz2 - version: 2022.1.0 -- category: main - dependencies: - freetype: '>=2.12.1,<3.0a0' - lcms2: '>=2.15,<3.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openjpeg: '>=2.5.0,<3.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - tk: '>=8.6.12,<8.7.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: ec7e2a9f3deebb9898df9ed3c186c955 - sha256: 6dabdd45d217d98536e4127ea68eec56a409541af53f4562a0de05a0519f91f1 - manager: conda - name: pillow - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pillow-9.5.0-py310h3dcae36_0.conda - version: 9.5.0 -- category: main - dependencies: - python: '>=3.7' - typing-extensions: '>=4.5' - hash: - md5: f10c2cf447ca96f12a326b83c75b8e33 - sha256: 51816d5471cc42059cc7a8616c8899b6fda7347999359c3979fefd0035ab274c - manager: conda - name: platformdirs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-3.2.0-pyhd8ed1ab_0.conda - version: 3.2.0 -- category: main - dependencies: - certifi: '' - proj: '>=9.1.1,<9.1.2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 92ba22588345454f5d0ba6399b217eb6 - sha256: 87b5982106dd0718e4bbfae059ad868f8a85d1b8a1513357d26bec34916bf529 - manager: conda - name: pyproj - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pyproj-3.5.0-py310hcdd211a_0.conda - version: 3.5.0 -- category: main - dependencies: - packaging: '' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - sip: '' - toml: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: ea106278cc0d79181eb7db547e2ccf77 - sha256: 6f37270d7e68b57569003796b554606f840f7c1d1bd44ba6b82456b1bb9b9718 - manager: conda - name: pyqt5-sip - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.11.0-py311h12c1d0e_2.tar.bz2 - version: 12.11.0 -- category: main - dependencies: - colorama: '' - exceptiongroup: '' - importlib-metadata: '>=0.12' - iniconfig: '' - packaging: '' - pluggy: '>=0.12,<2.0' - python: '>=3.8' - tomli: '>=1.0.0' - hash: - md5: 425ee1712dbbb194edf0997d46202405 - sha256: 23c23a56db2c623d241e898999493e18c0ee97530700111a3adec7658cb6ce52 - manager: conda - name: pytest - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-7.3.0-pyhd8ed1ab_0.conda - version: 7.3.0 -- category: main - dependencies: - bzip2: '>=1.0.8,<2.0a0' - curl: '' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openssl: '>=3.0.7,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zlib: '' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 07426c5e1301448738f66686548d41ff - sha256: 96c2de92dce5de54c923d9242163196bff6bce8e0fbfdbcfd4d9c47ce2fb1123 - manager: conda - name: tiledb - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/tiledb-2.13.2-h3132609_0.conda - version: 2.13.2 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - glib: '>=2.74.1,<3.0a0' - libglib: '>=2.74.1,<3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 19a9f9ee43fcfedbf72ed09656601bc9 - sha256: f8d9e3d799fa41192a7df95f7f8df8da2a89ca5a41aaa5b18b752a4273df307d - manager: conda - name: gstreamer - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.21.2-h6b5321d_0.conda - version: 1.21.2 -- category: main - dependencies: - mkl: 2022.1.0 h6a75c08_874 - hash: - md5: d2e6f4e86cee2b4e8c27ff6884ccdc61 - sha256: 0825e98108590b83f91177a6f31e4815441b2f70c67d29df36f11039c23b947a - manager: conda - name: libblas - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-16_win64_mkl.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - boost-cpp: '>=1.78.0,<1.78.1.0a0' - cairo: '>=1.16.0,<2.0a0' - fontconfig: '>=2.14.2,<3.0a0' - fonts-conda-ecosystem: '' - freetype: '>=2.12.1,<3.0a0' - gettext: '>=0.21.1,<1.0a0' - lcms2: '>=2.15,<3.0a0' - libcurl: '>=7.88.1,<8.0a0' - libglib: '>=2.74.1,<3.0a0' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openjpeg: '>=2.5.0,<3.0a0' - poppler-data: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: d053c7841d291f59edb97316b91ed207 - sha256: f6904be2aeb1533508fac2b42ed5d95e794574bd5c2aac988de8442f4397f67f - manager: conda - name: poppler - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/poppler-23.03.0-h934c637_1.conda - version: 23.03.0 -- category: main - dependencies: - cryptography: '>=38.0.0,<41' - python: '>=3.6' - hash: - md5: 0b34aa3ab7e7ccb1765a03dd9ed29938 - sha256: 458428cb867f70f2af2a4ed59d382291ea3eb3f10490196070a15d1d71d5432a - manager: conda - name: pyopenssl - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pyopenssl-23.1.1-pyhd8ed1ab_0.conda - version: 23.1.1 -- category: main - dependencies: - coverage: '>=5.2.1' - pytest: '>=4.6' - python: '>=3.6' - toml: '' - hash: - md5: c9e3f8bfdb9bfc34aa1836a6ed4b25d7 - sha256: 2e00bbdb00b2514faba50ddcb6ecf1d6e4f2d5af346f9cd1240aacb1b61dccb6 - manager: conda - name: pytest-cov - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.0.0-pyhd8ed1ab_0.tar.bz2 - version: 4.0.0 -- category: main - dependencies: - gettext: '>=0.21.1,<1.0a0' - gstreamer: 1.21.2 h6b5321d_0 - libglib: '>=2.74.1,<3.0a0' - libvorbis: '>=1.3.7,<1.4.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: e46a55a23deb80b07ad1005fc787a16d - sha256: 6eadf72cf466d0a8304057c429b8908f9ef8d94bada075353d49554a151266d9 - manager: conda - name: gst-plugins-base - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.21.2-h001b923_0.conda - version: 1.21.2 -- category: main - dependencies: - libblas: 3.9.0 16_win64_mkl - hash: - md5: 14c2fb03b2bb14dfa3806186ca91d557 - sha256: 4ca91d4ff2ef409d2426c5aa5f451410bd817c0ad7410f3a95d62ddc13e2d1f1 - manager: conda - name: libcblas - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-16_win64_mkl.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - blosc: '>=1.21.3,<2.0a0' - cfitsio: '>=4.2.0,<4.2.1.0a0' - expat: '>=2.5.0,<3.0a0' - freexl: '>=1.0.6,<2.0a0' - geos: '>=3.11.1,<3.11.2.0a0' - geotiff: '>=1.7.1,<1.8.0a0' - hdf4: '>=4.2.15,<4.2.16.0a0' - hdf5: '>=1.12.2,<1.12.3.0a0' - icu: '>=70.1,<71.0a0' - kealib: '>=1.5.0,<1.6.0a0' - lerc: '>=4.0.0,<5.0a0' - libcurl: '>=7.88.1,<8.0a0' - libdeflate: '>=1.17,<1.18.0a0' - libiconv: '>=1.17,<2.0a0' - libjpeg-turbo: '>=2.1.5.1,<3.0a0' - libkml: '>=1.3.0,<1.4.0a0' - libnetcdf: '>=4.9.1,<4.9.2.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libpq: '>=15.2,<16.0a0' - libspatialite: '>=5.0.1,<5.1.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libtiff: '>=4.5.0,<4.6.0a0' - libwebp-base: '>=1.3.0,<2.0a0' - libxml2: '>=2.10.3,<2.11.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - lz4-c: '>=1.9.3,<1.10.0a0' - openjpeg: '>=2.5.0,<3.0a0' - openssl: '>=3.0.8,<4.0a0' - pcre2: '>=10.40,<10.41.0a0' - poppler: '>=23.3.0,<23.4.0a0' - postgresql: '' - proj: '>=9.1.1,<9.1.2.0a0' - tiledb: '>=2.13.2,<2.14.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - xerces-c: '>=3.2.4,<3.3.0a0' - xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 5dbdbb676004f59e6a75ba3df12c1dbd - sha256: 63be45ae38b79e70523360ae31b70fa41808a2ffa6b449931f212c57b2e2e007 - manager: conda - name: libgdal - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libgdal-3.6.3-h1443b5b_0.conda - version: 3.6.3 -- category: main - dependencies: - libblas: 3.9.0 16_win64_mkl - hash: - md5: be2f9d5712a5bb05cd900005ee752a05 - sha256: cb10f543120e277e44c342f65bcec2bd27f4bd206f5ea9332efd91e4551e5bac - manager: conda - name: liblapack - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-16_win64_mkl.tar.bz2 - version: 3.9.0 -- category: main - dependencies: - brotlipy: '>=0.6.0' - certifi: '' - cryptography: '>=1.3.4' - idna: '>=2.0.0' - pyopenssl: '>=0.14' - pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: <4.0 - hash: - md5: 27db656619a55d727eaf5a6ece3d2fd6 - sha256: 213bdf6c3a5d721fa83b45d527d3ecd340f9547c0d6bbd0b8d9d746ec9a1fb4b - manager: conda - name: urllib3 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.15-pyhd8ed1ab_0.conda - version: 1.26.15 -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - liblapack: '>=3.9.0,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 9960f0424ff61ab6ed8584bfbf869e77 - sha256: d2ae9dfae20e91563467d3c045d7de9856018a66c31730ec258ea7d3193c5d11 - manager: conda - name: numpy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/numpy-1.24.1-py310hd02465a_0.conda - version: 1.24.1 -- category: main - dependencies: - gst-plugins-base: '>=1.21.2,<1.22.0a0' - gstreamer: '>=1.21.2,<1.22.0a0' - icu: '>=70.1,<71.0a0' - jpeg: '>=9e,<10a' - krb5: '>=1.19.3,<1.20.0a0' - libclang: '>=15.0.6,<16.0a0' - libclang13: '>=15.0.6' - libglib: '>=2.74.1,<3.0a0' - libpng: '>=1.6.39,<1.7.0a0' - libsqlite: '>=3.40.0,<4.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openssl: '>=3.0.7,<4.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - zstd: '>=1.5.2,<1.6.0a0' - hash: - md5: 5378f2119af6994770d6328c0bfcae1e - sha256: b6dcde5d5204fc7863a35e8d0408aba5187a2a6f1bd14cd899b51efa7a6b51f1 - manager: conda - name: qt-main - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/qt-main-5.15.6-hb9439ea_4.conda - version: 5.15.6 -- category: main - dependencies: - certifi: '>=2017.4.17' - charset-normalizer: '>=2,<4' - idna: '>=2.5,<4' - python: '>=3.7,<4.0' - urllib3: '>=1.21.1,<1.27' - hash: - md5: 3bfbd6ead1d7299ed46dab3a7bf0bc8c - sha256: 9a7c3410970217fa035cca7f72c175989e1c8b22f855b852b9d5fde07c3550dd - manager: conda - name: requests - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.28.2-pyhd8ed1ab_1.conda - version: 2.28.2 -- category: main - dependencies: - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 6d26114b7e1313d82e85570789bd9ad0 - sha256: 7867e3bb3da6ae760236940d292425df91e941083c9a535c08ab70d0637a1387 - manager: conda - name: cftime - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/cftime-1.6.2-py310h9b08ddd_1.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - numpy: '>=1.16' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 357f1ccd3fa2bbf3661146467f7afd44 - sha256: c2d32b16fedb41b184729fd87c5b61f69f6a4e5f331955e231b83d30aac99a61 - manager: conda - name: contourpy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/contourpy-1.0.7-py310h232114e_0.conda - version: 1.0.7 -- category: main - dependencies: - branca: '>=0.6.0' - jinja2: '>=2.9' - numpy: '' - python: '>=3.6' - requests: '' - hash: - md5: 48c8bb19df0d0268f1a9d30ffc56c5b0 - sha256: 60c51dacc4edb33ba02a7224ddec9d938200f89588eb34b0ccdffc96155795fe - manager: conda - name: folium - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/folium-0.14.0-pyhd8ed1ab_0.conda - version: 0.14.0 -- category: main - dependencies: - hdf5: '>=1.12.2,<1.12.3.0a0' - libgdal: 3.6.3 h1443b5b_0 - numpy: '>=1.21.6,<2.0a0' - openssl: '>=3.0.8,<4.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 4dc7deda578a9c05d71c54b5d06ce9c7 - sha256: 846d7fc1b137beb5404fb1f435ee49299ad638e9b26efa47d714dc0034c85315 - manager: conda - name: gdal - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/gdal-3.6.3-py310h644bc08_0.conda - version: 3.6.3 -- category: main - dependencies: - numpy: 1.24.1 - python: '>=3.9,<3.11' - hash: - md5: e57176d1746df4393dfc4ae2793710d8 - sha256: 3f3af2e2597ed7931d4b6757a91d8ab4d2299a05d19ed5b7e601fc608c61af01 - manager: conda - name: hpc - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/hpc-0.1.0-pyhd8ed1ab_0.conda - version: 0.1.0 -- category: main - dependencies: - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.8.1' - python-tzdata: '>=2022a' - python_abi: 3.10.* *_cp310 - pytz: '>=2020.1' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 2627a043637b221ea0f1bbcc60011c24 - sha256: 18d7b24a3ff1b337495abb395f2390c2afb707afd3edd0e2c1cd6074f1b379fa - manager: conda - name: pandas - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pandas-2.0.0-py310h1c4a608_0.conda - version: 2.0.0 -- category: main - dependencies: - packaging: '>=20.0' - platformdirs: '>=2.5.0' - python: '>=3.7' - requests: '>=2.19.0' - hash: - md5: 5936894aade8240c867d292aa0d980c6 - sha256: 64e4d633803df2e36fd141d9bf269568fbe179a313248e1dac4d364c02debdef - manager: conda - name: pooch - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/pooch-1.7.0-pyha770c72_3.conda - version: 1.7.0 -- category: main - dependencies: - pyqt5-sip: 12.11.0 py311h12c1d0e_2 - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - qt-main: '>=5.15.6,<5.16.0a0' - sip: '>=6.7.2,<6.8.0a0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 2e671c9c3653dc36acd3c42a5adeb253 - sha256: 95815eb10c9641366065b86abcf7fc30b0a3a01827cd0d84ca2fd68110803ea2 - manager: conda - name: pyqt - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pyqt-5.15.7-py311h125bc19_2.tar.bz2 - version: 5.15.7 -- category: main - dependencies: - geos: '>=3.11.1,<3.11.2.0a0' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 76b4d1b25e5ba9d036700b6a0da8cdbc - sha256: f0ab8fde6ab31ea1d53a06287f1402264dce683a934ccf170fdd67683f8308bb - manager: conda - name: shapely - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/shapely-1.8.5-py310h8c82734_2.tar.bz2 - version: 1.8.5 -- category: main - dependencies: - numpy: '' - pyparsing: '>=2.1.6' - python: '' - hash: - md5: cb83a3d6ecf73f50117635192414426a - sha256: ebb8f5f9e362f186fb7d732e656f85c969b86309494436eba51cc3b8b96683f7 - manager: conda - name: snuggs - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2 - version: 1.4.7 -- category: main - dependencies: - attrs: '>=17' - click: '>=4.0' - click-plugins: '>=1.0' - cligj: '>=0.5' - gdal: '' - importlib-metadata: '' - libgdal: '>=3.6.3,<3.7.0a0' - munch: '' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - shapely: '' - six: '>=1.7' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: f5313037ddbb4119f685ca5ddfc6430f - sha256: 41cd6c9d20f5b4391c83e1e9a40a0d811dde39e8724084c3a79a61b30261e7db - manager: conda - name: fiona - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/fiona-1.9.3-py310h4a685fe_0.conda - version: 1.9.3 -- category: main - dependencies: - packaging: '' - pandas: '>=1.0.5' - pyproj: '>=2.6.1.post1' - python: '>=3.8' - shapely: '>=1.7' - hash: - md5: cf04d066b97dfe698f0d01ebf4af6163 - sha256: 1c35e0191bc7d8dc2a545710c73324c8c07dc2636ec484df224e7c722eaa1985 - manager: conda - name: geopandas-base - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-base-0.12.2-pyha770c72_0.conda - version: 0.12.2 -- category: main - dependencies: - certifi: '>=2020.06.20' - contourpy: '>=1.0.1' - cycler: '>=0.10' - fonttools: '>=4.22.0' - freetype: '>=2.12.1,<3.0a0' - kiwisolver: '>=1.0.1' - numpy: '>=1.21.6,<2.0a0' - packaging: '>=20.0' - pillow: '>=6.2.0' - pyparsing: '>=2.3.1' - python: '>=3.10,<3.11.0a0' - python-dateutil: '>=2.7' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: d8c42a72d04ad1b93ba7269e9949738e - sha256: 61975c0453d6e624c110cfec008eac14fb3fa268466a01f4257c6f280006c2fa - manager: conda - name: matplotlib-base - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.7.1-py310h51140c5_0.conda - version: 3.7.1 -- category: main - dependencies: - cftime: '' - hdf5: '>=1.12.2,<1.12.3.0a0' - libnetcdf: '>=4.8.1,<4.8.2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 71f0444f4abebfd46c5a4a8f39c6a90c - sha256: db08130c28445b69e09da8202483389d2ce698b4ae97eea0cbae0fc9710605f8 - manager: conda - name: netcdf4 - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/netcdf4-1.6.2-nompi_py310h459bb5f_100.tar.bz2 - version: 1.6.2 -- category: main - dependencies: - affine: '' - attrs: '' - certifi: '' - click: '>=4' - click-plugins: '' - cligj: '>=0.5' - libgdal: '>=3.6.0,<3.7.0a0' - numpy: '>=1.21.6,<2.0a0' - proj: '>=9.1.0,<9.1.1.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - setuptools: '>=0.9.8' - snuggs: '>=1.4.1' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 18159e9495e5a1b79612d3ac6d8c7abb - sha256: 980591cfde14a92e33eb75d86d8d2c5f28193245e87afd1c781f60202f1de946 - manager: conda - name: rasterio - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/rasterio-1.3.4-py310h1f46e14_0.tar.bz2 - version: 1.3.4 -- category: main - dependencies: - libblas: '>=3.9.0,<4.0a0' - libcblas: '>=3.9.0,<4.0a0' - liblapack: '>=3.9.0,<4.0a0' - m2w64-gcc-libs: '' - numpy: '>=1.21.6,<2.0a0' - pooch: '' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 0fb710fe01eb0107d700d20d19117e73 - sha256: 323b157bb02f16d0630dc2d8a4b7b804c98df78430fd39b60547be3498996fb1 - manager: conda - name: scipy - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/scipy-1.10.1-py310h578b7cb_0.conda - version: 1.10.1 -- category: main - dependencies: - matplotlib-base: '>=3.6.2,<3.6.3.0a0' - pyqt: '>=5' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* *_cp311 - tornado: '>=5' - hash: - md5: b1868c1144360dd480260536435fe083 - sha256: a0fc34e3f4489e6572c4eb1c7de9f98e02cea6559d00dd87e5fbaa6053761833 - manager: conda - name: matplotlib - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.6.2-py311h1ea47a8_0.tar.bz2 - version: 3.6.2 -- category: main - dependencies: - joblib: '>=1.1.1' - numpy: '>=1.21.6,<2.0a0' - python: '>=3.10,<3.11.0a0' - python_abi: 3.10.* *_cp310 - scipy: '' - threadpoolctl: '>=2.0.0' - ucrt: '>=10.0.20348.0' - vc: '>=14.2,<15' - vs2015_runtime: '>=14.29.30139' - hash: - md5: 58ec4d53193a74a09d8a862f98a730e5 - sha256: adad8a51b90ff4ff1aa7de37f1d06b3e3ac1b0ab70f3335114892fac4f62c328 - manager: conda - name: scikit-learn - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/scikit-learn-1.2.2-py310hd266714_1.conda - version: 1.2.2 -- category: main - dependencies: - networkx: '' - numpy: '>=1.3' - pandas: '>=1.0' - python: '>=3.6' - scikit-learn: '' - scipy: '>=1.0' - hash: - md5: db1aeaff6e248db425e049feffded7a9 - sha256: 78aadbd9953976678b6e3298ac26a63cf9390a8794db3ff71f3fe5b6d13a35ca - manager: conda - name: mapclassify - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/mapclassify-2.5.0-pyhd8ed1ab_1.conda - version: 2.5.0 -- category: main - dependencies: - fiona: '' - folium: '' - geopandas-base: 0.12.2 pyha770c72_0 - mapclassify: '>=2.4.0' - matplotlib-base: '' - python: '>=3.8' - rtree: '' - xyzservices: '' - hash: - md5: ee3b330f13297f5839d46e1ca3e57d56 - sha256: 51660094efee2a74b24ab535e03005a6ddedc9e160c0d573cfaf2724312d171c - manager: conda - name: geopandas - optional: false - platform: win-64 - url: https://conda.anaconda.org/conda-forge/noarch/geopandas-0.12.2-pyhd8ed1ab_0.conda - version: 0.12.2 -version: 1 diff --git a/docs/source/installation.rst b/docs/source/installation.rst index fe43e170f..cf91f83ce 100644 --- a/docs/source/installation.rst +++ b/docs/source/installation.rst @@ -103,7 +103,7 @@ Once you have a copy of the source, you can install it with: .. code-block:: console - $ python setup.py install + $ python -m pip install . .. _Github repo: https://github.com/MAfarrag/pyramids diff --git a/examples/data/raster_like_saved.tif b/examples/data/raster_like_saved.tif index 6e39bb82f0fac61d894736b76591b0cfb3eb37cc..3c9833bd87dd6c5fcb95783cd63542687fa6d379 100644 GIT binary patch delta 20 ccmey%@`q)DALERP{`HI!6VD%+JcaQk09^nHCIA2c delta 22 ecmeyv@|R_TALGo4{`HKK6VD%EG@d+}@g)FkLkU{| diff --git a/examples/notebooks/01dataset.ipynb b/examples/notebooks/01dataset.ipynb index 10bda3c75..741f8715e 100644 --- a/examples/notebooks/01dataset.ipynb +++ b/examples/notebooks/01dataset.ipynb @@ -1,743 +1,743 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-19T21:10:03.757392Z", - "start_time": "2024-06-19T21:10:03.754399Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "# Dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "

\n", - " \"dataset\n", - "

" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:51:57.652691Z", - "start_time": "2024-07-01T19:51:54.295850Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "from pyramids.dataset import Dataset\n", - "path = r\"../../examples/data/geotiff/noah-precipitation-1979.tif\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Read any raster format" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:51:59.402059Z", - "start_time": "2024-07-01T19:51:59.354865Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "dataset = Dataset.read_file(path)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Explore Dataset properties" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:01.874513Z", - "start_time": "2024-07-01T19:52:01.867978Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Cell size: 0.5\n", - " Dimension: 360 * 720\n", - " EPSG: 4326\n", - " Number of Bands: 4\n", - " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", - " Mask: -9.969209968386869e+36\n", - " Data type: float32\n", - " File: ../../examples/data/geotiff/noah-precipitation-1979.tif\n", - " \n" - ] - } - ], - "source": [ - "print(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Plot Dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:10.650948Z", - "start_time": "2024-07-01T19:52:05.748262Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZb3/36dN3Zlt2d30AiGFhEAIBAhIlSoWVFRsBBUsiBcLghW4+gPRK8K9Iooicu9V4Sri9SJIkwRpAqGFFkp63WTbzE495fn9ceacPTM7W7Ob3STP+/XKK7OnzXOeOeX5Pt/v9/NVhBACiUQikUgkEolEIukHdawbIJFIJBKJRCKRSMY/0nCQSCQSiUQikUgkAyINB4lEIpFIJBKJRDIg0nCQSCQSiUQikUgkAyINB4lEIpFIJBKJRDIg0nCQSCQSiUQikUgkAyINB4lEIpFIJBKJRDIg0nCQSCQSiUQikUgkAyINB4lEIpFIJBKJRDIg0nCQ7JUoioKiKNTX19PZ2Vl1m6uuugpFUfjBD36wZxsHrF+/HkVROPHEE/fI982cORNFUXb7OL/5zW9QFIWrrrqqbLnXl7/5zW92+zv6Yvny5f7v6v2LRqPMmzePL3/5y2zfvn3Uvns4rFixAkVRWL58+W4fa09fL/0xkuc10qxZs4af/OQnfOQjH+GAAw7wr5OBro329nYuu+wyZs+eTTgcprm5mQ9+8IO8+OKLVbevdi1W+7dx48Ze+953332ceuqp1NXVEYvFOOSQQ/jRj36EZVnDPu/XXnuNc889l6amJqLRKIcccgg/+clPcByn6vYrV67k6quv5l3vehdNTU0oisK8efOG/f3jrR0SiWTs0Me6ARLJ7tDZ2clPfvITrr766rFuimSEOPbYY5k9ezYAra2tPPXUU9xwww3ccccdPPnkk8ycOXNsG7gH+c1vfsMFF1zAlVde2cuYGy5XXXUVV199Nbfddtu4NA764+abb+bGG28c0j7btm3juOOOY+3atUyaNImzzjqLrVu38qc//Yn/+7//469//SvvfOc7y/Y57rjj+jzemjVreOqpp5gxYwbTpk0rW3fddddxxRVXoKoqRx11FE1NTTz11FN8/etf56GHHuKvf/0ruj601+5TTz3FKaecQjabZenSpcycOZNHH32Ur3zlKzz++OP84Q9/6DVp8C//8i99GkXDZby0QyKRjC3ScJDstaiqiq7r3HDDDVx66aXU19ePdZP2es455xyOPvpoJkyYMGZt+MxnPlM2oN25cydnnXUWzz77LF/72tf44x//OGZtC7J06VJee+01amtrd/tYU6ZM4bXXXiMWi41Ay3aPkTyvkeaQQw7h8ssvZ+nSpRx55JG84x3vYMOGDf3uc9FFF7F27VrOPPNM/vCHPxCPxwG46667OPfcc/noRz/K2rVrqamp8ff5zGc+w2c+85mqx/vwhz/MU089xcc//vGygfIzzzzDN77xDQzD4J577uG0004DoKuri/e85z088MAD/PjHP+byyy8f9PlalsXHP/5xstks119/PV/+8pcB6O7u5rTTTuOuu+7yjcsgp512Gh/60Ic48sgjmTBhAocffvigv3M8t0MikYwDhESyFwKIcDgsvvCFLwhAfPvb3+61zZVXXikAce211+7x9q1bt04A4oQTTtgj3zdjxgwxmrez15e33XbbqH3H+eef3+d3rFy5UgAiEomIYrE4am0Yb9x2220CEFdeeeWIHXNP/JZ7Cu+637ZtW9X1GzduFIDQdV2sX7++1/oPfvCDAhA33njjoL6vq6tLRKNRAYjXXnutbN2nP/1pAYgLL7yw134vv/yyAERTU5OwLGtQ3yWEEP/zP/8jAHHooYf2Wvfcc88JQCxcuLDfY3jPorlz5w76e8drOyQSydgjcxwkezXf/OY3CYfD3HjjjbS3tw96v2w2y/e+9z0WLlxINBqltraW448/njvuuKPq9i+88AJf//rXWbJkCU1NTYTDYQ444AC+8IUvsHXr1n6/K5fLccUVVzBjxgzC4TCzZ8/muuuuQwgxpHO1LItrr72Wgw46iEgkwgEHHMB3vvMdisVi1e2FEPz+97/nIx/5CHPmzCEej5NIJFi6dCk/+9nPqsYl95XjUI2FCxeiKApvvPFG1fXr169HVVUOOuigIZ9rJYsXLwYgn8+za9cuoCcOfcWKFdx///2cdNJJ1NXVoShKWd7L//3f/3H66afT2NhIJBJhzpw5fOc736G7u7vqd5mmyc9+9jOOPfZYP059zpw5XHjhhbz88sv+dn3lAgTzQf75z39y+umnU1dXRzKZ5NRTT+Wpp56q2leVOQ4nnniiP4N79dVXl8XWe7kmQ/2NZ86c6Yf1XXDBBWXHXLFiRb/nBe41+B//8R8sWbKEmpoaampqWLp0KTfffDO2bffa/sQTT0RRFNavX8+f//xnjj76aOLxOA0NDZx33nls3ry56m8wUjz33HMAzJo1ixkzZlRtH8D//u//Dup4d911F7lcjiOPPLJXrP6qVavKjhlkwYIFTJgwgZ07d/LEE08Muv333HMPAB/84Ad7rVu8eDEHHHAAL7/8MuvXrx/0MYfDeGmHRCIZe6ThINmrmTJlChdeeCHpdJof//jHg9onnU5z/PHH893vfpfW1lbOPvtsjj32WJ5++mnOO+88Lr300l77/OAHP+D666/Htm2OPfZYzjrrLIQQ3HzzzRxxxBF9Gg/FYpHTTjuNW265hfnz53PSSSexZcsWrrjiCr7zne8M6VzPO+88vvnNb7J9+3bOOOMMDjnkEK6//nre//73Vx2YFwoFPvrRj/LAAw/Q3NzMu9/9bo466iheeeUVLr74Yj71qU8N6fsr+exnPwvAr371q6rrb731VoQQfOYzn9ntxO10Ou1/DofDZet+97vfceaZZ5LJZDjzzDM58sgj/e/76le/ynve8x4effRRFi5cyLve9S6KxSLf//73OfHEE8lkMmXHymQynHLKKVx88cW89NJLLFu2jHe/+93U1dXxm9/8ZkhhUk888QTHH388mzdv5swzz2Tu3Lk89NBDnHDCCTz44IMD7n/GGWdw7LHHAnDooYdy/vnn+/+8HJCh/sYf/OAHOfTQQwE3lyR4zIkTJ/bbHtu2ee9738uXvvQl3nrrLd75znfyzne+k9dff50vfOELnHvuuX0myf7sZz/jAx/4AEIIzjjjDGpqarjjjjs4+eSTyeVyA/bFcPF+377CGBsaGgAGHYf/3//93wB8/OMfH/XvCm7bV4iPt3y08wjGSzskEsk4YOycHRLJ8KEUqiSEEFu2bBGRSEQkEgmxa9cuf5u+QpW++MUvCkC8853vFOl02l/+2muviebmZgGIv/71r2X7PPzww2Lr1q1ly2zbFldffbUAxAUXXFC2znPLA+Id73iH2Llzp7/umWeeEbqui1gsVvb9/fG73/1OAOKAAw4Qmzdv9pevXbtWTJ061f+uIKZpirvuuksUCoWy5a2treKII44QgFi5cmXZur5CY6qFt3R2dopYLCaam5t7hQ9ZliWmTJkidF0X27dvH9Q59heq9POf/1wAYsqUKb22B8Qdd9zRa58777xTAGLx4sVi3bp1/vJisSguuugiAYivfe1rZft44SYnnXRS2bUkhBCbN28Wzz77rP/3I488IgBx/vnnl23n9RUgvvnNbwrHcfx1P/vZzwQgJk+eLHK5nL+8r9C2gUKVhvMbDxSq1Nd5/du//ZsAxCGHHCJ27NjhL9+6dauYO3euAMRNN91Uts8JJ5wgABGPx8XDDz/sL89kMmLZsmUCELfeemvVdgyGgUKVHnjgAQGIlpaWquuvvfZa/7ca6F7cvHmzUFVV6Lpedv4e3vncfPPNvdbZtu2HOH31q18dxJm51NfXC0C8+OKLVddfeumlAhD//u//3ucxRiJEaLy0QyKRjD3S4yDZ65k8eTIXXXQR6XSaf/u3f+t320wmw6233oqqqvzsZz8rS4icN28e3/72twH493//97L9Tj75ZCZNmlS2TFVVvvvd7zJlypQ+Qx1UVeVXv/pVWbLxEUccwZlnnkk2m+XZZ58d1DnefPPNAHzve99jypQp/vJZs2b16bnQdZ33v//9hEKhsuVNTU1ce+21wOBDNKpRW1vLhz/8YVpbW/nLX/5Stu6+++5jy5YtvOc976GlpWXY37Fz505uu+02vv71rwPw+c9/vtc273rXu/jwhz/ca/k111wDwO9///syJSbDMLjxxhuZOHEiv/rVr/xZ8m3btvGb3/yGaDTKf/7nf9LY2Fh2vClTprBkyZJBt33GjBl+iJHH5z//eY466ii2bt3K3XffPehj9cVo/8ZBvHvihhtuoLm52V8+adIkfvSjH5VtU8mXv/xlTj75ZP/vWCzGV7/6VQAeffTREWlfNY466igikQg7duzgb3/7W9k6x3H4z//8T//voFerGr/97W9xHIfTTz+97Pw9TjjhBABuv/32XuvuvPNO37My0PcE8cLp+kqa9xK9+wq7GynGSzskEsnYIw0HyT7BFVdcQSQS4ac//akfA1+NVatWkcvlWLp0KQcddFCv9Z/4xCcAePzxx3uF/7S1tXHbbbfx1a9+lU9/+tMsX76c5cuXY5om7e3tVXMsZs6cyZw5c3ot95Zt27ZtwHMzTZN//vOfqKpaNcb4vPPO63f/F154gR/+8IdcfPHFXHDBBSxfvtw3RN58880Bv78/Pve5zwHwy1/+smy59/eFF1445GMGY++bm5v51Kc+RSqV4vzzz+eKK67otf173vOeXstaW1t58cUXmT9/PnPnzu21PhKJcMQRR9DZ2en3wSOPPIJt25x11llMnTp1yO2u5AMf+EBV6U3v93rsscd2+zs8RvM3Bti4cSMbN25k4sSJZQaAx9lnn01dXR1r1qxh586dvdZ7CkNBhnIPDJdkMsnFF18MwPnnn8+f//xnUqkUa9as4UMf+hBr1qxBVd3XoPd/X3hhSt4zopKLL76Y2tpannrqKZYvX85bb71FZ2cnd955JxdffLF/LQz0PdXoK9Sv8hk12oyXdkgkkrFDyrFK9gkmTZrE5z73OW644QZ+9KMfcd1111XdzstF6KsWQF1dHbW1tXR1dZFKpXxJyt///vdcdNFF/c6opdNpP47Zo68BqOfpKBQK/Z4XuAZLsVhk0qRJvWaWARKJBHV1db0K4RWLRZYvX87vf//7ftu8OyxdupTFixfz4IMPsmHDBmbMmMG2bdu49957mT59etUB40AE6zhEIhFmzJjBmWeeyWGHHVZ1++nTp/da5kl0vvbaawPmV+zatYu5c+eyadMmAA488MAht7ka1ZJxoefaGyipfjDsid8YBr5vFEVhxowZdHZ2snXrVpqamsrWV7sPhnIP7A7XXHMNmzdv5s477+Scc87xl+u6zo9//GO+8pWvAO693xerV69m9erVJJPJqoYquB6pu+++mw9+8IPcfvvtZZ6HRYsWcfTRR3PLLbeU5UB87Wtf6zXRcdxxx/lSsDU1NXR0dPTKxfHIZrP+drvDeGmHRCIZ/0jDQbLPcPnll/OLX/yCm266ia997Wv9bjuYZF1vmw0bNrB8+XKEENxwww28613vYsqUKUSjUQCWLVvGk08+WXXWbSSqOXvHHeqxrr/+en7/+9+zcOFCfvSjH3H44YdTX1+PYRi88cYbzJ07d0RmCj/72c/yuc99jl//+td+YTHLsvj0pz89rNnVyjoOAxGJRHot8xR+Jk2aNKDxUhmSNBK/WX+M5OzsnvqNPYZy3wx1v9EiFApxxx13cMkll3DffffR2trK5MmT+dCHPoSiKAgh/IrSffFf//VfgOtF8u77apx00km8/fbb3Hnnnbz00kt+Ibhzzz2XT37yk4CrsOTxxz/+sWodCm/APn36dDo6Oti8eTOLFi3qtZ2nSlXNeB4K46UdEolk/CMNB8k+w8SJE/n85z/P9ddfzw9/+EM/7jbI5MmTAVi3bl3VY3R1ddHV1eXLWgLce++9FItFvvrVr/Iv//IvvfZZu3btCJ5FbyZMmEAoFGL79u0Ui8VeXod0Ot3L2wD4MfTewDLISLb5Yx/7GJdddhm//vWv+c53vuPnkOyuatPu4M1wT5w40ZcuHQivCvBbb701Im3oqzDZxo0bgZ5rcXfYU7/xQPcN9JxXZS7QeOHYY4/1Vao8/uM//gOoLqHq4TiO79HpK0wpSF1dna845mFZFitXrkRVVY4//nh/+UDypYceeigvvvgizz33HGeddVav9Z7cbLXB/FAYL+2QSCTjH5njINmnuPzyy4nFYvzsZz9jx44dvdYvWbKEaDTK008/XTX224tjPu644/xZ0o6ODqBnYBnk0Ucfrfo9I4lhGCxduhTHcbjrrrt6re+r9kR/7f6f//mfEWtfTU0NH/3oR9m8eTOXXXaZX6V3JPIEhsvUqVOZO3cuL730Ur+D3SAnnngimqZx7733smXLlt1uw1133VW1toH3e1UOYqvhGYmWZVVdP5zfeKBjVmP69OlMnz6d7du38/e//73X+r/+9a90dHQwd+7cXmFK45VischNN90E9J+Ls2LFCjZv3sy0adP8BOih8tvf/pYdO3ZwxhlnVP2t+uJd73oXQFUZ4Oeff561a9dy8MEHM2vWrGG1a29rh0QiGXuk4SDZp2hubuYLX/gC2Wy2qrpJPB7nU5/6FI7jcPHFF5fF7L7xxht8//vfB+CSSy7xl3tJnP/93/9dtv2WLVv85ODRxpvB/O53v1uWTLphwwa+973vVd3Ha/fPf/7zsuV//OMfy9RkRgKvH2644QZgeEnRI823v/1tbNvmAx/4QFnhNo+3336bX//61/7fkydP5pOf/CS5XI7ly5f3SnbfunWrP7M6GDZs2OAXW/O45ZZbePLJJ5k4cWJZvH1feDP9a9asqbp+OL/xQMfsC++e+PKXv1yWAL19+3Yuu+yysm3GExs3buyVsJ1Op/n4xz/OmjVrWL58OUuXLu1zf28y4WMf+9iAoXerVq3qFRr24IMPcskllxCJRLj++uuH1PZzzjmHWbNm8eKLL/KTn/zEX57JZPykby9HYzQZL+2QSCTjgDGSgZVIdgsCdRwqaW1tFfF43Ndnr6zjkEqlxJIlSwQgmpubxbnnnivOOussEYlEBCC+9KUvlW1fKBTEggULBCAmTpwoPvCBD4h3vetdIhaLiWXLlvn67cFaAX3p8nsMpKVfieM44pxzzhGASCQS4n3ve59473vfK+LxuDjrrLPE9OnTe9VxWLlypdA0TQBiyZIl4rzzzvO1/b/2ta8NqW7AYNq7dOlSAYhJkyYJ0zQHdV5B+qvj0N/2jzzySJ/bfP3rXxeA0DRNHHHEEeLcc88Vp59+upg3b54AxKGHHlq2fSqVEsccc4zfz2eddZb40Ic+JJYuXSp0XS/rl4HqOFx44YXCMAyxYMECcd5554kjjzxSAMIwDHHfffeV7dPX9ZLL5fzaIieccIK44IILxKc//Wnx+OOPCyGG9xt7dU80TRNnnHGG+NSnPiU+/elPi9dff73f87IsS5x55pkCELW1teKcc84R73vf+0QikRCAeN/73ids2y7bx6vjELw3Bjrn/li1apU46qij/H+hUEgA4vDDD/eX/fKXvyzb57bbbhO6roujjz5afOhDHxJnn322qK2tFYA4/fTTy+ppVJLL5UQymRSAePnllwds34wZM8TUqVPFmWeeKT7ykY+IxYsXC0BEo1Fxzz33DPo8gzz++ON+DYijjjpKfOhDHxKTJk3qs8+FEOKXv/yl3x+HHXaYAEQkEinru1WrVu2V7ZBIJGOLNBwkeyX9GQ5C9AwYqxkOQgjR3d0trr76anHwwQeLcDgsEomEOO6448Tvfve7qsdrb28Xn//858XMmTNFOBwWBxxwgLj88stFJpOpOjgaacNBCLdw2f/7f/9PHHDAASIUCokZM2aIK664QuTzeb8QViVPPvmkOPnkk0V9fb1IJBJi2bJl4q677hpywbHBtPcb3/iGX/RsOIyG4SCEW7zvnHPOERMnThSGYYjm5mZx+OGHi8suu6zqoCWfz4uf/OQn4ogjjhDxeFzEYjExZ84ccdFFF5UNHgcyHG677TbxxBNPiFNOOUUkEglRU1MjTjnlFH/QH6S/6+WZZ54Rp556qqitrRWKovTqo6H+xkIIcf/994tjjz1W1NTU+PeJ1499nZcQbsG5G2+8USxevFjEYjERi8XEEUccIW666SZhWVav7UfacPDa1t+/ymv3pZdeEh/5yEfEzJkzRSQSEbW1teK4444Tt956a1lxvmoEiwgOhmuvvVYcddRRoqGhwb9HL7roIvH2228P+hyr8fLLL4sPfOADorGxUYTDYXHwwQeLf/u3f6va50KUFyHs699A9814bodEIhk7FCGkALNEItk9hBDMmzePN998k7feeosDDjhgrJs0Zlx11VW+utRQ1KEkEolEIhnvyBwHiUSy2/zxj3/kjTfe4KyzztqvjQaJRCKRSPZlpByrRCIZNp/5zGfo7OzknnvuQdM0/vVf/3WsmySRSCQSiWSUkIaDRCIZNrfeeiu6rjNnzhy+973vcfjhh491kyQSiUQikYwSMsdBIpFIJBKJRCKRDIjMcZBIJBKJRCKRSCQDIg0HiUQikUgkEolEMiDScJBIJBKJRCKRSCQDIg0HiUQikUgkEolEMiB7veHws5/9jFmzZhGJRFiyZAn/+Mc/xrpJew1XXXUViqKU/Zs4caK/XgjBVVddxeTJk4lGo5x44om88sorY9ji8cujjz7Ku9/9biZPnoyiKPz5z38uWz+YviwUClxyySVMmDCBeDzOe97zHjZv3rwHz2L8MVC/Ll++vNc1fPTRR5dtI/u1nGuvvZYjjzySRCJBc3Mz73vf+1izZk3ZNvJ6HTqD6Vd5vQ6Pm2++mUWLFpFMJkkmkxxzzDHcd999/np5vQ6PgfpVXq+SauzVhsOdd97JpZdeyre+9S2ef/553vGOd3DmmWeycePGsW7aXsOCBQvYtm2b/2/16tX+uh/+8Idcf/31/PSnP+WZZ55h4sSJnHrqqaTT6TFs8fgkk8lw6KGH8tOf/rTq+sH05aWXXsrdd9/NHXfcwWOPPUZ3dzdnn302tm3vqdMYdwzUrwBnnHFG2TV87733lq2X/VrOypUrufjii3nqqad48MEHsSyL0047jUwm428jr9ehM5h+BXm9DoepU6fygx/8gGeffZZnn32Wk08+mfe+972+cSCv1+ExUL+CvF4lVRB7MUuXLhWf+9znypbNmzdPXHHFFWPUor2LK6+8Uhx66KFV1zmOIyZOnCh+8IMf+Mvy+byora0VP//5z/dQC/dOAHH33Xf7fw+mLzs7O4VhGOKOO+7wt9myZYtQVVX87W9/22NtH89U9qsQQpx//vnive99b5/7yH4dmNbWVgGIlStXCiHk9TpSVParEPJ6HUnq6+vFr371K3m9jjBevwohr1dJdfZaj0OxWGTVqlWcdtppZctPO+00nnjiiTFq1d7Hm2++yeTJk5k1axYf+chHWLt2LQDr1q1j+/btZf0bDoc54YQTZP8OkcH05apVqzBNs2ybyZMns3DhQtnfA7BixQqam5uZM2cOF154Ia2trf462a8D09XVBUBDQwMgr9eRorJfPeT1unvYts0dd9xBJpPhmGOOkdfrCFHZrx7yepVUstdWjt61axe2bdPS0lK2vKWlhe3bt49Rq/YujjrqKP7zP/+TOXPmsGPHDr7//e+zbNkyXnnlFb8Pq/Xvhg0bxqK5ey2D6cvt27cTCoWor6/vtY28nvvmzDPP5Nxzz2XGjBmsW7eO73znO5x88smsWrWKcDgs+3UAhBB85Stf4bjjjmPhwoWAvF5Hgmr9CvJ63R1Wr17NMcccQz6fp6amhrvvvpuDDz7YH6DK63V49NWvIK9XSXX2WsPBQ1GUsr+FEL2WSapz5pln+p8POeQQjjnmGA488EBuv/12PwFK9u/IMZy+lP3dPx/+8If9zwsXLuSII45gxowZ/PWvf+X9739/n/vJfnX54he/yEsvvcRjjz3Wa528XodPX/0qr9fhM3fuXF544QU6Ozu56667OP/881m5cqW/Xl6vw6Ovfj344IPl9Sqpyl4bqjRhwgQ0Tetl1ba2tvaaeZAMjng8ziGHHMKbb77pqyvJ/t19BtOXEydOpFgs0tHR0ec2koGZNGkSM2bM4M033wRkv/bHJZdcwl/+8hceeeQRpk6d6i+X1+vu0Ve/VkNer4MnFAoxe/ZsjjjiCK699loOPfRQbrzxRnm97iZ99Ws15PUqgb3YcAiFQixZsoQHH3ywbPmDDz7IsmXLxqhVezeFQoHXXnuNSZMmMWvWLCZOnFjWv8VikZUrV8r+HSKD6cslS5ZgGEbZNtu2bePll1+W/T0E2tra2LRpE5MmTQJkv1ZDCMEXv/hF/vSnP/H3v/+dWbNmla2X1+vwGKhfqyGv1+EjhKBQKMjrdYTx+rUa8nqVAHu3qtIdd9whDMMQt956q3j11VfFpZdeKuLxuFi/fv1YN22v4Ktf/apYsWKFWLt2rXjqqafE2WefLRKJhN9/P/jBD0Rtba3405/+JFavXi3OO+88MWnSJJFKpca45eOPdDotnn/+efH8888LQFx//fXi+eefFxs2bBBCDK4vP/e5z4mpU6eKhx56SDz33HPi5JNPFoceeqiwLGusTmvM6a9f0+m0+OpXvyqeeOIJsW7dOvHII4+IY445RkyZMkX2az98/vOfF7W1tWLFihVi27Zt/r9sNutvI6/XoTNQv8rrdfh84xvfEI8++qhYt26deOmll8Q3v/lNoaqqeOCBB4QQ8nodLv31q7xeJX2xVxsOQghx0003iRkzZohQKCQOP/zwMuk7Sf98+MMfFpMmTRKGYYjJkyeL97///eKVV17x1zuOI6688koxceJEEQ6HxfHHHy9Wr149hi0evzzyyCMC6PXv/PPPF0IMri9zuZz44he/KBoaGkQ0GhVnn3222Lhx4xiczfihv37NZrPitNNOE01NTcIwDDF9+nRx/vnn9+oz2a/lVOtPQNx2223+NvJ6HToD9au8XofPpz71Kf8939TUJE455RTfaBBCXq/Dpb9+lderpC8UIYTYc/4NiUQikUgkEolk/+Xmm2/m5ptvZv369YBbjPe73/2uL1ojhODqq6/mlltuoaOjg6OOOoqbbrqJBQsWjGGrXfbaHAeJRCKRSCQSiWRvYySqoY8V0uMgkUgkEolEIpGMIQ0NDfzoRz/iU5/6FJMnT+bSSy/l8ssvB1zxmpaWFq677jo++9nPjmk79/o6DhKJRCKRSCQSye6Qz+cpFovD3l9UqV8RDocJh8P97mfbNn/4wx8GXQ1dGg4SiUQikUgkEskYkc/nSdZNwSy0D/sYNTU1dHd3ly278sorueqqq6puvzvV0McSaThIJBKJRCKRSPZbisUiZqGdI075HzQ9PuT9bSvDsw9/iE2bNpFMJv3l/XkbRqMa+p5AGg4SiUQikUgkkv0ePZRAN4ZuOCiqqzWUTCbLDIf+8Kp2AxxxxBE888wz3HjjjX5ew/bt2/1iezB+KnJLVSWJRCKRSCQSyX6PoirD/re7iCFUQx9L9nrDoVAocNVVV/VZIl0yPGS/jg6yX0cH2a+jh+zb0UH26+gg+3V02F/6VVHUYf8bCt/85jf5xz/+wfr161m9ejXf+ta3WLFiBR/72MdQFIVLL72Ua665hrvvvpuXX36Z5cuXE4vF+OhHPzpKZz549no51lQqRW1tLV1dXYN2D0kGRvbr6CD7dXSQ/Tp6yL4dHWS/jg6yX0eHfb1fvfM79j0PDitUyTIzPP6XUwfdP5/+9Kd5+OGH2bZtG7W1tSxatIjLL7+cU089FegpAPeLX/yirADcwoULh9y2kUbmOEgkEolEIpFIJHuIW2+9td/1iqJw1VVX9anINJZIw0EikUgkEolEst+jqKqf6DzU/fYX9nrDwXEcALq6usa4JfsWqVSq7H/JyCD7dXSQ/Tp6yL4dHWS/jg6yX0eHkehXIQTpdJrJkyejjtOBtqqCOoxE53F6OqPCXm84tLe7xTqmT58+xi3ZN5k2bdpYN2GfRPbr6CD7dfSQfTs6yH4dHWS/jg4j0a+bNm1i6tSpI9CakWc4ic7efvsLe73h0NjYCNCr6IZEIpFIJBKJZHyQSqWYNm0aiURirJvSJ8OVVh0JOda9hb3ecPCq6A2l6IZEIpFIJBKJZM8zHqofS4bPXm84SCQSiUQikUgku4uiDDM5WoYqSSQSiUQikUgk+w8yVGlgpOEgkUgkEolEItnvURUVdRjeg+Hss7ey/5ypRCKRSCQSiUQiGTbS4yCRSCQSiUQikQwzVAkZqiSRSCQSiUQikew/yByHgZGGg0QikUgkEske4oGWBcPa77Qdr4xwSySVyAJwAyMNB4lEIpFIJCPOPxYdzjteeo5/LDocYQsAHMfhxNdeZMX8QwEQpvC3d6yez6esX71nGztIhjvoHwzBvqjG/Q0HV11+evuro9Gc/RLpcRgYaThIJBKJRCIZMv88ZikAjt0z4BWBz6qm8PjiJaiaguMtQ+XRBYtRVRXHcVAMd8AlTIGqK77x8PDMQ/zlHkHDopLRmo1/aMrCQX3/UBjIQBgqQYOiso1npl4b0e+SSKThIJFIJBKJhOdOObbPdUGDAMBxBKqhAaBoQcPBNREcW6Boir+fpioIR4Cm+IaGGhB2dAyntCzwHZboZVhQsd7D8wR4BsRgPQOVxxzMtsM1IEbCYBjOd9+XnM+Zqde4NzqPs3Kv73Yb9mVUVUUdRgG44eyztzKqhoNlWVx11VX89re/Zfv27UyaNInly5fz7W9/2+9kIQRXX301t9xyCx0dHRx11FHcdNNNLFgweu5Ayehwjz6317KzrTV9rg+uk0gkEsme44XTj++1TNW1vnfQcQf+3ral/4XjDvh9w0JXcRzRpzEhbIFWCusQpW0cW6BpmnuMsBvOBKAZSs9gO+CNqGzDO7e8DLjeAc9DMBSDYDQZjrEwHOOgv+8RpuDe6DwA/38AZxBt29/e04qioCjDCFUaxj57K6NqOFx33XX8/Oc/5/bbb2fBggU8++yzXHDBBdTW1vIv//IvAPzwhz/k+uuv5ze/+Q1z5szh+9//Pqeeeipr1qwhkUiMZvMkA+AN9Ks9OKoZCf0dw6MvQ2JveTgN9nyqrZdIJJKx4qWzTvA/K6qCZqgccs8KVp994pCPFTQgHLs0YAoYFkqFMeGUDAVFE74R4e5b2l51//cMCcXuGYQJtSc3QjMCy00BJePgkdmLyrwT/bZ9hMOEdvc7hmIkDKftg31XV2N/fH/JHIeBUYQQo3YXnX322bS0tHDrrbf6yz7wgQ8Qi8X4r//6L4QQTJ48mUsvvZTLL78cgEKhQEtLC9dddx2f/exnB/yOVCpFbW0tXV1dJJPJ0TqVMu7R5/o31O7clB5jeXMOtv1nW2t2+1z3pYeQfBhLJJLxwPOnvgNwBy6H3f9o2bpKY6H65/IQC1UbeABUltPgOIHPouxz+XbC3z4Y9uT4y0v/lwyLo5582t/miSVHVBgr1XMq3OOVjJY+Btl9DdT7G5T3N7gfzGB+IONgUMcYRYNnT72TxmK8Nli8tr3rwucwQjVD3t8sdvPXXx4+Ls9tpBlVj8Nxxx3Hz3/+c9544w3mzJnDiy++yGOPPcYNN9wAwLp169i+fTunnXaav084HOaEE07giSeeqGo4FAoFCoWC/3cqlRqx9gZdeND/jToSBgOM/SCyv+/fndCi/rwVo8neEA4VNDwlEolkJAgOrKE8FEnVlB5vgFr52Sl9dg0IpyK5uRKnYqCuqGrgGOXHLstX6DkqitpjcGheHoSqsGTFE1XPbdmqZ/3PTyw5wj+ul0cBPQZEtaTrgRhpo2EwXoSypO894AWphnwP9UZRh+c92I/UWEfXcLj88svp6upi3rx5aJqGbdv8v//3/zjvvPMA2L59OwAtLS1l+7W0tLBhw4aqx7z22mu5+uqrR7PZPqqhjNoNvTfcsLvTxrE6vz31vbvjcRpo373h2pBIJKPLqhOX9bveG2QvfvAfVdcfdv+jvjfCdkTPYMgWvkEgAsuFY/caMAWiioZF0JDwvtM75OIHH+9332eOP8ZvY2XCtYdKINwpkIjdF8EBfbVB/+56BgZjZIyVkeAxEtED+zIqKuowrACV/cdyGFXD4c477+S///u/+d3vfseCBQt44YUXuPTSS5k8eTLnn3++v11lUokQos9Ek2984xt85Stf8f9OpVJMmzZtdE5gBOhrEBickd8bY/0lLkPx2Ay0vHK9vBYkkn2Lp487uurypY891WuZZxj0tU9wube/N9j2OPLRJ/3Pq05c1jM775QPcioNhmqehuHGcFfup6kKh9yzwv/bC6fyDADhCITjoBmq74mwvXbh9FJrUgMqTUH6knEdjLzrYHMJBuuNGGtjIYh8v/SPzHEYmFE1HC677DKuuOIKPvKRjwBwyCGHsGHDBq699lrOP/98Jk6cCOArLnm0trb28kJ4hMNhwuHwqLT3rNzr3JecX7ZMC7g7h3Pz93WTBv+WN/DeT7Xwo91JKq+2vbxOJJK9iyeWHMGyVc/yxJIjhn0MK2f5n5U+8g+eXHokxzz9DI5ply336iwommsoLF3R28BQKwY8iqZw2P2Pl0mzVuZB7I6hETQaVp99or9duVyr56kohUA5Sq9QLA9PqQl68hvsXO88h4G8DZXbDJXKY44nY6ES+S7pG2k4DMyoGg7ZbLaXtq2maf7NPWvWLCZOnMiDDz7I4sWLASgWi6xcuZLrrrtuNJvWJ5XFUjxDQjF64jUrHwh9KeuoAYWHe6PzUAxFFmPZhwgaC0N9EFduX82gkLkQEsnexSOzF6EYSlllZO//vjjxtRerLn90gftOPP6V5/1l/1h0eL/H8hKKH1+8xF/mDmjcd65nwHg5A08uPbJs0H/Uk0/z9HFHl3kzgvtXMzKgDw9GICRq0b0reemsE1h078qy7Q65ZwUvv+ek0jH6mP23hR+u5BkJXuK1sAWO47gTe6VBv/d5sIXjvH1GivFsMHhIr8PYc+211/KnP/2J119/nWg0yrJly7juuuuYO7dnLNBX5M0Pf/hDLrvssj3V1F6MqqrS8uXLeeihh/jFL37BggULeP7557nooov41Kc+5RsG1113Hddeey233XYbBx10ENdccw0rVqwYtBzrns7SDyZQy0IqI8O6T78XM1ugmClQzBTJtecx8xbCFJz01ktj3bxBUy0xu68H9GjFmO6PLwL5EpTsKYZy355trRnwfVHp4a42seRVBT69/VV/WX/FzU7b8Yq/vq9aBkHZ0uA23vLKCb+yvIIK70KZQlPFumOefqbPdlbiGTWeARH0JNgF2zcGggaC51mAvWPAPp4Yi+fl3qCqdM4XV2OEh14KwCykufunhwz63M444ww+8pGPcOSRR2JZFt/61rdYvXo1r776KvF4HOjJA/a47777+PSnP81bb73FAQccMOQ2jhSjajik02m+853vcPfdd9Pa2srkyZM577zz+O53v0soFAJ6CsD94he/KCsAt3DhwgGO7jKeL0QJtL7yNLqVR7PyqGYB1cyjFrIoxTz29q1Y7R0UU91YmTzF7hxmtkiuI4OZM7FNpyxGd7wy3hLN9pYBdLUwrJE2AqTXRjISjOQ93p84QtBLHTQ0KhX/BsLbt9Iw8b+nwqDwDYY+lg+0zt8mYHAEPSWDxavHAIFk4oD3oJcnQRoLw2Ksnonjebzmte0DX3p52IbDXf++cNjntnPnTpqbm1m5ciXHH9+7OCPA+973PtLpNA8//PCQjz+SjKrhsCcYzxfi/siWNa6HQJRUCUJm1jcctGIO1cyjFHIo+Sz2jm1YqTRWOoNdKGLlCkz+yR17pJ3DyR0YbwZCf4zHwbI3iN/dGhjSwyDZ04zlvT8aNYP6MkQqDYXT21/1PR6VhsJAlZm9as4jgWcADTbUd296Vo8F0nDojde2D1766rANhz/ecDCbNm0qO7fB5uW+9dZbHHTQQaxevbrqxPmOHTuYOnUqt99+Ox/96EeH3L6RZFRzHCT7B+l/3kMxWoethdBUHUfVEIBAQXNMVLvoexuUfIboaZ8a6yYDw1NEkgwPrz9HsnCelLOV7CkGuqZGM/SwP0N5d8QWqhEMULJN4RsYiqFAyRPgGQx2xWx/0LA4bccrQ2rXQAw1N3Akja19ESm60TeKovSZWzDQfkAvlc8rr7ySq666qt99hRB85Stf4bjjjusz2ub2228nkUjw/ve/f8htG2mk4SDZfZ55lPiUqYhELXasFjscwzJiWHoYI59CK+aIHzt2F3u1F+9AMrl7K+P1JbA7OR59qVXt7b+VZO+jr9C3kc5hGqzqnmdYVBPoGI53Lxj6EwybEqbwDQOnwoAIbgPVQ5jGir6ESyQu4/V9sTdTzeMwEF/84hd56aWXeOyxx/rc5te//jUf+9jHiEQiI9LO3UEaDiPAUN2o+wqPL16CHtEwYgY1zQkidXHCtXEiE+qINjag1tYRef+lY93MEZmp21uoNogYDy+HSuOtv4HWYNs7Hs5Lsm/S3/NhoGfH2daaAQesI3ntVjOkg/dZf+3tK7dosCIg9zccXJa0LRn/yOdm/+yuHGsymRxSGNYll1zCX/7yFx599FGmTp1adZt//OMfrFmzhjvvvHPI7RoNZI6DZMiUua9xZ54UQ0GLqmhRtU95wdFmoNj3fdVYGAxqxSxgf4OB/hIxvRnJkX75DGZwI5HsSUYyp2B3v284kx9D9TgEjYjg8yLoQTgz9Zqf81BtfTVGOmxpd9if3wHj4Tk6nsdrXts+fNkaQsPIcSgW0tz5o7mDPjchBJdccgl33303K1as4KCDDupz2+XLl/Pyyy/z7LPPDrldo4H0OEgGTa+HbmkQaTM6D6XBvBgrt+svjGV3E3PHI6qhDPjirla8sFq9Ee84WrRcihF6whM0Q0GUYp8dU4zY797fb1NN5lYiGU1G6jlReRzVUIasBDTccJvBbFvt2MFnSqVU6wMtC4YcilQpHTuWhsS++A4YCPm8HBq7m+MwWC6++GJ+97vf8b//+78kEglferW2tpZoNOpvl0ql+MMf/sCPf/zjIbdptJCGg2RQjOeHbeXLYLAD0L2Fvmb/PE9PfwhTgK6gRfuunFppMFTGLjuW8A0G8EpBuYmUIxEKNZIJnvIlKdldRus5Uen1GyzVCk0Oto3VBsqDvUe858BI5yw80LJgXHkhJJKx4OabbwbgxBNPLFt+2223sXz5cv/vO+64AyEE55133h5sXf9Iw0EyIAMqcYzwi6Wv76v8Hm/W22Nfm00Knq83qK8MD+vr5V6tampZ8SS9t+FQeUxvX99o0JWyvx3g7CohT9VCxvbU7zJecjpGgoemlKtrjKS8pWT3GcrzZnefkZXX9WDvrcFWpO/rGLtjNPRXjbky3MmxxLjOEezr95N1JPY9djfHYbAMNkvgoosu4qKLLhpye0YTaTjsIdZ9+r04lo1dtPwKyYc//DgPtCxAmGJcJ5gNJvb1vuT8EXnwV4uvH+xDe7wYDf0NEgZ60VTr3+CAvux/VUXRFFSt+oOusgKr4zg9xkN0cCoonhHheRmCRoRiCe5LzkeYws+ZGIznZ7QZqnylaijjqgp8X1V/PUNiPBgQo53wO5YMZlA+FA/ASE+sVGvLYMM1B3uMIJUTCf3Rl7HQ137B7e+NzhtX96FHf7+ft25/NCD21Xo6KgrqMEKVVMaPmthoI5OjR5F1n36v/9nKF7HyJoXuImbOxMpbWHmbQlsRcGeU9ZhOOBkikgyz6N6VY9Xsfrm/4eABXx67Y0AEK51WewmNRw9DZY7AUAlKHVbGFHvL+jMYvM/+fprrnRC2g2OXPAy2QDiilxERpC+ZxWp4FVyD/3vnAnvXi1Q1FPSk1uu8x2qAfn/Dwb08P2NpLIyktOh4Y6QGP4P1ko7EfTFY1bTB5ogFuTc6r18PpEflO6Dqs7rimeAv340cj5HEm/SA6m2q9lz3J1L6CPv0GIvnX1/vw9HMPxzqscfzeM1r28e/+TahyDCSo/Np/vuaA8fluY000uMwAmy77GOY3XkKqSyqrqHqGsJxcCwHu2hh5opk23MUUkWsrFX2QLVz7lyuYijYpo2ZMYflJttTDMYzsjvJrEHVDiewvD+391hR+WKp9oIdlDERLf+zX+OhZDRUwzMYeq4fFbXUiw6gaAqKKhCaQLEVhFp6aTruNpqhYOccHEsMynioLAo1kEE5nvFCr7zz3t2B+u7cA+PB+ziSBvnuzHyPpnpXfwPwoQ6M9uQkxkgmbvd1fgPd/wPd796Egv/3bjy/Ryv80EhoQN8Gjke1Z7hWWhYM4fQYq3fVnpxEG8+TAbvLngpV2puRHoch8uTSI0lOThJvShBtTBKqS6CFQwgh6N6wje7tnWR2dZNrz1NMm/5ArNqsbCWepGlkQojk1ASOZWNmTRxbEE6EiE+oIduexcyZNM1tofaASTR86+cjen7PHH+M/9kxbY568ulhHeehKQsHHIQGH7beNt6gyQvX8GeEqryIxtLjEFQeCSYV9zVDN5qUzYgFDIsyL0TgoVbNQ6GoCqqq4JTCm7wwJ89r4ZgOdtHBcRyslL3Xehr6CjsYTNJ5mYeln/McTqhI0Aj1vn9PJ5COB+/dcBgPBQGrtSF4rY31fTHYZ2V/YXuPzF7U+34v/R28Vj2v9Jmp13rloe0OozFY/ecxS4GeSZeljz3Fk0uPRNg9z0HPaxtEVFnmeXHtnEN+hznibR0s43lQvzd4HD7x7bXD9jj81/cPGJfnNtJIj8MgeHTBYhRNQTNUwokQ0foYesTAsW3ybZ3Y+SK59m52vbkLM2NR7DR9T0KQ4CxNtQqdwhQIXWBmLFKb02X7OqaDmTWx8jYAXZs7KKSybDn7RLpbMzimw7HPr+r3PO6NzkOLqoRbDEIxAy2k9jIMvAEj0Gvdfcn5RJoN9JiOqikc+/wq/nnMUn/g6e1vF22izWHsooOZsaqq9HjnWzlrVZkQ6g/ODQWh92zvKfqMNaqulA00VV1BC5dmspze18Bg6M/tX7m+sv+CbdGiKqpa8kIEQpu0kIamq6iGhmaoVWdYhNMT2uRYNrbp4Jg2dtHBzjmouF4MEbjOx3pwBP3HI/fn/amsjFspSNurn/uR1RzqdekZoZUGy2gnR4+H+2ckGA/n0V8bRuu+CFaNHqgPBttHTklqWYuqZZ6vFfMPda9RbzsGN7N+Vu71PV4PYyh47zhvwuyZ449BC2n+hImiKahG3/t7EzCKpvr7mBkLM23v0cmU8Wws7G3sKTnWvRlpOPTDP49ZimML9IiGcNyHiKIpboJzdx6685jZIt070qR3ZCjsMMvixKsp3ai64oZE0PNA8f5XDdewsFI2ds7pNbAO6uvnWgsAvoGiJzWeP/UdhOIhGg5sYdKPf9frfM7Kvc7b55+NEQvjWDadG9t5cumRWHmbd7z0HODOuID7AF114jJUQ0MPa+hhnTnnHEjdAZPc7y0U2fIvH6Zl4WSK3XkyuzI4pg2lQagICfSIgxaqUhMgEHdfDW/AXWl8CV2gUfI+6ALFGNg9PFoPbccU/uBZr8g/8Ah+Ltt3AINCCUifQhVvSz+eK9sUKFbPdef2k+IHLWmq96JT0MNuWJ1mqKi6VtV4cCwbq2C5YXemg1WwUDTFNWTzlut9GGcGw0DJ3n15hSpVqoQpKLZbffZ3te8cSjy3GjDwgsfoy2P18MxD/HUnvfVSn8eVjB8qPaO76yWtHCAOVCF6qN9XWRfGu+a8ZcFnk2dI7In8m9GO3TczZlkIaPDdFPTQep4Jf50a3MfdT9HcyAFvoiu4x0g+K6WxMDqoKqjDCDvq43W/TyINh36INcY45J4VAKz58OmlmVebzk2dfnJzMWVSbLf6VaipNrOuGEqPrGXQgDAFdsX+XvKmFlWxc+6Mr+0dt+JBFKmNoscjpH/6dcyuFLnWDqbc2FOmPFQTQQvp2MWeh6H3kHxiyRFoIXcmGsBx3IeeoipEG2qoPWAy0UMWgXAQuQxOKkVxVzu5HW0U0nksQDjubDSqArp7J1W6elWj9J0VMzmVITZ2zB2s+sm8JQlRpaQKBHDK+tWuMpVe7jr3+n04BZeGgqr3SJOqgGM4ZcnLQbx+UCvms/szJILnU20AWy3OWKXnBe8bElH3e4UW6J+Sd0lR1ZInQvc/ux4HB8fSUFQVx7JRVMsPaSpmTTRbI9Sgu4PrMTQehqJa44UDRhvDxCbEiDXECNVECNfF0Qz3/IXjYBdMsrtSbH9pG/mOomsg9fX9wYF+RfKkNkDbVN1tT/C5URkGUvkdiqGwYv6hCFPslgExHkJ89mW8e2IklcZGsuZJNap5vqp54DzvuWIoPDRlYZnxEPRU3BudN6xncH+JyV6bRir34aEpC3uJT3gomgImASEK4X6uEt4ZRIuq2PR4ZmHouQ/SMBgbpMdhYKTh0A+e0bDu0+8lVBOh2J2n0F0ktbG7zFgoeyiWBqu2KSBH2frBzopW4pTiJj0vRPAY3sDEsQRtr3bQua4L5elNGBHdnw2ZEjhWdlcaVVf9QeMxTz9T9l120Y1lt00H2+xxt2Z2Zih252nWNLRIGABh21jZHGa2gJkzsc2eoVVfFnull6FavL2mq6UZcYFtOdhF253hpqfPT1m/GugdzrGncSyB4r1YK2aKlcDsvvt3aeCvlcfNVjMkgjN7g8mPqWwTlkB4L0LAxoEoKHbpBVgyEFRNQdVVP6nfb7OqIBzFH0gLxykl/QsczQ13cky3nXpSw0q55u6eNiCqGQ3BsKNKtKhKrDlC44GNNC06gMhBsxHNUygkmxGKazCrjolWyFLX2Uq8ZQUdb28jtTVFrrPgewMHbNcgJCy9gYoWVdHCmn+deIZyWS4J5QmZXv5QUA9/uHkR0oCQQO97yXu2KiVPeKUnbDCCCN5zLChb2pfcbXCCzIjr6BHN91h7IbqeKpxdsHtd/8MVFSi2W4D7bHCNeMc/v+B5aIaGhgpVxClEFeOhLLpgCMIR0mCQjHek4dAPzxx/DLGGGHpYxypY5DtzZHbm3JCkfgZIfa0ry2sYYNtK7GzPYEWLqRgJzQ9x8MKbgglZwRmbR2YvIpQwOPb5Vcy9835eOusEFFXBzJr885ilWHnbfyAD/qAlmNxs57IUUibdrWmMqIGqu4MsM2dSzBQppFxZ2UqJ0MpjBwnO5gB+WFh8QhzNULFNBzNnYqomFhbke8J2vPoXft/2lQMwBjPh3rkbcaMsyRhN8Q0GLZATQuD8ATRNcwePhuOrFkFvoyEYcwz9v5xU3Z1JUzV3liyY1+BYJWWvkkHRczy7FK7klNrqlBk8iqr4XjA/zCbYnjH0QlR6AL1Bumc0NC8+iPCiwyi0zCQXbaSgxxAoKAhUYaPHioTjDdQdb1Izcx3ptzfRub7VNyC8wcZg2jFQsrwW1jDiOqGYUVK+KsnpOp63zc03EXaPUW+mC70MGJWewZ5njBz/yvMDtrFSaUgaEPsvQxV2UHWFk0qTONXoT5rb80aAe72GGnRiTRH0sI5qaP7EBlA2KSUcx8+5KiYt39D2krdP6ac91QjmhFWGMfbk2LkhnXpU7xXSWYk7GeMaDUiDYa9DqioNjDQcqrDhs+dQ7M5jRA2y7VmK6aIfrmDnnBEZEFUeY7AKHFpMHbBOwsMzD/E/+wMoVXETv0rx7MJ0yHcVsIulQaPWM9hXbAXbcNwQF8ud7XbSNmbaJrMpXx7jqvcfp51vNQella1FVXe2yXDDYqBn4Bo8F2+2ta9Z3939bYaiu+6Ywp8FVoweN7dnPDmm7bu0FbU0m10Kz/IGgtBjMPgeiZIxoaGiGa7RZWYsPzxLi6qEYoa/baXRV/b7BMKmVENFC2mohoaqueFIVsFCtQUi58oHO6V6D5V4g1gA23L8tmuGRqiht1fENSbKvSSjYUgMeEzPa2MoKJabm1HMFMjtaEN7aw3hjp2EjRAi042d7qbY1kG+PUU+laU7b7I9Z/rSyp7CmRHRMSbrqEbJEDO0Mg+bbTlYOTeU0cxYVfOVfCzhiikUbKy8XarjohNORIjUxXwD3Xsp2UWLQirHLmMXxWy5CIOqK75wgWe8P7n0SN+r+PDMQ3xDz/NmABhJzb9vH2hZgJHUcCxRNlkhGR+MdjG5SqrlA3nXyomvvTisY66YfygAsZlhVFVFC6noETePTgvrPfkEgXtq8YP/AGD12ScCGkbUffYZMdeAF7ZgyYonhtWeM1Ov8czxx/hhR47Ze7Ir6BkXjihrm6q6RoKiaiiail20SwIZNkIvRR9Q/Vk10sbCivmHloVaeX2rGpo74VfyMAcnJxzLzV3reYe4/x/56JMj2ra9BVVx/w1nv/0FaThUwQ3ZUN3Z7oxJvqM4oJehGpUPhZGYyfNe5l6lZq9gWrB6b6Q+hBEvDSxth0LKpNBVJNdW8AcXekTDiBsYcXebYNKXXbSxspafa9HnDL4pEEZ5jLanKqRH3AGPnXMw03afgxDHy0MoeRKKWZP0tu6ysA1Xqcn1fnj/erVlhPDaMxhUzw2fCCTVVrix3QG22ms2wv27JONKj4KHsIWfYwDu7JUDRBvDbtJdyH0B6GF3Rs4q2D3beUXeTNvNTwmESgVfFJ6Skn/OnmehpKDU0/aeF0mZ58Q7B89jpKo4htOTswMollL2txigX0fbO+HlD6XezpJrLdC1KUW8eTORpBt2l23PUkgXKaSLZd6EoCBBcJAeatAJqQZqRC/1Z09uSLGkflZpNFTeA374Rskwt3MOxZRJNpojFDOonWYRioc46Lf3AbD5knOZ8Yu7Aeg6/hj3eon1GJuOLbBNm3e8VH1Ad8r61Tw0ZWGZ4osXGhJMCvcoto+f5HfJnjEa+pLPHk5xS89AqEZQ7c03ii0HRbMRTiDHoLTupbNOYNG9KznknhW8dNYJblttgaKqvlGxu3hGg110ymRYvUkWYStood4J0r3OrTQJp5QmKxRL4cw9WJvl+Fee7+n7ottPmuE+91XNzePyw4O10sSE6WZjCFsMKzF4X0J6HAZGGg4B1l7wbuyihZU3yacK5NrymBnLj9/eHQYyGob6chYl2bwg9zccjJ50wx4U1UILqSiaO+NgZix/QGQkHGgMoUd09yHhJTE71Web+yI48PHiyhVDwYjr1DTHCcXDFLPbe4V19JUs54VG2TmnqoRrZY7HaDGY30Kt8DR4CLsnUdouOu5MFQ7C7qmX0Beij9l+PaIRihmohkYoHsKIGmXJzL2OU5pFChoBPetc48BXtnKqexpUXUMNK25IQMHyDYbgOSiaOyvnF5SzBYTxY4S94khKSQUryJ5OYvewswGt9Y6iH8JUNsAPGAje50ohAmEK7KQ7wDDiBopa8h6ZNtnWfNmMvrd9JZ6R6t07fm5KqX3LVj1ctv3U//hD2d9aSOs5fimMKbej0O/5e0msD7Qs8GO6+1L/8rwTSMNhXDCUSY3d+h6rRzHutC0vu56qKt/rDU6H6nmolIgOImyBsO2eiaPSrSgcledPfYf/7Dns/keH9J0DceSjT/qCA9VECbwcBwAtBN5kUF91b/SI6z0vmEVO2YP1WE587UX/dxGmwC5N/4mwRiFdxCrYGFHHV0qEHnGMUjZGn2qH+wvScBgYaTiUePk9J5HrzGNmzJ7Zu0LPwEsxlGG/QEc6ZrgyJtkzIIKDHDtq+54FRXMH8x5aVEUzeowFwHfPeoW+goP04MC4rGJmCe9hq5UeromJNUyYN5WaWVNR9Rdor2sjuzPvD8oqDTFP2tRLKK9mOATPb0/OgFYLIatU/KhUVcIBYfeun+ApcqiG1utF4xkNwVkuwI/z9eRTNUNFC+loIZ1wMoaiaWWuZyiFFTkCu1B0jYSSEeEpJVl5E6VUmyGIO3PeI9HqJUbnUwW87Bk9rPvXjm06fkiWXXT8pG8VFaJUVcEKXive50r52d1lMOFmviGqK76Igd8PUdVvT1+hiWbJMLBzDqEGyx9U2KZdZjT0d16V0pceg5G3DIYRPH3c0a5Bp4lB92MwiXrF/EP9wV8wTrwyj0gytuwJoyFoxHqz5F59ob68DsMxICo9s+5zw8EpKRX1Hrx6eVbuQPf5U98xYp4Gj0IpRzDodQl60m3D8d+jWsiVXw2GNAXDRh3Hqfqu2xMEjQcPbyxj5W2snIUe1TGihu999t4NwLBDviT7D/u14dDxg4txCkU2PvY62V1ZMlvz2DmH6JQQ4UTIVRUKVH4eLHtCpcR7idzfcDBaVC2v5OsNsC2TYsosMwC0qIoR0X21Cq9gm2cwmBnLn/GE3uow3t/BAkBOKfdAa1CJN0WJNdagx8I4xSLCEW6im6Fgp+0+Qx8qQ6Bsqg/a9ySVL+q+XtzBGTq8ZPLSTI9iKNimmwugOgrC7v3CBHoZDcEE86Br3CvMpuoaiqZhJGKohu7GwqsqiqIghADHwezOYmULOKaJXVRKxoOCqjs934mKqrv5FaF4GCMWwoiFXW9GKb4+1p3HyhfLkqTtouXGxQakZO1ij/ygigphN+ciOFtp4/49GGWioeL9PnpSK1teKW/aXy2H4PUN9DIqgnjeC3ew1bvQIfQ2uisTL/3vC8xyPtCyYEjqSF7tFQ8vfNFjoJyo4IDvpLde4t7oPH8yolqhyr4kpz2q3ataTB2w4rZkfOBdL/cl5/v3imKJql6HIEEDtJK+lj++eEnZ3+4zqQcvbCZoSHgeiedOOZbDH358oNMZNKe3v+qrNPn3Y+l/m4D0dtJBM7UemXBTlI0Rgl7Lge69PYldsN1JGlu4NXlKBoSmq9JYCKAoCqqUY+2X/dJweGT2IiINYaL1UTRDpXtHhkJb0Z/p9lypVsruNz6/kj0pa+iYAi3Wk5Ac1IuGwGA2EPqjWO5AxVbdWW5Vs8tmSLxBkPfQrBwgeMerNgCwcw7FdotcJI8RTaOoKqGONJldGdeLU9rejRkfXIL5eBtkVIYKeLNznsfBNxpKy70Xjfew9r0StvA9Cl5ugmqoKKooMxY8nXAvR8Gd4bfRnR4VJD0eRdVLg3xFdTO0HIEwTRStgKqrOD1iW2WJfaquYcRclRBV14g01BBK1mAka9DiMdRIBBQVuzuNnclipTOYmTxWzi18qGYLJWPCDUULhjt5hqli97z4HcfxJRzVQNLg7g4ogwNaL/ymjIC3o1JlyT9GUE2qoq6GH8bUh8HrmHZZG7xq4sG/tahKKGFUNQgLqaKbU1SapIChGw9Bgh4TcAeAU45rZtG9K6tu39fzqpqhXM3g6q+qthZz8yf0pFZSZ+uZiBkpoYn9jeHkG0D/iknVpEyDg96g4EalEVDN49BffkOQY59fxRNLjgg8H72npIvt15qpaPsQQmqHwuntr/YyvH3vY+maLbZbVYu7+k0rfR5LlaS+DLVHZi/CxjUgvKKvknIUZZihStJw2DcJviBzW4qkopmy+GZwB9+5bQXyRpFi2+AkF2FsHxJe2ysHK75cZ0WCZ3DmNYgXNuLVJOj1cNTdJM5qOKag2GZh57LkO4qktqQx4gb5jgJmxvIHTzauWlOwcvZ4pT/PiDeoCoYpQY/x5s+8BwxRDy3UUy8hmIgWTGL2XMieqo6/r6GiR0LoEQMtEkINhXqSqR0TIdwYYadoYufyWLkCVt7ELlrYRasUumSjqKp7jJCOEQtjxCPEpk5EmzABGidiJRophGtwNINIagehrp2E2ndhtbVR7OhC7UyjqG4VdTcm1PZVSaqGYWnCTdSrkJjdXaoN2PscIJUS97WQV/DOLXaoGaof7ws9BpBwHPKxgpvsXJpE6M+AUEttiE4K+xr0XjFFVVX8z374Wen31cMa+c4CBYoQuD+HS6XB8fyp7+jTaAAINer+sy4YPlWtCna1eiW+9GRwGT2eSIdSmKEnd0npPunHmyMppz9vT5/7VHjWylTwwlp/u/YiKHH6yOxFZeuqFSE88bUXeWT2oqrtfXTBYgBfKnjZqmcBtwCpbQsUrcIQ1RRExWtnoATl3cETHelXDW6cv7v6QlacHxhFcf8NZ7/9hVE3HLZs2cLll1/OfffdRy6XY86cOdx6660sWeK6KIUQXH311dxyyy10dHRw1FFHcdNNN7FgwYIRa0O1GTVvprAXZu/KzX2xO8aCWpodnbCojqb5k4jU19Dx9nba17WTbc2T21zstT2Uz6oKU/iDmaCxYCQ0/8VgF2ycgIpKUFu6r/OsVs0WcAuIlWbY7YoQLu/hamcdctmi337PKzLWtRVGmqD3wa/QXBoUVfab4zgYEVe+U4/ohGtCfl6CGlAVUVS1Z3mpKJuXz2DEoyi61hMaVBrYFna1uzkNlo1tWtj5Ima2WGYo2Kab5+Bpn9uWg6arROqihBMRjFgYPR5FmzWbYvMMumsm0q4201FMkDN1ZjbvYELNRmLG22iWiZrJopQKxqm6hmoLtJInQ/WTBR2ErfrSrV6iuCj0eLXKkhB3Izk6OKuvJzWMSO/HmjfT7yUUe33uGQ3hRMTf1ssRcWxBfEJNuRRqd5FcR470hmyZMlGsOULdtFpqp08gOe8A11vjONiZLPnWXWS2tZPe1ul/t2ZozL/roWGd71DpKxZ8xxWfBODAM2aR2Zmme0eGXFvBlzvu23B2qg4IkwfGqJtRR01LEsdyyHdm6FjfSdebmSFNwuxL7G5djKEaDGVFBaMq0bowqqH5uUne82XBnx8e+GB90Nfg84GWnnf2aTtecY3FknHoeSyCnj7PK+FNrPRXcyQY0uTej45vcIwGnrdluL/d/laT4Z/HLOWoJ58e62aMCGrJ0z+c/fYXRtVw6Ojo4Nhjj+Wkk07ivvvuo7m5mbfffpu6ujp/mx/+8Idcf/31/OY3v2HOnDl8//vf59RTT2XNmjUkEonRbF6/BCtdVsMbEA8XxVAItxhM/+n1vO8bBdjsLv/uLUez9G9f4cmrH66qouEqJfSuY+Ap2PgxqYHks7Jtq8xmVs7QBgfBXlurFR/TDMX1QliizxmYfVULvvJ3KfPy6OV9r6HiGALVcB8uWkh3ixyVjIOgW9QLJfKULrzParjkWbBsHNM1CoRt+x4ELwnazBb8/ANwE5i9eg1eAryVt1E1pVSV2/LVl6KdbYSMEEnbwojnqTPiYEAivZ1w22bYvpnijp3kd3WSae0i35UtM0isguV7GIJyut55CbvH4KyW4zDQPdffb+CpW2mGhmqU35teQroWWO61qzJG+rlTjvWTxjVDxYgmmPP7vwGu6poeMTCiBlbeNchUVSXaGKHxwAnUz5lGeGIzakMjeHU7Gmz0+npCdTuw8m8y+7/+Oqhz2xO0/OA/af3m+f41KJwe8YKBfoNqwgmqoRJrrKH+4AMwGhtw8nnq1qzlzfyrpNZkex0jOKmwL0wmVDIUo6Gv/KnheBi8ysvhpEG8KY4RDfkTEIqqMPOXfx70MYdCpaer7B7Pld4julufJnheXmhgMLypMtTm2OdX+Z8r8yJGE1kQcXAUUubAG0n2GUbVcLjuuuuYNm0at912m79s5syZ/mchBDfccAPf+ta3eP/73w/A7bffTktLC7/73e/47Gc/O5rN65eBirBpUZUV8w8lFDOGNfMhTLfa867INOAtf/m133+O/5nT7ddkADcBOphbUGmyeAaGV8FXMzTCyVBPka5owOMQMBy8QX1lIrK33UBJpLsbUjEeGUiRJ1iwDugVCgCBBFurp8+DNRG8IjxeyJFa8iQ4loOVL5bCZOzAMhO7aPphTJ6h4EurBgwAN2G59F2lugxWwVXSsE0H27T90LyMlScyoUA4maOYKRCZsI7Qzl3ojY0ka2rcwa8QOJ3tmB2dFNo6yLelyLV3U0jnKXYXKWbNslobnnqHFtbKjFcvx8Hvx+A1VZmAX6XfB4MwS2FRAcNF1RS/sFRQQcTMmVUTKzM7cwhb+IWThCN4+/yzy0LG7KLl5yToSdcYNGJhjLpalEQSEYoEjmig1IcIR6PM/soNQz6nofDwzEOGXDW3+ZrbeeO8M8h15sl3FAfMO6hUggpe69nWPF2bO0hM60Kvr0MUi+Tbu93ihQG0mErdvBoaD2yka0sXXW+nKbZb+5zxMJgBZ7UJiOFQaTRE6sNEkmHiTUk/JFHRNSb96LfDOv5QqZQKB7e2i/CelZZS5n3wz6P0jHt0wWKOf+V5Hl2wGEUrj8cPGhF7gqEaD/ubtwH69xZ53KPPJVsZczYOURRlWPkKMsdhhPjLX/7C6aefzrnnnsvKlSuZMmUKX/jCF7jwwgsBWLduHdu3b+e0007z9wmHw5xwwgk88cQTY2o49Ic362+lbDRD89109+hzOdtaM6gHjVMKM5o/ewqP/98Ufv13QdiA9+dvZ+1Nm3lryREUs6ZbeK5C1am/GGtwJSHNjDsDIGxRFoMclMEMhof0OqbpFnfzZoqg3M1cNlguHausnsFeOIvohY8F0aK9iyJ5YVyeBn6lHrkf2mI6/iA2uN4qWKi6Vhr8u7egZzSY2aIfjuTL+/nJ0Gov3fPKMKRg4TevoJGVtzHzli8TGpTt7U7lKDaY2EWHcGIj0YYawq1tqEapXaZFMZ2l2J13/2UKmDnTN0asvO0bBOWJ9a4srTcQqEw4rrymvP7tqQo+tMRZT1o1lysQatD9XAZVcw0Yr2K6Y9kccs+KPo8THKC8cPrxPTPxpdCvQjpPZlcWs5TrY+fcqquOZVPz+WsByN33S/8Y0TMvHPQ57C5egbeB5Fxbv3l+6dqysbIFulvTZLZnfenIauGFUO5Vg3KjQcUtGNe2pgO78CrxVzaQbc+S2trty1yCe48lD4wx4aAJxJtr/eXd0Qz5VnNAD+Vo1/sINepEW8IUU2ZZbY/ReJ4NNgyp2sRNZa0BL0Q1lDCI1IaJ1EWJ1EaJ1MV91bWm79/W6zijxVm513u9Az3J7WAenb8uUNsBeu5DT2QhyBNLjvA/j2a4UpBqxkC1d/z+aDQMFiOpccb6Z6C2duCNxxB1mKpKw9lnb2VUDYe1a9dy880385WvfIVvfvObPP3003zpS18iHA7zyU9+ku3btwPQ0tJStl9LSwsbNmyoesxCoUCh0FPkKJVKDdiOkXY3elVovVj/QlTl4ZmHlD00vM/ezEu1B6n3knx45iEsO3IieiTEsy9uI7s5735PqdpsWQIo1Q0Hb+Bu5xwKO0wKmP2+kFRdKSVA9/1S7KtAVVA5CEqz71F6hegMdfA3Vnh9F1R/UQzFNwqA8lyECuUj/ziqUhai48X3B3FM262LkDPdmfBQzldWsouWHybj5gi4x3CP11OAzUNRFay85UvputKnmt/WoBfATNvlIgCB36XYblFs7ybaEMXKm+Tau/0aDnbRIp8qYBcsilkTx3Qw81ZVD1YQf32gGJxnbCmB5HxvgO/WGympmeXc7yq2u7P6/VUdB/wwOW8uy845fr5DpD7kJz4Lx+nXaPDY+PkPANBwQJOf72DlTayCm+Ng5W1O2/EKD01ZWHWGf08aC5UMpgZE8zW3s+niD2JmCxRSOQ5/+HEeXbCYcEu54Q8BFbXA7+xVmq5MsI02RnBMm0K6SLY9zzteeo77kvPLFJZcdamQ36deGJjHfcn52Fmn7FnqPTe956BnPAQnKwYyOCpDSysH48GBtx5x7yEzavmGrI0zYoIOQ8lb6CvRv5qsrx7TiTZEiE+oIdpQg1ETQY+GUbWhJUIPF+936mvwHHyfuNXlXYnX4ORLpZpNNe9CNWNiLNiTKor7AvM/PH/gjcYBiur+G85++wujajg4jsMRRxzBNddcA8DixYt55ZVXuPnmm/nkJz/pb1fp4hFC9On2ufbaa7n66quH3aaRnLHyEgXDLUaf8mdejYW+Hi7e8rU7NgWOWe17GNBo8AwAO7AcqBpaAARmhwdWOQrOPnoymkF3s5HQ/GOVDSrHueHg9Z03GDLiuq+Io4f1UmKh1kvdyMMbWAZlTqHH6yAcVzO7bODd6Rq+qqqWlHdU33iAngrSweJCQYLGjGcwVMq+ipLBUK3iduXv7P3d/mZnr0rCXiGjsv37yZPpNSutqq5BUwpd0hM9/aiFNDRdRQvrRJJh9Igbi+1YNvmuHN070mR35t0wliqJ+JWUv8jdgWRRN93+Lf2Or33gnf0mJbd977NEG5Ol6to2ohQS5ilIaUaP12cwg/TxyrSb/lj2d7VQg8cXL/Gvr2BRO1VX/AG2Z+wpqkK0LuJ7xbw+rj0o7ntOq0l+VlJN9z44EA2q3XhtAaAk+9pLGjZwXfZn7BoJjXBtyB+UqoaKgY6qOqi67UvJDmcyZKDncF9tCjKQkaEYCnpEIz6hhsTkel9MQdlDRgMMf7a9vEim+7mvZFuv2GHw78o6Jnsa6WXom/RPv44aDuEUiky/+a5BTfTuL1x77bX86U9/4vXXXycajbJs2TKuu+465s6tPlb87Gc/yy233MJPfvITLr300j3b2ApG1XCYNGkSBx98cNmy+fPnc9dddwEwceJEALZv386kSZP8bVpbW3t5ITy+8Y1v8JWvfMX/O5VKMW3atCG1K9JiEG0OA5DZmi9L6qoc4GsxFSOhEZ8SpaY5jlWw0cPagDOXQ52F2J26Bp4HpM/tg4P+0v+DLa5WLcY/KNdoenkSXq2IoNLQOE2Mrhan7bXdiw0OxUOEaiKEaiLo0QiqrvqqRT2KRW54Ua4zTyQZdtWJSjkLiqr4icrFTBG74HoGimnTD3PxvruyEFhlQSHonT/hLQv+LUyBaVm9QixgcNdXUMlrMNWXg31p41Ukd2eio40RwjUhwomI349GPOLONOcKZapPVt50a1JEDIxYmCk33jlgW/tjOC/yzZeci3CEm7geDaOGdDQ1hB6LUvf1/9it9uytVM723t9wsJ+E7g7yVN/wM6IG9bOamPyTO2j/f5+j84eXoBo6C85bRu3X/n3E2lTNsHj6uKMBMKIGxe4ChZRJflfR9xZ44ZQQ8KSU9lV1V6QiFDNcmd6SF9Gr8q5HNBxb9716/nEH+WwLPmv68h70FQqlGoov6RysQVJ5LO85UEgX6dzYgVWwiNbHfENcURUUXWP71z/h7zPxh/81qPaPNI4pUAzhF0PUDK00UaP18jY8c/wxvsSzR6WQhJWz+Meiw7FNe0iVqyUjxyvvO8U3/Ob94UHeOO+Mkty1m5A/4xd3j3UTh8SeynFYuXIlF198MUceeSSWZfGtb32L0047jVdffZV4PF627Z///Gf++c9/Mnny5CG3azQYVcPh2GOPZc2a8pf4G2+8wYwZMwCYNWsWEydO5MEHH2Tx4sUAFItFVq5cyXXXXVf1mOFwmHA4POS29DeYuDc6r6xoS3DQb2cd/yFtRA2i9XHa17X569P//jWcYpHONzf1eYNUC5UaqoJM5b676zUZinKNFlUJtxiEEyFCMQPbcsi25chtKfaEiWSdQcvYjgXBcKTKmHpwX95GVCVaFyHelCBSF8dIxNBjUdSQgVM0KW5pdUNW8iZWvkgxU8TMmq6saTJKOBlDj4bd2WnTIrsrTWZXN4W0G95iZa0y+dwgTmBgUy08JFgnotJr5BcoCkjk7qnrI4gwhV9sTQ/rhOIhwskokfoE4YYkRm0SO5ejsKsD4WSx8q4KVK4zT3ZXlkhteI9WMO26/lJXxrZQRIuE3KJSpUGWURNHT9Sgz5hJ9tE7saJJkkeeucfaNh7xPAYPtCzAzjmEkg6RujCRqEG0Poaiqmy77GNQStoHdtsIHAxLH3uKFfMPpdie9u+toDJUUB0ueO97YYnhRAg9opfJKTqlPYXtlDxMpdofJRlsMYRncLCAWDX6mxAK1oOB3gZD5bJixnKLbuZMjKirAOZNZATV2kYLL88P+g4RDj4n1D5ClDyCRoO/vyN8iWcrb/ue1eGIA0h2HzfkVkePGKy/8H3+9aeoCpFkmNc+8E6APSY/vbvsKTnWv/2tPEzztttuo7m5mVWrVnH88cf7y7ds2cIXv/hF7r//ft71rncNuV2jwagaDl/+8pdZtmwZ11xzDR/60Id4+umnueWWW7jlllsA10K79NJLueaaazjooIM46KCDuOaaa4jFYnz0ox8dzab5BGNwoY+aD5agkC6S3tFNuCZEti3nqz5kt7aiVljVlce4NzrPj++NtoRpmttItKGG9rW72PbYzrKiYoqhEGrQMeKl5NRSmECozvALVwFYeZtipzmkytbDQYuqxKZGqJuepKallnhLHYWuDK2vbHUNh70Az/jx4t61kjSnl7wMYMR1ovVRGg5sIVyfwKiJocWiKKEQqCp2V8ovpOYpGmkhd6Y1ObURPerWQtDjUaxMDivXhZkrYpuOL905UDhCNU9DkMowoGpx6GORlO63tzQz6jg98qx20cLK5VE6FTfROtVNMZWlkHKVnIqZIoV0cY8rpQCouo7QNLfqtuNgF4ooqkp0ykT0SVOwG1roapiBrYWYPPfQgQ84DrkvOb/qLP1w8Z5t3vNMM3pqAgSNBu8e2VOc+NqLrJh/KPGmGHpYp9hdoHtbzhWXMIXvOQ7e/5G6MIqqEmuI+deqV/zPKZQrQalaz+y/YigoljKoMMyRMOC9ROJK9bYgXk4WuDlCwnYoZoroYa1qUck1Hz7dNybAFV4YDang/owHxxJ+eOZg8AwGxxa+B8gzGrxjDkYcQDKyNC+ejZGsQSnVrsm1P0l6azeO45DvLPQS9BjvjFUBuK6uLgAaGhr8ZY7j8IlPfILLLrtsRGub7S6jajgceeSR3H333XzjG9/gX//1X5k1axY33HADH/vYx/xtvv71r5PL5fjCF77gF4B74IEH9kgNh3v0uW6118DsUbWEJ086NUOWzM4sxXbLD2/KtaX61MVWS0bAhIUNREuz0hOOOBht9nyEbtCw+jm6Nt9Pdn2hVJBOEEpqRBvDhBMhv5KwcBxf919RVRzLxsyZ5CMFsuT9No6G6odilCsCqSF3Bks1NH/2bTwnQHsDHCOhocfc/AU94tZR8IqhAUTrIiSn1JM8cBqqZzDgvlCFbaNGIkTqE+Q70tjFnkGFqmt+9WQAM53FynkKRK60qh5x44yFKRBVquz25YEIFvbzDJ+g0eBV5B1Lo6H8+0oJ3IZCMWuWzsMh35XzE5QL6TxWwcLMmhRSJnbB3uPVTHdd9Rn0WCkGXFHAcdzaGKblGoBNzZgtM8jHJ5A3EghFZf1bbzBz9pw92s6R4MzUa2WzwMMl+Dz0DHEjopdJ2iqKilCdPeJlqMaJr73Imx87k9oZzWjhEPn2FB3rWtn6z1ZCDTrJyTXEGmKEkzHCySjxaRMRlo2VzZHd0UEhlcXKmyXVsB5BgmDukUdfxv1QqZb/UO0+dixBtWyFSiEH71nt2AJsG7voen685V4olh7WyyqYA7z8npN8I2N3CsQNdL0FiwjaURu7qPYSmvDwjE+7aPfK/apUapPseXJ/vJ7IkUdjJRpRzDxauyt4U+w0S958c6+TbQ8a1EPdD3oL9gwmSkYIwVe+8hWOO+44Fi5c6C+/7rrr0HWdL33pS0Nuz2gy6pWjzz77bM4+++w+1yuKwlVXXcVVV1012k3puw19JAd7L8jY1Ai2aWOlbD/UxKPSaLg3Os83GBoPrmfasXOJLyipCQgHJRKDVAfWpo3seOY1XwHGd47riv+wVHU3oRPwH+juYYT/EPUGlg59J08PF8c3mPIU0ybpbd107+jCKtikt3YPqlDUWKIGvDeeco8Rc933kdqoWzAtVyzNzOnEmurQD5qLYhbBtkE4oBsouo5q29QAjrmOYrenemWTy5kUMwUSk+qIGEbZDF58Qo2b6JsqkLNz2CV527JEY+iVp1DN66BFVV+ByLEFQhWAjTWGRkMl3oAAoBB1w7O0dNEf0Di2wMxYZSpPIzkbPlg2P/lGaQAZRY+EcCybjnU73djwuih6LEokGkcPx3EijQCoe4H+eF/sjtHwyOxF2DkHI6n5NR4UQ+lV7AvGLm4+yEG/vY/syjtwjAjx9u3UvPE6evgVInVxElObCNXXoiVKs6OAyOfR0t0AqLpKIZUreR1cAYNeggX9eASHSjB8EnoSuB1c2exKKmWh/eOUjAavwGFl/RQA2zd63AruVt4qMyaCCNvhiSVHDFnqNGhcDsZ4sFKld2lLuVKd51Xw2l9NKKKyJoxjCb//HmhZUPX6lIw80Q+6+ab5//0PsG2cdIpcZ84fJ1VOyO4PVObcXnnllQOOb7/4xS/y0ksv8dhjj/nLVq1axY033shzzz037mpEjLrhMN6pTCz2vBBGUmPW6dOpP2gyRk180AmSZ+Ve5/HFSzDiBnXTG4hOmYgSjSO6OrA6Oih2dJFrbadrUztdm7ow4jqx5ghaSMMu9mjuu7J6cYxY2J0FyxbIpwoUuwuui9Z0/CJUQ1FHGk7/FNssim0WOaNI9+Zcj5t5nBsNWlSlZlKUeFMcPayXVQQOJ2N+ArMRLbrSprkConUbjm2jRqNQ14hd14wVqUHPdyM2rEePholNSGBmi5jZAsVMASMaIlwXJz59EoqmYXalKLSnEI6DmS2WEsVU1LwKlIcsCS95EwLKLb2lCx1LoIXdWQ1NVSia7kzOeDEaPDzjodhuoep2r5lULzF8LAwGj9YX2tCiHYSShh+y5kkg68kU+VSByZ1pkoe2UXNIlKaFR49ZW8eKJ5ceiWM66DEdxbD9/ABhil7qSOsvfN+oVSMeDrETPsLat9+iNtFE3LFpSmeITJkI8908OqwiWCZKqgMcgRIuYtTEEJbtT9Bk27PYxZ4JGgC76Az52ddffZvgciXgeVCprrLkPQvUwPaOJdBj5V7hSiW2YMiYYwvop8hvsEDk/Q0HlxUEHGjwFwxLGoxUqfescOsh2W4olSYGNBZUVfXV2iTjg8h7L6H7Z5ejNbeQmJjEWmST3pyh2O5Kd98bnVdW1HY8oyruv+HsB7Bp0yaSyaS/fCBvwyWXXMJf/vIXHn30UaZOneov/8c//kFrayvTp0/3l9m2zVe/+lVuuOEG1q9fP/RGjhCKEGJ8jDiGSSqVora2lq6urrIfazDcG51HdEqImslxdr3Q6YeDROpD1M2oI9+Zo5g1OebpZ8r2e2T2IrSwRs3EGE3zJhGujdN8ze1s/PwHsPLFskq+ju2qc4RqIr62fq4jg5mzSExMUjurhejEJrRkkvymLex6eR35rhyR2igNc6YSmTIRYdvkt7XSvmYzHevbKaRMHMfxb8pgDQJPSSQY/uJVE9UjGnrUTVqNJMOEaiJ+Uatse45smxsTbKb2rtnVoKSqJ6uqx3RiDREaD2omnIyBqmB258m0dpFPFahpLmmdx6OuZGrBzdfQo2GMRIzojGlkDz2RZ+0j+L+/53n+kRf47U8m0fyP35FZt5H0pp1kdqbJpwoYUYPExCTJaU2E6hJYmRyZ7e3sfG0b+a6Cr6TkhxUNc5DvhTVUqwmytzIWM1H3N/QovfVVKdnr69p58T7zL9r/3+cAaPjWz9n57QvY9txaFt27chRaPLp4kyV6UnOL55VqgXjn/fjiJRz7/Co/r2tv4lPf28nl5+WY/uwdZNe8SWz+HHYc/l5sRWfS5qdR052Irg7sVAonn8cxLaxsju3PvU3XphTFdHkBTu/zQBW2wb2GYjPDGBG9XJ656FDsNMnvMKuq21UaG0DZc75STa0aZZMTVQyVSoICC8G2DIZqNTcGi2oo/js4WhchnIjgWI4vc+0VuMx15LCLvQ0Fz8DwjxcwoDzDw8uDEKaQ+Q8jRLAyuF+xvCRpDG4OplcxvmZSlLrp9UTqYrz93EZOefa5YY3XRhtvLHn5z3cRjg69bYVcius+N2HQ5yaE4JJLLuHuu+9mxYoVHHTQQWXr29ra2LZtW9my008/nU984hNccMEFfcq27gn2a4/DWbnXeWLJEWiGyvSTJ1PTkmTXmh1k2/OktqbQQhrCFjy59EhfLs4x7Z6iVSU1AUXX2HbZx3yJTq/Sr1fUS4uHqJ01kdzOTlJbOkhv73Yr7po2oZoIhY40iqpiZgsIR2BEDXIdWTre2kq0PYUa0jG7837RMKXenRULJ2wc0/H1r0MxAwDbcspiW6P1UVcazVDRIyH0iIEeMdBC7vbRBpOaFrfwV7qxm8430xTbrCo9Nv7wchgiE0J+/QVFU/3BfGJ6C6JUIddLDPReSuH6BLHpU1AjEZxcDrs74+czKIkkmUgD69eFeP4RVyf8Zw9P418nNmK+9DrZtm7S27rJtRWINrozCo5lo0fasfJFMrsyZHbm/AT2kVQ62peMhuC5VBuAjIZhEZ0URtGUsvDDSoEBxxQDfnfDt37uf276/m00jXhLRxfv5e8NVL3wjhXzD+UdL/VIW3oGxN5mNACse+ltnjtpKU3zj6bxI18n9/ff8nZ2GroqaI7UoOQyEAqhxqKuolbBrdxuFWy3hkVFaJIWVRF6b+WmaiiG+0xWNKXMcxGkr/2DEz/+s8MUbr0KykMcg8nBwb97EajDUdaGoKLbbj6jhlpsVYuqxJoi1M9oIDYhgRZ2B57CEQhRKh5p2b60tZkt+tXrbdPx+9TL23CTwRU3DDVrUsyabmhW1upT1UoyeKr+tqYrve5FJXi5eKquEJsYoW56PfUHTsRI1lDfmYE9U+x72CgqqOrA21XbbyhcfPHF/O53v+N///d/SSQSfkHk2tpaotEojY2NNDY2lu1jGAYTJ04cU6MB9lPD4eGZh1Bst/wBp1WwaTggQWJ6Cx3r27BNm1DcLUrlxEOlAl9ueJBfiTdjYRdTFLqLROsiZccP5iOE4iFqJtahRcIUu/MU0m5IhGao5LsKZFq7SO/oLktY0wwVM2uSKnTS3Zp2C32ZDlZJ6SNaF/Fl9qDHFe15ODzDRVFd4yZYW0DVNbSQ7u6rKuAIN5ciAtGGGne9rrLjn+3jJvwFekKPgngzHaGkQWJSja8aood1jFiY2IQkRk3M9yaouooW0gknozQcPAtj0iSorYdQBC2XQdm5ndzmbYQiEVA1ooUuWupt5hwxjzeefZ1PnNxF9n9eYdeaba7R0FrAzjlkzTxW3ibXkUMLub+JmTH9BLHxFEq0JxhsjZDKl1A1KceRSOytpGleI6quYeaKpLd3k9mSKzMc9tV43OAsoUe18IF9SQ9/8YmHcHDLLvSuHACFuhYmx9pJWzHy8QnE892o2TRCUVBDITdDJ5OlkMrjOCUp7goJVKELyPUdJuM9q0INOpG6MMJ2Vfm8mXHHcfoe3Ae+pxrBHIi+ch4GovK7h1LrZbhUJoF736lFVaL1UepnTyZUX+sqnHkoqvu3oqBoGk6+gNnphvqmNreR68zjmLabH1HKB3Tfoa6giO/lsYWfXybzH0aXyufJivmHktqWwipY1LQkR1UKeG/j5ptvBuDEE08sW37bbbexfPnyPd+gIbBfGA4dP7iYDY+s9rXFjbjuh/RkNuXJ7yqS2Z5FMdZRbHfzBortFsUWi1DcVeCxLYd8R4Fip0mx3R3AW1FXEjVldKNFVRItcbSwjqr1vFTMnMAq7KL97Va6NqexTZu66bU0HNCEHjH8ZLxCOk++K18W3xmK6xgxcKyeuFXNUIk11hCpi6OG3J9PWLYre5k3faPBq3arqKqvxuQZDkGjwfH3LVLszpNPFSiki+hJbcySnyuLj3mVqeNTor7euqc4BW6fxJsSFZWbVax8kUJbpzuTqKoYyRo3LCxRQ2HxCViohLt3onW0IrpTWKk0jmmixWOYzdPZGZlOg1LgY+fUkj97GbM3/Q+d7W4MfK610ONJKFVnzhvFslnA/dFogJ78DBh6zZE94U2Zf9dDbPjsOegRA6tgk28v9GrDvmY8eMXbgoxlnsme4vqL4+x8ebUrdADUHf5OnnqhyM4ug8KEhSyoLRDr3Am4oQM4Aqdouon9hoZQRS+1IhsbJz24gX++s+CHJ3kIc/gJ1p48q+f1CBoBXg5KpSeiP0bi+eTds8F73msPUKYK53nrFVXxw2brZzURnTUdtSbhTtsKpzTtq4CiIoyQO7ljFtE621DDodJkWTvZ9iyK6soCa4YWqFOh9qj/hVQ0U0NEXYNPGg8jT/CdXSnZbOe6yXe60tvd1viPZFAYZgE4hrbPcLIExjKvIcg+Yzj88/gTiGtaVSWIjjUbSW1OU+w0fRczQHRKCCOik3o72ys0R5iCrJmnmNRKF79rTJSHNPRUJbVzDhk1R7Qx4rtMAYqpAh1vZ2k6uJFYQ4TMzpwbRjPDdd3ltu8knIyS78xgZouuIkHOJJIMo+oaRtRV6vEqEIcTEZLTmtCiYRRNA1F60eUKqHrB9SxoGkI4OKXqvO5Mu4EWNtDCIRRdQ1g2me3tFLvzmNkChe5SQbOM6b/kFGNwWuUjRbCOhfcb6EkNI6ITSoRoWTCZSH0NRiKOauiugWWarkfB8woVTN+tbeVNcm0pvxqwFg6hhEOojU20JWYC0IhDNNWG3dFBZuM29xiZLKrleinmqGuo3bYaJZch9/LLZFq7fJlG6Emu37uyQvYM49lgcizH9+5ppXt1tI2FF04/nsPuf3RUvyPI08cdzdLHnuIfiw5Hi6qcvp/Gdz9nLWZnLsTbvzW58mMGZxzmhsNc9nOVmSdPQF+7ltwOt6inGtIRlo0e0dxkaE2Uz5Lawp906u/69oQA7FzeX1YWetTPoL6at6FXJXdLVFVe8owH6FEb6q+NI3GPevkxwcH4wzMP8T3EmqGVJsFcRbualloidXHCDUlCExrQmyciErU4ulFxMiUPs6IgVA1FN1AdC6NYIFYoYuWL5FNunQBXrlxD1Xu80mpJaUo1NDTDwfbqb+xl8qDjiWqhaFpMpWZmlJqW8mrHdtbxpey93Jnu4l5gOKhDDzvy9ttf2GcMh2LWJGz0Xv5Ai1s0w845/qDfe9Bphka0IUIx3eNFcCw3Xi8oLWnEdbTSDLw3QPQKCnnxfMJ0Z6a8mf5QPIwecR+UyUkJJh+3iPyOXRTTWaLNDYQa6xGOgxYOkd3RgV203JCmkE5qayexxhq/GqMejRCuTxBqaUKrq0fkcohiAWFZCMvGKRbRokVCpeOhqojSgNoraqWFQ2ixKMaECdA8CYRD5u6/kt6eIt+VxzGdIRXjGQ69Xn6lmelgrYJwY4h4U7TMmxCtj1EzuYH6ZUdhN0+lEG/E1EOotolu5ohkO1E2rcXJZrC6UhTauzAzeay8+3IRjkOkIUmoqRG1tg4RihCzUjiKhmbmEakuctt3kmntItvWTWpzG8YzrxKP/BciGaNLURHCoXtrO92tbn5Kf4mGkvFtNACYWTdOOp8q+El8e4L+jIeX33MSC//yyKCP5VVk9aUrS7k7h9yzAnArKgO846XndqPFez+nHxbm2He7SetXfuwEf/mpx2g0rVlJamc7jlfDIxZFi0aYfPh0OtbtJLMr63t7hSMopkz3PTBA0U3HEu6EUulvVXdDZYJUPg/7oqoh0U+IUtB4CDLSMrJGQiPaHEaPaBz15NP++udOOZaGg+p8w9wLHY3UxQjX1hA/aBZqsg4Rr0GEIjiqhlA1hGbg6CGE2hOupJRmZZ3SMi2aRIvXEom6IaiFVI5QTcQVH9E134tuZgtYeRPHFmiG5QtJjVQf7K9UGg1GSVChdmqCaH0MKPcye+94O+eQ21Eg74z/KTZVUVCH4XEYzj57K/uM4aAZGi0Lm/2/743O63PwogQuZGG7M0O+YkVA3lJPaqi6UqoDoGG32GWDXC2s9bixI6AaKpquooc1jFiIcDJGrLkWIx5FS9QQ1TTCxSJOoUhm3SbMTJ5ocz259m6KmSLRhhriE+swYiH0SAg1pBNpqCU8ZRLKxClYySbysXp0M0uofStKWytONoNiuuXd9UQSNRJGMQzf5StMEyfnvrHUaBRr9iH8M/pOdnSFefe8V2h7q7WXfN9IU6lX3vM7CF+NIZQw0CMascYY8aZEKYlZoOoq0cYkicWLeG7uBezojuEUICZsakJFEtEcNfXdtEQS6O3bCMVaUQwDpa3DT5LTIyHUcMgt6qYoKIUs0Vw7inAwOrZR2LiJjje30rWli8zObFlRtciEEJH6MJquUsyamBkLM2P1aJBLquIZ58CgVWj2JJldGRzTdj1sOWePhCb1523wjIZX3neKvyxYhMszEjzm3/UQ8+96aOQbuY/y+P+d4BsPHqcdGqbtz8+73lrDQCsZDmosSsOSBcSat7Lxsdfp2pzynwnFdqvP67i/sLxqM//VlJMGQ39GQ69q8iN4z3m5G1pUJdocJjklQe20RvSIwdYvf4TJP7mDbZd9jEmHzwTcgoCqrqJFIxjJGvS6WtRkHXbzVIqhKI5muOV2S8aBUDU6EtMoiCg2KioCFRtVKYmNCBUFgabYhCdlqZ21kGkLX4FCAWFbiGIRUSzimBZmqptiqhtVT7kF/fK2P/OtGIqsMD1COJboVcCzV/FCzyufdbD18S+hO1aVo/cm9hnDIbMxx9xX7ueV951C+9qOXhevkdRc926p2rGdczCaNfSIxsyTp/mz+907XP39UDyMY9mktqXRdNfdGW9SiNbZhGrCfgEpL4/ALlp0rN+FbToUM0Wg2y8UJhxBY9EkOrkFLR4jt72NravWUju1nshnvsT0d2xGrFmNME20eYvomjSP2ucegJbJdE49lG16M0XHoC1fQ7pgcHDDFhpDcaKhCMUnHuW1Pz5N9+YcR112CsVjzuCtyCI0RTDFWU9yx+to2zcjclnEnEX8V8e7+O333QHMadeey0GhENufeIkdL293DalhFhQLNbqXUmVeRPBlE4xx1SMa8aY4scYaog0JtLDhexkKXd0UUjnMbKGUo6GRsG02dsSJhx0W1b5FfdcGlIztzk4JB8U2EbEa1FwGRevAzpukt3bQubGDcDJCeHMbRmy9q4KlKhixxwglYuSLFrm2FMVMAaeiyJ9XwyJFdncuzf0OLaYy8agJ1E1vQDgOqa1dbjL5jsKAal3eAP6+5Hw/RHAkeXTBYrSQSmxCjHhTnCUrnhjR4w8Xz9PQV8VeaSTsPo//3wm9lmW2t6OoCuG6BLGFC9yY+kIea9s2urfuou3VDvI7+il8ECA4y0ppplWLqoRbDDSjZESX5EG9cCeoMsgf4Llr495jlZERo13TRU9q1EyNkpySIDGpjmhjEi0aQY+GUUMhum/+Bsm5B/iSNIqiuJNYkSjU1OLEkxSjSYqRJJYWwlYN95+iYyohsnaM/32qjvVvtWMWLELREHUNtSSTISZP1AnpEDYEyZhNfSRPpi7J5BkORmoXajYNluVOljkOWqwdHNdL7BnsnuxwKKpLo2GY7O4Ey3iaPJIMn33GcDh1y7OsmH8omqGR29GT7OjNfEZbXJeqqilYeZvM1jyKoRBOhJhy6lGoiSSiO01kzVq3yNeBM2n75wvYpkNySj2hRIzube10be6gcXYzNVObMNNZ8h1ptJCOcBwK6aIv4ZrrzGNmTHJt7mC85fDZaMkEZutOcm0pFFV16zU8dR9mV4qONRux8ibNpkVSVbC7OtEmTSea3YUeypMPJYjHM7QZ9UxqewXFNsk0zqRm1kbCiRcoNpiEDj+Kx9WjeOp5na6uIjOnL+bcGRaJzeuw092oa17ko4trWfbjRUxgB5s+/1kK6SL59gL5VnNA93t/eF4YVVf8Il/QIyuoGEqZ0WDEDGKNNdTOnEi4eQJ2JkOxM41Vcj/nOjJk23NYOYvuHWlUfRVnT/8LSt5CfWst1q5d4DhosajrYdA0nGKRYleK3I42Mjs6KKTzFDMWdjFLMVNEUTOogXjlUE0II2ogHIFVsMvORUr37R7ZXdmSsolKrj2HlbWG5KERpsDGGXGvjpfn5NiCxQ/+Y0SPLdk7UVQFx7Yprl+PMN18sZ0vrWXnmjY/hHU4OKZAi+LXxQA3+FUxFJy0KAspGuqASpii1zNqtAZlwTo5niiFW0XbQbVtV3XQtl0jAcoSS4XjuCmjquKGIqkaAgWhaBS1KAUiFESYnBkma4UwdIXOnSlaN2z1jzFp9jRqT5qJXqNg6IJYyCRhZIiQKwtr8hLgAZxCkcYrf4knZrmvSFiPdyqV2yoNjVQqBbW1e7JJQ0Z6HAZmnzEcViw8GqNTEJ0SIjEjRkbPUWy3/Ade8/wmQjURVF0lVBOl7c1tJKc00HTyMsyZB6N27iCz+hXSW9qoneVq/xe78zQdPJXoxCa6N20j35XDNh2azzoF0Z2i42+PYWYL1M5sRilavmZ3KB4iFA9TzBSw8jb5XUVS67dTaE+Ra09TSOV86bidT79MelsnrS+3YeccujZ1MOHVta683NubcCwbNaRjd2ZINiaZesrJ2GvfwMkXCB97Grn5R3Pwt1sQWzawfvqJbNsSJlEDoVCYlgaHaGYX+U1byLd3kduVwnnkWWqAndtTbF25C+jbxe7F4A7mheQVOPNiXz08L48b7tVjNITiIUI1EVBV7FyOYqqb7m3tAOS7cuQ6876KlW06dG7YRc1TK1AUhVxXmnxbF47lYMTCfqK0lctT7M6T68iSbc9STBcpptzZQi1qoqqqH1rmlCQStZA7O2ble3TbB6NGIukbO+uQejtL6u2sn6A5VAMgWNF9JFWO5EyjJMj0m+8C4PVzT8XMrcXMmQhbkNrcTW5LccQG46rh+QcciimnzJM2HON4T83cBsNMhSncwl45E7toIWx3skU4DkIIhGm63t9oFCUUdlWRdAMlEsMJRRB6CEc1sDUDUwuToYZUsYauQphsUUNVYEKDytQDW+jc0UYx704AbntrE5ml0/nye3RAA2JAjK5VL2FkOqCYB8si8v5Lq55DcDDr9dvDMw/xn02nrF89ij24f9FfdehHFyzmsCfHf4FMVVXKJhiHst/+wj5jOETqQlg784RiBpFar66CG9sfa474iVlCONj5IjNOOxLl8GW0Ns0jkW0lZBbIt6VIbe0kvT1F5JWNzDr/HNIHLEF/8RE6V75AvjNHuCbE9vnvZMLO1wgn3cJIwrLdEJjSrFKssYa62VPQohFqp22ma1Mb6x5Z678sFEMhlDSonZrAKlh0t/aUZs+25+na1E7X5jSRujD1MxpITpuAcATpLW3Y9/6Nro27UHWNackE1uEns2nWiUyzHqKhuJWFk8Ikpqapy20nvuMtnHVv0L251S3uti1FvquAmbd8ZSno/RJSDYVwi+GHdMHA8el21vFd6FqD7itq2DnHj8lVVAXVcOVgNcPNYbAyOShJyIZqIhRSWQpp11tjl7wAVtb1Oux45nVfYcrMmf4xFVXFsWysgk2xu0Ah1VNDwQkUPfLCpbzYYtu0EV2uoWCl7LIBrnSp7h6e92ooqXCjnWfwxnlnMOf3fxvV75Dsncz7w4M8MnuR/wzoL5dhKCiGgh7RCCdc72a2LTuo5OrxQGVummO5yeG5iPsejNTFfflvHAdF19CSSWhsRsST2KEYqBq2HsLR3KRnR9Eo6HE6aaAtl2BHV5iujIKuQV2Nw7zJWVrqY0yfsZTVL+zg7effQNU0pk3SePHNVmZ1rsJY/yrm1q04uTxObalCr6qQ+eW3iV/4/V7n0Svm3hJ+ET1hCinPOsrcG52HYihMOa6ZzG++N9bNGRDpcRiYfcZwyO0soJmCzle7SUezvhtYi6qomkK+M0vN1GZ3Jv+kM/nAT6fw9eMP5oi7LyM8aybmjh10b++ke3sWLeSGVyQeXEG0+SV2bt2FbdoU0kXSOzJM+f2PKZZqIhixMFbeRNVVrIKNsB23HsKuTox4FD0SIjGpjmx7zq/IrBqKWyciZZKcXgNApNlwk3HrwsSbEsSbErQcfQhaUxO5NW+QmGYQmzGVzcdfwM331HPOKTpTUg8Q3fEW0zespvW+v2Nm7+aAQ2eD45Df1cnOrgzF7jzdrWkKqTy5zkJZXO1AKEZvJZDBoOoKqqriOO7MmmUKFMMmMiHkG1eqpmBmC35hOrdNNma26Go+Z80e2UNL0G3lsPI73QJ3pThhxVD82GHb7Kmp4CXBBV8YoqR57hVN8uLnByOtKNmzVFaTHqlCcFNOPWp3mybZh/GSPO9Lzh+x54GVcuuEFNJFVFXFzFgDPnu1WCnkM1Vudg+1JspwCealBeXLvfDBfHuBXCJHbEKRUG3czUOLRNDq66FpErkJM+mqmUyXU+eGJaGg4hDTssStLlLUsSNby+a2EO1dAtN0qImrTGpwOFB/mwTbOGk65OfW45xXQ95IELZeJLFzPdrmN8mvXU96w3bynZl+JwLubzi4Vx+CO5klKlSu7kvO3y/qmuwJHmhZgJHQ/Herdx2lt3Uj/im9O/sC+4zhYHZYaKg4psAxbf8h61iC7m3uEyI5tZGaWVPRill+fOVkDnzihzxx4yNMP34q9QdNJjYhQf0syy0K1ZXnrYfeIBQzsPLuw8cu2ORbTVb/7imMiI4e0VA01Q87Sq3rxrEE2Z152td2EKlzk6hDNRFmHDeH+hk72fn6TtLrXOWe3OYikXq3XoAW1tBjrovMLlokpjZS2NWOvWkrWjRCzaGLyB5wGL98sIlVDz0DLObQE+qJbnkbc8cOoo1J3n5wFV2bO7BNx52xN52yZLxKtJjay03ulJLrCjtM3/ga6svKTPfM3ntqJIqlkN9VxC7YhBKubGQo7iaPm9kCjuWGhmXbsxS6in7okzAF5NyHfZmXJOBJCP4N1fXJvcJJlmn7qlqjnUwoGR6VWuEj5YmIf+rqETmOZN/mzNRrIxYT75iCzPpCmfRqpZpSpUEgTIE5Rh6JSItBuDGEHnEnZKx89XeHmXXDlfRohPD0aSjJWuxEA2a8nkKklgw17Mi63gBddagJFahVi8QzrWyOTWdHZ4hdHQ7FokDXFQwdNFVQv+1lMg89SMfb24g31xKZUEdiUjPa5KlgueFRWjiEURPByhf7PZe+hBXsrIOoUqROMjJ4HjvAD1/WDIXM1jxtbRvHuHUDoyruv+Hst7+wzxgOjikIFu7z9INV3Z0xaW9P07X2ReBFtOh9TDnyV4jTjmLZNR9ix6OrUFRX9rN7RwqRMwknQoQTIXLtbmXpUINOrClCvtUku74AFNzkt1gpJCfrYCQ1opPCNBxYR+PcyYSSNXS+tYW2t3ehqCqRujiNsx2MuEGuLU9qTZZIbZi6GQ0oquLWENiSJr1jG9NCOlbWjfFU0lmKjz1FZM0avnfwajp/eAyJ9oewHlrBxmfW0PZWG8WsybRjpmHEQkTqE3Su28GuN3Zhmq6xA/jSp8GkPK1BJdoYJjYhRiGVp3tbrqfQ3TAG1HbW6eWGV0vfZ+P4hfS0aKFUrdv1TgA4jmscVA0T6KPI2lBCYYKqJeNfTXr/ImgcBAdtu+NpyN52FbELrtrdpkn2Q6oVutodypTmgJqDIkTrwmR35tHCGvldRayUjRZV/eJuyQNjtCycyLYXt9H1amZUJzi8d1fjQQ2omkJqa4rubTk/hDPSbNC8sMlVLDI0aibWMeHEY3jzsI/z1+cnoGRgao3KQbEumoxd1NrtTNTXE2vbgHjjZXY9+wpdm9rRZkxA+Zdf0ZGGri6LjvYcu7Z2kM8WiMTCHHjxMiZOfIEGXcOoiaHF4wjbJv+ym5skbBunaKKHQ0QbEmXn8MSSI1i26lkeXbCY4195vs94+3v0ub0VrGL7UfWuUeb09lf9z/foc30pVtVQyO8VBeCU8qKPQ9hvf2GfMRwAfxAfnEX2Q3NKF6+R1Kibn6Bx7lS0xgmIaJz2t3fS+uo27KLjqyAphkK0MYxqqNRMjZKYVMOEuZOZuChHaksHqS1pcq0FEtNj1LQk0MM6ExbOxCkUCTc1oC05BoSgpfFZtNAawskYiqYxobmexvmC3M5OOma4oTdGLFyK27fItRUotlu0vraDxMQaYo01hJMxtLCBUV+LNWEKm9RZTGoKMWHudiJvbkLR2jEiOma2QHp7Cs1oJ58quDKDiRAF3TUcVF3xB+o2tl+LoKAX3ZmlPjwTu4v3W6ilz6I04+//boEieo4lPQD7G6OR2/DqW1uZFY8PvKFEsofx6pvkOgvEJ8awcpabqFvylnvkO4q+THZ8ZpjM+kJfh9xtFMOtV7Tlye1+GKeXp+a9N0LxEPmuHPHmWurmH0B27lFsz9axaWOabDpPPt/IjEadKN2E811EX3mCzJtvs3P1era/2Iqdc2g4sJk1O+rY2WZimg7hiE6yoQbN0NE0FYUien29OwjTNNRIhNz6TVi5Ano8CoBj2zhW76mfZaue5R+LDsdxBvcOCxqHsibP6OA92+/R56JFXXEUOse2TQMhcxwGZp8xHCJTQkRCOnpMR9iCYmegGnTJMzD1+BYOeP8JqIkk1o4d7Hz4MXa9sYNdL3WWGRjgzsAY0w2mLJmBEY9iFYpohk5NXcKtftnUSXRCktqDD8LJF9zCazMOQmx4k23Hf5JXO6bTUpNmwSKF5poaKKlOqMkkTnc3qqGjx8Ksfeh1UpvTKJpCMWVSKGmGH/P0Mzx93NFYBZtotkhyaiNaPE4m2UJbLk4kPoGp7/4CM979BWYAHT+4mNS6rex6sx0ra5XFFgaTst1ZLbfoXfBFpUWdHvUMXcGm+oBud2bhynTOy5bbQ1Jwkuw79Gc0DHXWd+e3L6CYzjLlxjs5ePZkmH3ZSDRRIhlRrJTt17vJbSn2mc9QbLd80Qw75056BbfzQk1H4plppWzSG7JldVaMpEa4xSBaF3YrMId06mc1UTf/ALTZc1kfnU2hS6OpOUa2JkR9nY6i5ClqEQw9h92dxsoWMGJh6mbVEoqHqF98MGs3W6gKTJsaYWaLzczabvJODRG1wOTH/gsr3Y2iaWgHLSA7YQbZp28gXBtHNXS0cAi7UMRysji2zaoTl5Ftz6MZKstWPYtWUq/qL+E5+MzZE4UfJW4/r5h/KGZBGfeGgwxVGph9xnComRyjJmQQrYtgREMoqkIxUyCzM0Pnmm5mnT6dyV/6PP/nvJvDWrbQ9Nt/ZeMT6+h6vbcLWIu5iWFG1HDL2APZ1i4yO9OEE255ezNbJGLZFHbsZNfqtSiqSv3sLaghg7CdpSur8dbWWibPm0fkob8RnzsbtbEZu3Ub7ateoXt7J9m2LJmt+bLZdy/ECmDpY08BrhqMaugoiSShXCcnpO4ketgnytocmTaVdQ++QPf6noyvoOEEPUlhjiXKvtM3LKyeK3+kjYaBkAbD/kdfL+2gwTCUF3u+Iz0i7ZJIYOTDlTyCzzpPjc7DS0zWkxpG3H092wU3fDM5O062NU8oaVBoK6InNde4GKCo4mDb5B0n2IaWg5uI1MUxswWEI9winZqGUsgzsbAeM2mwrqGBSERDUWBzR5x07AAS4QJLZrxKLJsjMqGOSSfUobVMwmyezhIdYiGbiFZgpraW+o0vYUcTaJlOul55k/jUFpRIGNq2E9u2kVTepG5+C2o4hBqNouW9wqoO8aY44WQYq2Dz3CnHYsQNlLzle0sk44eZx82irS0N614deGPJuGafMRwmHNRMja6VwnpCGIkYRk0MM9XNtqa3iDe7RUcWtWxn5kt38cxdq0i/me0Jo6lIWHMswWH3P8raC95NriNL54ZOimmT+MQYU4+sd+VWI2GKXWkUVaVmUgORaZNRY3HyjoWmCkxTsIsWZrc0uRVJu1OYu9qxixbdOzN0rEn5LlIRaEdlbOa095xIYe4RdMQmYKkG4te/InXjr5m9/L2IuibEhjfJrNtIx9sp/1haVAW9PCRImAIHoEJX3+0DxzccPHUJL758qC9P6T2QDERfBoFX3VWLqdzfcHBZvGwlz51yLIqqYkR1Fv7lEabd9MfRaq5E0i9GUhsRdTbvWRydFKbYafoCDmbKpmN1Gi2q+nkHwerTI4WR1JhyXAtGNEQ4GSVSn6D2iEXQ0AzbN7tVoIUg9eQ/Cb/5BvOWHM3fzQ9RKDhoGmzaobDO0giH4iQXnM2UKfNACAp6GNWx0ewixyj/JNq+mXTTgdS+/hTW9m2o0ShmWztaxEAxDHKbt9HxyLOEaiI0LJiFFo+hxOMoRhjFtlFD7qSeEQujhXQ0w3TrS5huwrSszTD+mHDBcmIb34K7/z7WTekXGao0MPuM4ZCc2kRN2EBYNnbRwikUKZgm6U072fVmO6F4mIa1rzLTzJN97XUKbT3FfRoOTVDTEie9rdsvWuUNrDc/vZlip4mZtv3CZuGGWiIzpyNME2HbNB16IKHDj0LpasPavo3kP/7Ie+e8zs5Fh9FJA4Xjzia2+VWcbZsRto0eMYgkw9RMjZJel/XdzZXGi0f0vCv4wX8W2bYlzStPvMytP7mBhbOn+evXX/g+dq7Z4SshhRp0QnUGekSj0FX0Y2M9ZSHvcxDHFJxdJZlsuEaDYih+ToNEEmSg8KR7o/N8lZN7o/OqJjk+f+o7AGT1Z8moMZRnXzXZz+FQe3Cc7vU5MpvyZZM7vkqgaaPFVGpmRimmzBH7XnCNhuTsOFbBJpxQCdfFqTlwGs7kWajr10BjM1b9ROxwjERDM0I36J5wAFoX1NZqJOMKlg2ZLDgC3mibQGeihqhepKsQJW9qHJZYQ/3KO8i37iI5Zwv5detRdA2zows9FiU2bTJqNEo8mUSLhCm0pwjPmw+2jdANhKKiWCZaJlPWdlXXWHTvQyPWF5KR57XGE0iGm8a6GQOiqKAOw2Gl7EdOrn3GcIgtPox4Mkn++VXkO1rpXNdFx4ZOOl/vxs46vPHmOt7+64YyfWHoGcQ80LLAjzv1HsWV4RJPLj2SWEMUxzTBtlETtVjrNtK5dhv5x16hc0MnZt6NSY1PfIi6aXU0T21EqUvQ3tpBIZVF1TXf7du9OVf24O+v6uLVnwwBjcAJvdbN/OWfmVn6/NwpxyJsgaIpFNJF/zxVQ0FPatQdlEBRFXY+09FrUF+pYDNUb0PQ8JEyp5JKBhN29PDMQ0gcFEPYgvyuIuRc40FPakQmhIjUh1n62FNkd2U59vlVe6DVkv0Z75kWatBpmFfLjmfaR7V4W9ermQG3sbPOoLbrD69WRLjFIDm5hsbZzWR3pZmwYDrZHR1oIZ1QsgZtxoFk6qbAYVPYGJpDg9pGq9XEzvrjqY/kmV98lpkTBdmCiq4JamMWjdEMtXqKzdlmhFDYmk7QEM0zIZKmru1ttElTyb/6Ft2bn8CxbFRdo/nUd9A95yji298ARaVY10L9x75R1uaOFx5x2z6hiN7cQdMXPsL4H4buu+Qeuh0nmkCoGkJR0TOdZP6xkglX/arq9gue+g+6Q5Gq68YT0uMwMPuM4WBOmMKO6YcR+fsKuja1uapHbeUqFHbWrQtQbYBeLU7Ue7h6HPP0M4CbiKw0TMBsmEy4dTtJ0yLbto58R9EvYx+Kh4g21FAzbRJKOISdK7hVkVM5Cuk8VsHCSGioupsEV6ntPVwOf/hxN6k67So0RZvD1B6YIN9ZoG56klnvOgYtmeSfO++g+838gMcbivEgDQXJcLm/4WD0pIYWVYk1RChm3erf4F5XVsomk8uT2+be09JokOwpvHpA7a939Wk0aDF1r6gGDa4x1LAgQbwpTrwpSTgZJT5tIqHkTmLTJtO9pQ3hmOjRMPa6t4hrGi9MfT+WqRIKJ2jWd1KM6LSEd8Jf/siLU47j9dVbcCybOYdM5r3LoMbqZElxDZYRQ1PzqA/8FWPewbTOfgcNqkbD8cuwWrcDkN2whcwrr2GsXYsVCpH40r8RrdLu+sNO2rMdJemT3IO/QUl3oqo6QtNQu9pAOIQnNLDqxGU0HNhEYloT0SkTQVHIbd5G95Zd6LOnjnXTB0RRFJRhWAHD2WdvZZ8xHIyta6lXLVb/Y41fi2AwlSDvjc4j1KD3UqhQSyE/AA9NWcg7t7zs7yNsGxyBnk1RPOJE7pp5Kued8yD6NT/ENm0cyyGciBCfPAFUFbO9k+zOTrp3pFBUhZqWpBu7eYBJ7YFTqL/iphHtCy+pGmD12ScSqY1Sc2Q97W/vQI3HyC84mqa5D9H95uZBHW+0kgQl+weD8TR4nrFiu4WVcov0ecpf0HconUQymnjX30AJyEZC2yOGQ7X3VOWETV8Vpo2k5tcjitZHaTxoEno8QrErg5XJUX/MkRTWrmXSe95J+sAjcawcar6b1XXHoeJQsENsSjdyeHgzcb2BltbVpNs6mXW0zuYNUbpTOSa1hDCUFIoj0J5+BKcrRW5nB10bd5K791lC8Tv+P3vnHSdXWe//92lTd2Z73/TeCyQQQgvVICBSrgoqoHJFkN9FvBe7hiYK6FVREBtiQbkWpAjSJAklQHrvyWazfXe2TJ9Tf3/MzmQ3W7KzJdlszvv1yis7Z855znNm5jzn+Tzfhliei6HqFC6ejb7wXLJmtGLu3Ezd6o1M+ePLw/4Z2gyeYPksdMmJosfx1e+m/oXXCOxtJBFSCVfHiLcn8FS1IIh7iDZHUaMaoijiqA6c6K7bDAGjRjjse+oFfE6Ftt3hdEBZf/BN8bDg598m66yrAFg5Y15HgTfSdQWMmNnF1zrvGz9PH793bwPZMQtJjVF+9hwkXxaWqhJvDCAqCvH6JkI1zehxDYfXgeSQEWUJxesma0xJ0u0pQ44VNNqZOS+uZP35Z6Vf7/79q/jL3qdxW1OP+/dWcMsWDzbHYqCpDVO/q1Rq4OXBnbzknp6e/NgpE21GOmqLns7Gl6p4LyjCkIsJI2om6xX1ktq6t21ZU1xMPH8yWjSBqRsEa9ppq2wkd1IpjmwvrvISgtPOwlM6gcNF86iofAtMAyEaYoYoUZs3m1Kpjjby8ATqKc51UFO4gNKPubhCXs2kqxfSEMrjbN86/JVbMb056LFkhj9PaQHeimLiTS3osQSiouDKlTFjcRwHt4HXh5VQSYTiNK/4XK+uLjYjB/+WNwnOXYaqeEBTadxZT+N7rUBSuMbkBFo8KbYTDclYHMkj0tpybC+HE43IANOxDnlPRi7H7VoffPBBBEHgzjvvTG+zLIsVK1ZQVlaG2+3m/PPPZ/v2nnMvH4u695qoXt2AFjQwov3PbpE7PjstGgDO37mZy2K7krEOsWQl41R7L8rTeMk9vcvxc6cU84mzRWp/8jjSoqW0n3Mt4qwFaKEoO55Zw/a/beDAqwdRIwkEUaR5bzO1G6pRQ1HkbB/uRYuJvfqbHvtWv3MDrZveJP73H3H49mt5a+5CXvbPSAuZ/k7kEyGVvOlj8Rb6qHu7id3/t6/PYkK2QLDJhMv13YOa3KeOFRUh7VN+WWyXLRhsThrMjkx2WRVu3OWOZKHLXp5B3vFOsmcOvDhhJmJEVAS8453kT8rFU5xc6Vc8TmZ+/XOUnD4VNRTFddlHEcdPxVe3k3BOBXXxQnRfPkI8ihWNYK7+F4qgsrF9Cit3F1FfOIffbJjFjpZyDvgXIhkJ/EqURXl78G95EyESRgy1Ink9WIZB+/4aTE3HU1FC7uL5KJ/8PK4rriF+wbXEJy+AtgBqazuubA9t++vYf+PlA/5sbI4PO3/5HP4tb9JgldE+bj6543Jx5CfXoZ3FCv4JWeSMzcbhUTD1jnTwUZNEY+YLpcebVIzDQP6dKhwXi8PatWv5xS9+wdy5c7tsf+ihh/jhD3/Ib3/7W6ZOncr999/PxRdfzO7du/H5fL201jNG1MTo+OYymXD4y/OIvfF73Bd2rYvQ2wp7SkBIHrGLK1Rgf4ByQcTXWgWVe1DDMRLtKrEaFcktosWS6ltySHgLvORMGw9zFrMl73x8cpTDmxIEYwp53gQ5zhhj9H24420ooWaMlgCWaeH0O1DzjhSJgyOT/KNToIpKstqn5BbJn5FNtD5Ay4GmQcUhdK4CaWMzlKRyxx8d62OLB5uTBT1oEK2PdysmejQOn4KoDO+aneKX0jFDxTML8RT4yDptIZ5xSR/zyomXUuEvpHD/NoSGSixfHjTU0jL+YqpqPei5y8idFsEnhcgPVVITL+Hxn25nycUzsRDIzZZoage3I5t8XzkuMY6sq1glFRCPgSyTWHIZ7d4SSjc+j9nagpidDYKIZ/f7CG4vohZHjEfQ6hsI7DpMuDGEFtVIBDUmDeunYzNYCqeXQk4+Qc2F11XEmPNPQ42o1K1toHBmHrkTCpFdDtoqG1GjGtHKxEkTA2kHRx+bYRcO4XCYG264gV/+8pfcf//96e2WZfGjH/2Ib3zjG1x99dUAPPXUUxQXF/P000/z+c9/PuNzZTrJWH/+WTj9ThK/eZopRwmHzu297J+BKAvpKsxGNPkvlXP+stguoo1xEitfRXI6UGPJapmlC4qJVETQEzoOrwNfaQ5Fs7PImjIBY+bptOeMZe7h53BfdCOO/QfZa5XjVVTypAD+Hcn81pG6BsI1ASJNyRoNildGVZKZmzqLA0g+uI6k7bOgY9WrrTJEqGEvsRq1359NbwW4bNFgM5wc7RZoY3OyYGoW8U6LOr3FGvRUdLQzqTgGuaM2BIB3jIvI4Xi/rA0pEZ5V6saR5SQeTCDKEqG16wgeaqRg3mSKw/v4t7ycc2dlIcfD1BXOZUztH8hXa2hsKWFKUYIKdR8H5Wmsj55He0Rg5qLJtAbivFU5FkUBTYOagMLYrFxcRPFEmtB8BQheAzkWxFu1DY9rP1YkDDMXojncaC4/7g1vUP2P18mdUk6kLkDz7gZOW/nuAD5xmxNFwVmnYbm9nNHyAkJDNXpCJWdcAYaqk1XsR5QlwvWthBrCiAPJbWozohl24XD77bfz4Q9/mIsuuqiLcDh48CD19fVccskl6W1Op5PzzjuPd999t1fhkEgkSCSOuNkEg8kJ9YdaNwA9T2x7ExSmaRGqD1P5Ui1T/tj7NXS2LLw1dyGhvdH0xCblunRh5VbWLF6Ev8yPrzQHZ7aXwtnjyTcMEq0hKh79CwCNX78Rz80riL36G/LaG2l77Q1i76+h/IwlFGUXoWzdRtv7G9n87j4SwSOZZRw5CpIjeQOKsgBy8uGQWqW1OjLP9FSfIVZ9RDCkHiqSW+zykOvvZ2YzuhioFWmofx+pHPUpeou1sbE5Xgw2rktQBKQe4hxSNXt6Ew+p/VNJAiS3SKwucUzRoPglPBXJdJdlC8pQPE4SwSi+8gIsy8SZm42xtxY9EoMXnuai8n/TfM4nyBKb8T32NYTzlpJ9YD1fcG2hjdN4O7qIH33vPWSng3g4mj7P7o25lE8qZc68AsrzNZxCnOLajYg1BzHa2wjvP4yRUMlbfgm0NCKUjcVQXDiq92Lu3cuuVzaw8I13ACgAxg30A7Y5YYR37sHndicL0BaVIxsGjsZmCmdVoIXjxNsi6HENyzDRIoOvbH48EQdYxyHTYx588EH+/ve/s2vXLtxuN2eddRbf//73mTbtyJjz97//nSeeeIL169cTCATYuHEj8+fPz7xzQ8ywCoc///nPbNiwgbVr13Z7r74+mYqtuLi4y/bi4mIOHTrUa5sPPvgg99xzT4/vHV3p+FgTDzWkEm/t/yo8QKwhkXZXulzf3WVl1FeShSc/C0EU0CIx1FAUQ9XRokeETtF3n+Lw7dfiLsxBEAT8MyYjyDLxdR/QuruK1oMBIk0x4s1qOjgbkpWsJbeY3pZK+0rMhBhdqpaKnawQpm51eeCYmoWgWJihoSscZHNy0tv9YVuZbGwGjxE1cVc4iEV7fsb0Jh4c+XKXLE5GzEyP552RPCKuIiXtDps1zk3p/DKcfg+iLOEpLaB1dxW+qeMRvV5q//U2JYtnEGsIEG8NEWtsoXDiBtYWXMXCcWUgy5hZOXx72+VMlz3UNxnomo6udZ34TZozjqsvdjBT3oBkaLzfdhpZ+QF8B3chTZ6BcLCaYHWAPFEgOiOZmMOz6z1i+w/QvPUA8bbe4+tsuvLm5Lks27flRHejR7TaWhRZIVExDTOnDF+WH72mitqVG2g73EYiqGJoxpBUVD+eHC9XpVWrVnH77bezaNEidF3nG9/4Bpdccgk7duzA603GQEUiEZYuXcp1113HLbfcknmnholhEw6HDx/mv/7rv3j11VdxuXov+nF07lvLsvrMh/u1r32Nu+66K/06GAwyZsyYLvv0d6Uy1pjAiJkZrWz2lZZv9vNvUvWFa7BMCzUcR4sm0GIaaljlZf+MdA2J2g1VOLIaMDWDiZcqSC4nge2VVP77EGqL3qWKdOqGS1kUUj7gpm6BnixWd3SxNckt4i51IrskLNPqZho/WfKN2wwP/RUMfTHUFoGjJ1G2tcFmNKB3KvDZuUBmXxmXUs8YyS3iyJPRQkbaNfXocdyImZSdW4TiVpLHOGRMPXnO4MFaFI8TRBGrbDx5Mw7jmDINxyQD8613kW76L/4dX8DeAxIzL7gWK96OsnsDl50johkq9U1Sl35l5WYz4/RJ5Be4OSP4PJgGYjzChQ1vYKoqFiC0NOI//zz02KvE16/DM74Rweuj9b31tFc10bijmXO3bxySz/ZU4GjR8LJ/BpD0OuhvZsXhwJGXTfhgNUJVHTlLTSITF6LnlSAGGmk73EbwYPhIrI9+8ogGSGZUGlBWpQyP+de//tXl9ZNPPklRURHr16/n3HPPBeBTn0q60FdWVmbeoQ6eeuqpjPa/8cYbj7nPsAmH9evX09jYyGmnnZbeZhgGq1ev5qc//Sm7dycnBvX19ZSWlqb3aWxs7GaF6IzT6cTpdPb4XqaTjc61GXqir5XWns518LMfwdQN9LhGIhQnEVbRIhqJdrXLQ6JtdxhBiWBpFp78PTiyXLQeakmLhlThOVO3uqXd68kalnpP8iQfNK5cB+68pFhLhNSk2BgixW+nZT356WnS39u909d3PVjx8P6SxcTaEl2C/W1sRhLHGu+8453IHrnXSs5aJ+HQZdW1l/G4cyG5o60MR4/jrmKFvOnZ5E8uwj+pgtp3tmGZForXjWWZZI0pJtHSTnDnPnI8XtquvRPXhn8gOF34JlQQBWTJ4oIZzSSsLPaKs/ht1enMy3XR0maw5o2ucUaFFYVsXLmFWWfNQrR2Q14BZk0VoT2VuApycCxeAvEYghon1hIm0tiOp7YJQRRp2lVHYHerfa8PktRv4pKGgWWfHCqC+6sJ1rRiqDp6LI5/4gHi7SFa99bQtjeUFswpN+qTicFaHFLu8yn6mrN2pr29HYC8vLzMT94Hn/nMZ7otyPe2QG9Z1okVDhdeeCFbt27tsu3mm29m+vTpfOUrX2HixImUlJTw2muvsWDBAgBUVWXVqlV8//vfH65u9ZtMRQPAhF8/x/tLFqNGdNSgls7nnVLeQDrwMxUb0bCjCcUlp12mUtkwIJkbPEVn9yOtIwg6heRJbs+e4kXxKsjO5NeqxTQSIfWku3Fthp+j3fpS9CQohksojj9vOu2HGqnf0kD4QCy9ompbG2xGEn3dA/FGDck9dG6fncfqlHXZiJkoPgnhKLdTAIfXgRZNYMTiaDENo6EdUZaQHDKCJCHIEvGGNtTqakq9r2EZBpbbC/OX4Hr9Gc7Lf43KM2/ixm/HmLnY4qwz8/jlD1f32Lc7Pu3lvb1ncd3ULagv1KGMmUi0shpHthcjFkffvB5BkpCnTidnUil16/YRqgsiKhIOryO9MGYzcHoSDHtvWA5wXIvnVa89hKmZmIZFrDVG7cbDJIIqalBL1zCxOpKznGrf+dEeMN/5zndYsWJFn8dYlsVdd93F2WefzezZs4e0P0eHCuzatYtPfvKTvPfee0jSEavi9u3b+yUaYBiFg8/n6/YBeL1e8vPz09vvvPNOvvvd7zJlyhSmTJnCd7/7XTweD9dff/2w9Knz4N9XUGgqL30mgdYpzljzQZ/tvihP6zJpi1YmkP1HTNPQ9eGREgyp1HqQFA6d4xkAXEUK/nIfkiKhJ3TiwQTRQIxYjTqgG7e/cSI2Jy89/Ub7skYMhYCI/OY7mOEI8vSZqJ/5CmVv/IHA/tdPuYeLzclFb8+DVIa9oSJlcTaiZjqpRWphqLPbk+RJFpqLNEWItsQ4+GYletDAWayQO6EIPa5S+doG9ISO0+fCF44SXf0OzTtrKFk4kcobfsDYi8vR1Sg/ez6LeDjKTZfpuKU6ns72EWkPdevbs285qdx7mP+UP4D5p4EaR0+oiE4HAJamYRkG5qEDROoChBsj6HEjmUY8nECUBZbbz5Mh50RU2w7uiyAoAqIskAioyTiGHoTt0XyodQNkZx+nXg6MwVocDh8+jN/vT2/vj7Xhi1/8Ilu2bOHtt9/O/MTHYOHChb1u7ywcdL3/QewntHL03XffTSwW47bbbqO1tZUzzjiDV199NeMaDgD/yl2IR5COvWMHvU2COk+aBlvUqiehcnT7L8rTUAN6l/21oJHe75W8mTjyZGSPjCgJ3dpOpV2N1ag0EegSOK226H3eyH1l9khhuyWdGhzrt97b76A3d6VXi2f1uDpmhiPs+fu7BHa+3GMWMFuo2oxUjqebZqqYVlaFGz1uED4QwzfFgyfPhdPvJFQfRnJI6DEdyQFZpW7k8TKiIhFvi1C56hB60KBwQS4F08uJB9rJP28J2XOmU7v0kzhMjVfrT+e60BM8PK+KxisW0Y7GnSvqexQNALpmMmVWCTsnXc30utfQ1r+HGoySs2g+Wk0tu599j0hTNG1hT1nM26M9u3HZnLz0FF+x5xMfItoSZf4rPVusoLsbz0hksDEOfr+/i3A4FnfccQfPP/88q1evpqKiIvMTZ0golLy/4/F4Ogg79bqzkOiL4yocVq5c2eW1IAisWLHimGac40lPE6GBrr533r8vf/CeREWKo2/QN8bP6bENs0M89BRY3RNHXJ9OrowHNkPPcEzW3cXJVZZ3TzsdQRLwl/kZd8np1Ly1mbbKUI+iwcbmVKGvMdrSLHAnA2Cj9XGyJ/kIH4ihBjWcfgetle1IiojiVpBkEVGRCDdESAQ1tIhO3dtN6bYUt4IeS+AtKyS6czdVq3eQv+Rannq3nPMWJNB3HEIaP5GY4OWR35m9igaANS+v47NfOpdiqwahsQYzoRJvi9K44Ar0f/43wapkQGw6uLujHoXil9KxHnaa5dHL1D/9i+CPv9zr+y/K04haIz+b4/HKqmRZFnfccQfPPvssK1euZMKECZmfdAA888wzALz99ttceuml6e3vvPMOhYWF/WrjhFocThaGaqDryZ+8vyu9nWMaIBkLIShClyxPqYdQfyZkqbSsNqc2g/1t93T8yhnzcHgUXi+fjaAI6EGD0KEo4YY3adsd7hIwOpR9sbEZbobK6iC5xS6xb4pfImdaFoFNQWS/RNH8fEJ1YcYtnUDB4jmsb3seSRGRZBE9qpOImehxA8khYhoWiYCKFjKS1uYOd6es8W6cPhetBxvJGleKszyfwuktVGoVfGxpgMk7n4WyMrBMfvZCNvs39p3taMyMCVwfeZyWn68m+pk78PhyyIvFCd7/32kLhxEz05ZsS7NwFivpOD87fml00/bQHYiKzAdnn0nz+jZ7YegY3H777Tz99NM899xz+Hy+dImC7Oxs3G43AC0tLVRVVVFbWwuQTipUUlJCSUlJRudra2vj7rvv5le/+hUzZ87k5ptv5hvf+AYTJ05k3bp1fO973+PKK6/sV1u2cDhOZFJfojfMowLnJLfYL3ej3rDTstoMNS/K05A8IglZ6yYQmgLtvR5nTyhsTiV6Es9qRD8itOvC6FGdpp11aNEEvtIsQnVhDN0kd1IOWkzDMi3cOS6qVzeQNd5NxVn55E4qZf2Pk3F2Tr+DwP4AJXPKcMycQ9Xki9k5o4x/PNPMzy5+B736MG8uuo+H7n8P0+hbNHzhf85l+apb2fvEbibfeAV6tJXElk24y0vY/OsP0rUmUok78ub5kBwijiwngR2ttmg4Bah8YzOyUyJUfXK7pgmChSBkPqfK9JjHH38cgPPPP7/L9ieffJKbbroJgOeff56bb745/d7HP/5xoH8B1ykSiQSPPvooDz74IG1tbSxfvpw//elPXHXVVfy///f/0hmWioqKuO+++/rVpi0cOjHcA9tA2u/tGDWgD0o02NjAwFwHetq/8yqsETXpyyBtTyBsTmaGOtbBVayQPzOXpi0tGFETpSOrnqfQRWBnO4IkUDC1hGB1CH+pD8kh03IggKhICKLAxOVjCewL4CvLw5Gdla7/kD+pgIOvVyLME7Bcbkpbt9Pm8xMNxXhZ/ijtU6/hN/f07o8O4MvPwZudRVlunMZN+2mrCnL4769ROHc/LbuqqN1Yi9qiJ0VDKCka3OUOimYWEw2EmfvSqiH7nGxGLq/kzURyiwiKQKJBO6nnJcIAYxwG4qp0LG666aa0iBgo06dP59ChQ8ycOZNf/vKXXH311QC8/vrrPP/88+zZs4fi4mKuuuoqsvsZuG4Lh06cLJmEugRG29gMkv6Ih9RkabBVpUf6vWVjkwmDzTgmKgLuIicuvzOdTc8/2cvsT56HMmYsb3/xF8TbEgT2NaJFdKItUdw5STcG2SmjxXSK50+g+v1atv1+K+5SJ5JbRHImU7LOuHYWwTt+yC7TxXPv+fjS7NXccP35PHRP39lb8sqKuO/LBYQ0N8WuAAdCEvFggtmfOBO1PYwgSex5dn/aam1qBpJHxFmsoIUMDrxaiSPPnl6MdrosGMVMhFGwmHm8YhyOF06nkz/84Q/dspWKoshVV101oDYFqz+yZwQTDAbJzs7mGXFSRlmVMqW/E57+ZGsaLHamo5FNKvDc1I/ksU7FqKRys1sZxKMMZz8792l5cGdGxw+k1omNzWijt5ooA6XzfenIk/EUucgq8lK9ugFHnoylWeRO8aN4FOrXN2PETLLGuymclk/9tkb0oIEjR0Hxysz+ybdRavezbvpn+cpXNvTr/I//cDpFeg2mKJG79Q3C089Cf+pRfFf/B1v/636cPgeRpli3onepce9EVjS2yYyBLpYO9LcetQw+Zu6nvb09o8xDx4PUXPLXr7bh8Wbet2gkyGcvyRlx19ZbsbfBYC8J9JP+3GDHqrJ7rONtTn5ERUDo+CcpAgYmUsdEQJQ7Mqnox18sdA6uTwkZyS2mzcudAzX7S2+rrfZv3OZUYqh/76nFBHexwuRLJ+MbW0zV6h1YmpWuvNy4oZW8WT7m3XwaW3+/gURApW5jA9njfPgW+jF1k/wZY3iFy/jfJ99m0cUwcd4UDmze2+e5/3mvjrPyZSonXEzRn+4lFIvjbWvlg2e3clpZEZGaGMFYpMsY1jlD1GUxWzScTNhj9ehHEAR++9vf8uKLL2JZFjfccEPaXSkYDPa7snVnbOGQIYNNJ9dTbYe+9husa4jN8cXULETAwEwLBVEW0sVyUtXEU/sONykh04WO80puEWe+A0kR0eMDT5OXPdNLtDrepf6Ijc2pxlDHPliaRc6UMThmz6OgPkDt6sYjhT8B07AI1QQwYiZGzCR/vp8JF89HEEX0aAzvucuYkJtMSJBf4KauqqXXc804YyZfuE5iP1Cffy4zhEOYCZVdz21BbVsPwJr7XukxqNtZrCC5Rc7fuXnIrt1m5DLa5yCiYCEOIDh6IMccDx5++GG++tWvMm3aNFRV5dlnn+WZZ57huuuu40tf+hK5ubk88sgjGbVpC4cBMFTWg55Wao/eNtpv0tFIqiiflVqJo+NBT9LaMFjB0NmVYSCZsVKpfJ35DryFbhxeB2pEHXB/xi4ZR826w7TvPbmzadjYDDWDEROmbnF49VYc6/eQCMUpOSsfPWHgyXNT+VItgQ1BAhuCSJ5kMHR2RTaRmkbyz1yI3N5G05iFPPhYGwD/+tM7PZ7jkYcWoBoyixufRW/P5fLvZaNrOr/+34lEm9rQIjrxBg1XsdJNNIiKwNRrJ1G9rtoWDTajhtEW4/Dzn/+cW2+9lZ/97GcAfOITn+DHP/4x1113HRdddBEPPfRQxm2KQ93JU4kX5WlDOrG3RcLowuyIb7A0C1O3ulgbjkZUhLQg6Px3b6QsGKl9e/qXwuroA4Dik3AWK7iLnTj9Djx5HnLGFVAyd8yAr3PcE8+SaFd7vTYbm1OFnhaTBrrAZMRMat5uYP8/D9G4LUC8LYEe00kEE+l9xI5xAECLaclCbwcqQRDxJNqYNqec3JKCbm2XTh7DK19vY8xjn+W0t+4jnleG6vIz95w53P2dpRSFD+D7wp2c9csv45/mSVeBTmV8AtLBz7GagS862NiMNFLCYSD/RiJ1dXVce+216def+MQn2Lw5KfTLyso4ePBgxm3aFochwJ7w2/RFyn2pN0tDyp1IlAUkd9cA6mPFHhzthtR58n60+BBlAdkv4fQ5ECUBxa0guxy4C3JQcvxU33EdFY/+JePr23DhUkzd4rLYroyPtbE5FRiI5aFzWuNYVCXRoCEoApYWTu9jahaOPJHcKX6KZo/l4DX3oZsik9TtvN5+Bol4jNb65vT+c86eQ9WeWv5w/j8JvbwRNRynZcsevEs/jOrI4qoLFc5Y823k0nK+WX0T+QVn87mPrmLdT95DhHStBgC1RefQW1V2PSCbUYXIwNKxjtRV+IkTJ1JVVZV+XVJSQiQSwTRNVFVFkjJPKmQLB5seGWp/3VOdY7knpeIgUgHLoihiJIz0Sl9ywtARG6FbHSJDROp4nX4Puq38d87qBCBKAk6/C2+BF0+BD9GhIAgCkkMZ0LUtfKNnNwgbm1ORzmPnUI6hKRfIo5l65TSML38PJVJHnhhgbWAyW6NLmVAUpyUQpWBMCc2H67ng2iUU5Cnc/+HdrLnql+kA54ozypCcfnYlpnDhXDfM/S4Aaa/n/3iS5fcnryXeEZyd6k+s2rY2nErYc4KTj7vuuov777+fSy+9lJKSEmQ5Oe23LIvXX3+dadMy/05t4WDTjZRp3RYPx4ekqDARdAFvmQuHz4HiVrBMC7UwgaGaWKaFoZoYCQPJKaF4Zdy5yXzusdYYkZpY2jrR2WKREg2OPBlnvgPZJSFIIp48D9njilD8WYQPN+DK9VH6g6dP1EdgYzOqGGx9h97ovAAg+yUUn4TsUtAfuAtrYhkF+TlcNud0TK8LogJLZuwhrG2j8LHfdGplCcv2benWdvkxzt1Xoo5Xi2dxScP2gVySzQmit0QvPcVwnkrzAAELgQFUjh7AMceDw4cPI0kSU6dO5corr8TlcgFw66238tvf/pa//e1vGbdpCwebbnQeUGzxcHxIuTNpcR1ROWL0NA0Ly7SQXRKKV0m6FzklRFnCk58FJC0IpmYSa0xAzOyWKlFyizhyFLKKvXgLvERbohiqTmB3DY4sF56ibHyLFg6o3xsvPocFr701qGu3sRmN9DRuDnY87Wy51INGMg5i/SHibQnqNtUy/tzJSJW1eMeW0nrpzYw943Lc1/bR4BAgKgK+cZ7hPYnNsHCsVNqn4rN/tAVH33vvvem///SnPwHgdrvZuHEjTz75JFdeeWXGbdrCwcZmhGBqFmqLjhEzkdxdPSYVr4I7x4W30IdvTCHO/FwA4g3N6HGVeDBBXFExQ1aXdK+iIiQDsxNJv2RHlotoSxQ9oaOGVaKBKI4sF66P3JFxf9+au5BztvSvqJSNjc3QFotLLTa0bGtH9ktIbpHGHbUobhlXQQ4FNRthyozBd7oXxE5VgvW4QeUtVzH+l/8YtvPZDB1HWxV6ShN/KooGSMY3DCjGYYQKB8MYeKr13rCFw0nG8bqpj7Y6dN5uM3ykcrKnYhhSQdOWYSLKEu4CP+7yEuSyCixZwTK242qPINcHu7TTeWXS6hAkbbRjagaOLAeGZqJGNfS4QbCmdUB9tUWDjU3v9CUQhlI8gInsl3DnOAk3RFCDGqa+hbl3Pzro9vvbBzWooce1Y+9sMyI42rJg19+xyYSRGghu0wvHc+Jui4Tjj6VZ6UDplGgQFAE1oqNGVCzdAMMAXQeHC9HhQJQlFLeC4pXTqRk7k4p5MGImkaYYajgZ0Ci7ZCzDYtY/3sioj68Wz+KVvJmDv1gbm1FOf33IB0NqnIi1JVCDycl7047ei70NFZ2zqBkxk8C+pvTrV4tnDXm6cpvjx6n8vQmCNeB/pwq2xeEk5XjFHhz9kOtPtWubgdM5s1IqCFp2yWgRDcWdvF2NeAIpGkGwTPRwBFM3sEwLQerZVmppFiYgAUbCINIUQ3KImIbFuds3ZtxHS7O4tGXHIK7SxubUoScrccqiOxTjuBE1iTdqSG4RV0EyAYLT5xhUm/0l1X8jZtJ+4EgByFSgtP1MOPk41b+z0RbjMHHiRCyrd1FjWRaVlZVs3ryZq666ql91HWzhcBJzPH0R+5OBwXZpGhgpX2FREZIF2vIdSIqI5BDJm5iPOy+L1oNNOLxO9LhG6GAN1v5qDFUnWNNKrDWWXG3siI9IuSmlKkSLsoAWSqZ2NXup8/DB2Wey+O33+tVfWzTY2GRObyJBVARyZmYx/tzJ5J4+j40//BttO8L9qjAveUS8Y1yobRpqi04wEEVUkvVajidG1OxWz+GN8XNwVzh42T8DI2ra7jAnAfZzG0QsxAFkSBrIMceDZcuW9SkcUvj9fpYtW9avNm3hcBLS2yS+NySPOCxFenpaQUsx0IfEqTRwSZ6Omg2ykM6EJCgCkiLi9Dlw+p0oHieGquPKdiPKEvG2CFpMw9QN9ISR9mlOxUZ0xtQtJOVI250nIp2/nzfGzyGr1N2tf4dvv5YxP/vrcFy6jc0pT2rMTLn8NH3zZto2bSNcHet3G5ZmEatLdFkwMDXruKZG7W2sN2JmF8tDps8tm+PLqfTs7YvRZnH49a9/3a/9JkyYwG9+85tj74gtHE5ajjUIK34J2S8hygLeEg9aRKN9V6Rfq1h9nXMwfeoPp0r6V8kj4ipScOU5ESWhS60GySHiyHKQVZyNtzi3I11DK2o4Trw9RqQ5ih5PZkqINSQAUHzJFUZdO5JBwdKsLq9THG0ZEhWhm+j44OwzyRmTM8RXbWNzanP0+NZ5zCy8/0neWXAaakDvd3umZmH2cI+PBDpfR+q6hzq+w2ZoOBWeuTZDhy0cRgFHuyw58mWyKtwUzy4hqzQPR3YWoiJTtXIL1asbhsX6kKKntG42XUkVZPOWeMguz0aURdSIihbTiDRGEBUJV7Ybb3EujrxszISKZVrocY1EWEWL6GgRHUuzMGImik9KB0B3pr8i0dSsbpOV/rot2djYZMbR43Vn8bB04/pRP4mznws2I5qBBjqP0ODoVatWHXOf8847L6M2beEwylD8EgWzcxh7zgzcFaVI+YVYiThGexvjLlyAoa2n+o2G49KXgVogRrvVIZVzXZJFnH43Tr+HRDCKGo4nhYMooHicyFkeRFlGbWkn3hYhGoiiRZJZU1KiAZIuSYkGrYu7Qm/YD20bG5uhoPMYLSpClyxL0HPKz9E8rtuMDkZbHYcLLrjgmDEOppnZYrItHE5ijp6Yu4oVHDkKRTPLyFq4gOjY2cTcueTVbEWSJMxoNVrs5Mi1PRofMpInGc/gG+fB4VGQnDJOvwfZ7QTA1A0Ur4KoSBiqTjzQhtUQIFzfRqQpQrw96ZaUyp7UuUK0qVt9ioZjCQblOAdT2tic6qTGuKGcYKcqxQ8XffXrlbyZyWKTHRbtnsacztdmL2LYjEQELIQBBDoP5JjjwV/+8pdu2wKBAC+88ALbt2/ngQceyLjNYRUODz74IH//+9/ZtWsXbrebs846i+9///tMm3Zk8LEsi3vuuYdf/OIXtLa2csYZZ/Czn/2MWbNmDWfXRg2dHzwX1Wzjzclzkd0uwhMXssWaj8vQybM2o9fV0bxlH6ZmDFuw9FAzUsXDQLJZKX4JT4ULX2kWk68+G2ncJAi2YARa0ENhAGRXAsWtYGoG7dWttBwMEG9LkAio5E7xkz85D0+BH0PVad7bSPv+EPEGrct3menD+HJ9Ny/7Z9iZkmx6Jfan7xGZcx7e2p24L/kMb06ey7J9W050t0YFvWWqy2Tsc+TLTL1yCgU334QlO5D3bKR5xecoWPGrjPvTvOJz1G/YT/36JuINWpc+dp7w9zT579xfR75M3ZevZ9dz27r9Vo6+5lfyZlJ2VhFzXlyZcX9tBs9IfMbaDB1XX311j9tvueUWPv3pT7Nt27aM2xxW4bBq1Spuv/12Fi1ahK7rfOMb3+CSSy5hx44deL1eAB566CF++MMf8tvf/papU6dy//33c/HFF7N79258Pt9wdm/U0Fk8ZJV5cWR7EfQ4uZ4IXimCeWgfTRt307y3iXBdDGsQAdLHmxMtHoaySJOkiEiKiBmNITXXJ7fLEkKHbVRyJG/HREhFcogYqomhGUjuZLD09L+8BsD+Gy8HjlgcBtvH5cGdgzreZnTj/sRXcQPMXgJArEa1V42Hkc6WiP6MfZJbxOn3UF88j4LgAfTq2ozP+cHZZyKIAnpcJ3Qo2mOA9rG+687vb7r0XFwFOeROyuGVvJlIbhFTP5Lt6f0liwE4Y80H9qLFCcQWDd0ZbVmV+uL666/ns5/9LPfff39Gxw1r5eh//etf3HTTTcyaNYt58+bx5JNPUlVVxfr164GkteFHP/oR3/jGN7j66quZPXs2Tz31FNFolKeffno4uzZqyRmTg+LLwhFqptQ4RGlgOy3rt1O/pY62vSESDdqgMitlwlBNKnoy5R8PMnlQHgtLs9DjBmpYJVRZS/RgFWpjE0Y4gpFQwbSwOvwM9biRzrIkKRKyR+6yGjfpqRfRIhqWZtkTN5vjTmdfdnviMTxkcl+rLTr7XtuF+ydfpe2xRznwr43o0URG52vdEaR5Uxttu8L9yup0dN2eo5n/ymqMhIonz8PYZWUs+vJFnPur24m/9ER6H9M4eRawbE4djlfl6NWrV3PFFVdQVlaGIAj84x//6PJ+OBzmi1/8IhUVFbjdbmbMmMHjjz8+hFcKwWCQcDic8XHHNcahvb0dgLy8PAAOHjxIfX09l1xySXofp9PJeeedx7vvvsvnP//5bm0kEgkSiSODYjAYHOZen1xM+ePLBH/8ZcRwGz4OINYcpHZDFe17IyeFe1JvjNQJcn9XBbWggaCoAAT21uNpCePIciE55I6VPo1YSxhTMxAkActMDkKiJCQtEkfh9DmIuuNDezE2Nv2kJxeVkXqPnqz0V5QZUZPQ3ij7jT1ULK5g+icvhOnz2LGvlpmTy/rVhqlbyQrzQ7io1Lq3hsD+AIXTihDPvoR/CZfQHpFY9oVrOGPNBwDs+9SHmfz7fw7ZOW0y43gWkT1ZOF4F4CKRCPPmzePmm2/mmmuu6fb+l770Jd58803+8Ic/MH78eF599VVuu+02ysrK+MhHPtLv8xw6dKjbtkQiwZYtW7j77rtZvHhxRv2G4ygcLMvirrvu4uyzz2b27NkA1Ncn3TWKi4u77FtcXNzjxUIybuKee+4Z3s6e5Pj/6wcAxP7vYdrWbqJtd/i4iobRMIEYjmvQgwYxLYEghYgHk/EMsjMZlKzFNBIhFVMzkV0SonRELKQesgDbr7qQvCkljDt/Jr7S6iHvo41NJtgTjuEjEzdNs6MQXPPeJrJKq/DnFzKh8kmY/I1jHpuq5SIoAhwlHAYzDjbuaCR8KEbeBB1DdtDWLlHbaDD28b8BSXel4tllBLa8zbONS3n/gwA71iRdmd55IbP0kDY2Q8XxclVavnw5y5cv7/X9NWvWcOONN3L++ecD8J//+Z888cQTrFu3LiPhMHHixB6zKgmCwJQpU/jZz36WWcc5jsLhi1/8Ilu2bOHtt9/u9p5w1CduWVa3bSm+9rWvcdddd6VfB4NBxowZM7SdHSUE3vqAw+9XogVHZoGgkchwpo9NruaZRKvjqH4tWTVaFDFNE7Ul6R7gKnAguyQUj4Igiix47a0ubRiqTtaYUqyzLqaseGXGfe0NO+DVZiCc6BgkmyNoQYPm9W1E6jeSu/4gsdYYSz7Zt3BIfXemZnUTDf0l+uQKPDev6LZ96cb1XV7fBHSecpyx5gO2Xn4+vud+z/XnVvPhq6ez+bIllHjaCa59Gcfh3biuvnNAfbKxOVEc7QXjdDpxOp0Zt3P22Wfz/PPP85nPfIaysjJWrlzJnj17+PGPf5xRO08++WS3bW63m3HjxrFo0aJe59p9cVyEwx133MHzzz/P6tWrqaioSG8vKSkBkpaH0tLS9PbGxsZuVogUA/0SRjs9pfWrePQvbPXPOC7ntycQ/SNV6dWImV2KtqUsQqIsIDlEZKeMw9v99jQ0k3hjgKwDW4i1tA5Jn16Up+Edb99TNgNnNFgZRyKZupKYmkWsRiVW04ipWbzknp5+r3NsyvtLFtO2u2/f5v5+pz2Jhr4Iv/sPtNWvUfnGFmItMXb/Yz3+tXvIKs7m3LMXgmli6Tq6aRJ+/GtkfeHBjNq3sRkMA4lXSB0HdFvI/s53vsOKFSsybu8nP/kJt9xyCxUVFciyjCiK/OpXv+Lss8/OqJ1Pf/rTGZ/7WAyrcLAsizvuuINnn32WlStXMmHChC7vT5gwgZKSEl577TUWLFgAgKqqrFq1iu9///vD2bVRSU/iYXlw53Gb0B/PycNQC5XB9j3T/vS2whdv0FBbdCL+OO5iJ+vPPwvJKTP/ldUAXSwQ7kH1OMmL8jQUv4S3xEPbQ3eQc/ejQ9CqzamELRqGn97SnvaEqVmIikDWFBeefDfBg2FM3eLNyXNZeNsFfHrfF/jFedPZVrdxWK3RK2fMo2BKHsVzx+M7YxGuK24DIOusq+Csq8j96pF9k9dUy+W//EePbR24+QpEWUJ2KVQ8+hdq/utjlP/4mS77tH7vdnK/mrnbhY1NZwZbx+Hw4cP4/f709oEudP/kJz/hvffe4/nnn2fcuHGsXr2a2267jdLSUi666KKM22tra+O9994jEAiQn5/PkiVLyM7OHlDfhlU43H777Tz99NM899xz+Hy+dExDdnY2brcbQRC48847+e53v8uUKVOYMmUK3/3ud/F4PFx//fXD2bVRy0CrNQ+Gk3niMBL7bmpWMh6CZBIA2TW8xdlkv0R2eTbK0mXDeh4bG5vB0x8rhKlZqC06nvxk4LMRM5l+9XQcpSXcumwCtXcfTLtHDhfn79zc732PNQ5PfPKFLq87i4boU/fiufHbCOKwJokc0ZyI5/5oZbCVo/1+fxfhMBBisRhf//rXefbZZ/nwhz8MwNy5c9m0aROPPPJIxsLh29/+No888gjxeDztmuR0Orn77rsHZA0ZVuGQSh2VCu5I8eSTT3LTTTcBcPfddxOLxbjtttvSBeBeffVVu4bDCKe3qqcnEyO5753FgyNPZuPF53SLdxgqRFnAV5bLo7Uf4avH3t3GxmYEcCwBoQcN4q0JRFnAAPa+vIeG7bWMzXuNQ283DarS/EjCc+O3if/9R6e8tfToAn0n03c4khgJlaM1TUPTNMSjxLAkSZhmZoluHnroIR544AE++tGPcsMNN1BSUkJ9fT1PP/009957Lx6Ph7vvvjujNofdVelYCILAihUrBqR6bPrHULr1dB6M7IGpbwb7uafEgxEzGXdWHvGXnsB1WfcUxQMl1TctlHRXeOF3b/PV6+xsJjY2JxO9CQhTsxAkAXeRE0FRSTRoNDW0Ymot/W77ZEm167r6TuLP/gQz2Ibnxm+f6O4cdwbz/dixiSeGcDjMvn370q8PHjzIpk2byMvLY+zYsZx33nn8z//8TzqQedWqVfzud7/jhz/8YUbneeyxx/jMZz7DL3/5yy7bP/rRj/L5z3+exx57LGPhcOra9kYxL8rTTonBYDCD5UgpIncsTC2ZX730qktpnXgGm/Y0DVHPjmBpFpLTYadAtLE5iTm6KJvYUa1eEAUurNzKZbFd/a7TcPQzJPV6JD9bml5fza7fvXKiuzEiGOlCbyRzvArArVu3jgULFqTje++66y4WLFjAt7+dFL5//vOfWbRoETfccAMzZ87ke9/7Hg888AC33nprRudpaGjguuuu6/G9a665hoaGhozag+NcAM7m5GY0DEbDeQ3D1XbWRDexMTPYb05id00W86cObfuSW8Q7tpSP313Fnx8aO7SNDzG2Cd7Gpm/6uj+Gyvo8Eu/DMT/7K5vlaSw80R05gWRqIRqpIvBEcrxclc4///w+vXJKSkp6TKWaKdOnT6eqqqrH9w4fPsysWbMybtO2OIxiBrM6lFq96vxvJDJS+zVUSB6RrBIPSrSdEmczE4tj/PbNofGlTH12WsgguPcQsxeU8dDfDC799CYAll6xakjOM5SM9u/bxma4Ge330Kk8GR7Jz+qTheNlcThePPDAA9xzzz28++67XbavWbOGFStWcP/992fcpi0cTgEyGUhPxoHnRPf3WJ/vYPqn+CQ8eR7k+kpK6zcyTdnLnLKhqd+QQpQFwvVtLF8YpCBXJNzaPuJEwyt5M090F2xsRg0n4zhvM/TYv4HRzyOPPIJpmpx99tlMmDCBJUuWMGHCBJYuXYphGHz/+99n2bJlLFu2rFsio96wXZVsAHsAGcnoCR2tthZZVckNteLPrgT6X3L+WAiKQLgxxMwDf0OadBW/HrKWh47OxfJsbGyGhqPH/f4uMo3k50Vnd6yR3E+bkYnAwFbUR+oTShAEpk2bxrRpR+7tCRMmdKurltq3P9jC4RRmIINq5weLPSgnGc7PId6g0bClGW/hbpz+KgRZQpQkspYMjXC4XN/NyhnzEGUJZIX5UwspGFNC8+FkzZWlV6waEUHTlzRsP9FdsLEZ9WRaqXqoGeyEP3Wc/WyyGSiDrRw90njjjTeGvE1bOJxi2Gnbjj9Hf26ZrvLpQYP6rbVIDgnLMNHjBsXfG3y/3hg/B0+RC2+hB5ffienOom3jG9z/pVlsqZ/Kbx5bRzwcHfyJbGxsTir6CqIWh9j619N5BrJANRIDtm1OPkZCHYeRji0cbHrl6MH7ZB+UT1T/B5vJRAsahA5FEWUBUx+6wSl/Wi7OLAcz/vY6AC2bVuGp3cVEfyvlvkLOvH8MJoVDdj4bG5uTh97GLdk/dJXs+xoXMx2vT/bn04liKOs8jQZGm8UB4Le//S0vvvgilmVxww03cPXVVwMQDAZxOp04nc6M2rOFwynG0dUlRwsn6noyXeXqabWuP+4BakDvsu9g2XXdxXgLvEz548vpbTXeaUhTp1Aa3o30+t9w1zTiKsihtrmNsv/985Cc18bG5uTh6LFJVAQk98BzqmQyRh+9b+6cLJZuXM++T32Yyb//55CKjlOd0TYfsDnCww8/zFe/+lWmTZuGqqo8++yzPPPMM1x33XV86UtfIjc3l0ceeSSjNu2sSqcoo3GQOBEPi/6eU1QEREXAWawMqK2htPhsv+pCLLP76kiu1UyO0YSr6RDRumbC9W0IkoTvE58m9vIve2jJxsbmVOT9JYszPmawz5x4q8r2qy6k9VALL/tn9LqfLRoGhv25JRE44q6U2b+Ryc9//nNuvfVWduzYwb59+/jYxz7Gj3/8YwAuuuiiAcVA2MLB5piMlgHlRIolU7NwFivkT8tl7blLet3veHzWNWvqmfG317tYGwCiko/cmm2EV60iXN+KIAro0Rj7chbTMvGMYe+XjY3NyYFpWD2OY8NZWVpt0anf1EjzpjaMqNnjPqIi8JJ7+rCc/1RgNLgkD5bRVsehrq6Oa6+9Nv36E5/4BJs3bwagrKyMgwcPZtymLRxsTilOlHhw5MvkT8ul7LQJFEwpyujYoRzIX5Snpd2ejmbqpHE0PvNX9r26jdZDrUz548u07K5hUnA9/raeK0/a2NiMfo6eUJqaiakZfHD2mUB3wdDT68FiRE1i1Wo30SB5RBS/hOQRO/o2MidwJxOnsngYmLVhYAHVx4OJEyd2qRxdUlJCJBLBNE1UVUWSMo9ZsoWDTZ+cbAPI0f3t/MCTPCKSRzwhK1KWZqHFNPRYAm9xTr+OGerVn5f9M3AVK322Oe6JZ9EiOtFAjDfGz6H6/VqM155DPrhjyPphY2NzcnJZbFf6b9OwMFSjT7eh4bRAQPeYi5RoGI2uuDY2A+Guu+7i/vvvp74+mWJdlpOhzZZl8frrr3ep79Bf7OBom1MG7xgXY88ahyvXN6Tt9if3uBEzCddGaM6qo3BGeZ/tDYdYW3vuEooW5nLaynd73WfN4kVoER0jYWDqFnow+X/Dhr0UA+4h75WNjc3JhqVZmIaFIFpYptXNApAKtHXkyyg+CUER0IMGRszEiJlDZhEQFQHPeCdGzCQR1Lq1+8b4OVxYuXVIzmVz6iBiIQ7AejCQY44Hhw8fRpIkpk6dypVXXonL5QLg1ltv5be//S1/+9vfMm7TFg42vXKyWRtS9NRvR77MuLPHI991D+vCM7j8OJyzM6ZmobbotB0Kkj0mb4jPfmyKZpQcc5/WrSEAJLeIu9SJO9+JZVq0HGhFi+0gfPu1jPnZXzM+t51f3cZm9HBRzbYur3uquXC5vpu9NyxH8STTPJq6QXt1G/XvN8MQCAfFL5E1zs20jyzg0Mod1FUHurzvyJcpO62YwH2fJ/9bTwz6fKcip2qmJYEBpmMdocLh3nvvTf/9pz/9CQC3283GjRt58sknufLKKzNu0xYONj0y2iZ6klskZ8oYdpjjKfe1AwVD1nZqgD1WVqQUaxYvovXSc3FmORBliWnPvDJkfemNgkWzkcoqiLz9V7xnX9vjPqZmpfu57cpllJ2RfGi07DpMvD06INEAo++3ZGNjc4Te7m81oiK7HCgeB5DMJmcNgWgQFQHfBA+F0wvxTpuMb3c1xplJq4fslBBliZJ546j57I9Z3Z6Nd3OC8Vn1TJ00btDnPtU4FcXDaCsAZxjGkLdpxzjYnBJcWLmV4MFaZrzwDfJ+cMuQt5/J5DhSEyNYHSIaiJIIxdl48TlD3p/OtDxwK6LfT/Pkpfwxdk2391fOmNft4TD7+Tdx5GbjLCqgYM5E8qeUDmsfbWxsRhez/vEGiWCURDBGtDlE28H2IXNTSrSrtB5qZe/vX6Z2Ux2JoIrL78TpS7phWJaJYQnsPGjx+nsme9rKqNu1aUjOfapxqmVaGm3B0cPBqBMOqR955382NgBNu+qofGMz4554dljPc6yAwHiDRqwuQbQljhbVANh5zUXD0peGr34ayemAnHwarDJ27Axzw9equ+zjLfQgecRu90rWbd9HkGXkLA+lP3h6WPpnY2MzOnlnwWlEmiLocY386WMoO60UVx91bPpLyu0zVB2h5u1GYjUqsktCcSuYukGkMUJgdy2z3v0RZ87UKCx04lZ0BMtk574all6ximu/dIB9+w9yxed3svSKVSy9YtUQXPHoxp5L2aQYNa5KH2rdgN/v7/G9U9HcZtOdhW+8c1zP15PvLySzOznyZJx+B44sB9lj8ilYPIfQey/gO/OKITv/oc9/FIffg+RxY/jyiRkK3iwH7S6FB//P4LrTqij9969ZtHpNr214bl4xZP05WYk+uQJEEc+N3z7RXbGxOWlYunE9K2fMQ1QkQtVNtBxswdSHZlXWiJmYuoWlWYy7tJyJn/844TVr2PPCZkRFJFQfZtfvXmOJ00X26Z/HI8UQVIO4mYy5qNt3mKroYs691Mlrf49x7Y0LWHrFKt554bwh6d9o5VSYS402V6WJEydiWf3rm2VZVFZWHnO/USMcbIYOe2Vh6OkcA5E3y4c7143D68BT4KfwvDOoXvQfHI4Wc8EQnCtwzy207KlGEEUcWW4s3cCSHZiWiMsl4fW5+Np/SMAEmHR/v9sNP/YVsm77/hD08OTCFk82NgPDiJm07G2jaUtLMkvbELkqmZoFmoUjX6Z00RS2TbyW2cDEWAJHlocPfvB2MvuT+TwzwiGkyTMwPH7K/RYfv/VcCnMs5rGGBRNVzv/WfCbFVrPh7DlEn7rXXiA4Bn2Jh57mDp2zDgaDQcjOHtb+DZaBFnMbqQXgli1b1m/h0F9OGeEgeUREOVkU3IiZ6XzUo109Z4otGgbPsVZlzljzAftvvBxBFJBdCoLbTcjwEQg7+2y3YcdaimcuOub5XWPKyApG0KIJEAUsw0DUVQxLwLQsTHOAg4gw6jwbbWxsholUvZzhLMjmKnCgR2JMb1+DoMZx+LOoW7snnSI2FoijNrfgzq1Hsky8usoN5TEM2YkmuWlyTSKhySRc2Xz30q2orzYRvPtTlDz0+2Hr82ggNU/oTyryk21OMdosDr/+9a+HvM1TRjgsD+7stu3V4lmIimBXmuzgZLvBRzJHD6ypv0VF4LLYLiY99SK7rrsYNRwn8fzrTG9rpWzx5cDC9P7x5x7F9ZE70q+PJRqWXrGK//n2Uiad8wXKFu3H99bzaO0hEEWk9mZcOTrtbRaP/XdORtcS++sPcV97F1lfeDCj42xsbE5dBvJclTwilmbhyJOR3CJZZV7cOS5ibXHCtRFiNSqmZqWf26ZpcvDNnfDmCqJNceKNGkbURFQEHHky3kI3ii8LMxiEYBC9rR0rlsBTXoI583S81KA014CmsuUHTyPJIlnFPo6dvNoGRuecYbQJh+HglBEOPXFJw3YguTJyqouH0TgAnEj6Ss+6/vyzOG3lu8SDCdSISmJ3gFBdG2Nq64kdOg33hz4LgBWLdTv2Cw+18vjduenXRwf1PXzvO/jyc7juU2dx/eTdsH8vZjwOgUZcE1Vk2ZvxtbivvavH6wP7d2NjYzM0SB6R0iWFuPxOPAV+lCwX/qkTEHPzwDQIbdrGvle207I5hOQWMTWDaGUCPS+ZbtLULSR30rNAUAS0kIGhm2ihMEZzC7GmdgL7GtFiGv7SA5S2tOIoL0Otb6B1VyWBLe24yx1ITpmd11zEjL+9foI/ERubwXPo0KGM9h837thpi09p4ZDCWaykK1ueigLCnvwNPX19pnpC54Ozz0SLaMRbVRINGomAiuTYTRmkhYP743d3OzYlGvoK5AsF2vjNj1ZzyQ/OoMC0kGSZcMk0VFPmUxe0M9ga0K/kzRzU8TY2NqObTF2AXcUKBbPzKDttApLTgeLPQs7LxZo8m1hWAUo8iM+0KDzUSOhgNCkc9KRlQvHKmKaJO8eJIyvp7hlvjyNKAg6vg1BVA/G2KOGGEM1b2jB1i+DBMLG2OPmTawjWtNC0I4DikzBiJmpEBWDTpecy/5XVQ/7Z2IxsRpvFIZPgaADTNI+5z4gQDo899hgPP/wwdXV1zJo1ix/96Eecc87w5bavvOUqxv/yH+nX+dOSk7FEME6sLYGlWWghAzWgD1sfRgK2YBh+Up/xS+7pCIqAKAuE65KWBCNmpsWq5BYRJQG1PXzMNlNWhmOlEHx+30zOnlKIIujEDBdOQaM8ugcyMMRHVz+D59yPddmmBYe+oIzNyYVdDdymL1IuR/1ZiFP8EhVnlZI9thDJ6UD2eZGy/ViTZrKn8FwShsJ0cx0yIMoSebOzUUMqWigKJCc6etBALJRw+Z0oHifZFTmIsoRlWrQfbqG9OkQioKIFDUQlaZGof7+ZWEsMNaqhtuhpi0WoOoLiTSA5RN497XTOWr9umD8tm5HE8RIOq1ev5uGHH2b9+vXU1dXx7LPPctVVV6Xfv+mmm3jqqae6HHPGGWfw3nvvZXSeJ598MqP9+8MJFw7PPPMMd955J4899hhLly7liSeeYPny5ezYsYOxY8cOyzk7iwYAf1k27gI/Rlyl9WATalgl2hIf1cLBfugfHzq79KRW6vVOE+9UJVXJKSG7FIyEyuHbr+21SvNtj7SRlZtNuLX9mOfetClAWUE+XqeOR1EpcEQQLIPAfZ8n/1tPpPd72T8Dd7mD2R9bRMGKX6W3R1f9Gayuqw+pgEebUxt7/LDpjeYVnyN/bjZte0P9eoZ6Klz4yvJwFeQgKjKCICDIMo0lc3n6dQ+yLDJ9oUVk1x6a9zQiKhKCKCC5RYzYkfEpFogjO2VcOV5cOV4s00SLJtATOmpQQwsdGXdTx8UCiXRqVyNqYmkWetBAVfS025PNqYaJwLFX3Xs6LhMikQjz5s3j5ptv5ppruhdmBfjQhz7UZeLvcDgy7tWnP/3pjI85FidcOPzwhz/ks5/9LJ/73OcA+NGPfsQrr7zC448/zoMPHp9gzH9e+zwfG78W/7vPE2+LIogCesIWDTZDSyqHudXDKpzaphFpjiT/7jCV94QoCriy3P0SDrIsYZig6iJOSUqeW5CSBeE6eL18NpB8kCZaQ0R++U3EMROwPFkgCBy9iHJZbFdaDImK/VC1sbFJEn3qXrTZZ6Jc8R+UBdoJHtyZHiN6szwofomcsX4EUQBBIFLTiKsgB8c4HysPT+HdfyZdhb45rZXD6/YR2BRE9ksUzs1D8Sq0bGsHN0hukXiziuyK4SvRESQJPa4SrGklWBvG4U+6I1sdQdVqQEfyiKgtehfLSLqfHf/btlWb4WL58uUsX768z32cTiclJSMvVP+ECgdVVVm/fj1f/epXu2y/5JJLePfdd3s8JpFIkEgk0q+DweCg+/E55+8I/fHf7H5/H4ZmMubMyUz65FzMcJjwnoO07K3l8Nt1SdeS6ECU6MjAFgzHn57S1h3t/yt2BPLVrm5EcidTns7qpb2f3pXNfU97+fezrajxRC97JZk5KwdNtxAEEUFQkMQcHFllTLz7USApGtQWPZ2aePtVF1L+42f6bLPp259h3ufnoEUTTHzyBd5fspj2A5H0ymLq+uzfmo3NyKa3ApUDZdsvX2LsWXtx5vqoWXcIU7fwjE/GHKTcf1PPUFERmHj5GMZ+8bM0/O5P7Pi/bXjL3ViGxYQLphGftYzffXstANlF+VT96D5ibXEqlhVTunAi7rIi9HCULYG3cee7KFswlqwxxUheL/KYcVgeH8FXX6FubVOvVo9jPctT79uJIE4tBlvH4eg5qdPpxOnsO9V6b6xcuZKioiJycnI477zzeOCBBygqKhpQW0PJCRUOzc3NGIZBcXFxl+3FxcXU19f3eMyDDz7IPffcM2R9eHPyXPKn5hLY00q8USNrvBvLMsGfh6iqaJEYWkxDlAX0kzhw2h70Ri6mZpGqkNDZ9N4bZ89VqTk8la1vb+1zP3fHWGWaAnFNRBSchJQj1dVlv5Q237/kns6YC0to+ubN+BafjuvK23ts0zd/Lp5AM3p7cnA8Y80HrFm8iIgcQ23R0w/Z3oTSaPsdhn56N74vPnSiu2FjkzGd783BTo5flKfhyJcJVW8CQG3RceQdmV4IioDik5DcImOvqKDiqouIT1lIZdY0JizbT+OOOlq2hwA4YO5isvQD/vSdO/jFpqVEIhoVc/4LANHQwDIRTANXcx2K9z2cWQ6yp09EmLsIU3ER8uRhCSLeCdtx5G0eMpfjoxd8RttYZpNEsCyEARRMSx0zZsyYLtu/853vsGLFiozbW758Oddddx3jxo3j4MGDfOtb3+KCCy5g/fr1AxYiQ8UJd1UCEISuLg+WZXXbluJrX/sad911JD1kMBjs9kVlQqQygRZqTle1TARUWvbW4yndSv37O2nc2YRlWAgdAVUifeenTgVepVLCQcdqywkMKLUHuBNP6iHdW7aRzr+pY31fC9R3aTznAqr25NPeGOhxn/M/eiZOJeltBGBZoBsi86YkVyuqvnAN3kIPRszk1eJZOIsVFLcCogC6RsumVeTN7561SR07A8VXR/bFNwFQf/enWPLBWjZcuJRgbZhEg9YlO1lvAmI4rBKrZy3g3O0bh7TNY2GLBpuTnaGyEupBo2t16Lyu78seGVeOE983H+ADYzqaKeJRNaJzz2PyZVVsqnuXWLVK+64I+8UdzCr6Ixcvn8ofXoZ3XJfiVVSckoZfDuMkTnZ2HTljXiR3UinSpClEfUW4Qo04EkEacqbhnbmAktlrOVB5eFiyJdqWiNHJYIOjDx8+jN9/ZIFuoJP8j33sSFKS2bNnc/rppzNu3Dj++c9/cvXVVw+ozaHihAqHgoICJEnqZl1obGzsZoVIMRizT09cru/mZf+M9Gu1RSewtwXYSs2aevSggSNPxpGjAJBo0HptS/FLCIrQJZe0KIqYpnnKpnq16c6xKksfXXG184Np48XnsOC1tzh/x1oaPno6zzzRNV2gvyCXpZfMpKhAQuxU6FkS4YrTj9zuSpYLT54HPa6jxw0cXhl3XhaiomAl4uTNP4+a3VuIyNlEDC8WAgun5hPyleKVZMy3/4r37GvxTRlHywO3svCNd4CkBU9t0QGzS/+PXtns/PdAHryponSdcee7Mm7HxuZUJnXvDcXkN3W/d459sjQr/RyUXRJjz5rCVm0mmiEiCBA3ZGrcU5i07GLG7alm15/2IfslFK+CqWrkO1opLC6nqkkGks/gySUuPLJKwuvCV5ZL1vgyECU89XvQd+3AUViAtWg60dwxeIuycRbXE6vuPW7MxqYzSYtD5i7pKYuD3+/vIhyGitLSUsaNG8fevXuHvO1MOaHCweFwcNppp/Haa6/x0Y9+NL39tdde4yMf+chx68fRvo5GwiDeFkMN6IiK0DGQyUgOsWNFpav1QOwQC448GckpIUgCkiIiSEcG0IRb63aczalFfx/OfQnMBa+9BSSrSC93VhL51Nk4HQJej4DHCW5n8rdsWRamlbQ0AMhi1zYFQUR2yjh9DmSXicvvZNwTz3bZp3zaXAA27AmwcGp+l20pvLfcj/iHB9Kvl+3bwuvls7u5XPVUSTvFQFyZBGd3kbBo9RreX7KYM9Z80K82bGxshp5UZWc9aCC5RSREBI9A3oQ8si6/koSeTNQgYqEZIoGED7nkLCZ+rJlg7e/Jm1hIzpQxuCZPorB9H584U+CpVSWsfDaZhvKMD53O3Jl+JhVJOMJxYvVNuIVdmKpKvKEZqT1Ewb4HMDUNy7TIn5ZLbUNjr+Oq5EmusPQ3fezRpKw1dmyXzXASCAQ4fPgwpaWlJ7orJ95V6a677uJTn/oUp59+OkuWLOEXv/gFVVVV3HrrrSesT0bMJFidzKcvKAKSIiE5koOd7Je6WA8Uv5QWFopXRpQEBElEkpODUUo8OPISGVkdFL+ULnIDpNPCaSEjowBteyAbeXR+0PRGZ5e3N8bPQXKLnL9zc5d9ymrXctG8bEQsRMHEQsCwRBKGTFxXaIsqGKaAIFhdrA2hn/w3ppa0nImyhOJWcOd6aV7xuS7pWFOkRENnandvRtYTuCPN+D75jfT295csRujIXJLJ9aZ4JW8mFeeWMusfb/S5n+uK23rcLjtlXi2ela4Kb2Njc/wxNQtBsaAj1amgCLhyPDSUzkcKWekFDdMSUHWJQMKPe/qFzPiaG9PpwXS40QBnSw1jD++ksf4T6bbf/9c6Du4s447PV3DwzUoUbzWuXCfuHBcF08pwFuSy6y/vUrF4AjlTx6JkuYi1xmjbFcaImkgesYsrseKTcPgU2ndFBny9PVlUO2M/h08ejlcdh3A4zL59+9KvDx48yKZNm8jLyyMvL48VK1ZwzTXXUFpaSmVlJV//+tcpKCjossjeH1at6rveE8B55/VcTLY3Trhw+NjHPkYgEODee++lrq6O2bNn89JLL/Wr7PVQ0XlSY2pWh6tFEsmdNLEaqoEW0dM5+EVFwF3uwJntQHbLSLKYzi8tdogFQeyIcTAtHD6FuKKl07wdC0+Fi4IpeXgKfCgeJ4IoosdVIo3t7Hu2qt/XZTNy6S3DkuyXcBc7cXhlFI+C7JSRHDJbLjuPuS8dGQS851yHe18dIlYy87QlIiIiSslg65gsoxogS11/c9HaRqLNIRKhOJZpIcrJGhKi0vtwsG1fHQAKGrKgI0ludNGBZGrE/v1H9B2b8X3xIc5Y8wGvFnfPCZVJJVlXtpv48z9DLyjHkmR8Z1ze72NPW/kur5fP5mX/jHTa21TWKBsbm+Hhcn13ushl54UtU7dATz5TYy1hCiP1OKRyVEPCMAXETtlrVJxEiyZhijKGpCAbKlI8DJrGoR1dn3mNh2pxSCW0VaskFA1zvEkiqJI9Jh+lIJ/simxEh4yU5cVTnE/OmGyijXFiURVRFnDkyRRMz8Nfnouh6gRr2wkfiiH7hbS1dDAZFB35cpegbDse4uRBwByYq1KGdRzWrVvHsmXL0q9Tsbs33ngjjz/+OFu3buV3v/sdbW1tlJaWsmzZMp555hl8Pl9G57nggguOWTm6P9WiOyNYmdSiHoEEg0Gys7Npb28fEr+yzhMcR75MVoUbxasQC8QJH4ilzbDZ073kjMvB4XUgyklrhKkbWKaFZR75SAVRwNQNgnUhQtWRY/paioqAZ7yTMx+4mdDUM4m48jAFEcGyUMwEDi1K7V3/Te3q3k2vYA9QJxMvuafjLFbIm5LD2HNn4sj2ITgdCJKE93P3Dbr9bfvqmD25u3nzjfFzcPgVztmyAYCWB25FVBQEWSL7rh8N6px9pZ/ti+yZXhbeeQViaQUoDiyHC8PhATF5j/kWX9avdjoLB7DFg43NcPGiPA3JI6L4kvdovEFLW0xTWFqyKvP4i8dgPfArqqOFaEbSKi+JFrmuKIVSE75YEwCmICEZKs5wM2KkjW3jPsozbzhY83KyivO37zuTBf/3n6z73/dx5Mn4J2ThL/VRMGsczuVXYSgu5EQEOVBH66q3qH7/AO37Q+m+AWRNdFM0swDF46RmXQ1FMwsYd83FtC64lNyqjTT9/QUqVx8gfCCWvg5BSYqOrFI3etygdWu4x89E7GR1dRUrTPrQJHb9ZQ9G1Dyln81DPV8bSlJ9277hfXxZWRkfHwqHmbXwjBF3bX//+9+7bWtpaeGf//wnmzdv5oEHHuATn/hED0f2zgm3OIw0Ok90LM0i0a6mS9KnkNwiildBUkREWUoLByAtGqwOBSd0RKhKsojilVE9eq8rGZJHxF3uoHBaAVrFVELuAsKmD8OUELDwSFHciXa0mDZiAq1TBcQuqtl2gnty8pKa1LZ+73bcU6eA4gBJwhLEYxzZP3oSDZDMgtK5Mqqp6enf62Dp/HDs/PexRESsIUHTms3kz4kgl5Uh5OQjKC4sSwBBJLj2ZQTL6lNArJ61AFFOrv/0VGzPxsZmaElVXe6M5BaTcQMd7rZGzKR2fR2LG9YSKlhGWHOiGRKiYCELBk49imAmLfpONYijei+J/ftAFJnp9vHFS+ZxzbIFlMs1FLz9IPV1LUByMu/yO3HleJGcDjSnj7g7hyzTADVOsKoZU0vWkBAVgcJFubj8TgqmleGfPhGxYhyeopUYcZXI7HPYHJ1B6bgypl3YQtPOOsIHYmkR5MiTMWImTr+LiRdP5v2t7/T4eXR+PscbtLRoANv6YHN86S0D0+c+9zk++9nPsnnzZls4DAUp8WDEzC6CIYXsl5CdEoIoIohC2iVJlCUs08QyLQTxiJgQRAFRkZAcSd/Ko0OkU8HVzmKF7Ao/BdPLifiKiVpeNFPBREARdBRLxRlqQg2NnAwRtmAYPK0P3kbu1x4j96s/I7rqz1iSDIKI1ek3NNS8kjezy4oggKUbWIoJgkD7D+8clNWhc6Bg57+PZYHQgwZ1m2uQHDK5ioLs8oAnOxnl3dHdzqIh9vpTuC+6EUhaTKL1ARSvjOZPuhVeGtw54GuwsbHpP50ny6nsgrpmpIOOJY+I5JRoefppZn7CJJpTQZ1nAh4xitOI4g8cQNDiIIgIh/dTv2otobo2PPlZlBbkUxxuo0TXMBrqqH9nE027GpKuUTGTSHMUQzPRogkqxq/BVTYeMVBP4sABYm0xYm2JtICZfNlCNn74EX6zyuCD59czacFUvve5xeTV76TKVYGREAjEszDKJ+HKcSfdlf0SaotOokFDcotkFfnwLZjP2Ev2E9jTSqSy72KcPS0Wjub6NiczgjVAV6UBHHOi+fjHP86NN97I9773vYyOs4VDH5iahakZ3cyuildGlKUuMQypv4Eufydfix3iQew2WZM8Yjojk7fQQ3ZFDt6xpbRKLgxLQhAsHIKOV4yQFQsgB2rR4n0XtLEHoZOL3K89lv7bcPuxOtUwCa59Gf+ivsvSp9i5r4YZk8v7tW/qYejwKGy69Fzmv7KawvufJHDf58n7xs8yu4AeSLkD9CQS+sqwZGoWbbvCyK4aHD4Pfr8fIbcIi6SIEiyL4NqXk38bOqLTQ+zlX0JLM7LHjex24fQ50OMGF1Z2L5BnZz6xsRlexI6kDilrZkpQGFGTWF2CPf/cTUnN4/hKcxg/dSxSlhfB4aDx7Q2YuoG3OJdYIEjjznoSQRUtppG1Yy+O7Dra9tUQaQrStCOAETNxlzswYibRxjjRxjjt1UESoVfIn1aGKEkYCRVJSVpRRVnA0Cwkt4sJ7mp2rosCsH/jHtZ8+GymlRdhWQLlvnYUUUMIGYiSgKlbWJqVPl4LGjTuaKBgzl4mf+ULmN99jEhlw4n5sG2GnOMVHD0SqKysJBQKZXycLRz6galZ0BHbACQtB9JRq7UdLkpHu3pYpokgJtOzilJHjYcO/8fOaVzdOU58xVn4yguQ8pJZbFxCHFE0cRkRPJFWXO11GPW1x6wubE+OTl46r6anJsjBtS+DIIJldhMRnYVFf0UDHLEU7f7YpTiyjqQ2zf/WEwPue2cGE1NgRE1atrXj8lfhyPHhrJiAIEppd6U0ooT3nOuAZF0H0eVCcinpmhK9Yd8fNjbDRzqjEqRX+VNowaTLUP2mxo7kDCZZFUXIbiehujaigSiJYAw9oRMNxEg0aFiGRfV7+3BkOQjVhUm0qxgxk9wpfnylfgL7A0Qb41iahRrTqX2/EUEUySr2I4hiMu6wo56EoAtEaxopfO03/PRb/8mTq6azc+Nh8rwJHIKKLGgoRgJnIoLU3kSoIZws4Boy8I5xITlEgvujhA5Gady4F3HrARrWNgPJRcDBBFTbjAwGWzl6pPHUU09126aqKjt37uRXv/pVlwDt/mILh17oyaUitXIiiAKiLHazLPRE0tqQdGMSFelIGriOgcyRl8yl78n34Cnw48jxgSyTFW3ESzOyHkeKhxDD7ViNtYQPHj6m37Y9KTr5ia58GklSQJSwxGS8gyXJhD54CcHQkr7AlokkiETe+gvec64j9tcfYhWUUDfmTBoShSiSjmXB4um5vZ5n2jOvDOt19PUw7cttSQsaNGxsxuHdx9j5CxFkR5+uW6licP0NabP9jG1shoaeLIjWUdkJj8aImViGhexyoGR5sCwL2SljqCbNe5OxC6k6EKZp0lYZwlfhReiwAPjGeph8+ek4ystwv72O6rWHkF0ykiLiLcii/ILTsDSdtp0HiLXGiNWo6cW6mg/2U2aZlFW/zzfdlbBUxFwTRKwYh55fjinJSIkoRs1h2vaGkscB5aeXU3bxEnb86p8Eq8OokQRZxdkYsWSKV+8YF/FmFUeeTHhvfDg/cpthZLS5Kn3mM5/BsiwE4ajFbsti2bJl/PrXv864TVs4DIBEu4o0/khQtNVHKqt0cLSSLLglOSVASwdC54zNxpPnwZ2XhSvfD6KI0diA0vgvLN3A1HUSsThaKIoaiqKG4+TPzCVenjTNqi16t8I19orqyY/n/Ou7vI7+7j7E7BzMnMJkDIRlJcWDICDoOvFnf4LR1ISUSJDvL0Ly64yfPHXI+tP+wzsxVY1YQ4Cy//1zj/u0PngblmmS942fp7ct7yXGoD+ZluINGnv/Vol/7L/JPftMyC/FVFwIiFiC0MWlq78cHah9dI0J+76xsRkYR6c1763gqdnh9uP0O/GWFyHnZJOob8Q0LMLVyQxGKVfK/Em55Iwr4PB7lckEI24FLaJjGhZqWwg1uIfqtYeI1MSY99nF/Gj848lCcS/C5Z86mztzH2LfK3vSz0fZLxHY2U7D++uRfr0R2S+hBw0ERUjXc3DnuXB4HWgxHTWgM+kjY3DnZVH8ies4PO5sJtc3UL92N2M/eiE7fv4PFty2kE2/3IjalqyNk2jQmHvLbLb88tjxfylXZRub4WLt2rXdtrW0tPDSSy+xfft23G53xm3awmEAxBs12g634ysxkJ1ytyBpOCIYBPFI/IMgCukAaQBRTA6EsktBcshgWuiRGEYsjpFIBkBbuoEeS6DHNUzdSAaNjs/HMi20aIJwY4hwfZTg7mj63PbkZ/Th+fS3um2LrnwawbDAMrHcXuTyCiyXG9HQ8CTa2L//ABHTS1R3oZkSDknHI8Up1GsBECwDWU/giLWhBGpI7NiOqRuIDgVBELAsC0s/8vA3Eyrxtghrz12SNP8bZrpKc9UXriGrorCLaDgWnVMW9kXpw39M/x1e8xyWJKbNwqH3X+xW5+GDs89k8dvv9bsfnUWMXQXWxmbg9Cf9cipmUBBFTE3DjCfQIzG0WDLwuLMrruyUyZ48BsXr5uDKXWiRGJJDRHJING6rQnErxFsSuIuceMaUEY1q6WNfenoN/+/Lk3H4FGKKirvckS7oqro1HH6F0N5oegxSAzoxRUUbryMpEolA8hnsKfBReNYCqsaeQ3WkkDHjx1PucfO3sv9hcem/QUyKjniDlr6+uk2H+/V5WZqFlGcLh5HEaItxWLhwYY/bL7roIr7yla/w5S9/mSeeyMxF2RYOA8CImgT3RUiEVBweBdktIzuTFXiTAiIZz5D6O/W/pBxxb0qmdJVR3EpHNiYLPaEidtSCMDWtoyaEiambmB0TOMkh4y7MQXI5ER0K+ZEYoaoGKs2Dtnn0FONoq0QK/YOXki5ulp4cBAULSbAwTIkYToKOZAyNZQlITgO304/fshAde0HUEaQOlyDDIOfuR2l5IFnF3UioRJpCLFq9pts5xz7+t4z6fvSkvLfJhnhUMoGsJR8h9P6LyReCCJZF7I3f477wU+l94q1HMpz0JQB6sjT0JCJsbGz6z7HEg6AIybiBmJbM5GYYJNrDGAkdURbQNQu9I31quCmCZST3iTbGEWUBb6EbPaHTdqgNh8+Bw6dQOr8MIxrj6ovgg1fAl5/DT76VQ/wPT+ErzTqyeCcJ5E3Iwz+2AMXrpuqtndS/G0D2S+RM8aHHdGS3jB7T0zUfis5djD55DuO2P8dYjy9p2fX7ubhgHY55k7gj+HV+8eBveOvOP6VFT9Pa9n59VrlzfBRMKRj8h24zZIw2V6W+uOSSS/j4xz9uC4fjRSrIK+HWkP1SUgR4ZWSXjJhKv6ocsUTITjnt2pRKVZcKsLZMC0PVMVS9S6am5P+pehBCssKvx4mzIA/J60FwOHFYJs78HBxZLrY2bEELGhlNeOzJ0egjFWCd1+seuWzZ24BhSVgITJ42AZgLZ16R3iP007uxDIPAfZ/H1DQK7/0NAEXD1OfeJhuyv3tcg++My5OWBxFEQ0OIRQg/9hWybvs+26+6kHO3b8zovClS58+kYJ2NjU1mpCzusdYYajiK7POiRZOr+6ZupbMYEYNwbYSG9XuItkQRZYHcSTnkjs/n0NuVRA7HceSpTL50MgWfugHD6aWqxQvALV+YTdkrXydQ20zepCIKpkmo4TitlQEkh4x/2kRiZ17GjOlvobhfwulzkf2t+3DFWhFWv0zN21tx5TjJHV8AlglrVxNqbEa56npc8SiJsslk715D3d5qfvWRf1D77AcYMTPj+kqubBdth9uG9PO1GRyjLTi6LzZu7P+zsjO2cBgEKT9OI2aiKjqOvKR4kBxi2i1JkEQkWcT0JAWAGtWSwVRuET1udGSWsJAcckfA9RGxkfxbTIsGyelA8bqQfFkIHm96ZVgSRNxFoW6pXvuDLRpOPTbsCSAgYVoiJgKb9zYyb0pXSZD6bQmikBYNw00mv8WsJR8hvOY5xFgIs6mecGUt1dddTLA22K1uRCbnt0WDjc3gOda9ZOoWiZBKe2UjkiKjRRMYerKIXCr5h6AIaCGDqtXVOPOTbkayU0LxOMkq8aC2aehBAz2uIbU0oFVMo6ou+Zw9z/sBlf/6gFhbnJI55finTgAg3PAejTsa0KJrKKqpp7UthBbTGHfxady3ehaaavCpy07H98H1lM4fh7s4n8a31qGG44z5+BVc+B2FOWd/nAfG76Th/17i4CtVXYq7pQrMNbzb0q/Pqe7tJruq/QhDwCRZPjTz40Yi99xzT7dtqaxKL7zwAp/61Kd6OKpvbOEwBKTStaro6UwQkjtZs0EURQRJwGqKYZrJgnKpYCg1pBENRNETBopbRnE70gJCciS/GlHuqE6tKMgeJ5LbheB0IchK8uSWCZKE6HR0CbKyLQk2vbFwan767417mpGErkGMsT8/hCAPX/G5/vCyf0avgdUp5KZq0DXCB6to2nGYYE2ISO3g3PV6C562sbEZGoyYiaAL6EGDUEMYp7+NeHssWbMhlByLUs9UAClPJmesn+wx+SgeJ4lgFNkpY+oWRsyk6p0qYq1/ZfyHl/DF+XHy7vgw3k3fpf1wkJxxOXhK8pEKCxFcHsacG2Hzk2/RvLeFaCCK4lGwDAultIR3f7+WeefNY2r7ezTIEnv/tRNfWRYFU4vxlReg55eRX15MS0M7np3vsmtXE6VnFtJeHaJ9RyR9fbnj8mha29ov64MtGmyGm3vvvbfH7Xl5edx+++1897vfzbhNWzj0QaYrkEbUxOqoZCl0FMFJ+XOmzJip2g0GJpYsEGtLoEZ0HF4ZxaOiuBUcXmdSLMgdVgdZSlojJCk5obNMLKMj1Z1pgNER/9CpRgTY4sHm2CyY2tW/NrryaUSHA+8t95+gHiWZft1Uwo9/jawvPNjrPq4rb0/+fzUUAi+5p2NqVrfJ/0Dvgb7ufzsLk43NwJD9UjoNuTsnWUNGcsioQa1b6mZRFnDlOqhYOhNHYT5mPIG59xCx1hiKT8LSLGI1Kocb6xHE96kIhfn07AaC23bjynbizvUgu53JZCWWiZKfR8ncYuLtsWRNiJBK9phs4lNPx5efw42XQ/Dxp2g91ILaptFYFyB3fD65s8pIZBXwx88cIOIroe6h1QT3RymeXULboWC6v6Zmsf+fB/slGuyxY4RiAQNxOxqhnkpNTU3dtrlcLjwez4DbtIXDEJMeMDSLnpLRHZ2mTomZCIpOVItj6lZy8i8L+Cdk4S3w4snPQnYp4LLSQdNmQk2LCEEQQBTRI8liOZ0HrKMHpv6s4tqc2vQWcN0X7y9ZTP7kQnzl+RR/73dAchIv+yXyZ2Rz2sp3AXi9fDbxBu2YD8ylV6wC7qJ0zxg++pbFDef0zwWvp9W7y/XdvOyfgRE1+/WgPloQ9BVYndrfngDY2HTnaOEtKgLOYoWc8T5ERUJxyzh9Lkw9mZ3QV+HF0qx0diJHvoy72ImnwINr8iQALCOQdOOVkhZ9d6kTLaKjeGUSoTiJlnYcgKsgh4JpxYTq2ois3IL49nZ8pTkUffhiCr7yNSKeAqasf4HqF1cRrGmn5tv38vv5E6i+Yy+NwOzbPkp8+iKcm99i+69fxj++BM+eDyA7j+zK7QjFubjLHTRsq0d2SRSflYe/1E/znmZat4b79dnYjExGW3B0Xl7v0Y4DxRYOJxgtaCB5ki5Gopy0TsQDOkYsSKJCxdQNXNluZJeG5JCTKzPtEURZQpCSlgjLtIgFgmjBnvNmp1ge3JlelRUVoVcz6dbLz+fQv+rswc2mX5yx5gPiz/4Ey5dN6Kd3Ez5YjezvsJhJAlVfuAY1HM84BsfpcnBaaTUwZlD9y0QsZ/qbt+8RG5v+kUoKInRkHJQUqcM1N5lVUHErSVdeT3LxLHuiF8WjEG2OotfV0b73EM17Gmjd30a8UcPSLBx5Mp4SF64cJxVnTCZr+mSERDQdUK1GVLSIhsPnoPysmbRNWoTnX3+gYM58Wt7biChL+Er9hBtDNG45RLw9jh43iFcewiUKNL23mVggTu37u+H93chOGaffQ7wtgqVZTLxsGqIiE2loJXfaWNRIAneei9pVzenrdlc4KJqdT2B/K+G9cXvMGOGMtnSsw4EtHPrgeAVKpsyzqWl/Ks+1GtQIN0YQRAFTN9PxDpZppQOmBVHAUHWigXC3vPg9rYb2x6ey9PTJNO/qX3CXjc2bk+fizHbg9DkonlOOb0I5WRVuJEey6KEeV9GiiXQ2lf6gOB188j+KGL/nSZj8+WHsvY2NzXDRl7tfMoGIjCMruTAWa42kYxssRSDaFKdwppfJV56JXFrKoSffRA1pOHzJ+D5Tt0g0aEhulcLphXjGlSOIIon9+2nY3ojsknBlu5h40Ww8yy6ivXg6cdlL9ozZ0NyAqyCHnHnTEX1+1EOH2P6nd4kFEqgtOrv+/gF5E/ZRt6WeaGUCtU3DU+JizJnj8ZYV0L56B94SD7ue24bskUkEVDxb6ghXx3AXO7tcZ6JBI1oaJdGg9fQx2NgMK5IkYR3D9crso4hxT9jCYQRidsREACRCKpIjhstvJldnutSHSMY5aDGNeDDRV5P9Jvan7+GuKMVb4uEl93Q7eMvmmKgtOlrIwCqz8E+sIPjhz7Jw0iT0mmqa1u+itbKZSFMsHfh4LC64dgnLFyWYv/Z77HnmDeZeZgsHG5uTlZR4sDQLPWhgFVsgk0wv7nIge13IbidOXyh9jLNYoXxRGRXLl9J6xkdwJYKUzl/J3uf2o7bomPqRStCFM/PJnVKOoCjobe0E91cjSgK+kizGXriQtcvu57k3NdS4zlWXZvGi8Rmc+XDJ6XuRQodRou04BAE1uiqd3CR0KEq8JdEhUhIYMRPFq6B43SjZfopnVxCsDtD4XiuQQFQEtFAEI2qiBvQu129qFm27w5i6ZVsbTgYG6KrECHVV+uIXv9hNOLS0tPDmm2/idDq5/PLLezmyd2zh0AsnOi1jygqhBw2ixDBUA6fPgeyUOwRE0upgmclCOmoomQe7v9V4eyL65AoErxdEES2iDbgdm9HH4duvZetvtiEoQhfXn/Xnn4W7NLnCVjy7hNBlN3NAm0DbrHyKJx3CdfBRImsPE66MpdMs9kUyvgHOnHMWscrD5Iwb+cWR7EBpG5tjk1oQU6MaLiVpLRcdMqIkYWKkMwkqfomxSysou3AxiblnU2WOx+VSmXHFhTTvbSKwpR1Hnow734mvNIui2WNxFuSBaWLG48RawniLvHgL/SjTZrJhn5PqfTW01jdT9NEpOMZ6+NbXP2DP8tO5b+oa9F3bCVXVobboGDETT7ETp8+BK9tFtDmKu9xBVpkXd46LUE0zjmwv4fpWWg62dLk2ehnfXMUK/glZtO0N9fi+zQjDsgYYHD0y50s//vGPe9wej8e5+OKLe60s3Re2cBjBGFEz7d6hB2NoOTpOv4I71w0OGREwNAM1ohJvVdM+5CIMaNIfPVSNq7QIraVt0GktbUYPwbUvk7dgBo68XZi6xa7rLmb6X14DkpVYy08vp2DORA5c+W1++i8nD876O39TPslFhXXEW8LoUb1fogHgnRfOY+kVq/jud97F6bkFNRbH6hAT77xw3rBdo42NzfCTqt8gSgJmngdBSMb3WXrSGpkKoPYWZSNmZSHpKoZDoCqYg3/elcz9soheV4OYlYWlqqjNLSj+LASXC0wzXRPJmeVILqy53FgRC3eWi4Z4gju+vI0xM5I1HaorA8Tb3yew4xBaNGmxFxQBh0ehaEYy81K8PY6n0IXL70SL6TTtqKHlQAA1opMIqMe83lQWRcWt4CpwDNOnajOUjLbg6N5wuVz893//N1/5yle46aabMjrWFg7DiNgpGHSgq/da0EgHUBsxE7VNQ43oaZclNaqRaNDSKWAHwkvu6eTO8ZEzJhtx52EatjV2M7fanHqsnDEPf1kWM7/8aQyg4qxSmnYHaNzRjHTDcvLv/hqKWyEaCBM8SnPyTAAATLxJREFUWEupUcWNHxqL2ejmouc/TbiuhdoNtZQvKqPsywuQi4txXX1nv8+fiMa6vF56xaoRJx5S1gZREXglbyaXtuw4wT2ysRl5dM5CFt4bJ6okCFVFqdtSjyiKGAkj6YLUkV61bmMVis9DligxbXo2byQWsydYQWLOtXjmhFEFJxIG5Tv+hdkaAMvCMs2Of0krvNHQTt7GtXzm4gl4/btJ/McYPvxtGS2h8eSPxjPmvT8S3h1HlEXqNzdy1oorkcZPJLF1C/tfWs+s//406ybeQNuZi8m6wMekCxeAKLLv+fdo2x3uNRmJu8KBf2wWzZvacBUpuPKc+MuyKV0w/jh+4jYD5VSqHC0IAlVVVRkfZwuHHhgKN6VUgHP6NQMXD3CkRkTStzNpXdCDRtrXE+j3qm6KV4tnIblFis/Io+y08WSNKwMg3PAuwd3RAffVZnSQMzabccvm0L76HVr319Fe3Y4e1YlUJog3V2GZ36VhYzJ7iCAKjHvjz8wYPxFLVsgaX4arIIfAvia8Rdkkln6Yem85u47h1hN74/f865u5fOh+33G7zsGQus+XB3fyxvg5J7o7NjYjmlS8g9mRdlVsObJAlXo+WlrSKhGuCSBKO/GGgkxdOoWI5sREwBBkLEvAFESsWAQrkbQWWLqBHo0lq1BrJoZmUvP2VsT3drBnX4BxT/8GaOU/PjYB06ohuOAinDMWURxpJdzwU6SCAqz6GiSPGzWqEXrvfU6Lhth/fgllZ0yjZcdBIk0hWna195nBUG3RaQm24x3jIn9KXjqleuv+OkqG9dO1senOoUOHum1LVY6+++67mTVrVsZt2sJhmOhcAA7AwOzVB7K/HO1HaWlWOrVqZ1GSsnT0NjlLCaMJl1dQsmAinpnTMUvHoXlykONhst7Ziqi02IHRpyCp34Z3vJO5Ny5h10ceJPfb11C/rRG15YjLkRrQ2fePSiS3iOxPVpmufnMD2WOryDv3LKQpM5ATcfK3HiDWEsanRsgWG1D8EqZu8WrxLC5p2A7A/hsvZ9JTLwJQ94f/o/T6a4CTQzhcFtvF6+WzeXPy3C6V2weDHTNhM5rpnGnp6MW0tGuPV8HUDaKNrajhKNMnvEKweBqmIWORfL7526uJ7d2PZVpgmsRbgtRurCLSFMVb6MGZ5egIwFYonF6IN9KI25/LZdJLBL7/K5y33cFmx1l8/Ttr+c+7V6LfdzaRphiyS0KL6CTaw4ReXk3ZvSuQV7+QjsFQW/q2xhtRE9EvoXhlWg60orgVis87nYLy8UP+WdoMA5Y5sEDnEeqqNHHixF6zKuXl5fHUU09l3KYtHIYBsUM0SG4xLRysjhRzQxFwfHR1zaPbPLp6bm99LJo7DufFH6ahaCZhfIhYlIq7kRzygN2ebE5eOlvaBEVA9rqpDXqxDiTzj6dICVNBEfBP9hJvSdC0I0C8UcM7JsBkQBBFgtUBmvc0I7skcv/5V8xYAkeejBYyMGImr5fPxlPiInd8TrptLarS/tobvH77+RycvJzqSD73fPO99Psj0V1JSFkC9aE1VY+W4nIj8TuzObF0dl3qTOfnjmVa6HENQ9Xh0D68Lh+JrGSyBFmNIFftIh5LYOoGRkIlVNtC+/5QemJvagaJcDIOoXReBZYo8eR3XPx003Lu+IzBH5suYPvOZMDy755Yx89L/DRtbAXAU+HCN6Gcpo17UVa/QPhwHdmTxxDY13jMZ7ioCPgmeIi3JJL1JowGnP4NjHviW0PwydkMN8crxmH16tU8/PDDrF+/nrq6Op599lmuuuoqADRN45vf/CYvvfQSBw4cIDs7m4suuojvfe97lJWVZXSeRx55pMesSi+//DLnn38+Z5xxRkbtgS0chgWhw31BcotIzuRqrKVZycnFMGcqOtZEo/NA7S4ppD1/Im1mLnHDgSIayWA0Ve8mTmxOLRINGode38i5bbewub5roLzkFpHcIlrIQI8blJ1WSrghhBZqJ96ssvPZ7YiygBYyEGUB2S9xaPUOLCOZVcWImUnXO83C1GMk2lVmkKwsbcRMHHl1jG1oJbz/l0ydUcLL3/kCz4Yv4Rc/WA2MvInohZVbh6Sd0WppGEnflc3I4ug6D5ZmYWgW4dpIMqDY78TQTBK19TjHRxC8eQimgaTGsCLJCs0pgaHFNEzdOpK9SdGxDA0jYdDsbsD65c9o2lVH4dfeRjqwg0lzLsXr8jFmzDn848m3KL5gOtXv1+DwKRTNLKJl+0G8Rdkcen092WPyUdtDtFW193k9rmIF31gPiaBGvFHDiJoEd0fZF9nHuGH9JG2GiuNVAC4SiTBv3jxuvvlmrrnmmi7vRaNRNmzYwLe+9S3mzZtHa2srd955J1deeSXr1q3L6Dxf+tKXetx+//33c/XVV/Pwww/zP//zPxm1OWzCobKykvvuu49///vf1NfXU1ZWxic/+Um+8Y1v4HAcyS5QVVXF7bffzr///W/cbjfXX389jzzySJd9TkZSokF2JYWD6TcxdSvtXjQcZDrhMOIJPLEAuV4HbXIehiVhyA6ySnJG3eTFJjO0oEH1mw3UvN2I1eEOl8KIJX/LRtTEW+im4uLFmPEElf/6gNp3GzEwUTvEgeQRceY7iLXECR9KBjunRKnZkdddDxrpiuapc+9p3J+02IkC7r/+kes+FOAXlB//DyIDBjPx7zx5Gq0C4jf/tnAqcMM5tjXT5gidrQ+pMSBWowJtuPKcWIaF4j5ARVkJLlHCcGUhanH0llbUUDRpcVB1DC05roiKgCvXgaiIiJJAztginH43bYeS8VjXbvh/NO6vZuLr17F4/lS0ZR9l3bTxhKvqKJlXhCPLhSAKtFY2oycamH7NEvRojLq1e4lW9l4vSfKIuIucGGpSLIiKkHYjjlUfOwOTzanF8uXLWb58eY/vZWdn89prr3XZ9uijj7J48WKqqqoYO3bskPThlltu4fbbbx85wmHXrl2YpskTTzzB5MmT2bZtG7fccguRSIRHHnkEAMMw+PCHP0xhYSFvv/02gUCAG2+8EcuyePTRR4era8ekr2qXx0LxSzjy5HQlXcmZLNqWCKsoLhXVd2QlYqj6mun+L7mn48iTWfeTNyheuRl/eR5Tzz6dXYtuIewpovCCs4ekbzYnN6mYmlSKRFeug1hjgniDBpqF5BHREwbBnftx5PjIGVdANBAlVBVFTVVDj5qE9kaPtNfTOeiagSx1nOKTiLcl2Pr7DUh/3cTTF05i1xf+zO+eaRrmKx8Yg5nod548DbVgGCkuT5+5wBYMNr1z9HM3VqOihZIF2dRIgpZ1W8lqaEJ0Omjcso/WymYsw0LsqAkRbY5iaRaOvOS0Ro8bVCwaQ9FnbuRQ8ZlkW+20/detNG3eR+nSucQbA+x9dg3ONzbwm/+5jUse+kLyxKnyDB549ROvs+sPb+At9FK9uo6Ss/Lxl+VQva4aI2ZSMr+InHEFbP7FZoyoSevWpBVEVAQceTJGzET2C+l4LpuTgBEa49De3o4gCOTk5Axpm01NmT9Ph004fOhDH+JDH/pQ+vXEiRPZvXs3jz/+eFo4vPrqq+zYsYPDhw+n/bZ+8IMfcNNNN/HAAw/g9/uHq3vHZCDiQfIkA0UdPiVZZdKjIMoigiiiuI9MmoyYOSSWh4FOBlIZLQAOt9Qjyg0E9jUy3TKhoAQrFjtGCzajjWP91i3NwjSOTPJNLWk9Cx4MU6nuxeFR0BM6sbauK3KprEMDEcqpitSKTyLeqLHrL7spOnARD4zPZ9OlLcx/ZXXGbY5kTnTRSRubkULq2WjEkrWM1IhKrCWMIDYmYxmq2wnXxdLxDKKcjDNK/a/FddQWnWggjBiPIGKQ27If9+mTaL/xW/yzYRwLi6vIPXQHNetryPrdH4GuLh1P/7CYpoe2MvNbX2D/uIsov+t63LlePEXZFEyJ4s710rCtnvbD7d2e5b4pHiZdOJXD7x2gZbtd+O1kYrDpWIPBYJftTqcTp9M5qD7F43G++tWvcv3112c8L161alW3bamsSg8++CCLFy/OuD/HNcahvb2dvLy89Os1a9Ywe/bsLsEel156KYlEgvXr17Ns2bJubSQSCRKJI5OTo7+kE4kjT8bhT4oG2SkjiAKCmDSXyk4Jy7SwTAsjJ+nnbWq9p3Q7FkO1gmhETQygaUsLyv+9jr88Dz2uMvHjdw9J+zYjk0wnqUbMJBFQO363XUVw264wklvskkUMjhRzEmWBWI3ap1Du1RrRsV3xSWghg7aD7TRtaUEPGtR2uDeNhNX0oWC4rmOo2105Yx7n79w8pG3a2PSEpVloIQNBFPGVF5C9eAE5rS3k7q+idv1Bat5sBMAguXCXSlIQ3htH8Us4fS4SuaXsbCnjv38VZOy0H7L5zs08+SORomd/yPYtdYT2RtHnafzrWxFe0j9Ea0jg40X/5uBttwDgKZmGZQkUTq/A1DTqN1URbY4SbYnRsrlnURDaG+Ww9wChqqgdL3iyYVkDtDgkn1Vjxozpsvk73/kOK1asGHB3NE3j4x//OKZp8thjj2V8/AUXXNAtOFoQks/puXPn8otf/CLjNo+bcNi/fz+PPvooP/jBD9Lb6uvrKS4u7rJfbm4uDoeD+vr6Htt58MEHueeee4a1rwPF4VdweGUkuaMappksSmOStDokxYOJ4pVR3VqfuaD7YjgmGJZm0X44SLQlRiKoMnEAbYxW3+zRxkBWtk3dwgwZXWqFmJqFqRmIioAlW2gdcQ2d0Qf4G+9MKsAaoGh2IS0HWmkPRABw5Mu8e9rpnLU+s4CxgfKSezpAOlVxT25AL7mnj+pUxrZosDlemJqF4hbJKsrCmetDcDgRJ07DP2EKroL1NG15I12stPPYk3IVKpgzkb3e03jnjTit9c2cds4UfPk5FPz5Qbb9dS2mYSEoAofeqqL10H3ML/0xBTPHcvDtXYRqw8SbVQoeewhnS5imUDxZmVoRkV0SrTuSi5be8U4iR8U+CIpAqCqKFjLs5+HJhmWlRUDGxwGHDx/uYhUYjLVB0zT+4z/+g4MHD/Lvf/97QF44f/3rX7sJB5fLxbhx4wZUwwEGIBxWrFhxzIn72rVrOf3009Ova2tr+dCHPsR1113H5z73uS77ppRPZyzL6nE7wNe+9jXuuuuu9OtgMNhN4Z0I0ikqpZRoMDENATAR5WR6yhSmZh4zF3RfDMZnubdJoxEzidTGEeXeg7/6au9yfbc9QI4wUr+ToXCB6au4YEpA9Hd7pmhBI23pqPp3bbovoiJQMDuHCRfNY/tVFzLrH28M+lwD4WX/DJYHd6Zfj2bRYGNzotBCEZytAcyCcsK5Y/Fm5TFu7W4atjUSORzvIhw8452UzS9FvOByakM+rl0W4d7Z9TSWVfL6X9q4IvAJfjFuL43bmnCXO6g4vQJvUTaH3z9A2V0fYfqSJej+QiJ//z9a99fRcqCV0vllCKJI4WnTkUtKqX3hDXb/bR9qi47kEbucX/FJA3bRtDm58fv9Q+JmnxINe/fu5c033yQ/Pz/jNhoaGvjoRz866L4cTcbC4Ytf/CIf//jH+9xn/Pjx6b9ra2tZtmwZS5Ys6WYSKSkp4f333++yrbW1FU3TulkiUgyFv1h/yWTSZWoWhmZgqAaCKCBJAqZuYJlJwSCIFnrCIN6WIFIbH7bMSn3R17WYmpVeubEFwOigp99vqsBSJtauE/Fb7a0PqQdxKnYid3wB7tmzmTh50nHpx2WxXbzknt5FMB/9+nhxPIOeR0qAtc2ph6AIxNtjyA1tCHIlvtx8EoXTMXPHkjOhGFM3EKQWotXx9Lg2ZvEY+PZPuPeVYgwzzoTxfmLjr+CbX1oLgC8/h+iBKKZu4S/zUnL2PA6+8C7+Uh/Srg3gdLG64FOcd5VB5IlfEWtM0HowQP6UIvQllyCEW5AcMopPouKsUsrPmce7K15Knz8VQ2jfMycfAgOs40Bmx4TDYfbt25d+ffDgQTZt2kReXh5lZWVce+21bNiwgRdffBHDMNJeOHl5ef3OOlpRUcGSJUu4+uqrueaaa4ZskT1j4VBQUEBBQUG/9q2pqWHZsmWcdtppPPnkk4hi18qqS5Ys4YEHHqCuro7S0lIgGTDtdDo57bTTMu3aCceImViejjiGVGo4MbnqKkgC8bYEoYPRbpM2yXPkc0lNjCSPmA70GsmrFvbAOPLoSSwIioClWRQuymXixXPZ/Y/1tO+NjOjf1rEwoiZ7X9xH7YZqSuaWMum6Lx+X814W25X+jIfSqpMpx/Pes+9zmxOB2DFuherCxNritFY2U9weocjlBlGiJZbAleMlZ6yeXLiLJcez4jPncOeffOx8fx2uLA8b/q3yjHbEyv/Jz8wl/JkIsWoVyR3F0nQm33kzmAYNf3mewN5GFp62Ca0wl2BtO0Xz8skek0fhWQvQV75IYE8Vhqrjn5BF7qRSlMlTKJibQ8P7LTiLFTv96snMIF2V+su6deu6xPGmPGluvPFGVqxYwfPPPw/A/Pnzuxz35ptvcv755/frHM899xx//etfuf/++/nyl7/MokWLuPrqq7nuuuuYMGFCRv3tjGD1Vot6kNTW1nLeeecxduxYfve73yFJUvq9kpISIJmOdf78+RQXF/Pwww/T0tLCTTfdxFVXXdXvdKzBYJDs7Gza29uHLQtTfycFKb9Kyd1VIJm6heKVESQBPZrM9tBZPIiKQP58P2ULx2LqBgfe2I+gCDh9DmRXKrWcTtuucJeJXqYP8/5chz1BOPlJfc/e8U4qziin4uaPY8kK8XdWY5kWnjOXcOBnv6fq37UntXDoTMpVMGuim3O3bzyu57Zje2xshobenlGdq9UrPglnvgPLsJBdEpJDxFBNwtWxtNV89s0zML76Q/73uXziURXFIZPld9LaHGHn+zuYc/YcHli+A+vvv+XA69sonFbMJxvv4tpbzuHiX11I0eyxmJ/6LzbGZ3Pe1u+z7vt/J96skj8jG0M3mXDBTKINrRRfeh6xPXsRHQqS10Pzuh007qxn8dvv9XgdpzrHY742UFJ9q33tj/i9nsyPj0Qpu/iGEXlthmGwcuVK/vrXv/KPf/yDhoYG5s+fzzXXXMM111zD9OnTM2pv2IKjX331Vfbt28e+ffuoqKjo8l5Kq0iSxD//+U9uu+02li5d2qUA3MmIqVmoLXqXzDKQDO505ztx57kxNYNEtkq0Po7aoiP7JdzFTsacOZHsq68hllvB3IrfcuC1LenMTEZCR4voffqZ94cTtTJqc/wRFYGsMi+eAj+BsaeRv38NrXuqqd1Yi/zCBoL7Tm5rw9GkC0fVJQj+75fwf+l/j9u5bcFgYzP8CIqQtsLHGhLoQSP9rD06vXnd5hrmr/8bkyZ/mb17guiaQaApgpbQkBWZW64Cx2vPU7+3hopF4/FPnwgvQnOzxvgPL0Euq2ATkzjUqKDPOJ1F/1tO4IWXOfx+Ja5sF7LHTcP2HWTfOuf/t3fn4VGUib74v1XVaxISshG2QFSQVWQVEVwQhYvgODMeRw/KgMfhN16dUcfrzBn1KIyKyKBzHL1Hfm7HMzrjcpSDOiCbo4IgKiLKKgKCCZgESEI6S6e7uuq9f3Sq093ppNOd9P79PE8/JNVV1W81neT91rvBpuvY/cTrmLz9c+T8EihLzNtD1CFFUTBjxgzMmDEDzzzzDLZt24a33noLzz77LB544AGMHDnSFyLGjBkT9nwxCw4LFy7EwoULw+43aNAgrFmzJlbFiDv/KSQNwizBnG2GLdcKSZZg621HVlEWVKeKrIIs2POzYCvqjYais7G+ajx+clUDsnYehtB1CF3A5fCg5XTn01kSAW137HRVoP5IA9SmIyj1LMEPjS2oPVqD+v1NAV3jkoVs9s6cZCkwwePQfH2EI6U6NBzb9CXG/Cb8vkSUOoQqvL3IPaItKHTwN9FxuAmV67bgxnsuxbrcSdizvxnb17XNvHbsTB5679iPvlPOwztjlqNvbxew5jPk5JiAOkCr+gFj9ZcxVpLxTd7PoOfJGHlFE0588T0s2RZU7TiIuv0O9B43Axg3A5P/6e6Q5aAUlKQLwPUUSZIwbdo0TJs2DU8++SR27NiBt956C3/729/w8MMPQ9fDX0dc13HIZLIsQbGYvAOqANjy7NA9Gkw27yCXU7uPon/eG7hmmgOWfTthsrZ2UXJ54Glp67tpiMVdTt45TS+FI/PRWN2E/a/th2KXfZ8hY70RZ7XL17SfaIpdhr3EiqwCGxrQBLnWE3VQrj16BruuvBgt9S2Y8vmOHi4ppZMzf/w1ev+ua91iKXF8vwsi+J1w/PPjKPu/y3H97Msx/sprsW9HPhyn6wAAf3pkK96/63pUD56Mlb/Zgt8tnorX/tQHNaIOyvFRwOkfINxuNH69F8NamiGZzDjz6U7omkDT6SZkF2VjVu3+WFwqJVh3F4BLNZMmTcKkSZOwfPlyfP1116baZnDogp7o4qO3Lv5mLAoHAJIsoemUA02nmuBp0aB7vkSvg0dRceQkckpyYbJZWlfL9DbRdn9iS8ok9t42OGudUB1awJgad60HmlPvkTUWeorm1OGsdsFV44baoHWrdU1z6misboLJ5h1XdebL99F7/BU9VVRKIwwN6SlnsB3Oky5899Fh1FfUYNDlh/DAbx/Gb/+1zrfP1/1/hAH6cfzP8izkfrkcjvEz0ShKodlzoBT2hbr7SzRW1iJrcD3UCZcht7EBud/+kLBpnylOdN37iOa4JOV0OvHyyy/jww8/RE1NDQoLC3HZZZdh4cKFsNlsvv3OP//8Lp0v+fospCFdFVCbVHhcgXd3hS7QdKoJzjMuaG4dzjNOnPn+NFyNbvQeMgAmmxlC16FYZO+g6yy52+sldHQsWxvSg///49ENx1F/qKndPlqzDndN9Hf0Y8GYDrilWu322AtXtYrm4y1oPtmCLaPGofGlZ3uolESUCuq/aYK9jxXZxVlormnGt29/hvHfvIjzL/VWjGw5WfimKheK8CDvm22AxQKT5sZwsRdKswNQ3XBW1+DUwWrIOTmw/XAY6slTDA2ZwJhVKZpHEqqsrMS4ceNw2223Yf369SgvL8f69etx++23Y/z48aisrIz4nGxxiJP6Q01ormqBtdACxSxDU3V4mj1wnnDDlKugcEQecvv3hiXHhrxSCXtf/QzuMypMuQrMNhOmH97dY2VhSEhf/i1j6TT4GfBOURw8CDIU7/M6+kwohCRLqK+oxcBOjyCidKKrAnV7GgEA5lwFuUOy8e0Lq7Hs8u/geuwmZNWfgDNXw351DO576QwAYNNPNwGKgkOvvw+1WUXxCO8U8Ysdd+KP/2yHbW6iroYoenfeeSdOnjyJd955B3Pntn2I165di/nz5+POO+/Ef//3f0d0TgaHLuqJ7kot1SrUBm/3EGOGJF0V8Dg0OI43QvPoMNvN0FUNjoPNAAClQYNWkF4VQEosJUuGYpeTZnxDV9n6mL0zqnRhjvTCsbkoOrcERz86AmelC6PiUD4iSj6aU0fD981o+L4ZjdWfoO++o7CNPRf1c38FOIFrb7kYmg40DM+Cw1qMsppa7P3rx/juo8PI7Z+DP2T/CcD9ib4Mipc0Gxy9YcMGLFu2LCA0AMCcOXOwdOlS/Ou//mvE52RXpTgJvvtrTCOnZMnQVQHnCTfOHGrAqd21OL37TMBxrihnmKHM05XWpGmPzMHFf7oJlsLUuG+QXWbFoJl9Yellhrs2fNixFJrQWOnEsY+/g+Ogd8HFdbkj4lBSosgduJbjb6IlmyXfoyO66p2FyVJggqdFg6dFheXsc3DKXYj+9pP439kvY8GwL2DS3ChsLIc2/UcY8U8XAACaTjlx5L/f5zTmGcQYHB3NIxlJkoShQ4eGfG7o0KHtFmbuCgaHONOadd9DV72rQhsr+3ocGtw13sXh/H8RJlNfdEp+4cKDq/YM6r74utvrgsSLZPbOSKa59S51vxKt66k0HPK22slmCbMdB2JdTKKojFj1fqKLkBSiqZxLrX87pU7Cg/H3VTErKB5eiEH/fDW0gr4YqFRgwPFP0fzpdtg/fAufuCZD3vAm7N/vRXNVDTSnjuxiO/JKC1PmJgv1AKPFIZpHEpo1axbee++9kM+tXbsWs2fPjvic/GmIQKwWUAs1HzXDAsXKV897VzVVk2hWpc40H3PhRG1Vl2eBCr4uXRV4zz4cVzm/iUXxiCjOZLMExe7tcimZJWhOHRp0yAj9t1M2SRCaQHNNMzwnjuPk6vXILsmHdOWVyBp6DtTKSly+awm+/Os2CG0rzNkmXHD3LNRc9f+heN8GlP7HW/G/SEoMIaLsqpScdba7774b119/PZqamnDjjTeib9++qKqqwquvvooNGzbgjTfewPfff+/bf/DgwWHPyeAQoUSsvszBzBSpzj6naoMGxZ46jY3GjEvRMO42pttAcaJM4x8WLL3NUCwydM1bWXNDbbfWkUFXhW9sodrkwdfPbUTj907Y+1lR+M0JqE4VOX16oXpvFZzVLvQZW4hz5lwA08jzUKcXIP/IEdhCnpko+V100UUAgBdffBEvvPCCb7skeVvopkyZErA/F4CLkXiFBwYG6klKlgz7AAsaD7UEdJEDvHfkUqUFojOWQpMvZMhmydeax58lotSVXWaFpZcZxcOLUfovN+CTkuuRY2vG8O3/gfq9B1G+9RBqqh3QVQFbiRnWQgtkRYK7QUXLSdXXPRiAb3IF1dHsm4QEqEbOUBtKp/WDrXc26g4cRdPmr9B/6D+Q99jLCbpqSoR0WwDupZde6vFzMjgkKVZ0qCcpWTIuWjILn16+HMolY2EfYEGvkmy01LvQ+L0Tuic5f+lFyl3jgaXQBKEKqA6NfZOJUoD/jThf4PejNmjofVYeSq+dib/oC/DK/VsAAHNuug8//WUlhvd7AntbPoa7QUXhufnoO7YMkknBic8O47SztkvTONt7WzFo9hSc3L4bB944AMUuc/xJJkqzBeB+/vOf9/g5+VeVKI0Zf4S1Zh37X9+GMSduxr5eCrIK7TBnmdFc2wIAUOxy2nTn8TjaVp7uqPsCESWfjgY4a04dWQVZUMtGYe8Wh2/72r9uw6FvhuP3N96N0kMVqNpzAtZeNtj7l0CSJfQZ2Yzm081QG5rajSNs/9oKmstPwJJjg2SW0MLZDDNTtIu5JWmLg6GhoQFCCOTm5nb7XKnT0TnJsEWAUoH/XbaaLx3Y+eed0Jw6mqqacWp/LZqPt3gHFqZRBdu4ZluJGeZeStoEIqJ0p9jlDgc323pnoTm7GI31Tt/2i390AUr658IsuSHJElwONxyVDph65wGSDHtJIay9LGFfVzZLyCrIwqG1u3Fsy2EIdm+kNFFZWYnLLrsMeXl5yM/Px49+9CM0NTUBAFatWoWdO3dGfE62OHRDrMY68BcW9QTj8ymbJZhyFW9AaNaRM9gOza2j5WRLWxN+Gs7iZe9jhdriwdwTexNdFCIKQ/abVjWrzIqsQjss2RaYrAr6jB6EnJmzUG4uxoLrclF71TR89EkTCgutOP8cFf2+/RAnPRqyi+3IKsiC1tSEH7bsQv2Jergb3DD3UjrsrmS8rtluhq23FY1VzZhVuz8B7wAlhTRbAO7OO+/Evn378Nhjj8HtdmP58uV46KGHsHz5cuzduxdvvfUWXnvttYjOyeCQZBgaqKcZsxJZCk3ILrVB1wQ0l9alfr+d6eizGq9Zx4xuDR1dQ92exriUg4i6z3/2NMWsYMjsscg6fyxESzNu/vyfUPHEURT0b8S9d/bGdOtWTJuVhWrzIJxzchs8Rw7BkpuF4uH9YMqyouHw96g5UgPH4SaYcpVOX1dqna2p7lgtioeXYPw/tsXjcilZpVlXpQ8++ADLly/HLbfcAgCwWq147rnnsHz5cowbNw7/9V//FfE5GRy6oacrSAwNFEseh4YWuGEv8c5Q0qS6unRcpJ9LY/9YBwhjRqhQrSWyWYK1xIwZx/bEtAxE1LPMuQqKhxXC1r8v9NpTEGcNR8WBowCA2h9O4vVNA/CLq4bj7FPbMcR9CDj6LXS3GyarBW5HM858Vw1N1SA0AcUuw+PQoDn1Dm8wCFXAo2poPtWCs7f/PZ6XSslIRDk4OklbHDweD8rKynzfT5w4Effddx8AoKCgANXV1RGfk8GhG3qiqxLDAsVK8GfTuKPncWhh78IB3f9sxjpAhBq7YAwG52JvRKnHnKtAdWg4uuE4HJXrUTrlHOS63bDY5sDd4sL0n16I2y76Br0rv4FUfRynP9oO2aTAZLfC3CsLOQP7wJbfC2eOVsPdrEJt0MKOcTICxfTDu+NxiZTs0qyr0rRp07B582bMmDEDAJCbmwtN06DrOiorK1FSUhLxORkcEoSBgRLFv0uA/+dwjWlYTD6X/gE7lmugmFvDkK4m53oUsXp/iVKZ/+8DySzBnKugz4RC9BnZH/biAqi1Z/CXR/Owq34ozu1djfyju4Cak9AbHLAX94Ypyw5TXi/IFgv0FheshTqELnDywCmILnbF5M8lpasVK1bgiiuuQElJCRYtWuRb+K2lpQUrV65stwBcVzA4dFPwXVX+AqJk0VklPdTnNNU/u8YCdsl8HQwPRJ1T7DIUswzFaoFsNkFzuWF5/lFcnJcNAFBzsmEpKwNKh8A+EnBlF6LFZEH2DwegH9gH9YwDzhpH5y/ihz+PFCDNxjjMmTMHLS0t+PWvf4277roLBQUFkCQJJSUlyMrK4hiHROIvH0pGxufyPftwX5N8Ij6r8Rr3kAoYHohCc9d4IJsl1B49A8XiDQ0AcGjjNxCqQNHwAvSfPAxmaxYchWejwZyPqpYimGUN41y74Kw8habqOjjrmiE04R0H5dfqwJ87CivNFoCbPn06RFCosdvtGDFiBObNm4eCgoKIz8ngQJQB2Oc/uTA8EIW+kaCrAs4TbtTItWiubYauamg81AIlS4Y4V0CxWgChw63YUNVSBE1IGKXuxg//sw6nvqmG5tbhadHgPqN2uasSkU8cWxwaGhrwwAMPYPXq1Th58iTGjRuHP//5z5g0aVLkr9+BF198scfOZeACcESUEHM9B32PTBB8nWtMw9gCQxSC1qyj8TsnTn91BjVfebsdKXYZ2cW9YCkpht4rH4rw4GSDDd+fssPsboKtt7crk6vejcbvnHDXetrNpMSfN0omv/jFL7Bp0ya88sor2LNnD2bOnIkrrrgCJ06ciFsZvv/++4iPYYsDEcVNrENCsocQdtki6trn339hSvtAC8befCFcN/wKW5wj8F2VGfs/d2DXh1u95xsyFL/75UqMuPFzKLs/wf7/2ojTX51Jy4UtKcaEiHJWpcg+a06nE6tWrcI777yDSy65BACwZMkSvP3221i5ciUeeeSRyMvQ6g9/+AN+8YtfYMCAAR3us3nzZjz11FN49913oapqROePS4uDy+XC2LFjIUkSvvrqq4DnysvLcfXVVyM7OxtFRUW444474Ha741EsIkpxcutKs6nMaHnwfxBRG1u+Bbb+JTimnY2qOjOamgWam9rqCWaLGbUt2XDZ8qA1NMJkNcHWxwwlSw74/ZDsNxYoCegi+gcAh8MR8HC5Qq+X5PF4oGkabDZbwHa73Y6tW7d26xIeeughHDlypN12l8uFl156CePGjcP06dPx5ZdfRhVQ4tLi8Lvf/Q79+/fH119/HbBd0zTMmTMHxcXF2Lp1K2pqarBgwQIIIfD000/Ho2hElASinaY1HcdusHJD6S7SlreWOjfq9x/GuVP2Quo7Cn3zbRjYpxDOxrOhKDImXNgPQnjgNmfBqutoPt0M3SMC1nDgzxV1STfXcSgtLQ3YvHjxYixZsqTd7r169cKUKVPw8MMPY8SIESgpKcFrr72Gzz77DEOHDo2m5D5nnXUWVqxYgeHDh6NPnz744Ycf8Mwzz+C5555DbW0tZsyYgbfffhtXX321b3rWSMQ8OKxbtw4bN27EqlWrsG7duoDnNm7ciP3796OiogL9+/cHADzxxBNYuHAhli5ditzc3FgXj4iSRKgxAP7bgysZqVoRYIsCkVdXbxjIJgkuhxMF5bsx+JwsNPbqDXeOBQN/ng+PkKFITpgkHR7ZAnPfEmhuHZqToYGi0M1ZlSoqKgLqrlartcNDXnnlFfzLv/wLBgwYAEVRMH78eMybNw9ffvll5K/v59///d8xb948lJWV4cILL8TWrVuRlZWFhQsX4vbbb+92MIlpcKiursaiRYvw9ttvIysrq93z27dvx+jRo32hAQBmzZoFl8uFnTt3Yvr06bEsHhElseA/9v4BIlUrAuEqSal6XUSRiiRA2wqskE0yRO1p5PX6Flk5BdBlMwapTkgeNyAraMkqQPHQC4Ghv8cl//z7GJacqGO5ubldvul9zjnnYPPmzWhqaoLD4UC/fv1w/fXX46yzzupWGa6++mp8++23eOqpp/DCCy9A0zQMHToUkydP7va5gRiOcRBCYOHChbj11lsxceLEkPtUVVW1W+46Pz8fFosFVVVVIY9xuVzt+pARUfrqqKUh3cYDMDRQpojk51Y2S7Dn22HJzYLe0gK5qhy2Y/tgP/QF1LVvoXHV63CvW43i0RfGsMSUMYzpWKN5RCk7Oxv9+vVDXV0dNmzYgGuuuabbl9GvXz8sW7YMx48fx4svvghd13HTTTdh0KBBePDBB1FZWRn1uSMODkuWLIEkSZ0+vvjiCzz99NNwOBy49957Oz1fqP5VQogO+10tW7YMeXl5vkdwfzIiSi9zPQfx/oDReM8+PKDCYSlMnUnhOgs5mTQlLVGkTLkKSsaUIntgXwjVA622BmpFOZr27see1z/Hzn//Atsf3pLoYlK6MMY4RPOI0IYNG7B+/XocPXoUmzZtwvTp0zFs2DDcfPPNPXY5VqsVCxcuxM6dO7Ft2zbMmDEDf/zjHzF48GD87Gc/w5Ytkf/sRBwcfvWrX+HAgQOdPkaPHo0PPvgAn376KaxWK0wmE4YMGQIAmDhxIhYsWAAA6Nu3b7uWhbq6Oqiq2q4lwnDvvfeivr7e96ioqIj0Eogoxfj3VzYq4e4aTwJLRETxIFSBltpGNJVXwllZDbX2DHrd8Ticp874fi8weFOP6easSpGor6/H7bffjuHDh+PnP/85pk2bho0bN8JsNsfgwoALL7wQr7zyCsrLy7F48WJs374dl112WcTnkUTwWtQ9pLy8PKAb0Q8//IBZs2bhrbfewuTJkzFw4ECsW7cOc+fOxfHjx9GvXz8AwBtvvIEFCxbg5MmTXeon5nA4kJeXh/r6eg6mJkpT79mHQzJLkE0SVIcW8FwyVxo6a2VI5bEaRNGKtHuhkiWjz/h8KFYTFLMM2aRg1Nv/iFHpKJaSub5mlK3q+QeRm2ULf0Dw8c0t6LvooaS8to7ouo7Vq1fj2muvjei4mLX1Dxo0KOD7nJwcAN7BIAMHDgQAzJw5EyNHjsT8+fOxYsUK1NbW4p577sGiRYtS5o0noti7yvkNPhwyBppTbxccUo0RFhgaiDpnrMHQXNsCxSxDUrzfb79gEoQmcNHOLxJZPKKUJstyxKEBiNMCcB1RFAVr166FzWbD1KlT8bOf/Qw//vGP8fjjjyeyWESUhBSrAsksQclK6K+tLgt1Z5VhgajrdFVAqAKaqkHoArqqQ2jC+4iiawhRWCLKbkqx6byTlOI2urCsrAyhekUNGjQIa9asiVcxiChFXbJvF/b+aDrcTW7UflOPlmo1KSvi6TTTE1GiGeFBNwvIisTAQLHVzQXgMkFq3LojIgIw+t0PkV9WhLxzemVsaGAwoUyjOb0tDYapu3Zi6q6dCSwRpSuh61E/MkXqzGdIRATgrBffQfeXsOk58V7ULRkDE1FXRBt6W6pVtFSrULJkKHbe7yRKJP4EEhFFiXf/ibquJ0LvzOp9PVASog4kYAG4VMMWByKiKHQlNLB1gKhNtEGbP0cUN7oAoul2lEFjb9jiQF2ybdwEbBs3IdHFIEoa4SozrOwQdY9slpBdZk10MSiTsMUhLAaHNLHzsotien4ORiNqb67nYMiAwNBAFCjS1gbZLCHnbDsGTh6A+j/dFZtCEQXh4Ojw2FUpTUz46JNEF4Eo4zEwEIVm/Gx0FiCMBd8AwD7AgtILB6HPlDGQB58D5/t/geRsgu3q22JeViLqGIMDEVE3MTAQda4rLQ66KiCbJZhyFVh6mdFYXQ/Lnm9RkJ0N5BdDZOfFoaSU0YwF3aI5LkMwOFDS8v9Dw4oZEVFmkE0SJNm72FvzaQfMew6gz6O/T3SxKAMIoUNEsZhbNMekKo5xoJTAaS+JiDKD7hHwtGhQm1W4m9zo8+hfEl0kyhRGi0M0jwzB4EBElEQYkimT6aqAx6GhqaIFdYccqK+oT3SRiMgPuypR0mL3JMpE/NxTOprrOdjlUKyrAlAFhCpwxYkvYlwyIj9C9z6iOS5DMDgQEUVo15UXAwDGbfo4wSUhSh1dmVkpeF+ieBK6gIii21E0x6QqBgcioggxMBBFT8mSIZvapl6VWqdh1Zw6hCqgqwJrTMMiDg+Vv70RkiSHHKjab8XfuldoygxCj27laLY4EBEREfU8cy8FQFtgMMgmCZpTh2QW0Jr1iMNDvxV/Q+X/mQfIUsA2oq4SQkBEsQp0NMekKgYHIiIiihvF3jYvi394ECYByewNDwCgNUd+F7ffE692v4BE1CEGByIiIoqb4JYGoqShR9lVKZpjUhSnYyUiIqK4keX2VQ+hCuietu4eskmCbJY4PTHFlTE4OppHpkjbFoeNJaMws3pfootBREREfi7ZtwsfjTjf971QAytdil2GMAkodhm6R2BDwUjoHoHZjgPxLmqPMq7ZuN7ph3cnsjgUihBRTseaOcEhbVscGBqIqKu+mnVJootAlFEuO/C17xFMNklQ7DIUuwxzL8X39caSUdhQMNL3SDXG9U4/vBu6R+D9AaMTXSQKEs8WhxMnTuCmm25CYWEhsrKyMHbsWOzcuTMGV9Wz0rbFgYioq8Zu2JLoIhBlrI7uvH84ZAwA4IoTe+NZnLiYcWxPootACVRXV4epU6di+vTpWLduHfr06YMjR46gd+/eiS5aWAwORERElHTYlYfiTeg6RBQDnSM9Zvny5SgtLcVLL73k21ZWVhbx6yZC2nZVIiIiIiLqMl1E/wDgcDgCHi6XK+TLvPvuu5g4cSKuu+469OnTB+PGjcPzzz8fzyuNGoMDEREREWU8IfSoHwBQWlqKvLw832PZsmUhX+e7777DypUrMXToUGzYsAG33nor7rjjDrz88svxvNyoxDw4rF27FpMnT4bdbkdRURF++tOfBjxfXl6Oq6++GtnZ2SgqKsIdd9wBt9sd62IREREREfWYiooK1NfX+x733ntvyP10Xcf48ePx6KOPYty4cfjlL3+JRYsWYeXKlXEuceRiOsZh1apVWLRoER599FFcfvnlEEJgz562AUGapmHOnDkoLi7G1q1bUVNTgwULFkAIgaeffjqWRSMiIiJKWWtMwzDXczDRxUgv0a7J0HpMbm4ucnNzw+7er18/jBwZODPYiBEjsGrVqshfO85iFhw8Hg/uvPNOrFixArfccotv+7BhbYu5bNy4Efv370dFRQX69+8PAHjiiSewcOFCLF26tEtvPhEREVGmYWiIARHlytERrv0wdepUHDwY+P/37bffYvDgwZG/dpzFrKvSl19+iRMnTkCWZYwbNw79+vXD7NmzsW9f2/oK27dvx+jRo32hAQBmzZoFl8vV4Vy2Lper3eATIiIiIqLuiNc6Dr/5zW/w6aef4tFHH8Xhw4fx6quv4rnnnsPtt98eoyvrOTELDt999x0AYMmSJfi3f/s3rFmzBvn5+bj00ktRW1sLAKiqqkJJSUnAcfn5+bBYLKiqqgp53mXLlgUMPCktLY3VJRARERFRhjCmY43mEYlJkyZh9erVeO211zB69Gg8/PDDePLJJ3HjjTfG6Mp6TsTBYcmSJZAkqdPHF198Ab31Tbz//vtx7bXXYsKECXjppZcgSRLefPNN3/kkSWr3GkKIkNsB4N577w0YeFJRURHpJRARERFFbY1pmO9BFI25c+diz549aGlpwYEDB7Bo0aJEF6lLIh7j8Ktf/Qo33HBDp/uUlZWhoaEBAAIGf1itVpx99tkoLy8HAPTt2xefffZZwLF1dXVQVbVdS4T/OaxWa6TFJiIiIsIa0zDIZu/Nyauc30R1Do4vSE9CCAgR+eDoaI5JVREHh6KiIhQVFYXdb8KECbBarTh48CCmTZsGAFBVFceOHfMN/pgyZQqWLl2KyspK9OvXD4B3wLTVasWECRMiLRoRERFRgHW5IzDbccD3PSv91CE9ysHR0RyTomI2q1Jubi5uvfVWLF68GKWlpRg8eDBWrFgBALjuuusAADNnzsTIkSMxf/58rFixArW1tbjnnnuwaNEizqhEREREEdn7o+lornXigq2f+rb5hwaizkQz0Nk4LlPEdB2HFStWwGQyYf78+XA6nZg8eTI++OAD5OfnAwAURcHatWtx2223YerUqbDb7Zg3bx4ef/zxWBaLiIiI0oTzr0vh/L4CBff//xj97oe+7e8PGA21QYPW3P5uMFsdiKIT0+BgNpvx+OOPdxoEBg0ahDVr1sSyGERERJSm7DfdD/HywwCAnZddBMfxRugeAd0jINT2d4IZGqgjQo+u9SDCZRxSWkyDAxEREVEsPPqGB71yFAwb6Mb48VdAf/Y+ZBdno3JrDewDLQAAySxBBqC3BgiGBupMNFOrGsdlCgYHIiIiSilTr94c8P3seVNx3YwBGJzXGyd2vIIZx/YkqGSUyjjGITwGByIiIkpJ2Xm9cPZ5ZehbrMAtLLDf8DucvWlbootFKYotDuExOFCXdbTQDZt+oxf8nkb6XvL/hIgywU9/fRhCCOi6DkVRMHBYGUpK81FcnIUBfRWUFbfAJrcAAM568Z0El5YofTE4UACjIjrXc7DLK2L675fqFdZErwLaU68f6+sw/p9j+TrGZzDRn6ntF0yCq8GNyw58ndByEGWS5za1df1QZGDuT86BIgMmBTApAlazjh9PMmHHwTpMGpYPwA6gLFHFpTQhRJRdlbgAHGWKjir90VYIOzsu0RXAUBIdFFJVPN434zXesw+H1LrKKxD/OdmnfL4j4PuPRpzPEEEUQxu/dmFIXx2KJCBLOkyyDgneipkkCciSaA0L8P1L1COE8D6iOS5DMDhkoI4qfbGuDHbn/N0NHQwI6UE2SdhQMBIAMKt2f4JLQ0Sx0C+rDmZJhSJpUOCBSVchtc53aQQIgIGBeh7HOITH4JABMrnSnMnXng5ksxTQ2mCQzBI2lozCzOp9ALwLPRnbAbSbUeXDIWMw/fDuHikTWxuIYuu8oX0Dvq/ZvdUbHISABL01RIxGw2drIGke5Fz044SUk9IPZ1UKj8EhRUQyjoCVZS++D+lFNrUPEEZgABAQMP5Rdl67/T8cMgYAeixAEKWD2q82o2DspQktw+EjRyFDg0VrwcBzR7d7XvG0QNY1SLoGCB2SrqFp2/9A8biRdekNCSgxUeZicEgR/oOV02kwck9jWEh/RkAIFSS6wggQwS0ZbEmgTJTo0FB+6ABsQoMsNCiaG6f3bkfR6Cmo/WozZOGBpGtQPG5IRnBo/VfSNMDjgnPd85A8KuDxwPaTOxJ6LZT62FUpvLQMDv4zA3X2fLCeGBzc0TljVaFN94py8P9hul8vtZFDdFHqSaJ1JVkjQHw04vwO973swNccFE3UTVUHdkLRVBSPvtC3bdDQETiz6x+AEJA1FZKuoXH7O7D6tS5Iqhto/R5aa2jQNQi3y/uv6oHQPACAphceQPYvHk7UJWasUPWucHWxZMSuSuGlXXDwr1hGWsmMRaWUFd3uCZ6OM5JpYik9CVVAMkvQPSLqVodIGaGio3AhyzIu2bcrLmUhSkW1X2+BRQjIwoP6nRuRN2EmAKDh8/eg6BokoUNqDQ4QojUceLxfqy5AF97woGnekCAE4HZ7v9Y0CE1D47P3AZqW4CtNX8FBwPj7HO5vcjJMq91VDA7hpU1wWJ8/HlmSkuhiUA+LRSsQpScjUBi6GiyCj4uULMsAgC2jxrV7jmGCyMvsavS1IEAING37H0DXoBiDno2goGuALiDpnraw4FG9XUFagwN0AaF5INxuCN/3mu9BPaOjdZ38g0Dw3+XOZm1sFvy/SQdpExwovQQHhlS5W0E9R1dFQHelUEEgeFu04SFaRmggiqfmLW+E3C4kGZAkQJIhJDmpZhvqdcFVaN78ujcgCN37aA0JEK0zJXk8rduFr1XBft3/gfNvy3zfC6211UHXIVxu74JdmgbhaQ0OGdTXPF5ChYF0vZHHMQ7hMThQUurqXQzKTJG0EsQqPHQWGtjSQLHgXP8iIEsI+DRLrZ9DoUPyCw6QZDR/9CqyLpuXiKKGlHXpDWj5+zOti2zpvtAgdN278m5rKDC2GYtqaY0Nbft6NF9Y0N1qa1jwCw8ZVIGjnseuSuExOBBR0tJVARltA5g7anUA2mZZChUqgvcJ1t3uSsG2jBrH8EA9qmX1U5Bk72fUds2v27a/+x+BOxrBAYB97q1oee9Z31PC2D57EZzrnm/dv30Atv+vW7pX1nee9lX0bT+9CwDgfPMJ75OaBvsNv/Nu++vStoCg697WBCEgPBpy/vcyNPzf36HhqXugezyArkP3eJ/XPZr3e9UD3eMXHFr3+f6XP8HgZ1d36xoyVabfpBO6gK4xOHRGEiK118l2OBzIy8vDG/I5HONAlKaMLkv+lXv/ENDR9uDnOtonWCQhwhgY7T/GgaEh9Ry8fpavYi6bvH9LhK5DkmVIsgTZpEA2yZBNCiRZ8m2XTAr6rfgbAODUv90MACh+5CUAQM0fFgGyjMIHng3xipFreuEBoLPucf5322UZkiT5vg4gdeHzHVw1CLqT76s6GNtbv/eORTBaEtr2EUY4MP7VhS80CON7o6uR7rdNF9BV1be/0IUvLGhuj2+77tF9z49Y9X746yMA8Q0KzULD9foR1NfXIzc3N26v2xVGXXLntTOQY478nnqj6sGEVf/o8rWtXLkSK1euxLFjxwAAo0aNwoMPPojZs2dH/NrxxuBARCnBf7xDR2s5dBYggp/vbL/O9vfH6VmT3565lwGAr7I/6u1/BDz/7T//LwDAua+t92377uarAQCa24Ohf1uHb667EpIsQzbJbYGh9Xwhw0RrRV1SFN9rlzz2MoDWcNG6T9GSF6K6poan7vF93dmf8FDBwQhHHenwzmlrQAh4PSMI+D/ferwxSNmozBv76K2Dmf2fE7qAMLohBYUGIxToIZ7TPRo0VWv7XhMYu2FLp9eXSbqy5hODg1e8g8Pf//53KIqCIUOGAAD+8pe/YMWKFdi1axdGjRoV8evHE4MDEaWUSFofgp8L9XyofYJxsbjk9vm0C9taC1r/lZS2ijwAyErrdrntX6OCLyuS33Y5YB/N7YHqVAOOMfb3b43wDxOhvm537tZWDaO1Ihq1S28N+N64HqOfv9QTLQ1+5wsIFUFBwje2wK9ybxwjjPEMQGsAaDtfqJaEUAFB14K2aa37awJ667YLtn4a/voyTGdrKcS7W1IqBIcvfnJ51MFh4uoPunVtBQUFWLFiBW65pXtdBWONYxyIKKXorQu3GVUiY00HwBsAghd2M54Lfr6jfYz9/AlVYPrh3T13EdSpjsaIfDxmvO9rWZEgm9sq/sYnQtOFt3KuC8hy62dBkaB72irSbWHCW4HV5eBQ0XZeTdXgcQVOI+kfRgJaH0IECmN//+1AW3eoitv/yW+fwPL5Kv6y5B34jI5bDMK1JEQiuNXB/3sh2gKC97mglga/yr3/98Y+wa0J/s/5B4S2/QU0tbUbkl9IEJoOXROY8vmOHrvudJQMgSGVJGJwtKZpePPNN9HU1IQpU6ZEfZ54YXAgopRkTNfqHxRCBQjjOSD0QGr/533nDjOYmnrGtnET2m3T3N5KY6h1MfzpAKTWYKBpApLS+n+mSDCmixdKa2Vbl3xH+bdI6N7FhgPuzEuy5AsU/nHBv9XBnyxLkJTAFoVwgQJAu1Dhf7x/Wdq+Dt3dqCcDA9BxaPCfrci/su//XKiAELyf0VrQLjRofmGiNSAYz2nu1m5PWltrg9AExxJ1guEgOt0NDg6HI2C71WqF1WoNecyePXswZcoUtLS0ICcnB6tXr8bIkSMjL3ScMTgQUcrytT50ECCAyFshQu0349iesGX5cMgYtkqEYay8Lcuyr7Ltz1th7Np0mjJkCKX9H3hNa2tlMFYRlv1eSwcgKTLgCw1S69bW88oSNOP4IB6np+3c/mXx+15S2loGFLMc0IoQKlAYz/nvFxwG2nU58m0P3q9rIaKzilH74NC+m1Lg120BwJiNJlRoMJ7TPW0hwD8cGC0IQgsMEwBw8e4vu3RdmYTBIDmVlpYGfL948WIsWbIk5L7Dhg3DV199hTNnzmDVqlVYsGABNm/enPThgcGBiFKe7lfx969itQsRQccFPw+EDhJdwdDQsQ+HjPF9bYQy4V/Bb/1ec3VtZVnjHJpbb6vEa20tDkBQ5VYLrlDrIYOBrEi+CGEEAH+a6r0bHurYttf2XoMkS/AorWHBL0wYLRQdjb9o100JQcHHb6pIOUQ5OgsP4e6kBk9D2Vkrg//+7Voe/ELBpC3bAQCfTbnAd4zQ2ocK/9DIMUSBGBLip7sLwFVUVASMceiotQEALBaLb3D0xIkTsWPHDvz5z3/Gs8/2zCxssRLT4PDtt9/it7/9LbZt2wa3243zzjsPjzzyCKZPn+7bp7y8HLfffjs++OAD2O12zJs3D48//jgsFkssi0ZEaco/RMA/UJglaMHdl4JaHgAE7GPst7EkcJaLmdX7sLFkVMiuTFec2Nut8ie79weM7vK+vpDg/757JAhT27oZsl+ck8wSNKceNrgZ5+jKa3dFuBXAg8ON5uxaxSJ4AL/vmv1aXNoN2m4NG96vw8+GFG3faqG1v4Z2wcHv++DX8YUGv338W4uEKqB7BP5Rdh4Ab6vd+wNG+4K68X88q3Z/VOWPt+DKe0ezFPXEuSlxuttVKTc3N+rB0UIIuFyuqI6Np5gGhzlz5uDcc8/1hYInn3wSc+fOxZEjR9C3b19omoY5c+aguLgYW7duRU1NDRYsWAAhBJ5++ulYFo2IMoweVBkNripqHSwCF6pKuaHA25TsX/WaWb2vewVMIcGtNB0KtZ9HQJgkSB4Jil1u1zXJqHB2Rkbge9/l1+6A1nq2SMa0qA1a+GOcbV8GTiGstZtSOFSoANoHi2BdreSEW9RKhHg+OAgEPOf3/hpd+YxQaTzn/zOxLncEZjsOdKmshs5mBIqHzir03S0bw0Jy0jUBXY48OES6aNx9992H2bNno7S0FA0NDXj99dfx0UcfYf369eEPTrCYBYfTp0/j8OHD+M///E+MGeNtpn7sscfwzDPPYN++fejbty82btyI/fv3o6KiAv379wcAPPHEE1i4cCGWLl2adNN1EVH6CA4SQOiQ0FGgAAC0rmSdKndNwwnVshIsuEXFCFGhhFrpG/BW+mXA12ogtY5R0T3eR7gWB00VkDw9Nyi4o9amcIQqun5Ma4joKDAY2ySzHvC9oSstKJ29b10Nex2dI/j4mdX7fP/3GwpGQveIToNBV0JDslSmIynHGtOwhAUb6nnxmlWpuroa8+fPR2VlJfLy8jBmzBisX78eV155ZcSvHW8xCw6FhYUYMWIEXn75ZYwfPx5WqxXPPvssSkpKMGGCdyaN7du3Y/To0b7QAACzZs2Cy+XCzp07A7o0ERHFWnCYyKQKQagAELwtVEAytq3LHRGw3aiABrcMGJVhxS6329fj0CJqzeipWa8iDQyA9zrU5sj7Qhvd54zRHOEWNoyky1WwcAGsy+91iHO+Zx/edp7WbV1ZcCwSqfLzF03rg/++yRKYKH5efPHFRBchajELDpIkYdOmTbjmmmvQq1cvyLKMkpISrF+/Hr179wYAVFVVoaSkJOC4/Px8WCwWVFVVhTyvy+UK6AMWPPUVEVFPSJVKS0/pKAB0Vbg7ykZFU7LL3i5KISqt4VobdFVAyZID9u9MNIPcIyGbpZAtV5EINSYnIFQ42x/T7deJg2juxCf6Zy5RFfjOrpuhIr6EiHJwtIjiJkKKijg4LFmyBH/4wx863WfHjh2YMGECbrvtNvTp0wcff/wx7HY7XnjhBcydOxc7duxAv379AHgDRjAhRMjtALBs2bKwr09ERNGJtB96V13l/Cbk9lB3rjujRXOXP0XFu7Lf00JVeqMJB5FWnrv6Gj1VKY9V4GFoiL9ELACXaiQhQqwv34nTp0/j9OnTne5TVlaGbdu2YebMmairqwsYqzB06FDccsst+P3vf48HH3wQ77zzDr7+um3qtbq6OhQUFOCDDz4I2VUpVItDaWkp3pDPQZakRHIpRERhJfouaKpgJYdiJZV+Bvlz0LFmoeF6/Qjq6+uTbgyrw+FAXl4eNl8yGTmmyDvjNHo8uHTLZ0l5bT0t4nenqKgIRUVFYfdrbm4G0H6aO1lum0VjypQpWLp0KSorK30tEBs3boTVavWNgwjW2Sp8REQ9LdEzuxBlimT5GWPlP3OxxSG8mI1xmDJlCvLz87FgwQI8+OCDsNvteP7553H06FHMmTMHADBz5kyMHDkS8+fPx4oVK1BbW4t77rkHixYtSvvERkSppacHfqabuZ6DrHBRt/T05yfUzyk/o0TdE7PgUFRUhPXr1+P+++/H5ZdfDlVVMWrUKLzzzjs4//zzAQCKomDt2rW47bbbMHXq1IAF4IiIklVP9d1ON8Z7wMoZJQNjgDY/j9RV3V05OhPEdAG4iRMnYsOGDZ3uM2jQIKxZsyaWxSAiijmGCS9W0iiZ8PNIkRCagJCi6KoU4QJwqSymwYGIKJN1pdKSbuGCd3iJKFUJDdCjCg4xKEySYnAgIkqgRFayYxVa2LeciCg9MTgQEWUoVuaJiNoIEeWsSpGtbJDSGByIiIiIKOPpmoCOyEOAzjEORERERESZQ2g6BKSojssUDA5ERERElPGEHuWsShm0AJwcfhciIiIiIsp0bHEgIiIioozHMQ7hMTgQERERUcYTmoCIIjhwATgiIiIiogyiawJ6FFOr6hk0xiHlg4Mxd26zyJwR7URERESpxKinZdKaB+ko5YNDTU0NAOBmcRRRtC4RERERUZw0NDQgLy8v0cUISagCQuasSp1J+eBQUFAAACgvL0/aD2IqcjgcKC0tRUVFBXJzcxNdnLTB9zU2+L7GDt/b2OD7Ght8X2OjJ95XIQQaGhrQv3//Hi5dz9E9AnoUwYFdlVKILHtnlM3Ly+MviRjIzc3l+xoDfF9jg+9r7PC9jQ2+r7HB9zU2uvu+JvsNXrY4hJfywYGIiIiIqLt0TUTVehDNgOpUxQXgiIiIiIji7JlnnsFZZ50Fm82GCRMm4OOPP050kcJK+eBgtVqxePFiWK3WRBclrfB9jQ2+r7HB9zV2+N7GBt/X2OD7GhuZ8r4KVY/6Eak33ngDd911F+6//37s2rULF198MWbPno3y8vIYXFnPkQTnxSIiIiKiDOVwOJCXl4c3bUOQJSkRH98sNFzXchj19fVdHgMyefJkjB8/HitXrvRtGzFiBH784x9j2bJlEZchXlK+xYGIiIiIqLuEKqJ+RMLtdmPnzp2YOXNmwPaZM2fik08+6clL6nEcHE1EREREGa8ZelRrgjXD21XJ4XAEbLdarSG7d50+fRqapqGkpCRge0lJCaqqqiIvQBwxOBARERFRxrJYLOjbty8WVh2N+hw5OTkoLS0N2LZ48WIsWbKkw2MkSQr4XgjRbluyYXAgIiIiooxls9lw9OhRuN3uqM8RqtLf0WDyoqIiKIrSrnXh5MmT7Vohkg2DAxERERFlNJvNBpvNFpfXslgsmDBhAjZt2oSf/OQnvu2bNm3CNddcE5cyRIvBgYiIiIgoju6++27Mnz8fEydOxJQpU/Dcc8+hvLwct956a6KL1ikGByIiIiKiOLr++utRU1ODhx56CJWVlRg9ejTee+89DB48ONFF6xTXcSAiIiIiorC4jgMREREREYXF4EBERERERGExOBARERERUVgMDkREREREFBaDAxERERERhcXgQEREREREYTE4EBERERFRWAwOREREREQUFoMDERERERGFxeBARERERERhMTgQEREREVFYDA5ERERERBTW/wM7RjzZq5aErgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = dataset.plot(\n", - " band=0, figsize=(10, 5), title=\"Noah daily Precipitation 1979-01-01\", cbar_label=\"Raindall mm/day\", vmax=30,\n", - " cbar_length=0.85\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Dataset dimension" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:15.356751Z", - "start_time": "2024-07-01T19:52:15.350834Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dataset dimensions: (4, 360, 720)\n", - "Dataset rows: 360\n", - "Dataset columns: 720\n", - "Dataset number of bands: 4\n" - ] - } - ], - "source": [ - "print(f\"Dataset dimensions: {dataset.shape}\")\n", - "print(f\"Dataset rows: {dataset.rows}\")\n", - "print(f\"Dataset columns: {dataset.columns}\")\n", - "print(f\"Dataset number of bands: {dataset.band_count}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:19.846653Z", - "start_time": "2024-07-01T19:52:19.841812Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cell size: 0.5\n" - ] - } - ], - "source": [ - "print(f\"Cell size: {dataset.cell_size}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:24.693768Z", - "start_time": "2024-07-01T19:52:24.687691Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['Band_1', 'Band_2', 'Band_3', 'Band_4']" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.band_names" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Dataset spatial properties" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:37.144279Z", - "start_time": "2024-07-01T19:52:37.137338Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EPSG: 4326\n", - "Coordinate reference system: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]\n" - ] - } - ], - "source": [ - "print(f\"EPSG: {dataset.epsg}\")\n", - "print(f\"Coordinate reference system: {dataset.crs}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:38.291462Z", - "start_time": "2024-07-01T19:52:38.280008Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2.5000e-01, 7.5000e-01, 1.2500e+00, 1.7500e+00, 2.2500e+00,\n", - " 2.7500e+00, 3.2500e+00, 3.7500e+00, 4.2500e+00, 4.7500e+00,\n", - " 5.2500e+00, 5.7500e+00, 6.2500e+00, 6.7500e+00, 7.2500e+00,\n", - " 7.7500e+00, 8.2500e+00, 8.7500e+00, 9.2500e+00, 9.7500e+00,\n", - " 1.0250e+01, 1.0750e+01, 1.1250e+01, 1.1750e+01, 1.2250e+01,\n", - " 1.2750e+01, 1.3250e+01, 1.3750e+01, 1.4250e+01, 1.4750e+01,\n", - " 1.5250e+01, 1.5750e+01, 1.6250e+01, 1.6750e+01, 1.7250e+01,\n", - " 1.7750e+01, 1.8250e+01, 1.8750e+01, 1.9250e+01, 1.9750e+01,\n", - " 2.0250e+01, 2.0750e+01, 2.1250e+01, 2.1750e+01, 2.2250e+01,\n", - " 2.2750e+01, 2.3250e+01, 2.3750e+01, 2.4250e+01, 2.4750e+01,\n", - " 2.5250e+01, 2.5750e+01, 2.6250e+01, 2.6750e+01, 2.7250e+01,\n", - " 2.7750e+01, 2.8250e+01, 2.8750e+01, 2.9250e+01, 2.9750e+01,\n", - " 3.0250e+01, 3.0750e+01, 3.1250e+01, 3.1750e+01, 3.2250e+01,\n", - " 3.2750e+01, 3.3250e+01, 3.3750e+01, 3.4250e+01, 3.4750e+01,\n", - " 3.5250e+01, 3.5750e+01, 3.6250e+01, 3.6750e+01, 3.7250e+01,\n", - " 3.7750e+01, 3.8250e+01, 3.8750e+01, 3.9250e+01, 3.9750e+01,\n", - " 4.0250e+01, 4.0750e+01, 4.1250e+01, 4.1750e+01, 4.2250e+01,\n", - " 4.2750e+01, 4.3250e+01, 4.3750e+01, 4.4250e+01, 4.4750e+01,\n", - " 4.5250e+01, 4.5750e+01, 4.6250e+01, 4.6750e+01, 4.7250e+01,\n", - " 4.7750e+01, 4.8250e+01, 4.8750e+01, 4.9250e+01, 4.9750e+01,\n", - " 5.0250e+01, 5.0750e+01, 5.1250e+01, 5.1750e+01, 5.2250e+01,\n", - " 5.2750e+01, 5.3250e+01, 5.3750e+01, 5.4250e+01, 5.4750e+01,\n", - " 5.5250e+01, 5.5750e+01, 5.6250e+01, 5.6750e+01, 5.7250e+01,\n", - " 5.7750e+01, 5.8250e+01, 5.8750e+01, 5.9250e+01, 5.9750e+01,\n", - " 6.0250e+01, 6.0750e+01, 6.1250e+01, 6.1750e+01, 6.2250e+01,\n", - " 6.2750e+01, 6.3250e+01, 6.3750e+01, 6.4250e+01, 6.4750e+01,\n", - " 6.5250e+01, 6.5750e+01, 6.6250e+01, 6.6750e+01, 6.7250e+01,\n", - " 6.7750e+01, 6.8250e+01, 6.8750e+01, 6.9250e+01, 6.9750e+01,\n", - " 7.0250e+01, 7.0750e+01, 7.1250e+01, 7.1750e+01, 7.2250e+01,\n", - " 7.2750e+01, 7.3250e+01, 7.3750e+01, 7.4250e+01, 7.4750e+01,\n", - " 7.5250e+01, 7.5750e+01, 7.6250e+01, 7.6750e+01, 7.7250e+01,\n", - " 7.7750e+01, 7.8250e+01, 7.8750e+01, 7.9250e+01, 7.9750e+01,\n", - " 8.0250e+01, 8.0750e+01, 8.1250e+01, 8.1750e+01, 8.2250e+01,\n", - " 8.2750e+01, 8.3250e+01, 8.3750e+01, 8.4250e+01, 8.4750e+01,\n", - " 8.5250e+01, 8.5750e+01, 8.6250e+01, 8.6750e+01, 8.7250e+01,\n", - " 8.7750e+01, 8.8250e+01, 8.8750e+01, 8.9250e+01, 8.9750e+01,\n", - " 9.0250e+01, 9.0750e+01, 9.1250e+01, 9.1750e+01, 9.2250e+01,\n", - " 9.2750e+01, 9.3250e+01, 9.3750e+01, 9.4250e+01, 9.4750e+01,\n", - " 9.5250e+01, 9.5750e+01, 9.6250e+01, 9.6750e+01, 9.7250e+01,\n", - " 9.7750e+01, 9.8250e+01, 9.8750e+01, 9.9250e+01, 9.9750e+01,\n", - " 1.0025e+02, 1.0075e+02, 1.0125e+02, 1.0175e+02, 1.0225e+02,\n", - " 1.0275e+02, 1.0325e+02, 1.0375e+02, 1.0425e+02, 1.0475e+02,\n", - " 1.0525e+02, 1.0575e+02, 1.0625e+02, 1.0675e+02, 1.0725e+02,\n", - " 1.0775e+02, 1.0825e+02, 1.0875e+02, 1.0925e+02, 1.0975e+02,\n", - " 1.1025e+02, 1.1075e+02, 1.1125e+02, 1.1175e+02, 1.1225e+02,\n", - " 1.1275e+02, 1.1325e+02, 1.1375e+02, 1.1425e+02, 1.1475e+02,\n", - " 1.1525e+02, 1.1575e+02, 1.1625e+02, 1.1675e+02, 1.1725e+02,\n", - " 1.1775e+02, 1.1825e+02, 1.1875e+02, 1.1925e+02, 1.1975e+02,\n", - " 1.2025e+02, 1.2075e+02, 1.2125e+02, 1.2175e+02, 1.2225e+02,\n", - " 1.2275e+02, 1.2325e+02, 1.2375e+02, 1.2425e+02, 1.2475e+02,\n", - " 1.2525e+02, 1.2575e+02, 1.2625e+02, 1.2675e+02, 1.2725e+02,\n", - " 1.2775e+02, 1.2825e+02, 1.2875e+02, 1.2925e+02, 1.2975e+02,\n", - " 1.3025e+02, 1.3075e+02, 1.3125e+02, 1.3175e+02, 1.3225e+02,\n", - " 1.3275e+02, 1.3325e+02, 1.3375e+02, 1.3425e+02, 1.3475e+02,\n", - " 1.3525e+02, 1.3575e+02, 1.3625e+02, 1.3675e+02, 1.3725e+02,\n", - " 1.3775e+02, 1.3825e+02, 1.3875e+02, 1.3925e+02, 1.3975e+02,\n", - " 1.4025e+02, 1.4075e+02, 1.4125e+02, 1.4175e+02, 1.4225e+02,\n", - " 1.4275e+02, 1.4325e+02, 1.4375e+02, 1.4425e+02, 1.4475e+02,\n", - " 1.4525e+02, 1.4575e+02, 1.4625e+02, 1.4675e+02, 1.4725e+02,\n", - " 1.4775e+02, 1.4825e+02, 1.4875e+02, 1.4925e+02, 1.4975e+02,\n", - " 1.5025e+02, 1.5075e+02, 1.5125e+02, 1.5175e+02, 1.5225e+02,\n", - " 1.5275e+02, 1.5325e+02, 1.5375e+02, 1.5425e+02, 1.5475e+02,\n", - " 1.5525e+02, 1.5575e+02, 1.5625e+02, 1.5675e+02, 1.5725e+02,\n", - " 1.5775e+02, 1.5825e+02, 1.5875e+02, 1.5925e+02, 1.5975e+02,\n", - " 1.6025e+02, 1.6075e+02, 1.6125e+02, 1.6175e+02, 1.6225e+02,\n", - " 1.6275e+02, 1.6325e+02, 1.6375e+02, 1.6425e+02, 1.6475e+02,\n", - " 1.6525e+02, 1.6575e+02, 1.6625e+02, 1.6675e+02, 1.6725e+02,\n", - " 1.6775e+02, 1.6825e+02, 1.6875e+02, 1.6925e+02, 1.6975e+02,\n", - " 1.7025e+02, 1.7075e+02, 1.7125e+02, 1.7175e+02, 1.7225e+02,\n", - " 1.7275e+02, 1.7325e+02, 1.7375e+02, 1.7425e+02, 1.7475e+02,\n", - " 1.7525e+02, 1.7575e+02, 1.7625e+02, 1.7675e+02, 1.7725e+02,\n", - " 1.7775e+02, 1.7825e+02, 1.7875e+02, 1.7925e+02, 1.7975e+02,\n", - " 1.8025e+02, 1.8075e+02, 1.8125e+02, 1.8175e+02, 1.8225e+02,\n", - " 1.8275e+02, 1.8325e+02, 1.8375e+02, 1.8425e+02, 1.8475e+02,\n", - " 1.8525e+02, 1.8575e+02, 1.8625e+02, 1.8675e+02, 1.8725e+02,\n", - " 1.8775e+02, 1.8825e+02, 1.8875e+02, 1.8925e+02, 1.8975e+02,\n", - " 1.9025e+02, 1.9075e+02, 1.9125e+02, 1.9175e+02, 1.9225e+02,\n", - " 1.9275e+02, 1.9325e+02, 1.9375e+02, 1.9425e+02, 1.9475e+02,\n", - " 1.9525e+02, 1.9575e+02, 1.9625e+02, 1.9675e+02, 1.9725e+02,\n", - " 1.9775e+02, 1.9825e+02, 1.9875e+02, 1.9925e+02, 1.9975e+02,\n", - " 2.0025e+02, 2.0075e+02, 2.0125e+02, 2.0175e+02, 2.0225e+02,\n", - " 2.0275e+02, 2.0325e+02, 2.0375e+02, 2.0425e+02, 2.0475e+02,\n", - " 2.0525e+02, 2.0575e+02, 2.0625e+02, 2.0675e+02, 2.0725e+02,\n", - " 2.0775e+02, 2.0825e+02, 2.0875e+02, 2.0925e+02, 2.0975e+02,\n", - " 2.1025e+02, 2.1075e+02, 2.1125e+02, 2.1175e+02, 2.1225e+02,\n", - " 2.1275e+02, 2.1325e+02, 2.1375e+02, 2.1425e+02, 2.1475e+02,\n", - " 2.1525e+02, 2.1575e+02, 2.1625e+02, 2.1675e+02, 2.1725e+02,\n", - " 2.1775e+02, 2.1825e+02, 2.1875e+02, 2.1925e+02, 2.1975e+02,\n", - " 2.2025e+02, 2.2075e+02, 2.2125e+02, 2.2175e+02, 2.2225e+02,\n", - " 2.2275e+02, 2.2325e+02, 2.2375e+02, 2.2425e+02, 2.2475e+02,\n", - " 2.2525e+02, 2.2575e+02, 2.2625e+02, 2.2675e+02, 2.2725e+02,\n", - " 2.2775e+02, 2.2825e+02, 2.2875e+02, 2.2925e+02, 2.2975e+02,\n", - " 2.3025e+02, 2.3075e+02, 2.3125e+02, 2.3175e+02, 2.3225e+02,\n", - " 2.3275e+02, 2.3325e+02, 2.3375e+02, 2.3425e+02, 2.3475e+02,\n", - " 2.3525e+02, 2.3575e+02, 2.3625e+02, 2.3675e+02, 2.3725e+02,\n", - " 2.3775e+02, 2.3825e+02, 2.3875e+02, 2.3925e+02, 2.3975e+02,\n", - " 2.4025e+02, 2.4075e+02, 2.4125e+02, 2.4175e+02, 2.4225e+02,\n", - " 2.4275e+02, 2.4325e+02, 2.4375e+02, 2.4425e+02, 2.4475e+02,\n", - " 2.4525e+02, 2.4575e+02, 2.4625e+02, 2.4675e+02, 2.4725e+02,\n", - " 2.4775e+02, 2.4825e+02, 2.4875e+02, 2.4925e+02, 2.4975e+02,\n", - " 2.5025e+02, 2.5075e+02, 2.5125e+02, 2.5175e+02, 2.5225e+02,\n", - " 2.5275e+02, 2.5325e+02, 2.5375e+02, 2.5425e+02, 2.5475e+02,\n", - " 2.5525e+02, 2.5575e+02, 2.5625e+02, 2.5675e+02, 2.5725e+02,\n", - " 2.5775e+02, 2.5825e+02, 2.5875e+02, 2.5925e+02, 2.5975e+02,\n", - " 2.6025e+02, 2.6075e+02, 2.6125e+02, 2.6175e+02, 2.6225e+02,\n", - " 2.6275e+02, 2.6325e+02, 2.6375e+02, 2.6425e+02, 2.6475e+02,\n", - " 2.6525e+02, 2.6575e+02, 2.6625e+02, 2.6675e+02, 2.6725e+02,\n", - " 2.6775e+02, 2.6825e+02, 2.6875e+02, 2.6925e+02, 2.6975e+02,\n", - " 2.7025e+02, 2.7075e+02, 2.7125e+02, 2.7175e+02, 2.7225e+02,\n", - " 2.7275e+02, 2.7325e+02, 2.7375e+02, 2.7425e+02, 2.7475e+02,\n", - " 2.7525e+02, 2.7575e+02, 2.7625e+02, 2.7675e+02, 2.7725e+02,\n", - " 2.7775e+02, 2.7825e+02, 2.7875e+02, 2.7925e+02, 2.7975e+02,\n", - " 2.8025e+02, 2.8075e+02, 2.8125e+02, 2.8175e+02, 2.8225e+02,\n", - " 2.8275e+02, 2.8325e+02, 2.8375e+02, 2.8425e+02, 2.8475e+02,\n", - " 2.8525e+02, 2.8575e+02, 2.8625e+02, 2.8675e+02, 2.8725e+02,\n", - " 2.8775e+02, 2.8825e+02, 2.8875e+02, 2.8925e+02, 2.8975e+02,\n", - " 2.9025e+02, 2.9075e+02, 2.9125e+02, 2.9175e+02, 2.9225e+02,\n", - " 2.9275e+02, 2.9325e+02, 2.9375e+02, 2.9425e+02, 2.9475e+02,\n", - " 2.9525e+02, 2.9575e+02, 2.9625e+02, 2.9675e+02, 2.9725e+02,\n", - " 2.9775e+02, 2.9825e+02, 2.9875e+02, 2.9925e+02, 2.9975e+02,\n", - " 3.0025e+02, 3.0075e+02, 3.0125e+02, 3.0175e+02, 3.0225e+02,\n", - " 3.0275e+02, 3.0325e+02, 3.0375e+02, 3.0425e+02, 3.0475e+02,\n", - " 3.0525e+02, 3.0575e+02, 3.0625e+02, 3.0675e+02, 3.0725e+02,\n", - " 3.0775e+02, 3.0825e+02, 3.0875e+02, 3.0925e+02, 3.0975e+02,\n", - " 3.1025e+02, 3.1075e+02, 3.1125e+02, 3.1175e+02, 3.1225e+02,\n", - " 3.1275e+02, 3.1325e+02, 3.1375e+02, 3.1425e+02, 3.1475e+02,\n", - " 3.1525e+02, 3.1575e+02, 3.1625e+02, 3.1675e+02, 3.1725e+02,\n", - " 3.1775e+02, 3.1825e+02, 3.1875e+02, 3.1925e+02, 3.1975e+02,\n", - " 3.2025e+02, 3.2075e+02, 3.2125e+02, 3.2175e+02, 3.2225e+02,\n", - " 3.2275e+02, 3.2325e+02, 3.2375e+02, 3.2425e+02, 3.2475e+02,\n", - " 3.2525e+02, 3.2575e+02, 3.2625e+02, 3.2675e+02, 3.2725e+02,\n", - " 3.2775e+02, 3.2825e+02, 3.2875e+02, 3.2925e+02, 3.2975e+02,\n", - " 3.3025e+02, 3.3075e+02, 3.3125e+02, 3.3175e+02, 3.3225e+02,\n", - " 3.3275e+02, 3.3325e+02, 3.3375e+02, 3.3425e+02, 3.3475e+02,\n", - " 3.3525e+02, 3.3575e+02, 3.3625e+02, 3.3675e+02, 3.3725e+02,\n", - " 3.3775e+02, 3.3825e+02, 3.3875e+02, 3.3925e+02, 3.3975e+02,\n", - " 3.4025e+02, 3.4075e+02, 3.4125e+02, 3.4175e+02, 3.4225e+02,\n", - " 3.4275e+02, 3.4325e+02, 3.4375e+02, 3.4425e+02, 3.4475e+02,\n", - " 3.4525e+02, 3.4575e+02, 3.4625e+02, 3.4675e+02, 3.4725e+02,\n", - " 3.4775e+02, 3.4825e+02, 3.4875e+02, 3.4925e+02, 3.4975e+02,\n", - " 3.5025e+02, 3.5075e+02, 3.5125e+02, 3.5175e+02, 3.5225e+02,\n", - " 3.5275e+02, 3.5325e+02, 3.5375e+02, 3.5425e+02, 3.5475e+02,\n", - " 3.5525e+02, 3.5575e+02, 3.5625e+02, 3.5675e+02, 3.5725e+02,\n", - " 3.5775e+02, 3.5825e+02, 3.5875e+02, 3.5925e+02, 3.5975e+02])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.lon" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T19:52:40.163227Z", - "start_time": "2024-07-01T19:52:40.151470Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 89.75, 89.25, 88.75, 88.25, 87.75, 87.25, 86.75, 86.25,\n", - " 85.75, 85.25, 84.75, 84.25, 83.75, 83.25, 82.75, 82.25,\n", - " 81.75, 81.25, 80.75, 80.25, 79.75, 79.25, 78.75, 78.25,\n", - " 77.75, 77.25, 76.75, 76.25, 75.75, 75.25, 74.75, 74.25,\n", - " 73.75, 73.25, 72.75, 72.25, 71.75, 71.25, 70.75, 70.25,\n", - " 69.75, 69.25, 68.75, 68.25, 67.75, 67.25, 66.75, 66.25,\n", - " 65.75, 65.25, 64.75, 64.25, 63.75, 63.25, 62.75, 62.25,\n", - " 61.75, 61.25, 60.75, 60.25, 59.75, 59.25, 58.75, 58.25,\n", - " 57.75, 57.25, 56.75, 56.25, 55.75, 55.25, 54.75, 54.25,\n", - " 53.75, 53.25, 52.75, 52.25, 51.75, 51.25, 50.75, 50.25,\n", - " 49.75, 49.25, 48.75, 48.25, 47.75, 47.25, 46.75, 46.25,\n", - " 45.75, 45.25, 44.75, 44.25, 43.75, 43.25, 42.75, 42.25,\n", - " 41.75, 41.25, 40.75, 40.25, 39.75, 39.25, 38.75, 38.25,\n", - " 37.75, 37.25, 36.75, 36.25, 35.75, 35.25, 34.75, 34.25,\n", - " 33.75, 33.25, 32.75, 32.25, 31.75, 31.25, 30.75, 30.25,\n", - " 29.75, 29.25, 28.75, 28.25, 27.75, 27.25, 26.75, 26.25,\n", - " 25.75, 25.25, 24.75, 24.25, 23.75, 23.25, 22.75, 22.25,\n", - " 21.75, 21.25, 20.75, 20.25, 19.75, 19.25, 18.75, 18.25,\n", - " 17.75, 17.25, 16.75, 16.25, 15.75, 15.25, 14.75, 14.25,\n", - " 13.75, 13.25, 12.75, 12.25, 11.75, 11.25, 10.75, 10.25,\n", - " 9.75, 9.25, 8.75, 8.25, 7.75, 7.25, 6.75, 6.25,\n", - " 5.75, 5.25, 4.75, 4.25, 3.75, 3.25, 2.75, 2.25,\n", - " 1.75, 1.25, 0.75, 0.25, -0.25, -0.75, -1.25, -1.75,\n", - " -2.25, -2.75, -3.25, -3.75, -4.25, -4.75, -5.25, -5.75,\n", - " -6.25, -6.75, -7.25, -7.75, -8.25, -8.75, -9.25, -9.75,\n", - " -10.25, -10.75, -11.25, -11.75, -12.25, -12.75, -13.25, -13.75,\n", - " -14.25, -14.75, -15.25, -15.75, -16.25, -16.75, -17.25, -17.75,\n", - " -18.25, -18.75, -19.25, -19.75, -20.25, -20.75, -21.25, -21.75,\n", - " -22.25, -22.75, -23.25, -23.75, -24.25, -24.75, -25.25, -25.75,\n", - " -26.25, -26.75, -27.25, -27.75, -28.25, -28.75, -29.25, -29.75,\n", - " -30.25, -30.75, -31.25, -31.75, -32.25, -32.75, -33.25, -33.75,\n", - " -34.25, -34.75, -35.25, -35.75, -36.25, -36.75, -37.25, -37.75,\n", - " -38.25, -38.75, -39.25, -39.75, -40.25, -40.75, -41.25, -41.75,\n", - " -42.25, -42.75, -43.25, -43.75, -44.25, -44.75, -45.25, -45.75,\n", - " -46.25, -46.75, -47.25, -47.75, -48.25, -48.75, -49.25, -49.75,\n", - " -50.25, -50.75, -51.25, -51.75, -52.25, -52.75, -53.25, -53.75,\n", - " -54.25, -54.75, -55.25, -55.75, -56.25, -56.75, -57.25, -57.75,\n", - " -58.25, -58.75, -59.25, -59.75, -60.25, -60.75, -61.25, -61.75,\n", - " -62.25, -62.75, -63.25, -63.75, -64.25, -64.75, -65.25, -65.75,\n", - " -66.25, -66.75, -67.25, -67.75, -68.25, -68.75, -69.25, -69.75,\n", - " -70.25, -70.75, -71.25, -71.75, -72.25, -72.75, -73.25, -73.75,\n", - " -74.25, -74.75, -75.25, -75.75, -76.25, -76.75, -77.25, -77.75,\n", - " -78.25, -78.75, -79.25, -79.75, -80.25, -80.75, -81.25, -81.75,\n", - " -82.25, -82.75, -83.25, -83.75, -84.25, -84.75, -85.25, -85.75,\n", - " -86.25, -86.75, -87.25, -87.75, -88.25, -88.75, -89.25, -89.75])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.lat" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "#### Bounding box" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-01T22:00:24.310907Z", - "start_time": "2024-07-01T22:00:24.289035Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[0.0, -90.0, 360.0, 90.0]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.bbox" - ] - }, - { - "cell_type": "code", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "scrolled": true, - "ExecuteTime": { - "end_time": "2024-07-01T22:07:24.242061Z", - "start_time": "2024-07-01T22:07:24.219982Z" - } - }, - "source": "print(dataset.bounds)", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " geometry\n", - "0 POLYGON ((0 90, 0 -90, 360 -90, 360 90, 0 90))\n" - ] - } - ], - "execution_count": 16 - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-30T00:27:43.215102Z", - "start_time": "2024-06-30T00:27:43.020668Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAEjCAYAAADzFUHYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbxklEQVR4nO3df2yV5f3/8dcB2kOH7QE8tOd0LW39waYWWSzMtlP54axtEH9gDGji2qg1jpYNgRgYGgr+KHNCXHTAnKSRqIElE4OrU4pQlABbZV2s6EydRar02NFJT0U9VXp9//iE892hpbSOu+c6p89Hcie9r/s693m/z0U4r9znbo/LGGMEAABgqRHRLgAAAKA/hBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKuNinYB/6uenh4dPXpUycnJcrlc0S4HAAAMgDFGXV1dSk9P14gR/V87ifmwcvToUWVmZka7DAAA8B20trYqIyOj3zkxH1aSk5Ml/V+zKSkpUa4GAAAMRDAYVGZmZvh9vD8xH1ZOffSTkpJCWAEAIMYM5BYObrAFAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFaL+b9g67TsZbXRLgEAgKg6vGZ2VJ+fKysAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAVnM0rGRnZ8vlcvXaKioqJEllZWW9juXn5ztZEgAAiDGjnDx5Q0ODTp48Gd5/9913dd111+m2224LjxUXF6umpia8n5iY6GRJAAAgxjgaViZMmBCxv2bNGl144YWaPn16eMztdsvn8w34nKFQSKFQKLwfDAb/90IBAIC1huyele7ubj3//PO666675HK5wuP19fVKTU3VpEmTVF5ervb29n7PU11dLY/HE94yMzOdLh0AAETRkIWVl19+WcePH1dZWVl4rKSkRC+88IJ27dqltWvXqqGhQbNmzYq4cnK65cuXq7OzM7y1trYOQfUAACBaHP0Y6L9t2rRJJSUlSk9PD4/Nmzcv/HNubq6mTp2qrKws1dbWau7cuX2ex+12y+12O14vAACww5CElY8//lg7d+7USy+91O88v9+vrKwsNTc3D0VZAAAgBgzJx0A1NTVKTU3V7Nmz+53X0dGh1tZW+f3+oSgLAADEAMfDSk9Pj2pqalRaWqpRo/7/hZwvvvhCS5cu1f79+3X48GHV19drzpw58nq9uuWWW5wuCwAAxAjHPwbauXOnjhw5orvuuitifOTIkWpqatLmzZt1/Phx+f1+zZw5U1u3blVycrLTZQEAgBjheFgpKiqSMabXeFJSkl5//XWnnx4AAMQ4vhsIAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqzkaVqqqquRyuSI2n88XPm6MUVVVldLT05WUlKQZM2bo0KFDTpYEAABijONXVi677DK1tbWFt6ampvCxxx9/XOvWrdPTTz+thoYG+Xw+XXfdderq6nK6LAAAECMcDyujRo2Sz+cLbxMmTJD0f1dVnnzySa1YsUJz585Vbm6unnvuOX355Zd68cUXnS4LAADECMfDSnNzs9LT05WTk6P58+fro48+kiS1tLQoEAioqKgoPNftdmv69Onat2/fGc8XCoUUDAYjNgAAEL8cDStXXnmlNm/erNdff11/+MMfFAgEVFhYqI6ODgUCAUlSWlpaxGPS0tLCx/pSXV0tj8cT3jIzM51sAQAARJmjYaWkpES33nqrJk+erJ/+9Keqra2VJD333HPhOS6XK+IxxpheY/9t+fLl6uzsDG+tra3OFA8AAKwwpL+6PGbMGE2ePFnNzc3h3wo6/SpKe3t7r6st/83tdislJSViAwAA8WtIw0ooFNL7778vv9+vnJwc+Xw+1dXVhY93d3drz549KiwsHMqyAACAxUY5efKlS5dqzpw5mjhxotrb2/XII48oGAyqtLRULpdLixYt0mOPPaaLL75YF198sR577DF973vf0x133OFkWQAAIIY4GlY++eQT3X777Tp27JgmTJig/Px8HThwQFlZWZKkBx54QF999ZUWLFigzz//XFdeeaV27Nih5ORkJ8sCAAAxxGWMMdEu4n8RDAbl8XjU2dnpyP0r2ctqz/k5AQCIJYfXzD7n5xzM+zffDQQAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVHA0r1dXVmjZtmpKTk5Wamqqbb75ZH3zwQcScsrIyuVyuiC0/P9/JsgAAQAxxNKzs2bNHFRUVOnDggOrq6vTtt9+qqKhIJ06ciJhXXFystra28Pbqq686WRYAAIgho5w8+WuvvRaxX1NTo9TUVB08eFDXXHNNeNztdsvn8zlZCgAAiFFDes9KZ2enJGn8+PER4/X19UpNTdWkSZNUXl6u9vb2M54jFAopGAxGbAAAIH4NWVgxxmjx4sW66qqrlJubGx4vKSnRCy+8oF27dmnt2rVqaGjQrFmzFAqF+jxPdXW1PB5PeMvMzByqFgAAQBS4jDFmKJ6ooqJCtbW12rt3rzIyMs44r62tTVlZWdqyZYvmzp3b63goFIoIMsFgUJmZmers7FRKSso5rzt7We05PycAALHk8JrZ5/ycwWBQHo9nQO/fjt6zcsrChQu1fft2vfnmm/0GFUny+/3KyspSc3Nzn8fdbrfcbrcTZQIAAAs5GlaMMVq4cKG2bdum+vp65eTknPUxHR0dam1tld/vd7I0AAAQIxy9Z6WiokLPP/+8XnzxRSUnJysQCCgQCOirr76SJH3xxRdaunSp9u/fr8OHD6u+vl5z5syR1+vVLbfc4mRpAAAgRjh6ZWXDhg2SpBkzZkSM19TUqKysTCNHjlRTU5M2b96s48ePy+/3a+bMmdq6dauSk5OdLA0AAMQIxz8G6k9SUpJef/11J0sAAAAxju8GAgAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDUrwsr69euVk5Oj0aNHKy8vT2+99Va0SwIAAJaIeljZunWrFi1apBUrVqixsVFXX321SkpKdOTIkWiXBgAALBD1sLJu3Trdfffduueee3TJJZfoySefVGZmpjZs2NDn/FAopGAwGLEBAID4FdWw0t3drYMHD6qoqChivKioSPv27evzMdXV1fJ4POEtMzNzKEoFAABREtWwcuzYMZ08eVJpaWkR42lpaQoEAn0+Zvny5ers7Axvra2tQ1EqAACIklHRLkCSXC5XxL4xptfYKW63W263eyjKAgAAFojqlRWv16uRI0f2uorS3t7e62oLAAAYnqIaVhITE5WXl6e6urqI8bq6OhUWFkapKgAAYJOofwy0ePFi3XnnnZo6daoKCgr0zDPP6MiRI7rvvvuiXRoAALBA1MPKvHnz1NHRodWrV6utrU25ubl69dVXlZWVFe3SAACABaIeViRpwYIFWrBgQbTLAAAAFor6H4UDAADoD2EFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAVnMsrBw+fFh33323cnJylJSUpAsvvFArV65Ud3d3xDyXy9Vr27hxo1NlAQCAGDPKqRP/85//VE9Pj37/+9/roosu0rvvvqvy8nKdOHFCTzzxRMTcmpoaFRcXh/c9Ho9TZQEAgBjjWFgpLi6OCCAXXHCBPvjgA23YsKFXWBk7dqx8Pp9TpQAAgBg2pPesdHZ2avz48b3GKysr5fV6NW3aNG3cuFE9PT1nPEcoFFIwGIzYAABA/HLsysrp/vWvf+mpp57S2rVrI8YffvhhXXvttUpKStIbb7yhJUuW6NixY3rwwQf7PE91dbVWrVo1FCUDAAALuIwxZjAPqKqqOmtYaGho0NSpU8P7R48e1fTp0zV9+nQ9++yz/T527dq1Wr16tTo7O/s8HgqFFAqFwvvBYFCZmZnq7OxUSkrKIDoZmOxltef8nAAAxJLDa2af83MGg0F5PJ4BvX8P+spKZWWl5s+f3++c7Ozs8M9Hjx7VzJkzVVBQoGeeeeas58/Pz1cwGNRnn32mtLS0XsfdbrfcbvdgywYAADFq0GHF6/XK6/UOaO6nn36qmTNnKi8vTzU1NRox4uy3yDQ2Nmr06NEaO3bsYEsDAABxyLF7Vo4ePaoZM2Zo4sSJeuKJJ/Tvf/87fOzUb/688sorCgQCKigoUFJSknbv3q0VK1bo3nvv5eoJAACQ5GBY2bFjhz788EN9+OGHysjIiDh26jaZhIQErV+/XosXL1ZPT48uuOACrV69WhUVFU6VBQAAYsygb7C1zWBu0PkuuMEWADDcRfsGW74bCAAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKs5Glays7PlcrkitmXLlkXMOXLkiObMmaMxY8bI6/XqF7/4hbq7u50sCwAAxJBRTj/B6tWrVV5eHt4/77zzwj+fPHlSs2fP1oQJE7R37151dHSotLRUxhg99dRTTpcGAABigONhJTk5WT6fr89jO3bs0HvvvafW1lalp6dLktauXauysjI9+uijSklJcbo8AABgOcfvWfn1r3+t888/Xz/60Y/06KOPRnzEs3//fuXm5oaDiiRdf/31CoVCOnjwYJ/nC4VCCgaDERsAAIhfjl5Z+eUvf6krrrhC48aN09/+9jctX75cLS0tevbZZyVJgUBAaWlpEY8ZN26cEhMTFQgE+jxndXW1Vq1a5WTZAADAIoO+slJVVdXrptnTt7fffluSdP/992v69Om6/PLLdc8992jjxo3atGmTOjo6wudzuVy9nsMY0+e4JC1fvlydnZ3hrbW1dbAtAACAGDLoKyuVlZWaP39+v3Oys7P7HM/Pz5ckffjhhzr//PPl8/n017/+NWLO559/rm+++abXFZdT3G633G73YMsGAAAxatBhxev1yuv1fqcna2xslCT5/X5JUkFBgR599FG1tbWFx3bs2CG32628vLzv9BwAACC+OHbPyv79+3XgwAHNnDlTHo9HDQ0Nuv/++3XjjTdq4sSJkqSioiJdeumluvPOO/Wb3/xG//nPf7R06VKVl5fzm0AAAECSg2HF7XZr69atWrVqlUKhkLKyslReXq4HHnggPGfkyJGqra3VggUL9JOf/ERJSUm644479MQTTzhVFgAAiDGOhZUrrrhCBw4cOOu8iRMn6s9//rNTZQAAgBjHdwMBAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcfCSn19vVwuV59bQ0NDeF5fxzdu3OhUWQAAIMaMcurEhYWFamtrixh76KGHtHPnTk2dOjVivKamRsXFxeF9j8fjVFkAACDGOBZWEhMT5fP5wvvffPONtm/frsrKSrlcroi5Y8eOjZgLAABwypDds7J9+3YdO3ZMZWVlvY5VVlbK6/Vq2rRp2rhxo3p6es54nlAopGAwGLEBAID45diVldNt2rRJ119/vTIzMyPGH374YV177bVKSkrSG2+8oSVLlujYsWN68MEH+zxPdXW1Vq1aNRQlAwAAC7iMMWYwD6iqqjprWGhoaIi4L+WTTz5RVlaW/vjHP+rWW2/t97Fr167V6tWr1dnZ2efxUCikUCgU3g8Gg8rMzFRnZ6dSUlIG0cnAZC+rPefnBAAglhxeM/ucnzMYDMrj8Qzo/XvQV1YqKys1f/78fudkZ2dH7NfU1Oj888/XjTfeeNbz5+fnKxgM6rPPPlNaWlqv4263W263e1A1AwCA2DXosOL1euX1egc83xijmpoa/exnP1NCQsJZ5zc2Nmr06NEaO3bsYEsDAABxyPF7Vnbt2qWWlhbdfffdvY698sorCgQCKigoUFJSknbv3q0VK1bo3nvv5eoJAACQNARhZdOmTSosLNQll1zS61hCQoLWr1+vxYsXq6enRxdccIFWr16tiooKp8sCAAAxwvGw8uKLL57xWHFxccQfgwMAADgd3w0EAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUc/yLDWHd4zexolwAAwLDGlRUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYLWY/wu2xhhJUjAYjHIlAABgoE69b596H+9PzIeVrq4uSVJmZmaUKwEAAIPV1dUlj8fT7xyXGUiksVhPT4+OHj2q5ORkuVyuc3ruYDCozMxMtba2KiUl5Zye22bDtW+J3odj78O1b2n49j5c+5bs6t0Yo66uLqWnp2vEiP7vSon5KysjRoxQRkaGo8+RkpIS9UWNhuHat0Tvw7H34dq3NHx7H659S/b0frYrKqdwgy0AALAaYQUAAFiNsNIPt9utlStXyu12R7uUITVc+5bofTj2Plz7loZv78O1byl2e4/5G2wBAEB848oKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVbOYP369crJydHo0aOVl5ent956K9olnVNVVVVyuVwRm8/nCx83xqiqqkrp6elKSkrSjBkzdOjQoShW/N29+eabmjNnjtLT0+VyufTyyy9HHB9Ir6FQSAsXLpTX69WYMWN044036pNPPhnCLr6bs/VeVlbW699Bfn5+xJxY7L26ulrTpk1TcnKyUlNTdfPNN+uDDz6ImBOP6z6QvuN1zTds2KDLL788/JdZCwoK9Je//CV8PB7X+5Sz9R4Pa05Y6cPWrVu1aNEirVixQo2Njbr66qtVUlKiI0eORLu0c+qyyy5TW1tbeGtqagofe/zxx7Vu3To9/fTTamhokM/n03XXXRf+4shYcuLECU2ZMkVPP/10n8cH0uuiRYu0bds2bdmyRXv37tUXX3yhG264QSdPnhyqNr6Ts/UuScXFxRH/Dl599dWI47HY+549e1RRUaEDBw6orq5O3377rYqKinTixInwnHhc94H0LcXnmmdkZGjNmjV6++239fbbb2vWrFm66aabwoEkHtf7lLP1LsXBmhv08uMf/9jcd999EWM//OEPzbJly6JU0bm3cuVKM2XKlD6P9fT0GJ/PZ9asWRMe+/rrr43H4zEbN24cogqdIcls27YtvD+QXo8fP24SEhLMli1bwnM+/fRTM2LECPPaa68NWe3/q9N7N8aY0tJSc9NNN53xMfHSe3t7u5Fk9uzZY4wZPut+et/GDJ81N8aYcePGmWeffXbYrPd/O9W7MfGx5lxZOU13d7cOHjyooqKiiPGioiLt27cvSlU5o7m5Wenp6crJydH8+fP10UcfSZJaWloUCAQiXgO3263p06fH3WswkF4PHjyob775JmJOenq6cnNz4+L1qK+vV2pqqiZNmqTy8nK1t7eHj8VL752dnZKk8ePHSxo+635636fE+5qfPHlSW7Zs0YkTJ1RQUDBs1lvq3fspsb7mMf+ty+fasWPHdPLkSaWlpUWMp6WlKRAIRKmqc+/KK6/U5s2bNWnSJH322Wd65JFHVFhYqEOHDoX77Os1+Pjjj6NRrmMG0msgEFBiYqLGjRvXa06s/5soKSnRbbfdpqysLLW0tOihhx7SrFmzdPDgQbnd7rjo3RijxYsX66qrrlJubq6k4bHuffUtxfeaNzU1qaCgQF9//bXOO+88bdu2TZdeemn4DTee1/tMvUvxseaElTNwuVwR+8aYXmOxrKSkJPzz5MmTVVBQoAsvvFDPPfdc+MareH8N/tt36TUeXo958+aFf87NzdXUqVOVlZWl2tpazZ0794yPi6XeKysr9c4772jv3r29jsXzup+p73he8x/84Af6xz/+oePHj+tPf/qTSktLtWfPnvDxeF7vM/V+6aWXxsWa8zHQabxer0aOHNkrTba3t/dK5fFkzJgxmjx5spqbm8O/FTQcXoOB9Orz+dTd3a3PP//8jHPihd/vV1ZWlpqbmyXFfu8LFy7U9u3btXv3bmVkZITH433dz9R3X+JpzRMTE3XRRRdp6tSpqq6u1pQpU/Tb3/427tdbOnPvfYnFNSesnCYxMVF5eXmqq6uLGK+rq1NhYWGUqnJeKBTS+++/L7/fr5ycHPl8vojXoLu7W3v27Im712Agvebl5SkhISFiTltbm9599924ez06OjrU2toqv98vKXZ7N8aosrJSL730knbt2qWcnJyI4/G67mfruy/xsuZ9McYoFArF7Xr351TvfYnJNR/yW3pjwJYtW0xCQoLZtGmTee+998yiRYvMmDFjzOHDh6Nd2jmzZMkSU19fbz766CNz4MABc8MNN5jk5ORwj2vWrDEej8e89NJLpqmpydx+++3G7/ebYDAY5coHr6uryzQ2NprGxkYjyaxbt840Njaajz/+2BgzsF7vu+8+k5GRYXbu3Gn+/ve/m1mzZpkpU6aYb7/9NlptDUh/vXd1dZklS5aYffv2mZaWFrN7925TUFBgvv/978d87z//+c+Nx+Mx9fX1pq2tLbx9+eWX4TnxuO5n6zue13z58uXmzTffNC0tLeadd94xv/rVr8yIESPMjh07jDHxud6n9Nd7vKw5YeUMfve735msrCyTmJhorrjiiohf/YsH8+bNM36/3yQkJJj09HQzd+5cc+jQofDxnp4es3LlSuPz+Yzb7TbXXHONaWpqimLF393u3buNpF5baWmpMWZgvX711VemsrLSjB8/3iQlJZkbbrjBHDlyJArdDE5/vX/55ZemqKjITJgwwSQkJJiJEyea0tLSXn3FYu999SzJ1NTUhOfE47qfre94XvO77ror/H/2hAkTzLXXXhsOKsbE53qf0l/v8bLmLmOMGbrrOAAAAIPDPSsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsNr/A/tG7NsUTsijAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "dataset.bounds.plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-27T21:03:31.687872Z", - "start_time": "2024-06-27T21:03:31.680280Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.0, 0.5, 0.0, 90.0, 0.0, -0.5)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.geotransform" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-27T21:03:44.862753Z", - "start_time": "2024-06-27T21:03:44.856370Z" - }, - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.0, 90.0)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset.top_left_corner" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-19T21:10:03.757392Z", + "start_time": "2024-06-19T21:10:03.754399Z" }, - "nbformat": 4, - "nbformat_minor": 4 + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "# Dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "

\n", + " \"dataset\n", + "

" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:24:45.823579Z", + "start_time": "2024-12-08T15:24:44.496457Z" + } + }, + "source": [ + "from pyramids.dataset import Dataset\n", + "path = r\"../../examples/data/geotiff/noah-precipitation-1979.tif\"" + ], + "outputs": [], + "execution_count": 1 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "### Read any raster format" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:24:50.274489Z", + "start_time": "2024-12-08T15:24:50.220172Z" + } + }, + "source": [ + "dataset = Dataset.read_file(path)" + ], + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "### Explore Dataset properties" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:24:52.181353Z", + "start_time": "2024-12-08T15:24:52.172971Z" + } + }, + "source": [ + "print(dataset)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Cell size: 0.5\n", + " Dimension: 360 * 720\n", + " EPSG: 4326\n", + " Number of Bands: 4\n", + " Band names: ['Band_1', 'Band_2', 'Band_3', 'Band_4']\n", + " Mask: -9.969209968386869e+36\n", + " Data type: float32\n", + " File: ../../examples/data/geotiff/noah-precipitation-1979.tif\n", + " \n" + ] + } + ], + "execution_count": 3 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "### Plot Dataset" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:24:55.602683Z", + "start_time": "2024-12-08T15:24:54.430332Z" + } + }, + "source": [ + "fig, ax = dataset.plot(\n", + " band=0, figsize=(10, 5), title=\"Noah daily Precipitation 1979-01-01\", cbar_label=\"Raindall mm/day\", vmax=30,\n", + " cbar_length=0.85\n", + ")" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGLCAYAAABuoMUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZb3/36dN3Zltye6mF0IKCcSQECAgvUixi4peBVRsiCKKYAWuCqJXhHsvoigi93dFuIp4FUEpl4QuEHoLJb1usm1md9opz++PM+fsmdmZbdnNbpLn/Xrta3dPm+c8c8rzfb7f7+erCCEEEolEIpFIJBKJRNIP6lg3QCKRSCQSiUQikYx/pOEgkUgkEolEIpFIBkQaDhKJRCKRSCQSiWRApOEgkUgkEolEIpFIBkQaDhKJRCKRSCQSiWRApOEgkUgkEolEIpFIBkQaDhKJRCKRSCQSiWRApOEgkUgkEolEIpFIBkQaDhKJRCKRSCQSiWRApOEg2StRFAVFUaivr6ezs7PiNldccQWKovCjH/1ozzYOWL9+PYqicNxxx+2Rz5s5cyaKouz2cX7729+iKApXXHFFyXKvL3/729/u9mdU49xzz/W/V+8nGo0yf/58vvrVr7J9+/ZR++zhsHLlShRF4dxzz93tY+3p66U/RvK8Rpo1a9bws5/9jI9+9KPMnj3bv04Gujba29u55JJLmDNnDuFwmKamJj70oQ/xwgsvVNy+0rVY6Wfjxo199r333ns5+eSTqaurIxaLcfDBB/OTn/wEy7KGfd6vvfYaZ511FhMnTiQajXLwwQfzs5/9DMdxKm6/atUqrrzySs444wwmTpyIoijMnz9/2J8/3tohkUjGDn2sGyCR7A6dnZ387Gc/48orrxzrpkhGiKOOOoo5c+YA0NraypNPPsl1113H7bffzhNPPMHMmTPHtoF7kN/+9recd955XH755X2MueFyxRVXcOWVV3LLLbeMS+OgP2688Uauv/76Ie2zbds2jj76aNauXcukSZM4/fTT2bp1K3/605/461//yt/+9jdOOumkkn2OPvroqsdbs2YNTz75JDNmzGDatGkl66655houu+wyVFXl8MMPZ+LEiTz55JN84xvf4IEHHuBvf/sbuj601+6TTz7JiSeeSCaTYfny5cycOZOHH36Yiy++mMcee4w//OEPfSYNvvKVr1Q1iobLeGmHRCIZW6ThINlrUVUVXde57rrruOiii6ivrx/rJu31vP/97+eII45gwoQJY9aGz3zmMyUD2p07d3L66afzzDPP8PWvf50//vGPY9a2IMuXL+e1116jtrZ2t481ZcoUXnvtNWKx2Ai0bPcYyfMaaQ4++GAuvfRSli9fzmGHHcY73/lONmzY0O8+n/3sZ1m7di2nnXYaf/jDH4jH4wDceeednHXWWXzsYx9j7dq11NTU+Pt85jOf4TOf+UzF433kIx/hySef5F/+5V9KBspPP/003/zmNzEMg7vvvptTTjkFgK6uLt7znvdw33338dOf/pRLL7100OdrWRb/8i//QiaT4dprr+WrX/0qAN3d3ZxyyinceeedvnEZ5JRTTuHDH/4whx12GBMmTODQQw8d9GeO53ZIJJJxgJBI9kIAEQ6HxRe/+EUBiO985zt9trn88ssFIK6++uo93r5169YJQBx77LF75PNmzJghRvN29vrylltuGbXPOOecc6p+xqpVqwQgIpGIKBQKo9aG8cYtt9wiAHH55ZeP2DH3xHe5p/Cu+23btlVcv3HjRgEIXdfF+vXr+6z/0Ic+JABx/fXXD+rzurq6RDQaFYB47bXXStZ9+tOfFoA4//zz++z38ssvC0BMnDhRWJY1qM8SQoj/+Z//EYBYvHhxn3XPPvusAMSiRYv6PYb3LJo3b96gP3e8tkMikYw9MsdBslfzrW99i3A4zPXXX097e/ug98tkMnz/+99n0aJFRKNRamtrOeaYY7j99tsrbv/888/zjW98g6VLlzJx4kTC4TCzZ8/mi1/8Ilu3bu33s7LZLJdddhkzZswgHA4zZ84crrnmGoQQQzpXy7K4+uqrOfDAA4lEIsyePZvvfve7FAqFitsLIfj973/PRz/6UebOnUs8HieRSLB8+XJ+/vOfV4xLrpbjUIlFixahKApvvPFGxfXr169HVVUOPPDAIZ9rOUuWLAEgl8uxa9cuoDcOfeXKlfzjH//g+OOPp66uDkVRSvJe/vrXv3LqqafS2NhIJBJh7ty5fPe736W7u7viZ5mmyc9//nOOOuooP0597ty5nH/++bz88sv+dtVyAYL5IP/85z859dRTqaurI5lMcvLJJ/Pkk09W7KvyHIfjjjvOn8G98sorS2LrvVyToX7HM2fO9MP6zjvvvJJjrly5st/zAvca/I//+A+WLl1KTU0NNTU1LF++nBtvvBHbtvtsf9xxx6EoCuvXr+fPf/4zRxxxBPF4nIaGBs4++2w2b95c8TsYKZ599lkAZs2axYwZMyq2D+B///d/B3W8O++8k2w2y2GHHdYnVn/16tUlxwyycOFCJkyYwM6dO3n88ccH3f67774bgA996EN91i1ZsoTZs2fz8ssvs379+kEfcziMl3ZIJJKxRxoOkr2aKVOmcP7555NOp/npT386qH3S6TTHHHMM3/ve92htbeXMM8/kqKOO4qmnnuLss8/moosu6rPPj370I6699lps2+aoo47i9NNPRwjBjTfeyLJly6oaD4VCgVNOOYWbbrqJBQsWcPzxx7NlyxYuu+wyvvvd7w7pXM8++2y+9a1vsX37dt71rndx8MEHc+211/KBD3yg4sA8n8/zsY99jPvuu4+mpibe/e53c/jhh/PKK69wwQUX8KlPfWpIn1/O5z73OQB+/etfV1x/8803I4TgM5/5zG4nbqfTaf/vcDhcsu62227jtNNOo6enh9NOO43DDjvM/7yvfe1rvOc97+Hhhx9m0aJFnHHGGRQKBX7wgx9w3HHH0dPTU3Ksnp4eTjzxRC644AJefPFFVqxYwbvf/W7q6ur47W9/O6Qwqccff5xjjjmGzZs3c9pppzFv3jweeOABjj32WO6///4B93/Xu97FUUcdBcDixYs555xz/B8vB2So3/GHPvQhFi9eDLi5JMFjtrS09Nse27Z573vfy5e//GXeeustTjrpJE466SRef/11vvjFL3LWWWdVTZL9+c9/zgc/+EGEELzrXe+ipqaG22+/nRNOOIFsNjtgXwwX7/utFsbY0NAAMOg4/P/+7/8G4F/+5V9G/bOC21YL8fGWj3YewXhph0QiGQeMnbNDIhk+FEOVhBBiy5YtIhKJiEQiIXbt2uVvUy1U6Utf+pIAxEknnSTS6bS//LXXXhNNTU0CEH/7299K9nnwwQfF1q1bS5bZti2uvPJKAYjzzjuvZJ3nlgfEO9/5TrFz505/3dNPPy10XRexWKzk8/vjtttuE4CYPXu22Lx5s7987dq1YurUqf5nBTFNU9x5550in8+XLG9tbRXLli0TgFi1alXJumqhMZXCWzo7O0UsFhNNTU19wocsyxJTpkwRuq6L7du3D+oc+wtV+sUvfiEAMWXKlD7bA+L222/vs88dd9whALFkyRKxbt06f3mhUBCf/exnBSC+/vWvl+zjhZscf/zxJdeSEEJs3rxZPPPMM/7/Dz30kADEOeecU7Kd11eA+Na3viUcx/HX/fznPxeAmDx5sshms/7yaqFtA4UqDec7HihUqdp5/du//ZsAxMEHHyx27NjhL9+6dauYN2+eAMQNN9xQss+xxx4rABGPx8WDDz7oL+/p6RErVqwQgLj55psrtmMwDBSqdN999wlANDc3V1x/9dVX+9/VQPfi5s2bhaqqQtf1kvP38M7nxhtv7LPOtm0/xOlrX/vaIM7Mpb6+XgDihRdeqLj+oosuEoD493//96rHGIkQofHSDolEMvZIj4Nkr2fy5Ml89rOfJZ1O82//9m/9btvT08PNN9+Mqqr8/Oc/L0mInD9/Pt/5zncA+Pd///eS/U444QQmTZpUskxVVb73ve8xZcqUqqEOqqry61//uiTZeNmyZZx22mlkMhmeeeaZQZ3jjTfeCMD3v/99pkyZ4i+fNWtWVc+Frut84AMfIBQKlSyfOHEiV199NTD4EI1K1NbW8pGPfITW1lb+8pe/lKy799572bJlC+95z3tobm4e9mfs3LmTW265hW984xsAfOELX+izzRlnnMFHPvKRPsuvuuoqAH7/+9+XKDEZhsH1119PS0sLv/71r/1Z8m3btvHb3/6WaDTKf/3Xf9HY2FhyvClTprB06dJBt33GjBl+iJHHF77wBQ4//HC2bt3KXXfdNehjVWO0v+Mg3j1x3XXX0dTU5C+fNGkSP/nJT0q2KeerX/0qJ5xwgv9/LBbja1/7GgAPP/zwiLSvEocffjiRSIQdO3bw97//vWSd4zj813/9l/9/0KtVid/97nc4jsOpp55acv4exx57LAC33nprn3V33HGH71kZ6HOCeOF01ZLmvUTvamF3I8V4aYdEIhl7pOEg2Se47LLLiEQi/Od//qcfA1+J1atXk81mWb58OQceeGCf9Z/4xCcAeOyxx/qE/7S1tXHLLbfwta99jU9/+tOce+65nHvuuZimSXt7e8Uci5kzZzJ37tw+y71l27ZtG/DcTNPkn//8J6qqVowxPvvss/vd//nnn+fHP/4xF1xwAeeddx7nnnuub4i8+eabA35+f3z+858H4Fe/+lXJcu//888/f8jHDMbeNzU18alPfYpUKsU555zDZZdd1mf797znPX2Wtba28sILL7BgwQLmzZvXZ30kEmHZsmV0dnb6ffDQQw9h2zann346U6dOHXK7y/ngBz9YUXrT+74effTR3f4Mj9H8jgE2btzIxo0baWlpKTEAPM4880zq6upYs2YNO3fu7LPeUxgKMpR7YLgkk0kuuOACAM455xz+/Oc/k0qlWLNmDR/+8IdZs2YNquq+Br3f1fDClLxnRDkXXHABtbW1PPnkk5x77rm89dZbdHZ2cscdd3DBBRf418JAn1OJaqF+5c+o0Wa8tEMikYwdUo5Vsk8wadIkPv/5z3Pdddfxk5/8hGuuuabidl4uQrVaAHV1ddTW1tLV1UUqlfIlKX//+9/z2c9+tt8ZtXQ67ccxe1QbgHqejnw+3+95gWuwFAoFJk2a1GdmGSCRSFBXV9enEF6hUODcc8/l97//fb9t3h2WL1/OkiVLuP/++9mwYQMzZsxg27Zt3HPPPUyfPr3igHEggnUcIpEIM2bM4LTTTuMd73hHxe2nT5/eZ5kn0fnaa68NmF+xa9cu5s2bx6ZNmwA44IADhtzmSlRKxoXea2+gpPrBsCe+Yxj4vlEUhRkzZtDZ2cnWrVuZOHFiyfpK98FQ7oHd4aqrrmLz5s3ccccdvP/97/eX67rOT3/6Uy6++GLAvfer8dJLL/HSSy+RTCYrGqrgeqTuuusuPvShD3HrrbeWeB4OOeQQjjjiCG666aaSHIivf/3rfSY6jj76aF8Ktqamho6Ojj65OB6ZTMbfbncYL+2QSCTjH2k4SPYZLr30Un75y19yww038PWvf73fbQeTrOtts2HDBs4991yEEFx33XWcccYZTJkyhWg0CsCKFSt44oknKs66jUQ1Z++4Qz3Wtddey+9//3sWLVrET37yEw499FDq6+sxDIM33niDefPmjchM4ec+9zk+//nP85vf/MYvLGZZFp/+9KeHNbtaXsdhICKRSJ9lnsLPpEmTBjReykOSRuI764+RnJ3dU9+xx1Dum6HuN1qEQiFuv/12LrzwQu69915aW1uZPHkyH/7wh1EUBSGEX1G6Gv/v//0/wPUiefd9JY4//njefvtt7rjjDl588UW/ENxZZ53FJz/5ScBVWPL44x//WLEOhTdgnz59Oh0dHWzevJlDDjmkz3aeKlUl43kojJd2SCSS8Y80HCT7DC0tLXzhC1/g2muv5cc//rEfdxtk8uTJAKxbt67iMbq6uujq6vJlLQHuueceCoUCX/va1/jKV77SZ5+1a9eO4Fn0ZcKECYRCIbZv306hUOjjdUin0328DYAfQ+8NLIOMZJs//vGPc8kll/Cb3/yG7373u34Oye6qNu0O3gx3S0uLL106EF4V4LfeemtE2lCtMNnGjRuB3mtxd9hT3/FA9w30nld5LtB44aijjvJVqjz+4z/+A6gsoerhOI7v0akWphSkrq7OVxzzsCyLVatWoaoqxxxzjL98IPnSxYsX88ILL/Dss89y+umn91nvyc1WGswPhfHSDolEMv6ROQ6SfYpLL72UWCzGz3/+c3bs2NFn/dKlS4lGozz11FMVY7+9OOajjz7anyXt6OgAegeWQR5++OGKnzOSGIbB8uXLcRyHO++8s8/6arUn+mv3//zP/4xY+2pqavjYxz7G5s2bueSSS/wqvSORJzBcpk6dyrx583jxxRf7HewGOe6449A0jXvuuYctW7bsdhvuvPPOirUNvO+rfBBbCc9ItCyr4vrhfMcDHbMS06dPZ/r06Wzfvp3/+7//67P+b3/7Gx0dHcybN69PmNJ4pVAocMMNNwD95+KsXLmSzZs3M23aND8Beqj87ne/Y8eOHbzrXe+q+F1V44wzzgCoKAP83HPPsXbtWg466CBmzZo1rHbtbe2QSCRjjzQcJPsUTU1NfPGLXySTyVRUN4nH43zqU5/CcRwuuOCCkpjdN954gx/84AcAXHjhhf5yL4nzv//7v0u237Jli58cPNp4M5jf+973SpJJN2zYwPe///2K+3jt/sUvflGy/I9//GOJmsxI4PXDddddBwwvKXqk+c53voNt23zwgx8sKdzm8fbbb/Ob3/zG/3/y5Ml88pOfJJvNcu655/ZJdt+6das/szoYNmzY4Bdb87jpppt44oknaGlpKYm3r4Y3079mzZqK64fzHQ90zGp498RXv/rVkgTo7du3c8kll5RsM57YuHFjn4TtdDrNv/zLv7BmzRrOPfdcli9fXnV/bzLh4x//+IChd6tXr+4TGnb//fdz4YUXEolEuPbaa4fU9ve///3MmjWLF154gZ/97Gf+8p6eHj/p28vRGE3GSzskEsk4YIxkYCWS3YJAHYdyWltbRTwe9/XZy+s4pFIpsXTpUgGIpqYmcdZZZ4nTTz9dRCIRAYgvf/nLJdvn83mxcOFCAYiWlhbxwQ9+UJxxxhkiFouJFStW+PrtwVoB1XT5PQbS0i/HcRzx/ve/XwAikUiI973vfeK9732viMfj4vTTTxfTp0/vU8dh1apVQtM0AYilS5eKs88+29f2//rXvz6kugGDae/y5csFICZNmiRM0xzUeQXpr45Df9s/9NBDVbf5xje+IQChaZpYtmyZOOuss8Spp54q5s+fLwCxePHiku1TqZQ48sgj/X4+/fTTxYc//GGxfPlyoet6Sb8MVMfh/PPPF4ZhiIULF4qzzz5bHHbYYQIQhmGIe++9t2SfatdLNpv1a4sce+yx4rzzzhOf/vSnxWOPPSaEGN537NU90TRNvOtd7xKf+tSnxKc//Wnx+uuv93telmWJ0047TQCitrZWvP/97xfve9/7RCKREIB43/veJ2zbLtnHq+MQvDcGOuf+WL16tTj88MP9n1AoJABx6KGH+st+9atflexzyy23CF3XxRFHHCE+/OEPizPPPFPU1tYKQJx66qkl9TTKyWazIplMCkC8/PLLA7ZvxowZYurUqeK0004TH/3oR8WSJUsEIKLRqLj77rsHfZ5BHnvsMb8GxOGHHy4+/OEPi0mTJlXtcyGE+NWvfuX3xzve8Q4BiEgkUtJ3q1ev3ivbIZFIxhZpOEj2SvozHIToHTBWMhyEEKK7u1tceeWV4qCDDhLhcFgkEglx9NFHi9tuu63i8drb28UXvvAFMXPmTBEOh8Xs2bPFpZdeKnp6eioOjkbacBDCLVz2wx/+UMyePVuEQiExY8YMcdlll4lcLucXwirniSeeECeccIKor68XiURCrFixQtx5551DLjg2mPZ+85vf9IueDYfRMByEcIv3vf/97xctLS3CMAzR1NQkDj30UHHJJZdUHLTkcjnxs5/9TCxbtkzE43ERi8XE3LlzxWc/+9mSweNAhsMtt9wiHn/8cXHiiSeKRCIhampqxIknnugP+oP0d708/fTT4uSTTxa1tbVCUZQ+fTTU71gIIf7xj3+Io446StTU1Pj3ideP1c5LCLfg3PXXXy+WLFkiYrGYiMViYtmyZeKGG24QlmX12X6kDQevbf39lF+7L774ovjoRz8qZs6cKSKRiKitrRVHH320uPnmm0uK81UiWERwMFx99dXi8MMPFw0NDf49+tnPfla8/fbbgz7HSrz88svigx/8oGhsbBThcFgcdNBB4t/+7d8q9rkQpUUIq/0MdN+M53ZIJJKxQxFCCjBLJJLdQwjB/PnzefPNN3nrrbeYPXv2WDdpzLjiiit8damhqENJJBKJRDLekTkOEolkt/njH//IG2+8wemnn75fGw0SiUQikezLSDlWiUQybD7zmc/Q2dnJ3XffjaZp/Ou//utYN0kikUgkEskoIQ0HiUQybG6++WZ0XWfu3Ll8//vf59BDDx3rJkkkEolEIhklZI6DRCKRSCQSiUQiGRCZ4yCRSCQSiUQikUgGRBoOEolEIpFIJBKJZECk4SCRSCQSiUQikUgGRBoOEolEIpFIJBKJZED2esPh5z//ObNmzSISibB06VIeeeSRsW7SXsMVV1yBoiglPy0tLf56IQRXXHEFkydPJhqNctxxx/HKK6+MYYvHLw8//DDvfve7mTx5Moqi8Oc//7lk/WD6Mp/Pc+GFFzJhwgTi8Tjvec972Lx58x48i/HHQP167rnn9rmGjzjiiJJtZL+WcvXVV3PYYYeRSCRoamrife97H2vWrCnZRl6vQ2cw/Sqv1+Fx4403csghh5BMJkkmkxx55JHce++9/np5vQ6PgfpVXq+SSuzVhsMdd9zBRRddxLe//W2ee+453vnOd3LaaaexcePGsW7aXsPChQvZtm2b//PSSy/563784x9z7bXX8p//+Z88/fTTtLS0cPLJJ5NOp8ewxeOTnp4eFi9ezH/+539WXD+Yvrzooou46667uP3223n00Ufp7u7mzDPPxLbtPXUa446B+hXgXe96V8k1fM8995Ssl/1ayqpVq7jgggt48sknuf/++7Esi1NOOYWenh5/G3m9Dp3B9CvI63U4TJ06lR/96Ec888wzPPPMM5xwwgm8973v9Y0Deb0Oj4H6FeT1KqmA2ItZvny5+PznP1+ybP78+eKyyy4boxbtXVx++eVi8eLFFdc5jiNaWlrEj370I39ZLpcTtbW14he/+MUeauHeCSDuuusu///B9GVnZ6cwDEPcfvvt/jZbtmwRqqqKv//973us7eOZ8n4VQohzzjlHvPe97626j+zXgWltbRWAWLVqlRBCXq8jRXm/CiGv15Gkvr5e/PrXv5bX6wjj9asQ8nqVVGav9TgUCgVWr17NKaecUrL8lFNO4fHHHx+jVu19vPnmm0yePJlZs2bx0Y9+lLVr1wKwbt06tm/fXtK/4XCYY489VvbvEBlMX65evRrTNEu2mTx5MosWLZL9PQArV66kqamJuXPncv7559Pa2uqvk/06MF1dXQA0NDQA8nodKcr71UNer7uHbdvcfvvt9PT0cOSRR8rrdYQo71cPeb1KytlrK0fv2rUL27Zpbm4uWd7c3Mz27dvHqFV7F4cffjj/9V//xdy5c9mxYwc/+MEPWLFiBa+88orfh5X6d8OGDWPR3L2WwfTl9u3bCYVC1NfX99lGXs/VOe200zjrrLOYMWMG69at47vf/S4nnHACq1evJhwOy34dACEEF198MUcffTSLFi0C5PU6ElTqV5DX6+7w0ksvceSRR5LL5aipqeGuu+7ioIMO8geo8nodHtX6FeT1KqnMXms4eCiKUvK/EKLPMkllTjvtNP/vgw8+mCOPPJIDDjiAW2+91U+Akv07cgynL2V/989HPvIR/+9FixaxbNkyZsyYwd/+9jc+8IEPVN1P9qvLl770JV588UUeffTRPuvk9Tp8qvWrvF6Hz7x583j++efp7Ozkzjvv5JxzzmHVqlX+enm9Do9q/XrQQQfJ61VSkb02VGnChAlomtbHqm1tbe0z8yAZHPF4nIMPPpg333zTV1eS/bv7DKYvW1paKBQKdHR0VN1GMjCTJk1ixowZvPnmm4Ds1/648MIL+ctf/sJDDz3E1KlT/eXyet09qvVrJeT1OnhCoRBz5sxh2bJlXH311SxevJjrr79eXq+7SbV+rYS8XiWwFxsOoVCIpUuXcv/995csv//++1mxYsUYtWrvJp/P89prrzFp0iRmzZpFS0tLSf8WCgVWrVol+3eIDKYvly5dimEYJdts27aNl19+Wfb3EGhra2PTpk1MmjQJkP1aCSEEX/rSl/jTn/7E//3f/zFr1qyS9fJ6HR4D9Wsl5PU6fIQQ5PN5eb2OMF6/VkJerxJg71ZVuv3224VhGOLmm28Wr776qrjoootEPB4X69evH+um7RV87WtfEytXrhRr164VTz75pDjzzDNFIpHw++9HP/qRqK2tFX/605/ESy+9JM4++2wxadIkkUqlxrjl4490Oi2ee+458dxzzwlAXHvtteK5554TGzZsEEIMri8///nPi6lTp4oHHnhAPPvss+KEE04QixcvFpZljdVpjTn99Ws6nRZf+9rXxOOPPy7WrVsnHnroIXHkkUeKKVOmyH7thy984QuitrZWrFy5Umzbts3/yWQy/jbyeh06A/WrvF6Hzze/+U3x8MMPi3Xr1okXX3xRfOtb3xKqqor77rtPCCGv1+HSX7/K61VSjb3acBBCiBtuuEHMmDFDhEIhceihh5ZI30n65yMf+YiYNGmSMAxDTJ48WXzgAx8Qr7zyir/ecRxx+eWXi5aWFhEOh8UxxxwjXnrppTFs8fjloYceEkCfn3POOUcIMbi+zGaz4ktf+pJoaGgQ0WhUnHnmmWLjxo1jcDbjh/76NZPJiFNOOUVMnDhRGIYhpk+fLs4555w+fSb7tZRK/QmIW265xd9GXq9DZ6B+ldfr8PnUpz7lv+cnTpwoTjzxRN9oEEJer8Olv36V16ukGooQQuw5/4ZEIpFIJBKJRLL/cuONN3LjjTeyfv16wC3G+73vfc8XrRFCcOWVV3LTTTfR0dHB4Ycfzg033MDChQvHsNUue22Og0QikUgkEolEsrcxEtXQxwrpcZBIJBKJRCKRSMaQhoYGfvKTn/CpT32KyZMnc9FFF3HppZcCrnhNc3Mz11xzDZ/73OfGtJ17fR0HiUQikUgkEolkd8jlchQKhWHvLyrUrwiHw4TD4X73s22bP/zhD4Ouhi4NB4lEIpFIJBKJZIzI5XIk66Zg5tuHfYyamhq6u7tLll1++eVcccUVFbffnWroY4k0HCQSiUQikUgk+y2FQgEz386yE/8HTY8PeX/b6uGZBz/Mpk2bSCaT/vL+vA2jUQ19TyANB4lEIpFIJBLJfo8eSqAbQzccFNXVGkomkyWGQ394VbsBli1bxtNPP83111/v5zVs377dL7YH46cit1RVkkgkEolEIpHs9yiqMuyf3UUMoRr6WLLXGw75fJ4rrriiaol0yfCQ/To6yH4dHWS/jh6yb0cH2a+jg+zX0WF/6VdFUYf9MxS+9a1v8cgjj7B+/Xpeeuklvv3tb7Ny5Uo+/vGPoygKF110EVdddRV33XUXL7/8Mueeey6xWIyPfexjo3Tmg2evl2NNpVLU1tbS1dU1aPeQZGBkv44Osl9HB9mvo4fs29FB9uvoIPt1dNjX+9U7v6Pec/+wQpUss4fH/nLyoPvn05/+NA8++CDbtm2jtraWQw45hEsvvZSTTz4Z6C0A98tf/rKkANyiRYuG3LaRRuY4SCQSiUQikUgke4ibb7653/WKonDFFVdUVWQaS6ThIJFIJBKJRCLZ71FU1U90Hup++wt7veHgOA4AXV1dY9ySfYtUKlXyWzIyyH4dHWS/jh6yb0cH2a+jg+zX0WEk+lUIQTqdZvLkyajjdKCtqqAOI9F5nJ7OqLDXGw7t7W6xjunTp49xS/ZNpk2bNtZN2CeR/To6yH4dPWTfjg6yX0cH2a+jw0j066ZNm5g6deoItGbkGU6is7ff/sJebzg0NjYC9Cm6IZFIJBKJRCIZH6RSKaZNm0YikRjrplRluNKqIyHHurew1xsOXhW9oRTdkEgkEolEIpHsecZD9WPJ8NnrDQeJRCKRSCQSiWR3UZRhJkfLUCWJRCKRSCQSiWT/QYYqDYw0HCQSiUQikUgk+z2qoqIOw3swnH32VvafM5VIJBKJRCKRSCTDRnocJBKJRCKRSCSSYYYqIUOVJBKJRCKRSCSS/QeZ4zAw0nCQSCQSiUQikez3yAJwAyMNB4lEIpFIJJI9xH3NC4e13yk7XhnhlkjKkR6HgZGGg0QikUgkkhHnkUMO5Z0vPssjhxyKsAUAjuNw3GsvsHLBYgCEKfztHav37xPXv7RnGztIhjvoHwzBvqjEPxoOqrj81PZXR6M5EklFpOEgkUgkEolkyPzzyOUAOHbvgFcE/lY1hceWLEXVFBxvGSoPL1yCqqo4joNiuDO1whSouuIbDw/OPNhf7hE0LMoZrdn4B6YsGtTnD4WBDIShEjQoytt4Wuq1Ef2sfR1VVVGHUQBuOPvsrYyq4WBZFldccQW/+93v2L59O5MmTeLcc8/lO9/5jt/JQgiuvPJKbrrpJjo6Ojj88MO54YYbWLhw9Kx6iUQikUgkpTx74lFV1wUNAgDHEaiGBoCiBQ0H10RwbIGiKf5+mqogHAGa4hsaakAR3jGc4rLAZ1iij2FB2XoPzxPgGRCD9QyUH3Mw2w7XgBgJg2E4n31vcgGnpV7jnuh8Ts++vttt2JdRFAVFGUao0jD22VsZVcPhmmuu4Re/+AW33norCxcu5JlnnuG8886jtraWr3zlKwD8+Mc/5tprr+W3v/0tc+fO5Qc/+AEnn3wya9asIZFIjGbzJCPM3fq8PsvOtNZUXR9cJ5FIJJI9x/OnHtNnmapr1XfQcQf+3rbF38JxB/y+YaGrOI6oakwIW6AV48FFcRvHFmia5h4j7IYzAWiG0jvYDngjyttw0paXAdc74HkIhmIQjCbDMRaGYxz09znCFNwTnQ/g/wZwBtG2/e09LXMcBmZUDYcnnniC9773vZxxxhkAzJw5k9///vc888wzgOttuO666/j2t7/NBz7wAQBuvfVWmpubue222/jc5z43ms0bcYID473hZqs00O+PM601Q96nv+33VH+N9ucMpk/2hutBIpHsW7x4+rH+38GBjaIq6OFSI0EZQqiFZyy4f4s+f3seBe//oHHhOKLvfgHDwtvO3yZSPRTKMzC8fAk9qfUZQA92ED6YAf5AxxroGEMxCAbVnkFsM5z3vETSH6NqOBx99NH84he/4I033mDu3Lm88MILPProo1x33XUArFu3ju3bt3PKKaf4+4TDYY499lgef/zxioZDPp8nn8/7/6dSqdE8hYrcrc/zb65qN+VQbtaxulGHYggMx2iodIyxYKyMhWrbywezRCIZKZ47+Z2Aawy84x8PD3n/coNB1QaeOXVKA4r6rPfCkrw1iqohHIGiguI47uC/aMg4jvDXa1rRiNAUDn/iKf94jy9d1mtoBEKdfC9FsDXFkCdv4N1feNNg6W+fPWFwwOCMhOEi30m9KOrwvAf7kRrr6BoOl156KV1dXcyfPx9N07Btmx/+8IecffbZAGzfvh2A5ubmkv2am5vZsGFDxWNeffXVXHnllaPS3qALD/q/UXd3EO0x1jdsf5+/O6FF3r57+vz2hnCooOEpkUgkI0FwBh9KQ5FUTfHXK2r5307xb3fk45QlN5fjlA3UFVUNHKP02JXNCxVF7fVCaF4ehKqwdOXjFc9txepn/L8fX7rMP66XRwG9nohKSdcD0d82wzEaBmOclCR9j6JR0B/yPdQXFRV1GFaAyv5jOYyq4XDHHXfw3//939x2220sXLiQ559/nosuuojJkydzzjnn+NuVJ5UIIaommnzzm9/k4osv9v9PpVJMmzZtVNqvGsqo3dB7ww27O23cl7wL/X3OcAzIgfbdG64NiUQyuqw+bkW/671B9pL7H6m4/h3/eNj3RtiO6J1FtYVvEIjAcuHYfWZa7b7OhCERNCS8z/QOueT+x/rd9+ljjvTbWJ5w7aHSa8gEE7GrERzQVxr0j2YokrfvWBkJHiMRPbAvI3McBmZUDYdLLrmEyy67jI9+9KMAHHzwwWzYsIGrr76ac845h5aWFgBfccmjtbW1jxfCIxwOEw6HR7PZI0q1QWBwRl6Gsey9DMVjM9Dy8vXyWpBI9i2eOvqIisuXP/pkn2WeYVBtn+Byb39vsO1x2MNP+H+vPm5F7+y8Uzo7Wj7oqeRpGO7AqHw/TVU4+O6V/v9eHkYwL0I4Dpqh+p4I22sXTh+1JjUQuhSkmozrYORdB5vQPFhvxFgbC0Hk+6V/pOEwMKNqOGQymT7atpqm+QlNs2bNoqWlhfvvv58lS5YAUCgUWLVqFddcc81oNq0ip2df597kgtL2Btydw7n5q92kwf/lDbz3Uyn8qNL3KnMjJJL9h8eXLmPF6md4fOmyYR/Dylr+30qV/IMnlh/GkU89jWPaJcu9OguK5r6Hl6/sa2CoZQMeRVN4xz8eK5FmLc+D2B1DI2g0vHTmcf52pXKtnqeiGALlKH1CsTw8pSboTZa2s6V5DjCwt6F8m6HSJyl7HBkL5ch3ydhz9dVX86c//YnXX3+daDTKihUruOaaa5g3r/edXy3y5sc//jGXXHLJnmpqH0bVcHj3u9/ND3/4Q6ZPn87ChQt57rnnuPbaa/nUpz4FuJ1y0UUXcdVVV3HggQdy4IEHctVVVxGLxfjYxz42mk2rSnmxFM+QUIzeeM3yB0I1yVHV6P3S74nORzEUWYxlHyJoLAz1QVy+fSWDQuZCSCR7Fw/NOQTFUEoqI3u/q3Hcay9UXP7wQncy7ZhXnvOXPXLIof0ey0sofmzJUn+ZOzB3B9KeAePlDDyx/LCSQf/hTzzFU0cfUeLNCO5fyciAKh6MQEjUIfes4sXTj+WQe1aVbHfw3St5+T3HF49RZfbfFn64kmckCEf4fzuO407sFQf93t+DLRzn7TNSjGeDwUN6Haqzp+o4rFq1igsuuIDDDjsMy7L49re/zSmnnMKrr75KPB4HYNu2bSX73HvvvXz605/mgx/84JDbN5IoQohRu8rT6TTf/e53ueuuu2htbWXy5MmcffbZfO973yMUCgG9BeB++ctflhSAW7Ro0QBHd0mlUtTW1tLV1UUymRytU/EJJlDLQiojw7pPvxczk6fQk6fQUyDbnsPMWQhTcPxbL4518wZNpcTsag/o0Yox3R9fBPIlKNlTDFUtb6D3RbmHu9LEklcV+NT2V/1l/RU3O2XHK/76arUMlMCkVnAbb3l5pEBJXkGZd6FE5rVs3ZFPPV21neV4Rk1Q0tXzJNh52zcGggaC51mAvWPAPp4Yi+flnh6vDQWvbR/88ssY4aHXEDPzae7890XDPredO3fS1NTEqlWrOOaYvjVWAN73vveRTqd58MEHh3z8kWRUDYc9wXi+ECXQ+spT6FYOzcqhmnlUM4eaz6AUctjbt2K1d1BIdWP15Ch0ZzEzBbIdPZhZE9t0SmJ0xyvjLdFsbxlAVwrDGmkjQHptJCPBSN7j/YkjBL3UQUOjXPFvILx9yw0T/3PKDArfYKiyfKB1/jYBgyPoKRksD805pMQwAEq8B308CdJYGBZj9Uwcz+M1r20fuujVYRsOf7zuIDZt2lRyboPNy33rrbc48MADeemllypOnO/YsYOpU6dy6623jllEjseohipJ9j+2rHE9BKIoZxYKrFOEgyIcEAJsGxwHVBVV09DCBobjMOOXd+2Rdg4nd2C8GQjVGK+DZa9d1cKy+vvfoz8vTrXtJZLxRH/PkeBAOHidn559fUjPn4EU2/oYIln3V7mhcOqWV32PR7mhUNmbYVdYNniqeZg9A2iwob57y7NaMv7Y3VClcpXPyy+/nCuuuKLffYUQXHzxxRx99NFVo21uvfVWEomEXyx5LJGGg2S3Sf/zbgrROmwthKbqOKqGAAQKmmOi2gXf26Dkeoie8qmxbjIwPEUkyfDw+nN3+nWw4V7SWJCMNANdU6MZetifobw7YguVCAYo2abwDQzFUMAqLahml832Bw2LU3a8MqR2DcRQcwN3Ry57f0CKbowelTwOA/GlL32JF198kUcffbTqNr/5zW/4+Mc/TiQSGZF27g7ScJDsPk8/THzKVESiFjtWix2OYRkxLD2MkUuhFbLEjxo7K7nSi3cgmdy9lfH6EtidHI9qalV7+3cl2fuo5s0b6RymwarueYZFJYGO4ej1Bz0ewbApYQrfMHDKDIjgNlA5hGmsqCZcInEZr++LsWR35ViTyeSQwrAuvPBC/vKXv/Dwww8zderUits88sgjrFmzhjvuuGPI7RoNpOEwAgzVjbqv8NiSpegRDSNmUNOUIFIXJ1wbJzKhjmhjA2ptHZEPXDTWzRyRmbq9hUqDiPHwcig33vobaA22vePhvCT7Jv09HwZ6dpxprRlwwDqS124lQzp4n/XX3mq5RYMVAflHw0ElSduS8Y98bvaPoip91MMGu99QEEJw4YUXctddd7Fy5UpmzZpVddubb76ZpUuXsnhx/wptewppOIwA+5PBUP0ltAsYvYdSfwPLgV7M/cXW74uUSwLfrc8rmT3sT04Y+iZU9qdPPhqD/ErqVBLJ3sJwDYXBDPAHu/1gn3XlBkP5s0IxFO5NLqiYz6AYCoqh9KvwFGSkw5eGyv7uqZTP0cGxp+RYL7jgAm677Tb+93//l0Qiwfbt2wGora0lGo3626VSKf7whz/w05/+dMhtGi2k4SAZNEN9sY3W5/UX81vt5bCvGg9q8eXd7zb0rz5SEsdMhaRHXSnRQa9Wz2R36O+7kYaEZG/Hu4ZVQxnyfTOa4TbVjl3pWbC7IUiegTHWBsT+hnxejk9uvPFGAI477riS5bfccgvnnnuu///tt9+OEIKzzz57D7auf6ThIBkU43nAXT7oHOwAdG+hfAbQX64PbDQIU4CuoEWrV071jqFFVf+4QRxLoBlKrySi9/mMTCjUSCZ4ypekZHcZreeEOsyBd6VCk4NtYyWDfLD3iPccGOmchfuaF0rjQTJu2d0ch8Ey2EoIn/3sZ/nsZz875PaMJtJwkAzIgEocI/xiqfZ55Z9zT3R+n7CZvdU4qETwfL1BfXAmUDGUqi/3SlVTS4on6X0Nh/Jjevv6RkPR8+D97wBnVoh/ruQR2lPfy3jJ6RgJHphSKst30paXx6glkkoM5Xmzu8/I8ut6sPfWYCvSVzvG7hgN/VVj9iRePRxLjOuQ32rfn6wjse+hoqAOI1RJZfyIAow20nDYQ6z79HtxLBu7YPkVkg998DHua16IMMW4TjDrL/7V497kghF58FcqdDTYh/Z4MRr6GyQM9KKp1L/BAX3Jb1VF0RRUrfIMSXkFVsdxeo2H6OBUUDwjwvMyBI0IxRLcm1yAMIWfQDkYz89oM1T5StVQxlUV+GpVfz1DYjwYEKOd8DuWDGZQPhQPwEhPrFRqS3/FFIdzjCDlEwn9Uc1YqLZfcPt7ovPH1X3o0d/3563bHw2IkS7WOV7YUx6HvRlZOXoUWffp9/p/W7kCVs4k313AzJpYOQsrZ5NvKwDujLIe0wknQ0SSYQ65Z9VYNbtf/tFw0IAvj90xIIKJuZVeQuPRw+C9PIY7OxeUOqwUUzyQweD97e+nud4JYTs4dtHDYAuEI/oYEUGqySxWwqvgGvztnQvsXS9S1VDQk1qf8x6rAfo/Gg7q4/kZS2NhJKVFxxsjNfgZrJd0JO6LwaqmDUb9qZx7ovP79UB6lL8DKj6ry54J/vLdyPEYSbxJD6jcpkrPdX8ipUrYp8dYPP+qvQ9HM/9wqMcez+M1r22f+M5aQpGhV44u5NL8vx/MHpfnNtJIj8Mw2fKVjxBraSQ0sRE1mQRHkN+4iUJninxXD9n2bjLtGfKpHIUei0LKxM46FQdZHophko3miTYXeOPsd2FmTTLtGRzTrcZ5+BNP7fHzLGewnpHyMCKP8vCb8uMZCa1POE21/hprvMTk8nChkYoNLn9hB48nbDdUSMX1LAjbNSAAVN8/ENi3uE5TFYQm0FBxjF6jQgupKKqCbfbdt4+3gt7vIvidjLfvZyCC16KddRBlOSPBUKHycC874/ZTtRjy4Q62z7TWjKn3cTQM8dE45mALsg32uyifsR9o/0q1RQb6nJEaTI5UDlclL0X5jP99zQt9o/XBmQcD7j1QaQAdxJtQgN0/79EKP6yZGS35XxQnWRzHvbcH4z0pDwn1n5Fj8Czck17A8TwZIBl9pMdhiDyx/DCSk5PEJyaINiYJ1SXQwiGEEHRv2Eb39k56dnWTbc9RSLvGQrVZ2XIUQ0GLqkQmhEhOTeBYNmbGxLEF4USI+IQaMu0ZzKzJxHnN1M6eRMO3fzGi5/f0MUf6fzumPWxj5YEpi/xzrzaDXaLUU9zGGzR54Rr+yyfwInLbJsbU4xBUMwomFVeboRtNSmbEit4IoNQLoQY9En09FJ52tVMMb/LCnDyvhWM62AUHx3GwUvZe62moFnYwmKTzEg9LP+c5nFCR4Oym9/l7OoF0PHjvhsN4kNms1Ib+JJD3NIN9VvYXtvfQnEP63u/F/4PXqueVPi31WtUJpOEwGoPVfx65HOj10i5/9EmeWH6Yb0R4XtpyRIVl3uSKnXXI7TBHvK2DZTwP6vcGj8Mnv7tu2B6H//r+rHF5biON9DgMgocXLkHRFDRDJZwIEa2PoUcMHNsm19aJnSuQbe9m15u7MHssCp2uwVCOGpC1rFShU5gCoQvMHovU5nTJvo7pYGZMrJzrfeja3EE+lWHLmcfR3dqDYzoc9dzqfs/jnuh8tKhKuNkgFDPQQmofw8AbMEJfD8e9yQVEmgz0mI6qKRz13Gr+eeRyf+Dp7W8XbKJNYeyCg9ljVVTp8c63fMaqPCHUH5wbCkLv3d5T9BlrVF0pGWiquoIW1oDemauh0p/bv3x9ef8F26JFVVS1mFQdCG3SQhqarqIaGpqhVozpFE5vaJNj2dimg2Pa2AUHO+u4Eq+ACFznYz04gv7jkfvzAJVXxlXL1vfp535kNYd6XQY9V9U8HjDy4Urj4f4ZCcbDefTXhtG6L4JVowfqg8H2kWMK/z0R9HytXLDYvUa97Rich/H07Osj8v2M1mDYe8d5E2ZPH3MkWkjzJ0wUTUE1qu/vTcAomurvY/ZYmGl7j06mjGdjYW9DVRlWATi1/KWxDyMNh37455HLcWyBHtEQjvsQUTTFTXDuzkF3DjNToHtHmvSOHvI7zJI48UpKN6qu+CEmTtmDRTVcw8JK2X3CmqB3Zhsg25oH8A0UPanx3MnvJBQP0XBAM5N+eluf8zk9+zpvn3MmRiyMY9l0bmznieWHYeVs3vnis4A74wLuA3T1cStQDQ09rKGHdea+/wDqZk9yPzdfYMtXPkLzoskUunP07OpxQ6qKg1AREugRBy3U924Kxt1XwhtwlxtfQhdoFL0PukAxBg6TGa2HtmMKf/Csl+UfeKhVniQDGRRKQPoUKnhb+vFc2aZAsQIhTboovvDdACZN9V50CnpYQ9Vd40HVtYrGg2PZWHkLx3KwTQcrb6FoimvI5izX+zDODIaBkr2reYXKw86EKSi0W1X7u9JnDiWeWw0YeMFjVPNYPTjzYH/d8W+9WPW4kvFDuWd0d72klUKk+jvuUD+vvC6Md815y4LPJs+Q2BP5N6MdhmP2mL6nFkrfTUEPreeZ8NepwX3c/RTNjRzwJrqCe4x07RvJyLOnCsDtzUjDoR9ijTEOvnslAGs+cmpx5tWmc1Onn9xcSJkU2q1+FWoqzawrhtIraxk0IEyBXba/l7ypRVXsrDvja3vHLXsQRWqj6PEI6f/8BmZXimxrB1Ouv8NfH6qJoIV07ELvw9B7SD6+dBlayJ2JBnAc96GnqArRhhpqZ08mevAhIBxEtgcnlaKwq53sjjby6RwWIBx3NhpVAd19ZJa7elWj+JllMznlITZ2zB2s+jH2xZwHpagKBHDi+pdcZaqyfAiv34dTcGkoqHqvNKkKOIZTkrwcxOsHtWw+uz9DIng+lQawlWKMVXpf8L4hEXU/V2iB/il6lxRVLXoidP9v1+Pg4FgaiqriWDaKavkhTYWMiWZrhBp0d3A9hsbDUFRrvHDAaGOY2IQYsYYYoZoI4bo4muGev3Ac7LxJZleK7S9uI9dRcA2kap8fHOiXxX5rAxXn0932lOSvmH2v5fKk+ZULFiNMsVsGxHgI8dmX8e6JkVQaG8maJ5Wo5Pmq5IHzvOeKofDAlEUlxkPQU3FPdP6wnsH9JSZ7bRqp3IcHpizqIz7hoWgKmASEKIT7d4XwziBaVMWm1zMLQ88Bk4aBZLwiDYd+8IyGdZ9+L6GaCIXuHPnuAqmN3SXGQslDsThYtU0BWUrWD3ZWtBynGDfpeSGCx/AGJo4laHu1g851XShPbcKI6P5syJTAsTK70qi66g8aj3zq6ZLPsgtuLLttOthmr7u1Z2cPhe4cTZqGFgkDIGwbK5PFzOQxs2ZJYm01V1+5l6FSvL2mq8UZcYFtOdgF253hprfPT1z/EtA3nGNP41gCxXuxliczB2b33f+LA3+tNG62kiERnNkbTH5MeZuwhJ/sqwI2DkRBsYsvwKKBoGoKqu56HIJeB9d4UPyBtHAcVN31vDmaG+7kmG479aSGlXLN3T1tQFQyGoJhR+VoUZVYU4TGAxqZeMhsIgfOQTRNIZ9sQiiuwaw6Jlo+Q11nK/HmlXS8vY3U1hTZzrzvDRywXYOQsPQGKlpURQtr/nXiGcoluST0GiFeHLVjiRI9/OHmRUgDQgJ97yXv2aoUPeHlnrBg6G01vOdYULa0mtxtcILMiOvoEc33WHshup4qnJ23+1z/wxUVKLRbgPtscI14xz+/4HlohoaGClqFZ04F46EkumCAfgoiDYaxRcqxDow0HKrw3MnvRDPU4uy8RbYjS7YzT6HdotBm9btvtcFTuYEB7sNyMJJ9dsbx3chGQisJWzLTNlbKrpqQ9eDMg4k2hgknQmhh3R+o9+zK8Mghh2Kb5T4O92EaHCAV2i261vaw8eHNJSEVwQFtHxk/VaXQ6bapfOBbKVxET2pE68I0zGsGXAnbQo/7Y2ZNzJwbNmJnnT6ysCMpibc7SY2et0EzVIx4r0sl+GIRttuv5SFb3jYaqvuCVAWK4biDfqvUYAzOClZKIPdmA0sGp4bmvoyN3pwU77tXVAszk+/TVscWRcPBzXnwPEBuP7kveGGa6EmtaluG04+DxQkMSko+q8xY9+6biQc1MGHeJOoOmQ+z5pKvbcY04thaCBBotonqmCiODZpGcsEBxCZNoHFnO93b2unekaJnV4Z8uuBf88E8Eg/btH1jf6DQV8VQMOI6kdoIRlTHiIbQQjp6xEDVNRzLDtSAKZBP5+h4O1VyTXg8NOcQtLBW9ByqqJqClbP75D89MGVRH0nd0fbO7SuMFxnoagynjoxa9uz2GCh8zpvAqUYlaW5PnQkgOjWEFlUJxQyMuEG4JjSogZtjFfMJsiaOaePYgseXLmPF6mf63a8SsZlhVFWtGFYLlEheB/P5gpNj7jIVLeT+74UqkXWwzcELKowEDy9cAoAe0fx2e7kcTx19RJ/tvfcRuBN3Xrjy/oqquD/D2W9/QRoOFdjwufdT01RDz64e8u0ZCumCH64wmNnGoVDJG9HftpqhDBhTGnwwl0jnOQLFsoHizHFxEFiuxOPYAi1ammfgzWJ7IVJQOvjXoqo/kPJc2zb2gEliwThvxVCwYw7dO7r8AZOVd2Ps7YJ7HO+n2vewuwOfoYS9eN8HuH3hv2Q1b3bN9l80JapGqtv/nmxq+ZkIx3WHoykotjcwLRqrUfwXrbetNwsHlNRnKK/5oBoqWsgNPfLD1Lz9Tdt/GVeaPRNOr8FgWw7Cdvx4Xj2p9S0sl3VKXPSjOSjt77j+/YVrYKe3daPqO1BUlZqeDOHGBsJGCNHTjZ3uptDWQU97inwqg5UzMbNmMWTLFScoZEwc08GI6KgJtdivWskgwrYcrKyFpdqAhU3ffCWfYk6TMPNYObtYx8UhnIhgxEJ+CJkecb/vUI2FETXIdeYpZEpFGFRd8YULvOvNsYVvNDw48+CScMeSfKzARES55KyklLE0Gna3mNxg9i/32FWThT7utReG1YbgpJc3YNdCqhv2YwtfYjr4zPS8/y+deZzbBtX1pGqGimaoCFuwdOXjw2rPca+9wNPHHOmHHXmGSLUcPK9tjiNQA+FKnvGgaO471Q4EHSuGUlGidaS9CysXLPYnMqyc7farpvH0MUdiRA0iyTCqrqIUt/GebVbe8s/XSxQ/7OEnRrRtewvS4zAw0nCogBuyobqz3D0muY6Cm/i8mzGKI/HC8V7mXqVmr2BasHpvpD7kz3YL2yGfMsl3Fci25f3BhR7RMOIGRtzdJpj0ZRdsrIzlP/aqzhybAmGUxmh7qkJ6xJ2BtrMOZtquOgjxZoy9Wc9CxiS9rbskbMNVanIHOt5Pn7aMEJVmsKuhem74RCCptsyN7c7mqH0eKt5LBty6C56Ch7CFn2MARUMOiDaGXU9GSMOIGuhhN6zIytu923lF3kzbf6l5bQq+KIIeBwDHsksUlHrb7hkjvcZE6exUMf5XVXEMpzdnB1AspeR/MUC/jvZMt+eFSL2dIduap2tTinjTZiJJN+wu0+56EfLpgh+6AKWDnOAgPdSgE1IN1Ihe7M/e3JBCUf3M7LFKRA7K7wE/fMMSOGl3UqKQMslEs4RiBrXTLELxEAf+7l4ANl94FjN+eRcAXccc6V4vsV5vlWMLbNPmnS9WHtCduP4lHpiyqMSY90JDKtUeKbSPn+R3yehXoAaqymcPpybNygWLq64Leul876floGg2wgnkGBTXvXj6sRxyzyoOvnslL55+rNtWW6CoKkvuf2TIbauEZzTYBadEhlXVFL9WjhbqmyDd59yKIiqKoaBY7s9pe7A2yzGvPNfb9wW3nzTDfe6rml4ycYTmvqcV083GcCcS958BcCWk4TAw0nAIsPa8d2MXLKycSS6VJ9uWw+yx/Pjt3WGkiwMJ05XNC/KPhoPQkxpGXEdRLbeol6aiRzRXJrY4IDISDjSG0CO6+5DwkpidyrPN1QgOfLxZKi/soqYpTigeppDZXjIQ8/arGI5VnAW1s05FCdfyHI/RYjDfhVrB0wClhdnsguPO9uMgbErc3JUQVWb79YhGKGagGhqheAgjapQkM/c5TnEWKWgE9K5zjQM/TMrbtuyzVV1DDbsF4Zy85RsMwXNQNHdWTmgCxXaNHsL4McLCFKArKEUVrCB7Oondw84EtNY7Cn5oRskAP2AgeH+XhxoIU2An3QGGETdQ1KL3yLTJtOb8/ITg9uV4RmrQU4fV61FbsfrBku2n/scfSv7XQlrv8W03Nym7I9/v+XveyvuaF/ox3dXUvzzvxFgUs5L0ZSiTGrv1OVavYtwpW152PVUVPtcbnA7V81AuER1E2AJh270TR8VbUTgqz538Tv/Z845/PDykzxyIwx5+whccqCRK4OU4AMVwJNX3Orjt651Y8ZQYNUMlbxY4cQ/WYznutRf870WYwvd6iLBGPl3AytsYUcdXSoRecYxiNkZVT4tE4iENhyIvv+d4sp05zB6zd/YuP7CrcTCMtGu7vOKnZ0AEBzl21PY9C4rmDuY93Hj3XmMB8N2zXqGv4CA9ODAOJmh6eA9brfhwTbTUMGH+VGpmTUXVn6e9ro3Mzpw/KCs3xDxpUy+hvJLhEDy/PTkDWinfoVzxo1xVCQeE3bd+gqfIoRpanxeNZzQEZ7kAP4HZk0/18m60kE44GUPRtBLXM+DnJNj5QjE+3vG9CsJxsHImSrE2QxB35rxXotVLjM6l8njZM3pY968d23Tcl6c3S1dM+lZR3ZClCipYwWvF+7tcfnZ3GUzOkG+I6oovYuD3QzHsDorGbIX9zaJhYGcdQg2WP6iwTbvEaOjvvMqlLz0GI28ZDCN46ugjXINOE4Pux2AS9coFi/3Bn1fky1crk0bDuGFPGA1BI9abJffqC1XzOgzHgCj3zLrPDQenGPrTd/BafLc57kD3uZPfOWKeBo/8jt58vHIPnKor2Ibjv0e1kCu/GgxpCoaNOo5T8V23JwgaDx7eWMbK2VhZCz2qY0QN3/vsvRuAYYd87SsoioIq5Vj7Zb82HDp+dAFOvsDGR18nsytDz9YcdtYhOiVEOBFyVYUClZ8Hy55QKfFeIv9oOAgtqpZW8vXzEkwKKbPEANCiKkZE9xPBvIJtnsFg9lglOQTl6jB+vgSl1YKFKdAaVOITo8Qaa9BjYZxCwY3XNzR3VreYxF1xIFcWAmVTedC+Jyl/UVd7cQdn6Cj2kTfToxgKtgmaoaE6CsLu+8IE+hgN5Ql5Hl6SsqprKJqGkYihGjqqroGqoigKQghwHMzuDFYmj2Oa2AWlaDwoqLrT+5moqLqr+BSKhzFiIYxY2PVm6O5gONadw8oVcCxvP8f1zOUt/2UDrofF6wcVFcJuzkVwttLG/X+kc4Wg9/vxErX9PgskbEP/tRyC1zfQx6gI4nkv3MFW30KH0NfoLldq8T8vMMt5X/PCIakjlSczeuGLHpUSVIMEB3zHv/Ui90Tn+5MRlQpVVpOc9qh0r2oxdcAEUcn4wLte7k0u8O8VxRIVvQ5BggZoOdWWP7Zkacn/7jOpFy9sJmhIeB6JZ088ikMffGyg0xk0p7a/6qs0+fdj8bdNQHo76aCZWq9MeEBgwNvXe74NdO/tSey87U7S2K7IhWdAaLq63xsLQRRlmKFK0nDYNymXfvMTcstm1/M7zEGpJwWpJjE3WjimQIsFksx0xZcDLdeEDz4EqxkFUDp4KdeW947lxUeXDwDMlI2ZssluKdDxdopI/VaMuEGuI+9Xj/bixf2wkAEGEWM9yBioeJc/K03vzLViKP5LxpNC1cJaSQhTMNxHDwcGkoFcBG8mSNVLB8HBZFk9FiZUX9ubE+E4rtFguyo8TsHEMU2snIldsLALlq/Qo6iqX9PDiIUx4hFiU1vQJkyAxhasRCNmuAZHM0ikdqB17YT2XVhtbRQ6ush3pil058i2d2PlLay87edWVPOm2AVXEtbzKNlm76z87ipgeYNwL/ymGp7ikNuPvdWzPbc94IdtCcfxk5CtlF3x2ndMNy7aa4sWVYlOCvtSkl5NFFVV/L99L1Lx+82nc+Q68+S7Cn643lCNhyDlg5WBZmfva17oP+uCXpBKxezUKgZXcLAXrE/jHU+LqmgNqn9cr9DlWN/jewv9GW1V9ykzkEvELMKlz5VjXnmuz/7VBr0PzTmk5P9qtUSqySJ7qj/HvPJcidrX40uXAU4fb0R5OBMMnGcwXDxJ13uTC/qIeti47zmqqBeWM5ayqsNNXJeAorg/w9lvf2HUDYctW7Zw6aWXcu+995LNZpk7dy4333wzS5e6Mw1CCK688kpuuukmOjo6OPzww7nhhhtYuHDhiLajfDDvPgwcyFae7R4su/twMJJab7GuKmER0LcGhDc4ChoGXpJjcNDvScIF8Qe8VT6rUhEg71iOJXoL25Tt77Uxv8P03b41s6N+rLQ3O7sv4s9m0/fl7jiOX1dDC6nFxOaArF+xlgLgh7y4dRV66yu4+QxK7/9hA0XTELaNMB2EbeOYVtFYcI2EQjqDlSv4RoPrIRBYedtPrtZCOlo4hJGIo0+ZijVxGpnayXRGmuk0k+TsEFObt1EX20LUCKELB6dQwM67x1V1DcV0jycMtdSDYtq+ApOX7yHyI//9V7peKw1YVFUtkSh0q6LrvgRqMCndC/cyogZW3sbMmix/9EkenHmwK1UcSHQOyiRHm8I0L2ohnIyi6hpWrkA+laXQky9JZFd1Vx5X1TVULerPnK5csHjEc3n6Mxo2fuGDNL2jkcyuTInhIkyBWUHQwDEFWrRsWfHaNxIaelJDVVVyuwr+edgZx5eTLj+WZGCGajQEDYZgjRDNUH2BBUVVhq2aU60mQVDN78T1L5UUjntoziG9YT/FyZGgAQGUSKkGPRGOWVoT58innuaJ5YcNq+2D5bTUayNa4Xtf5uX3HO9PeC3884MDbD3+8ZSyhrPf/sKoGg4dHR0cddRRHH/88dx77700NTXx9ttvU1dX52/z4x//mGuvvZbf/va3zJ07lx/84AecfPLJrFmzhkQiMSLtqPYA2N0X1+48HLzZyQmH1DFxwSQi9TV0vL2d9nXtZFpzZDcXKu7nz94V47DN4svZMz4cQKP34Wxjl7hRB/PyqVTMLPjZqu56aRRDlMzKBPXzPXo25YCBQxn2NoKJioPtWyUwWPXyEoLSmYqq9i4vGg1ePoMRj6LoWm9okCNwTJNCR5c7yLVsbNPCzhUwM4USD4NdlFq1TccfzDum7Rshdr7gHiMUwQ7HMPUIeSdMzg6RNXXMcAihFus0FA0U27RKKk87llWSYB0MYSrHM3ZLkhBHIDla1V1pWCPS97HmhX55CcVen3vJ4e7fpUaDY7vhW+GEu+1rHzyJxnn1ZDuypDdkSpSJYk0R6qbVUjt9Asn5s1EjEXAc7J4MudZd9GxrJ72t0/9szdBYcOcDfdq5J2cKd1z2ScK1cRIteX9WN2vloey7Kce99/te69GmMHUz6qhpTuJYDrnOHjrWd9L1Zg92pvqkyL7M7tZ8GK7R4L0jonVh/5mjGb3Pl90Z4FWr3VAefuhVrvfbXwzjdIzS7coNCKBP3RHPkBCOKHomGFbNhqEw3ut1jBcW/eUh/nnkcr9WhGTfZ1QNh2uuuYZp06Zxyy23+Mtmzpzp/y2E4LrrruPb3/42H/jABwC49dZbaW5u5rbbbuNzn/vcaDavX4KVLisRDBMaDoqhEG42mP6f1/K+b+Zhs7v8ezcdwfK/X8wTVz5YUUXDVUpwKj6k0XtnXkuKUQW3rTAgKA89sIuGiHeGlZJXvarVnheiWuL4vqoFX/69BGe9g/1pZx23oJshUA13VkIL6b7xEKzWDL0a4Z5HwvtbDRdnxC3b9ygILyTJ/3EwM3nfuwBuArPrZbD8BHgrZ6NqSrEqt+WrL0U72wgZIZK2hRHPUWfEwYBEejvhts2wfTOFHTvJ7eqkp7WLXFemxCCx8pYfmhSU0/XOS9i9FY8r5TgMdM/19x146laaoaEapfem513QAsu9dpXHSD974lF+0rhmqBjRBHN//3fAVV3TI4brhci5BpmqqkQbIzQeMIH6udMItzShNjRC0dBSG2z0+npCdTuwcm8y5//9bVDntido/tF/0fqtc/xrUDi94gUDfQeVjGXVUIk11lB/0GyMxgacXI66NWt5M/cqqTWZPsfwnqH7au7DUAae1fKnhhOa5FVeDicN4hPjfkFBz2s581d/HvQxh0J5aF3JPV4M4xS6gkZpGKxTnGQIJvSWG9BBQ6I8L2I0kcbD4MinBhe+tTegKMqw8hVkjsMI8Ze//IVTTz2Vs846i1WrVjFlyhS++MUvcv755wOwbt06tm/fzimnnOLvEw6HOfbYY3n88cfH1HDo70WmxdzZnJULFhOKGcOa+RCmG+O7KzINeMtffvUPnuV/5nb7NRkAv0qyHzdcoa2qofgzgZqhEU6GfAlNLRoowhYwHLxBfXkisrfdQEmk/c1K7q0MFE4RLFgHpXHD5VVW/XoTVrBAm/BDVfRIyK8O7BfiyRWK8fV2YJmJXTB9d7BnKPjSqgEDwAtHAvy6DFbeVdKwTcevaCxMQY+VIzIhTzjphtJEJqwjtHMXemMjyZoad/ArBE5nO2ZHJ/m2DnJtKbLt3eTTOQrdBQoZsySHwVPv8MIjPLxEQr8fg9dUeQJ+hX4fDMIs5lMEDBdVU9zZ1rBeoiBiZs2KiZU9O7MIW7ghZRFX/ertc84syTWxC5Zb5yTroCddY9CIhTHqalESSUQoEjiigVIfIhyNMufi64Z8TkPhwZkHD1jJt5ymq27ljbPfRbYzR66j0G+4JPRVggpe65nWHF2bO0hM60Kvr0MUCuTauzF7SnPFtJhK3fwaGg9opGtLF11vpym0W/uc8TCYAWelCYjhUG40ROrDRJJh4hOT6BHDFzuY9JPfDev4Q6VcKhzc2i7Ce1ZalcNhg2FMx7zyHA8vXIKiKbzzxWf9bcq9EaPNUI2H/SlMyaNSjkw5d+vzyIg9rzI1VNRhqioNZ5+9lVE1HNauXcuNN97IxRdfzLe+9S2eeuopvvzlLxMOh/nkJz/J9u3bAWhubi7Zr7m5mQ0bNlQ8Zj6fJ5/v1SpPpVKjdwJV8Gb9rZSNZmi+m+5ufR5nWmsG9aBxionGC+ZM4bG/TuE3/ycIG/CB3K2svWEzby1dRiHj5gqUqzpVUyXyXkK2aWP2uDMAwi66h4vbBWUwg+EhfY5pusXdvJkioORBXzJYtkSfAcXeOIvohY8F0aJ9iyJ5OSSeBn65Hrlf0Mjsra4cXG/lLb8ytnDcW9AzGsxMwQ/z8eX9iv+XFO4pUh6GFCz85hU0snI2Zs7yZUKDsr3dqSyFBhO74BBObCTaUEO4tQ3VKLbLdHMlCt0596cnj5k1fWPEytm+QRDMt1GKsrTeQMApC10qv6a8/vWqGsPQQls8adVsNk+oQfeToFWtN77b63OvCm0lggOU5089pncmvhj6lU/n6NmVwUzb/udaeddoq/nC1QBk7/2Vf4zoaecP+hx2F6/A20Byrq3fOqd4bdlYmTzdrWl6tmd86cigJyBIeS5J0GhQcQvGta3pwM6/SvyVDWTaM6S2dvv5TuDeY8kDYkw4cALxplp/eXe0h1yrOaCHcrTrfYQadaLNYQops6S2x2g8zwYbhlQxGb2s1oCXYxNKGERqw0TqokRqo0Tq4r7q2sQf3NLnOKPF6dnX+7wDPclt35sdOK9gbQfovQ899b8gXqgSjH64kkclY6DSO35/NBoGi5HUeNf6p6G2duCNxxBFdX+Gs9/+wqgaDo7jsGzZMq666ioAlixZwiuvvMKNN97IJz/5SX+7chePEKKq2+fqq6/myiuvHFI7Rtrd6MXyewnN+ajKgzMPLnloeH97My+VHqTeS/LBmQez4rAW9EiIZ17YRmazmxfgVZstUY6hsuHgDdztrOMmJ2P2+0LyVJi8PIX+jJHyAlWeIo53fC3q6vaXh+gMdfA3Vnh958XI+4PZolEAlOYiBGRSg2FGqqqUhOh4icFBHNN26yJkTXcmPJT1qz7bBcsPkxGO4x/DPV5vATYPRVWwcpYvpetKn2p+W4NeADNtlyTdBr+XQrtFob2baEMUK2eSbe/2azjYBYtcKo+dtyhkTBzTwcxZFT1YQfz1gWJwnrGlBGRRvQG+m7TsnpuVdT+r0O7O6vdXdRzww+S8uSw766BFVfSkRqQ+5CsmCcfp12jw2PiFDwLQMHuin+9g5UysvEW+u4CVszllxys8MGVRxRn+PWkslDOYGhBNV93Kpgs+hJnJk09lOfTBx3h44RLCzaWGP/QWdyxXXPO+uyDRxgiOaZNPF8i053jni89yb3KB/z15ntpQIuT3qRcG5nFvcgF2xqmoUuc9Bz3jIThZMZDBUR5aWj4YDw689Yh7D5lRyzdkqwlCDIeh5C1UMhrKl/vPrphOtCFCfEIN0YYajJoIejSMqmkVjzHSeN9TtcFz8H3iVpd3JV6Dky/lMpiVvAuVjImxYE/Iru9LLPjIgoE32o+4+uqr+dOf/sTrr79ONBplxYoVXHPNNcybV/l6+tznPsdNN93Ez372My666KI929gyRtVwmDRpEgcddFDJsgULFnDnnXcC0NLSAsD27duZNGmSv01ra2sfL4THN7/5TS6++GL//1QqxbRp0wbdJm9W2at94MkQDuYh4L2wjKTmH6OaFB306qk7pqh6XG/5W5s3Vj1O+QCpGsHQo0pt96ioOFNlJq/SZ5cfX4upGAmtT1hTf7kPY03w5R1UowrXhtCjOnrYrdLs1jYIo0cMAD80yPMCOJZDPu0ael7RNC93AVyvgZnJk+3M+tKehfbegbd3HXmGiqcL7h67tyK332697/fovXiNkHs7e8ZCUCGnv1lTb9mWh1qHXGSqPFTLO59QzCiRO1V1za9W6nlSgpKkkbq4G+6TcIvaNX73l0NqR5C79Xmu96V4zoMNbdj61Y9ixKNEG5O+weAhHEE4mS3JkxjMIH28Mu2GP5b8Xx5q4M3qesanV98FwIjrGHEdPdJbDFDVNZKTawknY4QSMdRwiLbvf27IOvaVtq82EH1oziH+QN+IGTTMnugmZG/odKvkVqjeHQwf9NCiKtHmMKFicS9FU9Ejbs6GiImSED/v3h1KHk6lcM9yydtKBQMHVAkrNx40hXAiQrwpSSgR8+uwOLYrv9x2Za9B23j5r/ocb3cZjCR5UJVL1d1nnvucUEtq1jx9zJFVP8eTNQb455HLcWzBkU89PQJnMDykl6GUrV/9KFo4hBYJoYVDqIZO7df/nek33jkmESJDZU/lOKxatYoLLriAww47DMuy+Pa3v80pp5zCq6++SjweL9n2z3/+M//85z+ZPHnykNs1Goyq4XDUUUexZk3pTfXGG28wY8YMAGbNmkVLSwv3338/S5a4ygqFQoFVq1ZxzTXXVDxmOBwmHA7vVru0qEq0yTtGrl+9dG9QHJ8SpaYp7ktZDjRzuadnIYZUE6Es6Xoos2jlOu9OUW4RSkOZRGD5eKNSWBXFnA09qhNJhl2joSZCqCaCHo2g6qqvWgSWO8NfDC8q9BSIJMMlOQuKqmBm8q6hEahlUCmp1Av1CCpglYSnBcLFRHCwUIwTtgOmnF8RuewYg/2Oy6tjly/v05dQEgYHriFjxA3CNSHCiYjfj0Y84s40Z/Mlqk9WziTX2ePnbky5/o5BtbUaw3mRb77wrKKhkEWPhlF0V1ZUj0Wp+8Z/7FZ79kYqhYD8o+Eg1/NY9IZ5Ce9a2K1CG6mLM/lnt9P+w8+jGgaqodP1b1+m9uv/Pipt9CZtnjr6CKy8Tcf6Ngrdbt0Yz1tVbniX33+qrrihbYYXKuN5EVVUHNB6CzGqaq/3YagTIuXhjiWhp1WMer+Yoq4MOIGg6gpmzqJ7RxqAaH0OPRLyE6IVXUPZg7EU/Xn5vcrx4CnNqb5EbDmqquA4lfva96iaTr/F5ySjyyvvO9GfBJr/h/vp3t7ZK/Ud0pnxy7vGuolDYk/Jsf7976Xe1ltuuYWmpiZWr17NMccc4y/fsmULX/rSl/jHP/7BGWecMeR2jQajajh89atfZcWKFVx11VV8+MMf5qmnnuKmm27ipptuAlwL7aKLLuKqq67iwAMP5MADD+Sqq64iFovxsY99bETb0t9g4p7ofP+hXf7AszOO/5A2ogbR+jjt69r89el//zpOoUDnm5uq3iCVHqJDVZAp33d3XeZDmTHToirhZoNwIkQoZmBbDpm2LNkthd4wkYwzpPoXe5rgzF95TD24LzMjqhKtixCfmHBnwBMx9FgUNWTgFEwKW1rdkJWc6RsMZsYkUhclnIwSTsbcQaeqYJsWmV1penZ1u7OfORsrY/lFxPrUegjMOFYKD/Fe+d5AIrifX5cj6GHYQ9dHEGEKKM4m6mGdUDxEOBklUp8g3JDEqE1iZ7Pkd3UgnAxWzil6Y3JkdmWI1Ib3aAXTrmsvcmVs8wW0SAgcAcVBllETR0/UoM+YSebhO7CiSZKHnbbH2jYe8Ypj3de8EDvrEEo6ROrCRKIG0foYiqqy7ZKPu1LBRaWu3TUCB8PyR59k5YLFFNrT/r0VVIYKqsMF730vLDGcCKFH9JIXf3EqBGE7xbyiYtHAogy2GMIzeKC6OdWO4wlhBO/5ih7HwLJCj0XPrh7MrIkRdRXAvImMoFrbaOHl+UF14yH4nFCrhCh5VDIaXIPVDc+0cjZ23p1wGY44gGT3cUNu3aKk689/n3/9KapCJBnmtQ+eBFBRfno8MlYF4Lq6ugBoaGjwlzmOwyc+8QkuueSSEa9ttjuMquFw2GGHcdddd/HNb36Tf/3Xf2XWrFlcd911fPzjH/e3+cY3vkE2m+WLX/yiXwDuvvvuG7EaDgMRjMGFyp4CxxLk0wXSO7oJ14TItGV91YfM1lbUMqu6/Bj3ROf78b3R5jAT5zUSbaihfe0utj26s2SWVzHcGTCj6DZ3HDcJO1Rn+BVvAaycTaHTdGPXR3FmX4uqxKZGqJuepKa5lnhzHfmuHlpf2eoaDnsBwfA0PamhFcNnvORlcMMvovVRGg5oJlyfwKiJocWiKKEQqCp2V8qvwOwpGmkhd6Y1ObURPRpGj0fR41GsnixWtgszW8A2HV+6cyAVqj6ehjLKk1MrxaGPRVK6397izKjj9Mqz2gULK5tD6VTcROtUN4VUxi+KVugpkE8X9rhSCoCq6whNc0M6HAc7X0BRVaJTWtAnTcFuaKarYQa2FmLyvMUDH3Accm9ywZDDhfrDe7Z5zzPN6K0JEDQavHtkT3Hcay+wcsFi4hNj6GGdQnee7m1ZV1zCFL7nOHj/R+rCKKpKrCHmX6teLRInX6oEpWqKP4BXDAXFUgbldRgJA95LJC5XbwvihTqCmyMkbIdCT8EvNgml1ejXfORU35gAV3hhNKSC+zMeHEv4BSMHg2cwOLbw87o8o8E75mDEASQjS9OSORjJGpRi7Zps+xOkt3bjOA65znwfQY/xTvC+GOp+0FewZzBRMkIILr74Yo4++mgWLVrkL7/mmmvQdZ0vf/nLQ27PaDLqlaPPPPNMzjzzzKrrFUXhiiuu4IorrhjtpvThbn0eqqGUzOBXynXwpFN7yNCzM0Oh3fLDm7Jtqaq62GrRCJiwqIFocVZ6wrKD0OYsQOgGDS89S9fmf5BZn/cLqIWSGtHGMOFECEVT/CTVYNEwx3Ir2eYieTL0FlgbDdUPL3bWXxZyZ7BUQ/Nn38ZzArQ3wDESGnpMR49o6BG3joJXDA0gWhchOaWe5AHTUD2DAfeFKmwbNRIhUp8g15HGLvQOKlRdwy5Y/kPDTGewsp4CkSutqkeK+Q6mQAQUrjyqeSC85X4F2GBF8GKC4WgrvwxE6ecVE7gNhULGLJ6HQ64r6yco59M5rLyFmTHJp0zsvN1vntBosOuKz6DHosXwDQUcxy9qp0fD6BObMJtnkItPIGckEIrK+rfeYOacuXu0nSOBVwF3d+Owg89DzxA3InqJpK2iqAjV2SNehkoc99oLvPnx06id0YQWDpFrT9GxrpWt/2wl1KCTnFxDrCFGOBkjnIwSn9aCsGysTJbMjg7yqQxWziyqhvUKEvjV0AOD3JGq7F0pUbrSfexYgkopzuVCDt6z2rEF2DZ2obdaOfSGYunhYiX6wGz/SFUAHuh6c8/NlQ63ozZ2Qe0jNOHhGZ92wfbD47zQz3KlNsmeJ/vHa4kcdgRWohHFzKG1u0qZhU6z6M0390nZ9v4oz7m9/PLLBxzffulLX+LFF1/k0Ucf9ZetXr2a66+/nmeffXbc1YgYdcNhb6CaWpH3goxNjWCbNlbK9kNNPMqNhnui832DofGgeqYdNY/4wqKagHBQIjFIdWBt2siOp1/zFWB857iu+A9LL6EU8B/o7mF6Y+a9gaUDI6b64eH4BlOOQtokva2b7h1dWHmb9NbuQRWKGkvUgPfGU+4xYq77PlIbdQumZQvFmTmd2MQ69APnoZgFsG0QDugGiq6j2jY1gGOuo9DtqV7ZZLMmhZ48iUl1RAyjZAYvPqEGx3JVlLJ2Frsob1sS3wx9Yp8reR20qOorEDm2QKgCsLHG0GgoxxsQAOSjbniWli74AxrHFpg9VonK00jOhg+WzU+8URxARtEjIRzLpmPdTqy8RbQuih6LEonG0cNxnEgjAOpeoD9ejd0xGh6acwh21sFIan6NB8VQKuaFtfz4/+1OM0eEA393L5lVt+MYEeLt26l543X08CtE6uIkpk4kVF+LlijOjgIil0NLdwOg6ir5VLbodXAlv4NGg1s3pbpHcKiUJ057hTYdevOFgpTnSfjHKRoNvXkagedJsf22b/Q4KJqrxhY0JoII2+HxpcuGLHUaNC4HYzxYqeK7tLlUqc7zKnjtDxoL/v5lNWEcS/j9d1/zwn7zFiUjR/RDrlBN7n//A2wbJ50i25n1x0nlE7J7A6ri/gxnP4BNmzaRTCb95QN5Gy688EL+8pe/8PDDDzN16lR/+SOPPEJrayvTp0/3l9m2zde+9jWuu+461q9fP/RGjhD7veHgmG6ilneB363PIzo1xNyzZlF/4GSiU1rAEbQ9/zrbX9wyYFn12WdO8yU1I7VRzHSG9HMvUkhn/IJdQRf+7BNnk5zZQqi+ltz2nWx/fh2pLWkSk5I0zp9GqL4WK5Ole9MO2t5qJbU57RdUCs42B+VVIRDGUhYGBaVJzN5x+pO8LLRZFNosesjT/kJ6yH28JyifufO8DC2Lm6ib2YSRiJHd2UlmVxrHsok21KDqGlbOpNCdI9eVof3NrWTb/o5REyExayra3IPonLqY7epUDNVkdseviTY3ooVD5Lt6yKcy5NM5FFVFjxhEWxox6utwCgUKu9rZ9fJ6zKw7g2mbTp+qyYMa6BfjqXOtJkbC6ZWfLMpEjgeDIYjrObP9YoRBxktbtz2xs490cPA+2fToNqLNT5CYVMM7/vFwxWO0//DzADR8+xej3+A9xENzDkGPFQvlaQrCFoQSBk5MYJvuQGBPe4eGQ+zYjwLwxydtZs/tZF7yOrrf2kCovhZjxgycuok4egg13YHS3YUqBCHbRguHCNfniKYzmFmTbEfWDzP0nrPePTzY6zjSbLi5FIF6JkF1JggoPA0wM+vVKvFEEaA3b0ILa1h2X+M2qNI2EI4lSpSogrl//RHMaQgymFpGjln0iKjFatcxDdtUALskjEmUhTRpRWUlTxhCLbbfLYCq8MCU3nAPGbo0Ojw48+BiuKJGTXOcxjlNJGdNpqYpgf0Oh2xbjtyugr+tlbI5cv2TY9zqgdldVaVkMlliOFRDCMGFF17IXXfdxcqVK5k1a1bJ+k984hOcdNJJJctOPfVUPvGJT3DeeecNuX0jyX5tOKiGQnRKiJrJcXY93+mHg0TqQ5hZk40Pv04h8xJHPvU0NcCM4n4PzTkELaxR0xJj4vxJhGvjNF11Kxu/8EFCNRG/kq87IHV1+kM1EV9bP9vRg5m1SLQkqZnSSLixDi2ZRE93E6l1s8a8mWs1FsUIh4jm8sTau8mnirPdjuMPQD05Ub04K+i+YErrLLjyiRp61E1ajSTDhGoiflGrTHuWTJsbE2ym9q7ZVc8o8r4/T9M81hAh2lADgNmT9Q23XCqPHul2i53VxgklYv52etSVBNWSSTLNc3gxt4C//l+O5x56hd/97CM0PXIbViaLlSuQ68qSS+Uxogb5VJZwexc4DlZPlp7t7aS3pch15SmkzZI6CkMdPAfrhkDlmiDjDa/N45FqRgP0GspWyib9ZoaeJUsr5l80fPsXtP/w87T/8PM0fPsX7PzOeWx7di2H3LNqj5zDSOKFbOpJrXdywVH8835syVLe+eILPLxwyVg2c8h86AiNT33f4dKzz2d6ze1k1ryJ3pKjdcqh2IrOJOspVMtEzecREXeAo2huToAe1nBMBytj9fEyqLoyqORor0+NiO4/z4WjoqrucyC3wyQ4119pksejUjijR2/RxMCxymRoof+6EUGBhWBbhspQn0ueVzjaGCFaFyGciPhy18IRfoHLbEcWu9B3csvzZGL0/u/heSkemnOI/x1KI2JkCFYGVwyF7I48neu6CNduANwcTLPHQouq1EyKUje9nkhdjGdOPH6smjxoFBXUYQiQDVW07IILLuC2227jf//3f0kkEn5B5NraWqLRKI2NjTQ2NpbsYxgGLS0tVWs97Cn2a8Ph9OzrPL50GZqhMv2EydQ0J9m1ZgeZ9hyprSm0kIawBU8sP8yXi3NMu7doVVFNQNE1tl3y8WLibEDjv1jUS4uHqJ3VQnZnJ6ktHaS3d7sVd02bUE2EfEcaRVUxM3mEIzCiBtmODB1vbSXankIN6ZjdOb9omFLvXqHhhI1jOm4yj6YQirlPT9tySmJbo/VRVxrNUH3JUD1ioIXc7aMNJjXNbuGvdGM3nW+m/foW4x0vhyEyIYQecb8XRVMxogaJliSJ6c2IYoVcLzHQeymF6xPEpk9BjURwslns7h4/n0FJJOmJNLB+XYjnHnJnSX7+4DT+taUR88XXybR1k97WTbYtT7TRdUU6lo0eacfKFejZ1UPPzqyfwD6SSkfj3WgYLOWJk5V04EfDxR2dFEbRlJLww3KPm2OKAT876G2Y+INbmDjiLR1dvJe/N1D1wjtWLljMO1/slbb0DIjyWg97A+tefJtnj1/OxAVH0PjRb5D9v9/xdmYauipoitSgZHsgFEKNRV1Frbxbud3K20XJ5VKjQYuq/qTMQKGaiuE+kz3vTaVk8Wr7Bw0F/9lhCoipfZSWymtAVI0pDxReLGlDUNFtN59RQy22qkVVYhMj1M9oIDYhgRZ2c8uEIxCiWDzSsjEzroSzmSn41etts7fWipe34SaDK24YasakkDHd0KyMVVXVSjJ4Kn63piu9XmizyBqF3rpEukKsJULd9HrqD2jBSNZQ39kDe6bY97jnxhtvBOC4444rWX7LLbdw7rnn7vkGDYH90nB4cObBFNotf8Bp5W0aZidITG+mY30btmkTirt6/k7crXIqHFcv2q/E22NhF1LkuwtE6yIlxw/mI4TiIWpa6tAiYQrduZJiYbmuPD2tXaR3dJckrGmGipkxSeU76W5No2qKq85TVPqI1kV8mT3oTSDzawYUDRd35kwvqS2g6hpaSHf3VRVwhJtLEcEP39F0lR3/bB8XYSUeXr5JEM/LEEoaJCbV+KoheljHiIWJTUhi1MSw8+5soqqraCGdcDJKw0GzMCZNgtp6CEXQsj0oO7eT3byNUCQCqkY030Vzvc3cZfN545nX+cQJXWT+5xV2rdnmGg2teeysQ8bMYeVssh1ZtJD7nZg9pp8gNl5CdPYUg60RUv4SqiTlOBKJveVMnN+IqmuY2QLp7d30bMmWGA57UzzuUAjOEnqcnn29z7J9SQ9/yXEHc1DzLvSuLAD5umYmx9pJWzFy8QnEc92omTRCUVBDITdDpydDPpXDcRw/BNRDMRSELiBbPTHXe1aFGnQidWGE7aryeaE3juMMmDBazTsQzIGolvMwEOWfPdRaL8OhPJQ0WAAzWh+lfs5kQvW1ftE6d2PV/V9RUDQNJ5fH7Owi29pOanMb2c4cjmm7+RGBApOeoIjv5bGFn18m8x9Gl/LnycoFi0ltS2HlLWqak6MqBTxSKAwzVImh7SPE0O+3scxrCLJfGA4dP7qADQ+95GuLG3Hdd+/2bHLj8Hq2Z1CMdX7hoEK7RaHZIhR3FXhsyyHXkafQ6Vb+BbCiriRqyuhGi6okmuNoYR1V632pmFmBld9F+9utdG1OY5s2ddNraZg9ET1i+Ml4+XSOXFeuJBksFNcxYuBYvTGemqESa6whUhdHLVYKFpbtyl7mTN9oEI7wdbs9NSbPcAgaDY6/b8ENrUrlyacL6EltzJKfy4uPKYbiF+Hz9NY9xSlw+yQ+MVHyUFJUFStXIN/W6c4kqipGsoZoy0S0RA35JcdioRLu3onW0YroTmGl0jimiRaPYTZNZ2dkOg1Kno+/v5bcmSuYs+l/6GxPucnOrfleT0Ix9jlnFEpmAfdHowGKEpJeyMsQa47sCW/KgjsfYMPn3o8eMbDyNrn2fJ827GvGg1e8LchYJKbvaa69IM7Ol19yhQ6AukNP4snnC+zsMshPWMTC2jyxzp1A8UXuCJyC6Sb2GxpCFX3UimxsnPTgBv65zrxfqMxDmMNPsPbkWT2vR9AI8JKDyz0R/TESzyfvng3e8157gBJVOM9br6iKHzZbP2si0VnTUWsSbryHcIrxIgooKsIIuZM7ZgGtsw01HCpOlrWTac+gqK4ssGZogToVaq/6X0hFMzVE1DX4pPEw8gTf2eWSzXa2m1ynK73dbY3/SAZFHXrYkbff/sI+Yzj885hjiWtaRSWIjjUbSW1OU+g0fRczQHRKCCOik3o70yc0R5iCjJmjkNSKF79rTJSGNBQTQIuDxB41S7Qx4rtMAQqpPB1vZ5h4UCOxhgg9O7NuGM0M13WX3b6TcDJKrrMHM1NwFQmyJpFkGFXXMKKuUo9dsCj0FAgnIiSnTUSLhlE0DUTxRZfNo+p517OgaQjh4BSr87oz7QZa2EALh1B0DWHZ9Gxvp9Cdw8zkyXcXC5r1mP5LTjEGp1U+UgTrWHjfgRcjHEqEaF44mUh9DUYijmroroFlmq5HwfMK5U3frW3lTLJtKbc4TTTsnns4hNo4kbbETAAacYim2rA7OujZuM09Rk8G1XK9FHPVNdRuewkl20P25Zfpae3yZRqhN5Z/78oK2TOMZ4PJsRzfu6cV79XRNhaeP/WYqsnWo8FTRx/B8kef5JFDDkWLqpy6n8Z3P2stYWc2xNu/M7n84wbveocbDnPJL1RmnjABfe1asjvcop5qSEdYNnpEwy44CE2UzpLawp906u/6FqYo5jXl/GUloUf9DOoreRv6VHIPVF8u39czSjy1of7aOBL3qJfLERyMe4mz4CYyu5NgrqJdTXMtkbo44YYkoQkN6E0tiEQtjm6UnUxxJKYoCFVD0Q1Ux8Io5InlC26eWcqtE+DKlWuoeu/oTS0qTamGhmY42F79jf1MHnQkqRSKpsVUamZGqWmOlyy3M44vZe/lznQXxr/hoCoK6jA8DsPZZ29lnzEcbNOhcV6T/39/ihBazH24FNot1AlqSVKtryxhCvSk+xAON4XQGjUy0ay7jzeDEtZKZqNUQ0VVFYyoTqyxhnAyhhrSMeJRotOn4GSyOIUCTr6Ameoms20X0aZ62l7bRKGnQMMBTSSnT6CQyqBHQqghnUhDLeEpk1BapmAlJ1KI1aObGULtW6GtFSfTg9Pdgx4voMXjqJEwimH4MzfCNHGyrptejUaxD1rGP6MnsaMrzLuf/Tpv3/0U2fas7+UYDcplBz0cS/jqR6GEgR7RiDXGiE9MFHMRBKquEm1MklhyCM8t/Cw7umM4AmIhm5pQgYSRpUbrprntNfT2bdDWirlrF/m2Dsy0W2hMC+mE6hKEJ7egxOIgHBrT61GEQ3jnBnIvv0zrc2/StaWLnp0Z7OwrCPMeHEuwa0KISH0YTVcpZEzMHssNU8sOXq1kfyXU2GsADjTQ2tN0bmzHMW3y6QK5XYU94mHoz2h4+T3Hs+gvD/HK+070lwW19L3qqx6DqcK6/FE3N+edLz471KbuU5z6DjcH6ah3P87lHz/WX/6Tz8dou/I6ujvTqIZBqDaOkahBjUVZNGcmuU1b2fjo63RtTvn3e6HdqnodB71rjiXcCaV+2uW9hzz6K/xY8jn9hCf1KQo5gvdcsJBmtClMckqC2mmN6JHeAf+2S9zirgeddQiK4nq7tWgEI1mDXleLmqzDbpqKHYriaAaWomAVQzaEqtGRmEZeRLFRURGo2KhKMWdQqCgItHk2YTtDfWozTetfgXweYVuIQgFRKOCYFmaqm0Kqm+yuFI7dRbYt5w9glaLqkkyUHjqVjIb+PJfe9ecpM+b08V97Y6wqR+9N7DOGQyFtkk/nWHveu9n15s5+H+4ewhRkt+X9WHlVVyDruPJ5xcQe4QjfMAgnQoRihh8GpEddz4Kqa6iaQr7bnaUO1mEAKHR1o+3YiRaLokXCWOke0lva0EI69Ucdw8yDDsLctBElHEI7cCF2tAbl5adx8gX0xgacaXPI1zTSHWuijSbUqENLpI6EoiDefJ3U25vItnczccmBaBMmICZOQughFKuAmkmjdLSDquBMPYD7OI1rv+0WGVnxs89zoKGz/YmXaV/XRq4j78v3DdWd7vVrpVoYwf4NVj/2JPjiE2KEExFCNRHCSVdVygu7MmJhIs0TsKbP4xe3dxMK5TjkHROYPcnBUG00xX01FyJJ1JoMWiGHlulB7XQrPedTmWK8a5vbn/GoW8wtngTLQuzYQm5Xp1v0KWeR32GWKJT0ZHsl5YD9NvxoqNTMjhJtjKCqCrmu3tCugaqcewP4SvH4I8mS+x/hpTOPQzUqeyn3NIv+8hDQaywEDQgYnKEg6Z/H/npsn2WZ1g4AtHDIrfGQTIKmgW4Qnpij0J0nu6UwpHver/YMpe+W4DaBau/llN8jwXeWF55UyXgY7UKQXt5GbGKE5OQkyamNRBqSaNEIiq6R/vevk5g1tSRmQzF0X2xC1NRhxZIUYvU4moGjaDiqBig4qkZei/HIpgPozrhfQTQMuga6JtyoJUWga4JYyCYZypGtr2FyIYvW3Y6ayyIKeXBsNNNCjbge+0IqQ6GnQHZb3jcajEAhTcnQ8DwO/U209JcgL9+b+wb7jOFgdlgccs8qXnnfieRThT7rjaTmz3B7M6ChJoNwbYgJcye44SwRg+4dKYTjEIqHcSyb1LY0mu66Oz1VpVBN2C8g5eUR2AULa/0ubNPBzJpk2rr9QmHCEW5F2kQNaBpmT46uzR3UTq0n2ziDqKqh7mpFmG613e66qdTGXkWddSCdUxfToTdRcAzacjWk8wYHNWxBc0yEEcbs7GLDo2/TvTnLxMUHkD1wGW9FDkFTBFOc9SR3vI6S6kJkM6Bq7OjofajX5Nr8h7zZY5LbVRj2y0dPukZSpbwIVVdKvDReMbb4xDixxhqiDQm0sOHnLOS7ujEzecxMnlxnBrtgMaH5VU4/9XTiYYdDatdQ37UBJW0jVA2Eg2oVUBzbLUKTL2D25Mi2d9O1uYtwMk8+lcXYlXZVsFQF480NhBIx7IJFts39zlXNbWPJ+RcVIySDR4upJCbXUDe9AeE4pLZ24dgCx8oPui+9AVe5zOTu8vDCJWghldiEGNG6CAffvXJEjz9S7E7lXsng6Z0ECqNPcQe9Ip/D2raN9lfeJr0xM+hrtlzWVy1OkoQadL/ugLAFdt6GrINdzEcY6Hlbstz7u6iuVLLdKBeCVAyFcG3IfW5PSGDEI+DnzukohoFi6L6WpaIorvc7EkWEYzihCI4RcT0NWghbNdwfRcdUQmTsGOu3WKx/qx0zbxGKhqhriJFMhpjcohPSFcKGwNAEjlDdHyOMphmg5FA097OFqqFkenAKbo0ez/N2tz7P77MT1780Kn20PzCQd3ZvV/2THoeB2WcMh5O3PMPKBYvRDI3sjt5kRy/+MtocRo+4ngErZ9OzNec+CBMhppx8OGoiiehOE1mzFj0aJnbATNr++Ty26ZCcUk8oEaN7WztdmztonNNEzdSJmOkMuQ53MCoch3y64Eu4ZjtzmD0m2bY8whQ0HzoHLZnAbN1Jti2FoqrkurJEnrwXsytFx5qNWDmTJtMiqSrYXZ1ok6YTzexCD+XIhRLE4z20GfVMansFxTbpaZxJzayNhBPPU2gwCR16OI+ph/PkczpdXQVmTl/CWTMsEpvXYae7Ude8wMeW1LLip4cwgR1s+sLn3FCN9jy5VnO3BsieYaDqCma610HvyQoqhlJiNBgxg1hjDbUzWwg3TcDu6aHQmcbKF8insmQ7esi0Z7GyFt070qj6as6c/heUnIX61lqsXbvAcdBiUfeFpWlu4bWuFNkdbfTs6CCfzlHosbAL7qyTovagBuKVQzUhjKjrQbLydsm5SOm+3SOzy/P0qGTbs1gZa0geLGEKbEY+HMzLc3JswZL7HxnRY0v2ThRVwbFtCuvXI0w3X2zni2vZuabNF8IYDo4p0KJujL+fXE3Ra5AWJfkIQx3sC1P0eUaNlsEQ9Bp7ohRuTRwH1XYLmgrbdo0EKFGkEY7jas2oCkIzcFQNgYJQNApalDwR8iJM1gyTsUIYukLnzhStG7b6x5g0Zxq1x89Er1EwdEEsZJIweoiQdSeOej+sty/yBRov/xWeCv7ePpjdWyj3FJcbGalUCmpr92SThoyqKiXjhKHst7+wzxgOKxcdgdEpiE4JkZgRo0d38xG8B17TgomEaiKoukqoJkrbm9tITmlg4gkrMGcehNq5g56XXiG9pY3aWa72f6E7x8SDphJtmUj3pm3kurLYpkPT6SciulN0/P1RzEye2plNKAXL1+wOxUOE4mEKPXmsnE1uV4HU+u3k21Nk29PkU1lfOm7nUy+T3tZJ68tt2FmHrk0dTHh1rSsv9/YmHMtGDenYnT0kG5NMPfEE7LVv4OTyhI86heyCIzjoO82ILRtYP/04tm0Jk6iBUChMc4NDtGcXuU1byLV3ufGeDz1DDbBze4qtq3YB1ZVvqoUfVcIrcOYpIHn4eQxxvcRoCMVDhGrcGSs7m6WQ6qZ7WzsAua4s2c6cr2Jlmw6dG3ZR8+RKFEUh25Um19aFY7mhTF6itJXNUejOke3IkGnPUEgXKKRcL44WNVFV1c9JcYoSiVrInYOycr267YNRI5FUx844pN7OkHo7UzKjOhSCBeRGUuVIxjVLgky/8U4AXj/rZMzsWsysibAFqc3dZLcURmwwrhreXLdDIVVasG04xvGeCvkI5qcJU7iFvbImdsFCFCtVC8dBCOF6zIWDEo2ihMKuKpJuoERcb4PQQziqga0ZmFqYHmpIFWroyofJFDRUBSY0qEw9oJnOHW0Ucu4E4La3NtGzfDpffY8OaEAMiNG1+kWMng4o5MCyiHzgoornEBzMev324MyD/WeT9D6MHJXknT0eXriEdzwx/gtkSo/DwOwzhkOkLoS1M0coZhCp9eoquEnBsaYIkboY4doahHCwcwVmnHIYyqEraJ04n0SmlZCZJ9eWIrW1k/T2FJFXNjLrnPeTnr0U/YWH6Fz1PLnOLOGaENsXnMSEna8RTrqFkYRluyEwxVmlWGMNdXOmoEUj1E7bTNemNtY9tNZ/WSiGQihpUDs1gZW36G7todDuzshm2nN0bWqna3OaSF2Y+hkNJKdNQDiC9JY27Hv+TtfGXai6xrRkAuvQE9g06zimWQ/QUNjKoklhElPT1GW3E9/xFs66N+je3OoWdytWMjZzlq8sBZXzEsLNhh/SBQMnttoZB5uiBFuD7itq2FnHj8dVVAXVcHNCNMNNfrZ6slCUkA3VRMinMuTTrrfGLnoBrIzrddjx9Ou+wpSZNf1jKqqKY9lYeZtCd558qreGgmcEBCUBvfhW27QRXaI3IT4wwJWxmLuH570aitrUaCcov3H2u5j7+7+P6mdI9k7m/+H+kgrD/SVBDwXFUNAjGuGE693MtGXcJN29IPyxXNTCsQSFlEk24r4HI3VxX/4bx0HRNTdHpLEJEU9ih2Kgath6CEcLIVQNR9HI63E6aaAtm2BHV5iuHgVdg7oah/mTMzTXx5g+YzkvPb+Dt597A1XTmDZJ44U3W5nVuRpj/auYW7fiZHM4tcliYxV6fvUd4uf/oM95lH+PjiX8InrCFFKedZS5JzofxVCYcnQTPb/9/lg3RzICKGI4VSjGEalUitraWv4QnkPECkixFWfRtZib0FUzKcr0FXOomTUV7ZClvD3pWA54/CYe/9b/MP2YqdQfOJnMjg5SWzpcbfeuHPl0gVDMwMq5wx87b5NrNX0ZVz2ioWiq7z1ofaENxxIYCY1wbYhInZsLEaqJEG+uJ7VpJztf30l6XcZXmak/uMY9dsFB0RRiDRESk5IkpjYSStZgZ3No0QjxRQvJzH4HVz+xjMf/9jRLT1rCFcc+R/TNZ7B27CC3fScv376a2hkJN8+ip1hZsxhTWx4rHqwzULLck/IrvjSGGjPraTd7uSRerQPP8+MpKBlxg+SkRNELpOFYrocn056ha0Pa92B47StXZQoaBMH/obrMYFBffDCxxZI9y56qHC2RDMRIh7aUJzgHDYdyj29/HuDRflZFmg3CjSH0SDFnLWeXhP4CGAmN2MQIE+c3Uz93GpFZM1GStdiJBsx4PdnYBNr0ZrZ0NwCgqw41oTxN+k7qUxtYE1vGGztq2bbLoVAQ6LpCXVJlZrPJMZ1/pOeB++l4exvxploiE+qITGpCmzzVFbPoSWNu30HP1layu1LMvuWvVc+lP2XFSrUmTm1/dbf7T+LWjPHwohC8icRcWPDeTa/R1dVFMpkcqyZWxBtLfv//dRCJDb1tuUyK736iflye20izz3gcygkWobJSNnajQ2ZXCjPzNuKlN5k8+QHElBYmLGpA1TWiU1qITmlB1d9g1xs7ELYg1ugq/BQyJsnJNRhRg82tO+h+M1cysPYGombK7g3vsfIYcYNsZ45CT4HYxDrCyRjhRIg0Gf+B5oXuCFtQyJg4jsDMmujhkBu+s7WdmpZ6jI0biFomnz95KovmH8OKaRuIrn6K7hdfpWdHB4XuHC2Lm4g21GBm8rS+2kpmc65P2I1fiMfoTVgO14aINkQpdOdJb8z0zrYN4yXlaTd7hkrQMPEMCcdyCyJpuurrcHuVsQvpArlWs++A3hSIci3zIdZP8I0iwJYGw7iiktEgkewr+F7OjIOKK9aRmBWjkHE9p5n1eRxTEGk2UAyF/A4vxFLFLHqHR/t5pcVUWpZOJJyIkE/n6NnZ4+cm6UmNSL1b/0JR3boJkbo4kSVL2XLgCdhCw1AKhK0MAAYmUcMirJk0Gh00t72G9vpqCttbqfvAXAw9iaoqmKZNd7dNd7eKI0IcqxXo2tBKz64eInVxtHAIYduIdjes1snlEEJgxKNM+snvStr/+NJlCEdw1HOre/t8gIRzf6pxGBW4JZU5tf3VEqNNBWy3JjtmZvxXPHKjGIZROVrmOOx9OKagUsVvb0a6680eujevA9yH8ZTDupk2uZm5HzuJHQ+vJretFadgktrSgXAcInWu9ne2PUeh3SJFN9HiMjXwEvC0uM2UjZHUiE4K03BAHY3zJhNK1tD51hba17WRbUuhRwxqmhM4iwTZthypNRn0sE7t1HoUVSHT1k1qS5qdO3cRqY0SqokQqYtjF0x6Nm4jks0xJXwvpx54JInt6yls3ET7m1tpe6uNQsZk6rKpKKpCctpEHMsBdmHmLLJbCv55GwnNN3jMrINSNCy8i95LZN6dwm/lRofqeS4ArF6pVztv+7KsAI7jYKXsql6AkXpxSoNh72F38hsyt1xB7LwrRrZBkv2C/iQlh0N5aFK42UALqYgugRbW0JOaX2fAS5xOHhCjeVEL217YRterPSPWlkp47y5FVbFyJj07e+jelvVDOFVdoW5GHcJx0AyNmpY66lccxpsHnMnfVk9AUWBqs8qBTV1MNHYRs9McJLYQ27EB8cbL7HrmFbo2tVM3YwJdVoLWDoWOjgId7Vl2be0gl8nzRizMyRccR8vhr1K3qx2jJoYWd4uK5bduB0DYNk7BRFg22772MSb99LaS8zjqudU8vHAJx7zyXNX6AsHv1XsXKIZ8J4wkXq7D3fo8fzygGkpJBfXxisxxGJh9xnCA3oI6wYGnN/PtFGU1jaRG3YIEjfOmojVOQETjtL+9k9ZXt2EXHF8FSTEUoo1hVEOlZmqUxKQaJsybTMshWVJbOkhtSZNtzZOYHqOmOYEe1pmwaCZOvkB4YgPa0iNBCJobn0ELrSGcjKFoGhOa6mlcIMju7KRjxk4cW2DEwsW4fYtsW55Cu0XraztItNT4heS0sIFRX4s1YQqb1FlMmhhiwrztRN7chKK1Y0R0zEye9PYUmtFOLpVHUV3VqLzuzl4F6yfY2P4gPa8X3OTgCiFNI0Fw5sEpeg6Cn+PlHXhSsHJgv38xGuFIr761lVnx+MAbSiR7GE+6OtuZJ94Sw8q6RUUdU+CYvTOyuY4CO17eTnZHnvjMMD3r89UOudsohoIR19nyxHZfBtkLL/HeG6F4iFxXlnhTLXULZpOZdzjbM3Vs2pgmk86RyzUyo1EnSjfhXBfRVx6n58232fnSera/0IqddWg4oIk1O+rY2WZimg7hiE6yoQbN0NE0FYUCer07kYamoUYiZNdvwsrm0eNuBIBj2zhW35nrFauf4ZFDDsVxBvcOCxqHspjn6OA92+/W56FFXXEUOse2TQOhKu7PcPbbX9hnDIfIlBCRkI4e092wn07Tl9Lzch2mHtPM7A8ci5pIYu3Ywc4HH2XXGzvY9WJniYEB7gyMMd1gytIZGPEoVr6AZujU1CUI19YQn9hJdEKS2oMOxMnl3YrNMw5EbHiTbcd8klc7ptNck2bhIQpNNTVQVJ1Qk0mc7m5UQ0ePhVn7wOukNqdRNIVCyvRd1Ec+9TRPHX0EVt4mmimQnNqIFo/Tk2ymLRsnEp/A1Hd/kRnv/iIzgI4fXUBq3VZ2vdmOlbH8B78SGKQrhoKVstGixZChwItKizq96hm6gk3lAd3uzML5VVX75FXYQ1Jwkuw7DLeQUCV2fuc8CukMU66/g4PmTIY5l4xEEyWSEcVK2X69m+yWgh/mGkQ1FArtli+aYWfdSa/gdlpMHbEcLStlk96QodDWKz9rJDXCzQbRujCOLdyCpbMmUrdgNtqceayPziHfpTGxKUamJkR9nY6i5ChoEQw9i92dxsrkMWJh6mbVEoqHqF9yEGs3W6gKTJsaYWazzczabnJODRE1z+RH/x9WuhtF09AOXEhmwgwyT11HuDaOauho4RB2voDlZHBsm9XHrSDTnkMzVFasfgatqF7VX8Jz8Jkjc6j2DGdaa1i5YDFmXhn3hoNkYPYZw6FmcoyakEG0LoIRDaGoCoWePD07e+hc082sU6cz+ctf4K/Ou3lH8xYm/u5f2fj4Orpe7+nz4PUSfI2ogVKs/pxp7aJnZ9qvcGxmCkQsm/yOnex6aS2KqlI/ZwtqyCBsZ+jKaLy1tZbJ8+cTeeDvxOfNQW1swm7dRvvqV+je3kmmLUPP1lzJ7HswN8MrXPPG2e9CNXSURJJQtpNjU3cQfccnStocmTaVdfc/T/f6rL8saDhBsepxMSk4+Jm+YWH1mswjbTQMhDQY9j+qvbSDBsNQXuy5jvSItEsigZEPV/IIPus8NToPtZhIqic1jLj7erbzNoV2i+ScOJnWHKGkQb6tgJ7UXOOibfi1JoJt8o4TbEPzQROJ1MUxM/lisTwVNA0ln6Mlvx4zabCuoYFIRENRYHNHnHRsNolwnqUzXiWWyRKZUMekY+vQmidhNk1nqQ6xkE1EyzNTW0v9xhexowm0nk66XnmT+NRmlEgY2rYT27aRVM6kbkEzajiEGo2i5bzCqg7xiXHCyTBW3ubZE4/CiBsoOcv3lkjGDzOPnkVbWxrWje8kdBmqNDD7jKrSuss+SU3YQFg2dsFCC+mgKqQ37WTjkxuZ/I5JTDvzWMS02eQeeYhnf/4oueLsfsPiBDXNcdLbun3teXCTfB5euIRCp4mZtjESGslZNRxw6mJic2YhTBOzdScAoUMPR+lqw9q+DUXXUOYuYufkd9BJA1NzbxLb/CrOts0UduykZ+tOOtbtJL2tu0RhyTMYKmkhX/5fBbZtSfPK4y9z889mM3/ONH/d+vPfx841O9j5dIdfRyFUZ6BHNPJdhRIXd38z++WDtOG8NINqFVKxSFKJgYyBe6LzS+R8K90Pz538ToTjcOiDj41KGyWSsUjSrz0o7k/+VFO802IqNTOjrjTq5sKIfbaR1EjOiROtjxKfEKdmcgOJOTNQFh6Kun4NNDZh1bdgh2OE27cidIPuCbP53dvLAEjGFSwbejICR8DMSYKmRI6oXqArHyVnarwjsYb6VbeTb91FdO6B5NetR9E1nIKJHouiRiOo0SgoKrlNm8m3p6g77miwbYRugKJCuhN7ZyvZ7TtJbWjFsWwcy2HeHf8Ysb6QjDxPr+kg2f0q85cdPS6Vh7yx5DX/00l0GKpK2UyKSz9cNy7PbaTZZzwORn2SSG0Cs70Ts6edXEeaXGcPO9e0kVmfZ2NqM92td9MweyKpLR3+LLtqKCQmuZKoZs7qU5HzmFeeA9zBjJ11sLJu4RthmiiqiqJp7v+b3qb77fV0rdtBx4Z29PAqZp+6hNoT34tm5iHdidPdA4qCqmtEaqNk2nqNBui/eMqVnwxx1Lvd4lVBowFg5q/+zEzcojbRxjDCEb6c3p6kXOJud5OsJfseg/Eg+Ao0xXvj3uQCIk0G8ZYYsYYojuXgmDZLVz4+2s2VSHyMYm5CeVjRSGJl3Fl/L5nae6Z6ydNert5IJUurhuJ6NxIa8ZYYk5dMwy5YRBuTKKqKlkziKKprNDRMAiFIx1vYWLMIR6g0ia0cOjuHqrjtzds6tqOgqYK27hCpXIiaRI6wZhHTTRLpraTf3MCu1zdjPfwqddMbiNQnqJk5mcJRZxBO7YBcD7mJM7AWR9ERpBSNpoXLST91DwBaNI6mKIQyWQ649Tcj0g+S0eeA3Evkd60f62YMiPQ4DMy+YzjMnI2WTGK2r8YuWOQ6e+jY0En3+iyOKcjtMNmRbqf99S7sbG/lTm+wfl/zQv/B7BEMlzg9+zpPLD+MREsNwnFcoyGewHx7PZ1rt5HreoXODZ2+8RFvibFj9RskdvyGcF2CVGsH+VQGVdcwM3myHRm61vYNk+qPx/56bL/rT1z/Es+eeBTCFiiaQj5dKDGQ9KRG3YEJFFVh59MdfT67XMFmuK56WURNUonBGA0PzjyYmplRhC3I7Sr4Cfxm2iYXdj1nyx99kseWLB3t5kok/sA91KDTML+WHU+3j+rnlSdAe8/QkQhHCqLFVFTdLfSZnFxD45wmMrvShOsTZHZ0UEhniDY1QP1EsrWToHYSG0NzaVDbaLUmsjNTQ30kR7TQTnshTCavomuC2phFY7SHWj2FqjShKYJNqVoaojlieg6tkKXumKNwzJVYOdOt35POoLdMIqcZqPkMqBqqbTLxHceXtNkKucnRQtXQgdoPXTyifSIZGtkHbsWJJhCqhlBU9J5Oeh5ZxYQrfl1x+8jzK7FCkYrrxhOKoqAMwwoYzj57K/uM4WBOmMKO6e8g8n8r6drU5qoetZU+hL0aA5Vm9is9mL2Hq8eRTz0NuInISsMEzIbJhFu3kzQtMm3ryHUU/MJioXiIaEMNNdMmoYRD2Nm8WxU5lSWfzmHlLYyEhqq7SXDeLOvucuiDj7lJ1WlXoSnaFKb2gAS5zjx105PMOuNItGSSf+68ne43cwMebyjGgzQUJMPlHw0HoSc1tKhKrCFCIeNW/wb3urJSNj3ZHNlt7j3tabVLJKONU1R7a3+9q2rFZy2m7hXVoME1hhoWJohPjBOfmCScjBKf1kIouZPYtMl0b2lDOCZ6NIy97i3imsbzUz+AZaqEwgma9J0UIjrN4Z3wlz/ywpSjef2lLTiWzdyDJ/PeFVBjdbK0sAbLiKGpOdT7/oYx/yBa57yTBlWj4ZgVWK2uxGpmwxZ6XnkNY+1arFCIxJf/jWiFdteXGRKSsSN7/29R0p2oqo7QNNSuNhAO4QkNrD5uBQ0HTCQxbSLRKS2gKGQ3b6N7yy70OVPHuumSEWCfMRyMrWupVy1eemQN3duyFNqtqjrOQe6JzifUoPdRqFANhVCD2z0PTFnESVte9vcRtg2OQM+kKCw7jjtnnszZ778f/aofY5tuvGU4ESE+eQKoKmZ7J5mdnXTvSKGoCjXNSUI1ERpmm9QeMIX6y24Y0b7wkqoBXjrzOCK1UWoOq6f97R2o8Ri5hUcwcd4DdL+5eVDHG60kQcn+wWA8DZ5nrNBuYaXc+h6e8he4g7cz+wnlk0hGg8HO+BsJbY8YDpXeU+UTNtUqTBtJjVCDTmxihGh9lMYDJ6HHIxS6erB6stQfeRj5tWuZ9J6TSB9wGI6VRc1181Ld0ag45O0Qm9KNHBreTFxvoLn1JdJtncw6QmfzhijdqSyTmkMYSgrFEWhPPYTTlSK7s4OujTvJ3vMMofjtqFPqsQsWE5cvwjr0GGoWdOC89gLbHn6OA39376j3oWT3SU1ZiKWFMawcie1r2P7X+2l7s5V8ukD35iy5rjyxje0o6htkdmUoZExUVSW0uW2smz4gKsOUYx3xloxf9pjhcPXVV/Otb32Lr3zlK1x33XUACCG48soruemmm+jo6ODwww/nhhtuYOHChUM+/lu3/pVE2KBzTff/Z++84+Sq6v7/vm36zPa+2Wx6IZUQIJSQUAKhiZQHxEeKyqOAKKDyoKAEUVFQLKCo6IOoIPwUkSKhBUJEQnoI6Zuy2Wwvs7vTZ277/TE7k91kd7M12ST3/Xrta3fu3HvuubNzzz2f820YHUXG+oJ3govZv/kunjOuAGD5lJlEOszFqboCetTgdefktKUi+77fpI+vqGggI2oiJaKUnDUdyevBTCSINbYgKgqx+iaCNc1oMRWb24ZkkxFlCcXtxDOqEENV+32tb2ZP5UJ/3zITTH9tOesWnJF+vePPb+ErXkXj5qZu9++p4JYlHiwOx0BTG6a+V6nUwIsD27pUHrVSJlqMdBJ+LZ2NT48a6VpAQy0m0kVHe3EH7W6bZ4KDsQvGo0biGJpOoKadtspGssYVYctw4ygpJDDpDFxFY9ifP5PSyn+DoSNEgkwRJWqzp1Ek1dFGNq6WegqybNTkzaboWgeXySsYd+XJNASzOcu7Fl/lJxjuTLRoMsjbVZSLu7SAWJMfLRpHVBQcWTJGNIZt72ZwezHjCeLBGM1Lvtijq4vFyMG36T0CMxaSUFygJmjcVk/jR61AUrhG5ThqLCm24w0qakBHcom0+g/v5XC0sWIcDs8REQ5r1qzhd7/7HTNmzOiy/ZFHHuGxxx7jj3/8IxMnTuT73/8+F1xwATt27MDr9fbrHHUfNdEu9H/VJ6s8Iy0aABZs+xhITmZSsRCpgfg1eRKiInRxdZoxoYAZE2DnZ56k5PYv0p43gcz6bai7X2HnqxtJRFS0gE7hnDwUp43mimZM3WTU6eW4x5QijRlP9K3/w7no84f0rX7beuzxdpx7PqZp2QdU/nsPocoopmqmJ1Z9mVTFgwmyJ5cRrGpg35vbqaOpV7eiwVTrtTjxGOx3JSVKxU7uep0rj1pYjHQM1cTmk/CUOklEVEIVsR5XIN3ldmSXPOAA5/4840RFwFliI2dcFq6CLPw7qrF5HEz99heJrVtLsKqBrCtvQowE8NZto71kGnWxPAq9OSgNlZiRMMaKN1A+PZENbRPYVy/hnDKdF1aXctI4gWimkzHBDfiUCGXZ1fjWvYdgdyAaJpLbhR71076vHt+YYlylhUhZWUROOgtbtI2YOxdZi+LYtopEazuODBdtu+tov/FSxj3z2oA+G4sjw7anXmbKLbB19heRR88ia3QWbRVBEi0a9gIFb6kbm9tGpDlCVEtm/tIjBvHw8CUWGCos4XB4hl04hEIhPvvZz/LUU0/x/e9/P73dNE1+/vOfc99993HllVcC8Mwzz1BQUMBzzz3Hl770pX6dR48YLNZ39uuYdQvOwO6zU/HZxYeYSDtPhpb6pqSrZ+pRo8tkJiUk9q+sIXfaO7jtK4hG45iGQfbYLMJNYbRMDUEUcWZ7GDeuEM+EMehTT6E9s4zs/Rtwnn8ju3bvpSJQQpYjSoHSSNEnS/HU1xGta6CupoVwUwC7z4Y5yiS8P4bZkb51qW9KOnWl1pHto7MoEJVkANwnz31EtCbR5ziE7vLoW1YHi+EilTve0Mwu1j1LwFocKyRaNPwth68lkhyHe64CnXJHkn1S2oXPPcpBeH+sT6Ih5WbrLXNh89gBsLntmIaRLOI2pZxo/jj+fcENzJf/DbEQ+0efxaiVf0EonsraCif2yWcw1pXNXnkSe0dn0L5HYPvOCIZusMI5mvxcqG0GfzAX2+hpeIQgvvYaEhNmIRg6cjSAXFKGNG4SjtJ9mOOnoducxB0+nOuXUfPWSrImlBCoa2HPjgbmLP+QnD5+zhZHnymfvxSzqIwpDW8jNFTjnjcdV66Plop6PAU+7D4XkeYAiXAC9ygHoT1RKwbyOGLY3bJuv/12LrnkEs4///wu2/fu3Ut9fT2LFi1Kb7Pb7Zxzzjl8+GHPaRbj8TiBQKDLD8BFresP2fc1eVKvE11BEoi2xdj1amWv17A4sA1XqQPvaBeecmeXldHOxdX2Ld9C44YKYs1tiIpCRnk++ScVkz02B0eGk7InX8SRl42Ym0/YVwRA7Z//RuUtV5AVqcWhaEnRsPNd6l9/l31vrmbvu1up21hDtC2GqRtItmTAdqpAjy1bRvEm0+l1F2BtqCbxBpVIZbzLQ0fsYzC2JRRODAY6QR+qib2hmqgBHT1iWA8Yi+MCV7k96VZ0EJ1r9nRHys1WcibHeke+gmEYfRINkkvEM9ZJ0dwC8iYXEGuP0V6djK2rX7+HcFMQW2kJ+1wnUe+XiDmykCu3kRWtQ5swk91M5sZxK5lR/TLeitWEVAfRuEAobOLz2Qi0x2hpM/C3GYSjBo0tBm4zQGawBluwGdueT5C3rUVdu5JExQ6Myl3oU06hvnAWmuJCToRpWb0JQzPIXfJ7Rv/2JSut8rGI3Y4pyQiNNehNjRiJBIrbQfa4fERZIuoPEahpJ9YaRw0PbUaw4UYUB/7THx5++GHmzp2L1+slPz+fK664gh07uj5P//GPf3DhhReSm5uLIAhs3Lhx6C50EAyrxeH5559n/fr1rFmz5pD36uuTGRUKCgq6bC8oKGDfvn09tvnwww/z4IMP9vh+fya6umqgxbQ+Dchnb0oKk3/POBk4MGF63TkZgEUNW1h56lxsbht2n4bstKM4XchOO4IoUPr43wCINfnx3XUbGW8l80+35Wdgz/TibNjFnIwAytbNtK7aQMPmWuKBA5llbJk6kk1ET3Sa/MtC2hJiqmaPBdcOtkBIzqQvbqoAXndYK70nBqn/c38F4nB/Pyx3OYujzWAtrNGagRVnS43X8QY1nSSgLzF7ik/CVZpMd+nIcCI7bOROyMVbkotpGhQW51O/ehuRHbso23EfE0sKaR7zGSJTz0B7+pco55zJyU3PYsoKbeVz+CgwnZ8/8BGy3UYsFEmfp25PFiXjipg+M5dJo1Q00YY92IhQV4Xe3kZo9370eILsxYsg4EdsbyQfUGp2EauooGl7nVW48RgntPETvCeLmNkFiHnFSHVVJNoCSA4bhmYgiBquHBdaXDvmhMORclV6//33uf3225k7dy6apnHfffexaNEitm7ditvtBiAcDnPmmWdyzTXXcMstt/Sr/RdffJFPf/rTiP1VNH1g2ITD/v37+drXvsZbb72Fw9Fz7t6Dc9+aptlrPtxvfetb3H33gfzNgUCAUaOSBdFSk43u3Gy6IxFMEGvt3+AebYhjqGb6XJ3jHbyFHlw5HgRRQA1HSQQj6AkNNXLALJ3/w2fYf/vVOPMyEQQB35TxCLJMbO1qWndU0bq3hXBTlFhzIh2cDWBoJpJTTG9LpX0lakCULrEYKXGQOq6zMDJUE0ExMYIj39fQYnjp6f4YigriFhYnOnrEwFlqIxrp/hnTU/YjW47cJYuTHjXS43lnJJeII18hWpNAcop4RjspmlWM3edClCVcRbm07qjCO7Ec0e2m9o0PKDx1CtGGFmKtQaKNfvLGrmdN7hWcPLoYZBnDk8l3N1/KZNlFfZOOpmpoateJ37jpo7nyAhtT5fVIusqqtjl4clrw7t2ONH4Kwt5qAtUtZIsCkSnJxByu7R8R3b2H5k/2EGvr2U3LoivvjZ/Bwl2bjnY3ukWtrUWRFeKlkzAyi/F6fGg1VdQuX0/b/jbigQS6qneZmxwLiMIAsyr185g33nijy+unn36a/Px81q1bx/z58wH43Oc+B0BlZWW/+3PNNddQUlLCl7/8ZW655Rby8/P73UZPDJtwWLduHY2NjcyZc6BQk67rrFixgieeeCJtkqmvr6eoqCi9T2Nj4yFWiM7Y7Xbsdnuv5+7rSmW0MY4eNfq1stlbWr5pr7xH1a1XYRomiVAMNRJHjaokQgmW+qaka0jUrq/C5mnAUHXGXqggOey0bKmk8t19JPxaF1N26oYzO3LZp9yRDM0EzUTveK/zjSk5RZxFdmSHhGmYtG/vWmjuWMk3bjE89FUw9MZQWwQOnkRZ1gaL4wGtU5Xpzu5JvWVcSj1jJKeILVtOWxwOvkf0SDJ5R/H8fBSnkjzGJmNoyXMG9taiuOwgipjF5WRP2Y9twiRs43SMf3+IdNPXeDc2m4o9ElPPvRoz1o6yYz0Xny2i6gnqm6Qu/fJkZTDllHHk5Do5LfAKGDpiLMx5DcswEglMQPA34ltwDlr0LWLr1uIqb0Rwe2n9aB3tVU00bm1m/pYNQ/LZnggcLBqW+qYASW+DvmZWHA5s2RmE9lYjVNWReaZBeOzJaNmFiC2NtO1vI7A3lI7PSS1+HisM1uKQcp9P0Zc5K0B7ezsA2dnZ/T95NyxfvpwnnniCBx98kIceeohrrrmG22+/ndNPP33QbQ+bcDjvvPP45JNPumy7+eabmTx5Mv/7v//L2LFjKSws5O2332b27NkAJBIJ3n//fX784x8P6Jz9nWx0rs3QHb2ttHZ3rr1f+BSGpqPFVOLBGPFQAjWsEm9PdHlItO0IIShhTNXElbMTm8dB6z5/WjSkCs8ZmnlI2r3ujE6p9yRX8kHjyLLhzE5aeeLBRFJsDJHitwKkj326m/T3dO/09r8erHhYNe9Uom1x4r24zFlYHE0ON94dLkOS2kk4dFl17WE87lxI7mArw8HjuKNAIXtyBjnj8/GNK6X2P5sxDRPF7cQ0DTyjCoj72wls20Wmy03b1XfiWP9PBLsD75hSIoAsmZw7pZm46aFCPIk/Vp3CzCwH/jadlcu61k3JK81jw/JNnHTGSYjmDsjOxaipIrizEkduJrZT50EsipCIEfWHCDe246ptQhBFmrbX0bKj1brXB0nqO7GoYctR7UdgdzWBmlb0hIYWjeEbu4dYe5DWihraKoJpwZxyoz6RSHnApHjggQdYsmRJr8eYpsndd9/NWWedxbRp04akH/Pnz2f+/PnU1dXx5JNP8vvf/57nnnuOWbNmcccdd/CZz3ymT4KmOwTTNI/Yf3XBggXMmjUrXcfhxz/+MQ8//DBPP/00EyZM4Ic//CHLly/vVzrWQCBARkYG7e3t+Hy+Xvft/ADozbe7L+8djp6O7exGlUpBKfuSKzudg+KA9EpTKhA6tb1zxWdRScY4OPIV8qbmICkSWlwjFogTbooQrUkMysLQ3fVawuH4pj8ior/CIfx/D2CEwsiTp9JcfhpZy/7CJ0+/Q8v6A6s0lrXBYiRypMa9g6tQSy4RxSulF5ZS20RZIHOSB0ESCVaH0QI69gKFCYsmo8UStO/3o8U17F4HBbPGoIajNG+rofDksVR+9qeU6btQEhG+++4sNry3kV/+ZDpOKcadS+oJtx+aHersy0+lsqKJpxe+CYoNgLY338Lm84BhILudIIrIXg/Na7dQu6EaLaYnswHqBm07Qkd1ldxi6HgzeyqCkoyxhA5X6YPcortjvn9Nn+drR5rUXPLXr7XjdPe/b9FwgNsuzWD//v1drq0vFofbb7+df/3rX3zwwQeUlh5aXbuyspIxY8awYcMGZs2a1e++AWiaxt/+9jcee+wx1q9fT3Z2Nl/84hf56le/2sXrpy8c1crR99xzD9FolNtuuy1dAO6tt97qdw2HFP0Z2Puy70ADR/tyzgNFr0wSLVoXM3bKxAdJxW7LlpFdMpKSFA6iEu9SUVckdeMmj1OjKmpYJeHvW+B3X/tsceIyVN8D0WajecsmjI8rsHneZE9FPYFdB1ZrLdFgcaKjeKV0Cku5ozZEe0U4+SzwSbiLk9ZkQzcRFQk1rGLzKTiybAiigOy007avmVBDmJzxOWSOKcBIqPgr6om2xZCdDhRBQ0lEaPOWMHWqj9PmzCesRVBElbHTywkHY+z5uCLdJ0EQuH5BgJz5bbC2GRQZdcw0ZKedRFsQPaGiVjXSWtmMIIp4C32Ea6LoUYOQliwEd6KtPB9JtlxxHif9c9kRO193AvC98TPQo0aPSVcu1XYc4sYzEhlsjIPP5+uXKLrjjjt45ZVXWLFiRbeiYajYu3cvq1atoqKiAkmSmD59Or/4xS944okneO6557jsssv63NYRFQ7Lly/v8loQBJYsWXJYM05feCPrZFyCdPgdD0NPVZMH0k53Fo6DSe1zcXR7t/u/mT01vc00zG73NVSThF+jZWdrl8DpzgKkO3oKzrM48RhM1efujn2r4KRuzemav5XmHQ20bGtHC+jW98/imOFIuWmqQR1DM9OiQYslLc/eCS5c2Q7sPjvB+hCKOykaJJuIZBOR7TKiIhGq81O/sREtoOPItJM5poBEMMLY/74EMxKm9sz/RjBM/tU+n2uqf8vNzpU0Fs+lnSy+8WBNt9YG0zT509senO4sPj2vhMl1b2P++00iDa3kn3cGak0tO176iHBTBD1q4K9oQ+1IwGHF1A0/R1I09ETJ3GIi/gizalYc7a4MiiOVVck0Te644w5eeuklli9fzpgxY/p/0j6c49VXX+VXv/oVy5YtIzs7m6985SvcdtttFBcX09jYyBe+8AXuuuuukSscjgW6mwj1NUvTwXTevzd/8NT27t4/WNkvK5/ebRuGaqYLvB0cWN0dBzIvHVsZDyyGnuFY5XcWJE2zH845BUES8BX7GL3oFGr+/TFtlUFLNFic0PQ2RpuqCc5kAGykPkbGOC+hPVESARW7z0ZrZTuSIqI4FSRZTIqFhjDxgIoa1qj7oCndluJU0KJx3MV5RLbtoGrFVnLmXc0zH5Zwzuw42tZ9SOVjiQpufvIno1vRkGLl0rV84a75FJg1CI01GPEEsbYIjbMvQ/vXNwhUJQNi08HdHYXsFJ+UjvWw0iwfv0z86xsEfvH1Ht9/TZ5ExLSyOaa4/fbbee6553j55Zfxer3pEgUZGRk4nU4A/H4/VVVV1NbWAqSTChUWFlJYWNhr+z/+8Y/5zW9+w759+5g5cyZPPfUU119/fRe3qfz8fL75zW+ycOHCfvXdEg59YKgGuoNXqy7Vdhy27dQxBxcMUnzJgm+dszwZBwVS90YqLavFic1gv9vdHb98ykxsLoV3SqYhKAJaQCe4L0Ko4T3adoS6BIwOZV8sLIabobI6SE6xi0VY8UlkTvLQsjGA7JPIn5VDsC7E6DPHkHvqdNa1vYKkiEiyiBbRiEcNtFiyto+hm8RbEqhBPWlt7kiw4Sl3Yvc6aN3biGd0EfaSHPIm+6lUS7n2zBbGb3sJiovBNPjVqxns3tB7tqNRU8ZwffhJ/L9ZQeTzd+DyZpIdjRH4/jeofH8fWiCZejNlyTZVE3uBgqma6ZSc1j1+/NL2yB2Iiszqs06neV3bMbswJAgmgtD/vvf3mCeffBJIxv525umnn+amm24C4JVXXuHmm29Ov3fdddcBfQu4vv/++7n88sv54x//yDnnnNPjfuPGjeO73/1uv/puCYcjRH/qS/RE5xtR6LAYDMbdyDIhWww1r8mTkFwicVk9RCA0tbT3eJw1obA4kehOPCfC2gGhXRdCi2g0batDjcTxFnkI1oXQNYOscZmoURXTMHFmOqhe0YCn3EnpGTlkjSti3S9WA2D32WjZ3ULh9GJsU6dTNf4Ctk0p5p8vNPOrC/6DVr2f9+Y+xCPf/whD71003PrN+Sx+/8tU/HYH42+8DC3SSnzTRpwlhXz8h9XpWhNqQEdUBLJnepFsIjaPnZatrZZoOAGoXPYxsl0iWN19hrFjBWGAMQ4DcVU6HDfddFNaRPSXXbt2MXr06MPuV1JSwgMPPNCvti3hcAQZaKzEwVgByxZDRV/FbEr49qU4nB4x6MkgbU0eLI51ulsEGuiYLCoCGZPdZI/Nouq9WvSIQc7JPqb99zkoo8r44Cu/Ix5M4Mx2kgiouPOc2D024oEYNo8dLa5zyp3z2PSnNexbVkPj1mZs2TK2TIX8KYUoLjuBOx5jm+Hg5Q+93DVtOcJlC1j0YB5wEbzefQXn7OJ8Hvp6LkHVSYGjhT1BlaoVWyk/dzqBdR9j31vJyu+/07W4qGbiLLUlA6Kro9iyZU5buXpAn4vFsUHn730qw+OxviB5pGIchpu+iIaBYgmHbrD8MC0GS08+zJ1dzo4lU+5gxOpQZyezsDjaHBy/NlAMNVmgM7QvmrZCxPxxqt7dgBpdTawhmR0vkp1MwR2qj6CrBu48N4lwgnBTlPr1e0j4NRz5CtnjMgk3hWnbEaJhcy0zv3UjmSt+hzh6PHf8rYx3/qZgc6w9bL/+36c/RG/JpTZ/Fi+uK+WO5m+z1y5R+e4nBGtDROviB+pNdMQyiPKBnP1Hu86AxfDS3XfeUM0hqxd1NDlehAMkYySee+45tm3bRjQa7fKeIAj84Q9/GFC7lnDoge7iEQZyXH+Ptzj2SQWeG1oyVW7ngPVU5e/uKsEejX6m+rTUN4XFgW097ttfy9dQZSezsDgWGEzsg6GaGOoBG120JsG+mhoERcBZasOV78CT76Z6RUMyrq0tiDhBQHEpRBvihCqTrkp5k3Ko35zMpuQssmPoJmp+GYqmsrboCmA9AIlYvNf+PPnYZNo1L4YoMWrDi3xx6hkEn6lmzH138cnXvo+n0IUgCemidwdWmJO/rVoNxw6DdZ+2GLlUVVUxd+5cIpEIkUiE3Nxc/H4/uq6TlZVFRkbGgNvurhCxRTe8Jk867IPhcFV2rRXX45+UuTYVgyIoApJLPBCTIh+dZQlREdI/qdeSM1lp3JYtH1Klti/0FNxvPYQsTiSG+vueFBImtmyZ8ReOZ9Kn5qCrBqZqEu+wQDSubyXaGmXmzXNQvBLxlgR1GxrwFXsYvWAUBdPymXDxTN7kYs57ejZ/fwfGzpxw2HP/63saEyqX0qoUYP9/vya4/mNcH/2L7S99gvHRcsI1UZo2tBKqPLB6mRpXDNW0RMMxRl8StJxoiII54J+RxL333stJJ51EQ0MDpmmydOlSwuEwjz/+OA6Hg3/9618DbtuyOPSTwbox9aW2Q+f9+uJTbjFySBfkw0iLBFEW0lU29aiRNucfCWtDSsh0oVOFcnuODUkR0WIDT5OXMdVNpDqGGtCth5DFCctQ13kwVZPMCaOwTZtJbn0LtSsa02OGSLIAXLCmBT1qoEcNcmb5GHPBLARRRItEcc9fyJisZEKCnFwndVX+Hs815bSp3HqNxG6gPmc+U4R9GPEE21/eRKJtHQArH3qz26Bue4GC5BRZsO3jIbt2i5HL8T4HOV5clVauXMkjjzyCw5EsGGmaJjabjdtvv52Ghga++c1v8tprrw2obUs4DIChMu915w518Lbj/SY9Hkn5epqpOAc6HvQkAwgHKxg6uxgNJBAtlcrXnmPDnefE5raRCCcG3J+yeaOpWbuf9opjO5uGhcVQMygXJs1k/4pPsK3bSTwYo/CMHLS4jivbSeXrtbSsD9CyPoDkSloOM0ozCNc0knP6ycjtbTSNOpmHf90GwBt/7T4I+iePzCahy5za+BJaexaX/igDTdX4w8/GEmlqQw1rxBpUHAXKIaJBVAQmXj2O6rXVlmiwOG44XoRDQ0MDRUVFiKKIJEldqnafc845/PKXvxxw25ZwGARDPam3RMLxRVogdIgII9C9YEhZBVIWis5xED1V/07v7+rqYmR2I0rMzhaGAgW714YoCdg8dryFPrLGF6Nk+qi+4xpKH/9bv6+zZVcj0ZZ4rzESFhYnAt0JhYEmB0i0aFS+Xpt+nRonmtW2LvspXomsCT6yxhVR8/mfUWuIjEts4cPGSZRPiFK3a3963+lnTadqZy3/uPw9gus2EHzkJ8gOG5Fb7yJh8/DdJZM4beVDyFtLuH/mX8g5z8EXN32Rtb/8CFERsGXLxBrUdHv7/l1FtHrgiw4WFiMNkYGlYx1pfv8FBQX4/UkrY3l5OWvXrk0XequsrESWBz79t4SDRbcMtdn9ROdwVoaUO5PkFJOxEKKIHtdJ+JMF/gTlQMYSQ0tmMJGcIlLH6/R7HCoeOgdnA4iSgN3nwJ3rxpXrRbQpCIKAZFMGdG0nL+t+NdPC4kSk89g5lGNoT1lrJl4+Cf3rP0IJ15EttrCmZTyfRM5kTH4Mf0uE3FGFNO+v59yr55GbrfD9S3aw8oqnMLRkW6WnFSPZfWyPT+C8GU6Y8UMAfpI6wX89zeLvJ6+ls2gwVNMSDScY1pzg2OH0009nw4YNXH755Vx55ZV873vfIx6PY7PZePTRRzn33HMH3LYlHCwOIbVCZomHI4ehmUiKgM2nYHPLCJKIntDTgkFQhLQvs6QIKF4J2ZW8fXU1KTBSgqGzxaI7wWLoJnaPDU9hFrLTTqy5DbPRT/HPnj9yF2xhcRzTk+VhsOPpwWmeJZeIMy8Dz5oXSUw8mYxQDWdnBnELtehL36Ll/F8wLS+BJJQzcZyto5V5LNy1CYClvins/6CGcY98h3k3fAa4rtdrStGdS60V33T8cCJnWxIwERhA5egBHDOcfOMb36CyshKA7373u2zbto0HHngA0zSZP38+v/jFLwbctiUcLCyOMl0CqiUBUZFQnAqm00SUBPSEgWmYiKKBKOtIdgnFLePMcgIQbY2iBXT0HqwaKRcDe44N2SEh2SQkm4xkV5A9LmKtQRxZ3iN4xRYWxz8HC4WhXIQRFQHZJ6F4JdRghLq3/kPGrr3YczKxTT8FQ3EgnXMhl+7/OaGlm8n73v91285A3QsPvjZbjjWVONboSex1JxpOpAXE4yXGYc6cOcyZMwcAt9vNK6+8QiAQQBAEvN7BPe+tu93iEDoPKJbV4ciQEg9qTENUDnhLGrqJaZjIDgnFraA4FWS7hChLuHI8QNL1yFANoo1xiBppFwTolHY1U8FT4Mad6ybij6AnNFp21GDzOHDlZ+Cde/KA+r3hgrOZ/fa/B3XtFhbHI92Nm4MdTztbELWAjh41qFm3j1hbnLqNtZTPH49UWYu7rIjWC2+m7LRLcV494NP1CVER8I52De9JLIaFw9WrOhGf/aIwwBiHESYcusPn8w1JO5ZwsLAYIRiqScKvJd2RDqqroLgVnJkO3HlevKPysOdkARBraEaLJYgF4sSUBEbQ7JLuVVQEDM1Ejyczotg8DiL+CFpcIxFKEGmJYPM4cHzqjn73998zTubsTesHedUWFicOqUWZoZiQpRYb/JvbkX0SklOkcWstilPGkZtJbs0GmDBl8J3ugc4FLLWYTuUtV1D+1D+H7XwWQ8fBVoXu0sSfiKLhWOdPf/pTv/a/4YYbBnQewTTNkeWY1U8CgQAZGRm8II7DJUhHuztHhCNpBbBWII4sKQtB54JxgiIgKRKeAjcF00rwTRiNXFSC6ctC2/YJgYp9+Hc30Lq3nWhdHD1qHMj33iljU8ry4M5zItll1KhKtCXG/C0b+tXHtwpOwrSKPVlY9ImeLA89vddfJJeII19Jx0GlOK/yk0G3fThS/bflyGSMdXPaytVAcoxItCQTO5yIfvLHOsP1nI+YOtcau2lvbx+y1e+hIjWXfH55Cy5P//sWCQW4bkHOUb02Uey64Ch0+E91nuYLnXyqdH1g9Zssi8MxypESDwevTPSlaJ3FwOmcWSkVyyA7ZNSwiuLsCIaOxZEiYQTTQAuFMTQd0zARpO5tpaZqYgASoMd1wk1RJJuIoZv9Fg2p9izRYGHRN7oTCSnLw1CM43rEINaoIjlFHLnJOCa713b4A4eAVP/1qEH7ngN1XBY1bAGsZ8KxyIn+PzuWYxz27t2b/ru+vp5rr72WCy+8kOuvv57CwkLq6+t59tlneeutt3jhhRcGfB5LOBzDHEnLQ29ZM6yMGkNHOs2qXUKyiXgLPbjzfPh3N6E4bZiGSaItgKnpCLJEcF894cZ2YoE4WkQ7JL6hc9VoNah3rEhqg+qjJRosLPpPT+N16j515CvkTc3Bv7uN0J5onwpFpo41VRMdg1hz4hA3xyOBHjG6LUap+CTr+XAMcaKLBgARE3EAGZIGcsxQM3r06PTf9957L5/+9Kf52c9+lt42adIkzjnnHO666y4ee+yxAYuHkVazwqKfHO0B+WDfyNSPRd9JpVhMuSnJLhnZIXWsHDpQXDZsHhuCKKAnNOKtQYL76mjdVknbvmYCtQEiLVHUoN4lBWvKcqF4ky58pmqiBvT0T2e3htVnnX7kL9zCwgKAjAluJl02lXHXLkJ29N3lVlAE3KMc2LJlTNUk0aIRb1AJVUeHsbd9Y1n59GTshUu0JqQWxwwpi8NAfkYSS5cu5ZJLLun2vYsvvpg333xzwG1bFodjkP6u4EgusdvVoKHoR099Gqh4OJEeMJJLTMcxpCwFyXgGEbvXht1nR3HZ0RMajgwnoiwRawujRlUMTUeL64QawiQCarrGQ2dStSFSbXdewez8/1lWPh1PkfOQ/u2//WpG/ervw3HpFhYnPKkx8+LodgCa7r+Zto2b+zXpN1XzkLgmQzXTrkJHgp7Gej1qdHFZsiwPI5sT6dl7ImAYBhUVFZx//vmHvFdRUcFgwpst4XCMcrhBWPFJyD4JURZwF7pQwyrt28N9Mn/3ds7B9KkvnCjpX1MBjY5se5daDXrCQLKJ2Dw2PAUZuAuyOvK8tZIIxYi1Rwk3R9BiyaCmaEMcIG1V0NQDwU6manZ5neLg/NziQUGVkLRAZI7KHOKrtrA4semutkPqfsz7/tP8Z/acdFBxXzBUE6Obe3wk0Pk6Utd9IhcWG8mcCM/cPiOYCMIA5kkDOWYYueiii7jvvvsoKyvrYnl47bXXuP/++7nwwgsH3LYlHI4DDg6+s+XIeEqdFEwrxFOUjS3Dg6jIVC3fRPWKhmGxPqToLq2bRVdSBdnchS4ySjIQZZFEOIEaVQk3hhEVCUeGE3dBFrbsDIx4AtMw0WIq8VACNayhhpOVovWogeKVusQypOirSDQ6XBw6c+oHHw3JtVpYWHTl4PG6s3g4c8O6434SZz0XLEYyx0sdh1/84hecd955XH755Xi9XgoKCmhoaCAYDDJhwgSrcvSJysEr/I4CBVumwthzx5N7wQIiZdOIOrPw1XwCLfWMPk8iFviIhg/9R6V/feV4zSMtuZJuSb7xbmwuBcku4yvNQXba0aJxov4giXAC2S4jyhJaPIG6v55QfRvBugCx9qR1QZCSwZBqMLnSaGgm0ZpEr4LwcP8HxXdipDK2sBgppFbhD743B2N1TcVJDRc99St1XkMz0+NQd9fVuQ1LQFiMRARMhAEEOg/kmOGkqKiI9evX88c//pHly5fT0tLC7NmzWbhwITfccANO56HuyX1lWIOjH374YebOnYvX6yU/P58rrriCHTu6DhamabJkyRKKi4txOp0sWLCALVuOnH/msU7ngfz8ms0obhl7lhe1cAzV7snUU4phd4JpoMcT2D02JJcVE3+kkVzJIGXPaCflZ09g0n+dzaizpmDP9iEqMqIiI4giQseyRSIUo72ykYbNNTRsaSQRUXFk2PGVePEUuJF9BwKe9Wj3GU36GqwuKoKVKcmiV377lsmOXVVHuxvHHT3dm/2dVCs+iYypbkZfWMLka4ZnwaW3KsNGR+KF1DgkKgLrFpxx2PaOt8WhYxHrf3D88PHHH3d57XA4+PKXv8zzzz/P22+/zfPPP8+XvvSlQYkGGGbh8P7773P77bfz0Ucf8fbbb6NpGosWLSIcPpDv+ZFHHuGxxx7jiSeeYM2aNRQWFnLBBRcQDAaHs2vHLTF/HD2mEndl0RzzEdcVxFgYrb6B1h1VRFuPfraNvjJSV6QGkjlKlAXsOTbc+W68E8uRxk7ENWk8tuwsJKcDUZaQbDKyXcZQdaJtUYINIUINYeItCWwuBXeem4xROWSWZePOc6F4JQzV7CIa+pvZ6lJtR7duThYWKaJ//RFXFX9E2Z53AHhv/Iyj3KPjm/5O5Gw5MpOumsjs33yXsm9/nfyzT6F5yRcHdO7mJV9k8+ULeadkWo8T+86Wg57GG9knUTynvNvvSudjLtV28Gb2VD65dMGA+mthMdQcy1mVZs+ezfjx4/nf//1f1qxZM2znGVZXpTfeeKPL66effpr8/HzWrVvH/PnzMU2Tn//859x3331ceeWVADzzzDMUFBTw3HPP8aUvfWk4u3fc0Nnc7Sl2Y8twI2gxslxh3FIYY98umjbsoLmiiVBdFHMQAdJHmqMdLD1U4iWVLUlSRIxIFKm5PrldlpJWBlFAsiVvx3gwgWQT0RMGuqonKz57bEz+29sA7L7xUoB0tqTB9nFxYNugjrc4vnF+5l6cANPmARCtSVjuJsNIZxemvox9klPE7nNRXzCT3MAetOrafp9z9VmnI4gCWkwjuC/SbYD24f7Xnd/feOF8HLmZZI3L5M3sqWk3plSWpVXzTgXgtJWrLWvnUcSyNhyKMMDg6P4es2LFCh599FHWrVtHXV0dL730EldccUX6/VAoxL333ss///lPWlpaKC8v56tf/Sq33nprj21u3LiRF198kRdffJFHH32U0tJSrrzySq6++mrOPPPMLlWjB8MR9Vlpb28HIDs7G0hWuauvr2fRokXpfex2O+eccw4ffvhht23E43ECgUCXH4sDZI7KRPF6sAWbKdL3UdSyBf+6LdRvqqOtIki8QR1UZqX+MFSTip58ZYeb/jwoD4epmmgxnUQoQbCylsjeKhKNTeihMHo8AYaJaSQtB1pMT2dZkhQJ2SUz/bXl6bbGPfMaaljFVE1r4mZxxEmlDwVr4jFc9Oe+Tvg1dr29Hecv76Xt14+z540NaJF4v87XujVA88Y22raH+pTV6XBWzVlvrkCPJ3BluyhbWMzcr5/P/N/fTuz136b3MfRjZwHL4sQhVQBuID/9IRwOM3PmTJ544olu37/rrrt44403+Mtf/sK2bdu46667uOOOO3j55Zd7bHPGjBk8+OCDbN68ma1bt/KlL32JFStWMH/+fIqLi7n11ltZtmwZuj64TGxHTDiYpsndd9/NWWedxbRp04BkSWyAgoKCLvsWFBSk3zuYhx9+mIyMjPTPqFGjhrfjxxgTnl2KaZqIoTa8zXuQ92ymdn0V7RVhEi3aERMNQ81ILS7X1/6oAZ1Yc4JwU5SWinpad1bTXrGfYGUtseY2oi0Bwo0BDFVPBj8byf+TKCUtFQdj99qOSoVYCwvoej9avurDQ18/Uz1iEKyIsPudnRiazuT/Pg/v5Z9i666+Wx4MzUzGSw1hxr3WihpadreguOyIZy3ijcL/4QXX/1B161WctnI181avYdfnui9QZXFkGInP1KPNkXJVWrx4Md///vfT3jYHs3LlSm688UYWLFhAeXk5//M//8PMmTNZu3Ztn9qfPHky9913H+vXr2f37t3cddddbNiwgUWLFlFQUMDnP/95Xn/99f51uoMjllXpK1/5Cps2beKDDz445L2DzSemafZoUvnWt77F3XffnX4dCAQs8XAQvq/9FIDqO65h/6pKWtYfWavMsTwQDTQLVF8e8okWDS2gE62LI/v8yeJvoohhGCT8yVU+R64Nu09BcSkIosjst//dpY1NF5/DmIvmMuEnDyCuWd7vvvbEe+NnsHDXpiFrz8LCYnD0x03TUE0COyJs31PBvn/vI2vc+0Rbfwyre/dzPlz7fRkPI08vwXXzkkO2T3h2KRM6vb4i9ceCF9Pboq1hWh76Es75C2kvmMzHsakUutoZ274W2/4dOK6887Dnt7AYSRzsBWO327Hb7f1u56yzzuKVV17h85//PMXFxSxfvpydO3cOKI3qmDFjuOeee7jnnnvYv38/L774Iv/4xz/41Kc+haqq/W7viAiHO+64g1deeYUVK1ZQWlqa3l5YWAgkLQ9FRUXp7Y2NjYdYIVIM9J9wvNNdWr/Sx//GJ74pR+T8RzsW4VghVbBJjxpdgpLT2UhkAckmIttlbO5Db09dNYg1tuDZs4mov3VI+vSaPAl3uXVPWQycY3mxYCTT39TUhppMzRytacRQTV53Tk6/19nFbNW8U2nbEerTuQ9Hd6KhN0If/hN1xdtULttE1B9lxz/X4VuzE09BBvPPOhkMA1PT0AyD0JPfwnPrw/1q38JiMAw2xuHghewHHniAJUuW9Lu9X/7yl9xyyy2UlpYiyzKiKPL73/+es846q99tdWbUqFHceeed3HnnnTQ0NAyojWEVDqZpcscdd/DSSy+xfPlyxowZ0+X9MWPGUFhYyNtvv83s2bMBSCQSvP/++/z4xz8ezq4dl3QnHoaz2NvBHOuTh8H0v7/CyVBN6MZtLFmb4UC9hs2XL2TaK++l30+E4lR9sAM+SPY1+74Bdxk4UDna5lWov+dzFD7y58E1aHHCcazf98cC/bU+QDJFq71AIVIZx1DN9L1edkER2WNzCNVF0aPGsLmvvlVwErnTMik9bTze+fNxXvSFZP8UO6IskQjFaa8IY6om7RVhJGcjpmHiLshEdjuRXU4Qk+6YFZ9djCCK2DwOFJcd0zCItYXRExoTnl06LP23ODEZbB2H/fv34/P50tsHutD9y1/+ko8++ohXXnmF0aNHs2LFCm677TaKioo4//zz+9zOli1b2LdvH7FYrGt/BYFPf/rTA+rbsAqH22+/neeee46XX34Zr9ebjlvIyMjA6XQiCAJ33nknP/zhD5kwYQITJkzghz/8IS6Xi+uvv344u3bCcLxaAob6ukbK5EePGJiqiaGZGLqJqZtsvHA+s95cASSzkAw1klNEcSs4cjOHvG0LC4uhoT/WB1ERsBcouHKcaAEdQzNRvBIn33YuN+y6ld/5fgBUD2vMmy1bxua2JevTqAeCtX1zF8PcxZz2jQP7viZPQo8YjPlD94Gfki1ZFFOURYp++hw1X7uWsU+/2mWf1h/dTta9vxqWa7E4cRhs5Wifz9dFOAyEaDTKt7/9bV566SUuuSQZBzRjxgw2btzIT37ykz4Jh927d3P11VezaVPSBdk0u97rgiAMOEh6WIXDk08+CcCCBQu6bH/66ae56aabALjnnnuIRqPcdttttLa2ctppp/HWW2/h9XqHs2vHLQOt1jwYRsqkeyCMxL4bqpmMheiwPMiO4a3qLPskMkoyUM5cOKznsbCwGDx9ERCGapLwa7hykoHPetRg8pWTsRUV8uWFY6i9Z286rmq4WLDt48Pv1MHhxuGDRULJL15I/x155nu4bvwugnjiJos4Gs/945WRUDlaVVVUVUU86DstSRKG0Tcvkv/5n/+hvr6en/3sZ0yZMgWbzTZk/Rt2V6XDIQgCS5YsGZAPmMXRo3Ou8WOVkdz3zuLBli2z4YKzDwmUHipEWcBbnMXjtZ/i3mE5g4WFxVBzOAGhBXRirXFEWUAHKpbupGFLLWXZb7Pvg6ZerQ0jeWw8GNeN3yX2j5+Tec/jR7srR5XOtVWO9WfziUAoFGLXrl3p13v37mXjxo1kZ2dTVlbGOeecwze/+U2cTiejR4/m/fff509/+hOPPfZYn9pfvXo1Tz31FNddd92Q9/2IZVWyOHIcXJxpKN16Og9GR3tgGsx1HYm+9zew8WAM1UxnYjr9kc9Qt30jDWIJsybmDUn/Uv1K+DUku417rxley4aFhcXQc/BY1nm8kR0ScqHEGTVrO73nP2ybQ5Ft6UjiuPJO9t9+NU3b6zh52X+OdneOOIOpdXQ8ujIPhiNVAG7t2rUsXHjAyp/KFnrjjTfyxz/+keeff55vfetbfPazn8Xv9zN69Gh+8IMf8OUvf7lP7efl5ZGRkdGvPvUVSzhY9JmR9rAYCMN5DcPVtmesk+ioKew2xrGjxsOsiUPbvuQUcZcVcd09VTz/SNnQNj7EWCtpFha909v9MVSLSCPxPhz1q7/zsTyJk492R44i/a3obomGQzlSrkoLFizo1SunsLCQp59+ut/9SHHrrbfy1FNPsXjx4gG30ROWcDiO6e8g0h0j7eFwMMdr8HdnJJtIzJFFa8hJLA7f+n2Mh7/oGHS7nT87KSuL8MfhQbdpYWExsjmex0zJJfK6c3KX1LMWFv3hSFkchptvfvObfP3rX2fOnDksXryY7OzsLu8LgsBdd901oLYt4WDRLSNdMJwoSC4RZ7YDr7+SKQUZeBwFuJ3OIT2HGtRpXb2R0xZ8g0de1Fn28ie8+adZnHnZ+/zn1XOG9FyDxfpeWlhY9MSRTD8+ErHGR4sUq1at4plnnsHv97Nhw4ZD3h+McDhx0xCcQPRndelYLEF/tPs7nP7AilfCle1Crq+kqH4Dk5QKphcPTeG3FKIsEKpvY/HJAXKzREKt7Zx52ftDeo7B8mb21KPdBQuL44ZjcZy3GHqs78ChCCQnxv39GUAG12HlK1/5Crm5ufzzn/9kx44d7N27t8vPnj17Bty2ZXGwAKwBZCSjxTXU2lrkRIKsYCu+jErgU0PWvqAIhBqDTN3zItK4K/jDkLU8dHSusm1hYTE09BZY3Z/jRhKdXbFGcj8tRibHi6vSli1beP7557n88suHvG1LOJxgDGYgPfihYg3KSQ73ORzuc+vtYR1rUKn5oIFg/XtINglTN9BiOmduGLxwWFY+nZyTfcgOGVe2C8ObRXl4E7957CQ21Rfwf79eO2LclRY1bDnaXbCwOO7pPDb1NC6JQyzih8pi2zlg23o2WQyUkVDHYSgoKyvrU0mEgWAJB4se6TygHw+m7aPV/8EGI6oBneC+CKIsYGhDNxDkTMrC7rEx5cV3APBvfB9X7XbG+lop8eZx+vdHYTA0qV8tLCyOLXoat2Tf0KVt7m1c7O94faw/n44Wx3Ow/EA4XiwO9957Lz/5yU+48MILcTgGn0ylM5ZwOMHoKY3esT5wHMuDX1/qPSRatPRK31BkDFkzfx4ZJRlM/Osb6W31ngnkjnbiCtTh3Lkap/phcvtvt1L4yJ8HfU4LC4tji4PHVVERkJyDC43s6zh9OHejN7OncqF/a7fHWSLC4kRn/fr11NTUMG7cOBYuXNhtVqVf/OIXA2rbEg4nIKmB9VidaI8k+vuQGoyZ31DNIXsgegs8CGLXvuimSLO9lCJnGL1qP+GaRhy5mRiqOiTntLCwOPYYymfFQNpJHZM13cOZG9ax63OXMP7P/0IN6NYzbIiw5gMHEBiY29FIi8J74okn0n8/99xzh7w/GOFgZVU6QTkeB4mjscrU13OKioCoCNgLlAG1NZSuYluuOA/TOHRgzDKbydSbcDTtI1LXTKi+DUGS8H7mBqJLnxqSc1tYWBz7rJp3ar+PGewzJ9aaYMsV59G6z89S35Qe97OsDQPD+tySpFyVBvIzkjAMo9cfXdcH3LYlHCwOy/EyoBxNsWSoJvYChZxJWayZP6/H/Y7EZ12zsp4pL77DhGeXdtkekbxk1Wwm9P77hOpbEUQBLRJlV+ap+MeeNuz9srCwODYwdLPbcew1edKwjbMJv0b9xkaaN7b1WK9BVARed04elvOfCBwPsYyDJRUcPZCfEwXLVcmiV461QeRgk2vn+AHJJbLUNwVTNY94ZVHFJ+Er85A/tRjZae/TMUP92S/1TUHxSj1mKJo4bjSMG82aO36SXJGIGlT9p5qTnd/FMaYcJs0Y0v5YWFgcG3Qei5aVT8dQDTQ0Vp46l7btoUMm8sMhHvSIQTSS6LJNVARkn4Spmhiame6HFecwOCzXpeOLSCRCLBY7ZPvBcQ99xRIOFicM7lEOys4YjSPLO6Tt9iVnuB41CNWGafbUkTelpNf2huOBt2b+PPJPzmLO8g973GflqXNRwxp6XMfQTLRA8nfD+goKgKGtV21hYXEsYqomhm4iiCamYR4iGlKTTluOjOKVEBQBLaCjR5OLEYY6NCuzoiLgKrejRw3iAfWQdpeVT+e8yk+G5FwWJw4iJuIArAcDOWY4iUQifPvb3+bZZ5/F7/d3u89A3ZUs4WDRI8fqik13/bblyIw+qxz57gdZG5rCpUfgnJ0xVJOEX6NtX4CMUQNT+YMhf0rhYfdp/SQIgOQUcRbZcebYMQ0T/55W1OhWQrdfzahf/b3f57ZW/ywsjh/Or9nc5XV3Ft5LtR1UfHYxiitpXTU0nfbqNupXNcMQCAfFJ+EZ7WTSp2azb/lW6qpburxvy5EpnlNAy0NfIuc7vx30+U5ETlSrg8AA07GOMOHwla98hT//+c9cdtllTJkyBZvNNmRtW8LB4oQhc9Jofr52Ch+9s41Lnx46t5vUAHu44GaA98bPIOoPUffNz1L06LND1ofD4S0rOOw+hmriKFBw5ts5c8M6tlxxHqIkUPNRPYmIihbXGdXP855oD579O7cwauJJ6dc/e8XgrsutUDKL45eeJpiSTUZ2KIhysu5DtDVZi2bgIZlJREXAVeogb3IenpkzcH1SieJrQ48a2LJl7Dk27D4b5dcsQi+bSHTpUzgX3zLIs1qcKBwvBeBeffVVHn74Yb7xjW8MeduWcLDoluNthVhyimAYLDo5yuVzi49aPxbu2sTKU+cSC8Rpu+p8RFli0gtvDvt57QV5SMWlhD/4O+6zru5xv9Rq4ubLF1J8WnIyoLjsxNojTHvlvX6f93j7Hh2OzqIBsESDxQlBd/d5tDWCIIooruRKZyKcQI92H9TcXyRFRBAFzFgEySaTNdUHgGyXEGWJwpmj2Tr7i1S1Z+Au1ijfvS8Zw2XRL05Eq8PxIhwAZs+ePSztWk81ixOC8yo/IbC3limv3kf2T4d+9ak/E+RwTZRAdZBIS4R4MMaGC84e8v50xv+DLyP6fDSPP5Nno1cd8v7yKTMPeThMe+U9bFkZ2PNzyZ0+lpwJRcPaRwsLi+OLk/65jHggQjwQJdIcpG1v+5DFN8TbE7Tua6Xiz0up3VhHPJDA4bNj9yYr5JqmgW4KbNtr8s5HBjvbiqnbvnFIzn2iYWVaOja58soreeutt4al7ePO4nA8VkW2GBqattfRsquRWW+uGNbzHC5YOtagokcNBEnABYiKxLarzmfKi+8MeV8a7r0BR24mZObQYBazdVuIz77bzrMPl6b3cee5iNYkWBzY1uVYz20/JvL0EmSPi6J7Hh/yvllYWBy//Gf2HBwZdjwFIrlTyzANk/3RGmINgysomYoXM7QwLf52ADIne1CcClpcI9wYpmVHLSd9+HNCc+9lXYUdpxJHMA227arhi3ftomj8KH70FYG7Honhr21M9vfVcwZ9zcczJ4r14XixOPz0pz/lqquu4u677+biiy/uNoPSySefPKC2BdM0R9bV9pNAIEBGRgbt7e34fL4e9zsRvvBDhbW6MDh6+q6lPtdV807FmeXE5rbhyvWRd85pVM/9L/ZHCjh3+uBzF7U8eAv+ndUIoog7PwPP6GLMeeex0TWf9z+201Af5om7M/rdbujX/4vnth8Pun8WFhYnBsvKpwPJrHJaQB8yi0MKW47MKV89m91XP8y0PX+n7d3l2DwuVv/0A0zVJG9uFlM+uxBp/BR0l4+Ir4gXKueSl2lygW8lop5gl3MW46Kb+Pab03ms8AlcN353SPt4PHK4Z1x3+16q7ejzfO1okOrb6g3b8Hj7n3kxFAxy6uwpI+bampqauO6663jvvfcQhK51rU3TRBAEK6vS4ZBcIqKc/PD0qJHO428Jiq5YomHwHG5l5rSVq9l946UIooDsUBCcToK6l5ZQ7/UdGrauoWDq3MOe3zGqGE8gjBqJgyhg6jqilkA3BQzTxOimanSfECzPRgsLi76RKsQ21GKhM45cG1o4yuT2lQiJGDafh7o1O9MpYqMtMRLNfpxZ9UimgVtL8NmSKLpsR5WcNDnGEVdl4o4MfnjhJyTeaiJwz+cofOTPw9bn44HO9ZE6v+5t32OF48Xi8IUvfIE1a9Zw5513WlmVBsrBbhgWh3Ks3eAjme7Ew2vyJERFSItW0zBJhGKo+/dTNGk/jU4v0PPNHVc8hz3vrt17KZo0k0yXm9DmbZhG8gEqJqKIgJow+PU3Mvt1LbGXfonj019FC4b6dZyFhcWJy8XR7YNamBOV5EKf0PHbVM20CBEVAUM1kR0SoTo/8tuv0FbbTP0nNfg3J92XJJeIZBORnA5QNYRICCkSwhX0o2fk0VA4g5hmZwLbETUd8a2/E23yw0AXVk5Ajsc5w/EiHN577z0ee+wxbrll6GM6Txjh0B1vFZyUHoAsLIaa3iwP4555je3XXIAaidO8YQcF3leYdaoBHPA5jL38OI5P3ZF+XTZhSq/nO/Oy9/nmd88kmu+k2FeA09+C2h4EUUSIhrFJGpGICfStcnUKU9cAyLTiHCwsLPrIQESD5BIxVRNbtozkFPEUu3FmOoi2xQjVhonWJLo8rxMRlabtDTRtbyDSFCPWqKJHDERFQPFKODLsiLKMEY1ANILW1o4WjeMoKSRPUsgDlOYaUBNsemUNkiziKfBipYKwONbxer2Ul5cPS9sntHBY1LAFSJpUT3TxcDyuHBxNeqvrsG7BGcxZ/iGxQJxEOEF8RwvBujZG1dYT3TcH50VfAMCMRg859tZHWnnynqz06zMve7/L+49+7z94czK55nNncP34HbC7AiMWg5ZGHGMTyLK739fivPrubq8PrO+NhYXF0CC5RIrm5eHw2XHl+lA8DnwTxyBmZYOhE9y4mV1vbsH/cRDJKWKoOpHKOFp20k/b0EwkZ9IlWVAE1KCOrhmowRB6s59oUzstuxpRoyq+oj0U+VuxlRSTqG+gdXslLZvacZbYkOzysCWrsBj5HC8WhxtuuIHnn3+eCy64YMjbHhHC4de//jWPPvoodXV1nHTSSfz85z/n7LOHN0VlZ+wFClpAR48aJ6SAsCZ/Q09vn6kW11h91umoYZVYa4J4g0q8JYFk20ExpIWD87p7Djk2JRrOvOz9HrOABFva+L+fr2DRT08j1zCRZJlQ4SQShsznzm0HBheA/Wb21EEdb2FhcXzTX2uDo0Ahd1o2xXPGINltKD4PcnYW5vhpRD25KLEAXsMkb18jwb2RpHDQkpYJxS1jGAbOTDs2T9KaGmuPIUoCNreNYFUDsbYIoYYgzZvaMDSTwN4Q0bYYOeNrCNT4adraguKV0KMGiXACgI0Xzh/2DHwWI48jJRxWrFjBo48+yrp166irq+Oll17iiiuuSL9/00038cwzz3Q55rTTTuOjjz7qU/szZ87kvvvu49Of/jSXXHJJt1mVrrzyyn71OcVRFw4vvPACd955J7/+9a8588wz+e1vf8vixYvZunUrZWVlR6QPYxaW48z1occStO5tIhFKEPHHaN8aPiLnPxpYYuHIcqm2Iz3hbttxIFYgJVZtmQo2t41oo5/Q7Vcz6ld/77ad237Sxu5NlcCh1oaD+d7fC7j4/Jtw2zVcYoJcuY2C0C5aHnqAnO/8Nr3fUt8UnCU2pl07l9wlv09vj7z/PJgGrgXXp7dZ1jkLC4veaF7yRfJPz6KtIkiiRTvs/hlT3YxdOAFXYQ6iIiNIEnJONo1nXMuv3ilFlkX+9+QPiG/fiX9PC9nTMlDDKiEt2lFQTsNUTeKiis1jJ7MsG0emG9MwUCNxWnY10ro7QMKvpd2YDM2kflUz/opkxWk9aqTfize0ISgCklPknZJp6aKYFicKBgIDKVTYv2PC4TAzZ87k5ptv5qqrDq2vBHDRRRfx9NNPp1/3J8D5s5/9LACVlZW8/PLLh7x/TGdVeuyxx/jCF77AF7/4RQB+/vOf8+abb/Lkk0/y8MMPH5E+/OvqV7i2fA2+D18h1hZBEAW0+OEHvGMVSzQcHQwtOeE2u5l4J9pUws1JoZpa8eoOURRweJyEWtsPez5ZltANSGgidklKnluQkOwHBp93SqYBSQETbw0Sfup+xFFjMF0eEAQOXkTpHPCYCl60sLCwiDzzPdRpp6Nc9l8Ut7QT2LstPUb0tNig+CQyy3wIogCCQLimEUduJrbRXpbvn8CH/0qu+N8/qZX9a3fRsjGA7JPIm5GN4laSgdBOkJwiseYEsiOKt1BDkCS0WIJATSuB2hA2X9KrwOyIaUy0aEgukYRf6xJ0ne5nx++BTassLA7P4sWLWbx4ca/72O12CgsLB9T+e++9N6Dj+sJRFQ6JRIJ169Zx7733dtm+aNEiPvzww26PicfjxOPx9OtAINDn81XecgUA5U/9s8v29oCOaOokWlrRYgnsXge+kmwySjOSQVkN4ePG+mCJhiNL5887lSLwYFIPsJYdrcx6cwUrTuq5THzZaA/tfi/N++sPe+7CEg+6IaCbApohEDftqIqTgo4g5xUnzUaPGpiqiRbQKfnFCwDEXvsNhihhSgqeeZ86pN2s6cnsToJoCQcLi2OVoY5TCm7bhWf8NPx5k5BkiYRfw5adnGKkVvWhq4iQnCKRlghQT2ZCQ09oZM4oZNPUG3nqmwfchNr+/nfq1jQhKAK50zIpmFaCFlNp3x3E5lOwuWX0DAO714bd58Se7SPS1Ebzdj/hyjjd0dN43Pl9a3HkxEMQTARhAK5KHcccPCe12+3Y7f1LSJJi+fLl5Ofnk5mZyTnnnMMPfvAD8vPz+3TsOecMX0HDoyocmpub0XWdgoKCLtsLCgqor+9+YvTwww/z4IMPDuh8BwuGFF/Pe5bgc+9StWoXumow6vTxZJwyAyMUIrRzL/6KWqIN8bQ581jFEg1Hj84P6YP9f03VRFAE4g3qYeMH7rlK4qF4PtU7qkjEun8gpsjOlDEME00XiGkyQdWJ134gsDrRpnapabLlivM46Z/LcFz65R7bbPru5yk7YwxqJM7Yp19l1bxTad8TTrskpK7P+q5ZWBwbDNX9uu+DnZQZL+HJ8rLzoz3IPgnZl7R0Sk4xGawcNUA1ERWBsZeOouwrX6DhT39l9xu7CTWGMXUTe6ab0jOqsLucxCNRMvJzCFS3kDnBi8Nnp+jksTiL89FCEWyZe3Bk2imeXYZnVAGS2408ajSmy4u7LYga3DOoazJU00oEcYIhmCbCAOoip44ZNWpUl+0PPPAAS5Ys6Xd7ixcv5pprrmH06NHs3buX73znO5x77rmsW7duwEJkqDjqrkpAj1XtuuNb3/oWd999IMtLIBA45B/VH94bP4OciVm07Gwl1qjiKXdimgb4shETCdRwFDWqIsoC2jHs220NeiMXQzVJlVZLrcr1xlkzEtTsn8gnH3zS637OjrHFMARiqogo2AkqBypayj4JNZg0xr/unMyo8wppuv9mvKeeguPy27tt0ztrBq6WZrT25KrKaStXs/LUuYTlKAm/ln7I9iSUjrfvYfCJe/B+5ZGj3Q0Li37T+d4c7OT4NXkSthyZYPVGgC7WBkjWYlC8EpJTpOyyUkqvOJ/YhJOp9ExizMLdNG6tw78lCMAeYzvjpZ/y1wfu4HcbzyQcVimd/jUARF0F00AwdBzNdSjuj7B7bGRMHoswYy6G4iDoysYURNxjtmDL/rhPcRZ9vcbOHG9jmUWSwQZH79+/v0vl6IFO8q+99tr039OmTeOUU05h9OjR/Otf/xpwUPNQcVSFQ25uLpIkHWJdaGxsPMQKkWIwZp/uCFfGUYPNaAEdQzWJtyTwV9TjKvqE+lXbaNzWhKknV4QFRUCk90qYYmq/jpRwkFxRVgNHz1vSGuCOPqmHdE/ZRjp/pw73/5qd+JDGs8+lamcO7Y0t3e6z4NOnY1eSYQoApgmaLjJzQtLMWXXrVbjzXOhRg7cKTsJeoKA4FRAF0FT8G98ne9ahps5E2RQUbx0ZF9wEQP09n2Pe6jWsP+9MArUh4g1ql+xkPQmI4bBKrDhpNvO3bBjSNg+HJRosjnWGykqoBfT0cxSAg5K4yC4ZR6Yd7/0/YLU+GdUQcSVUIjPOYfzFVWys+5BodYL27WF2i1s5Kf9ZLlg8kb8shf84LsStJLBLKj45hJ0YGRl1ZI56jaxxRUjjJhDx5uMINmKLB2jInIR76mwKp61hT+X+YUnoYFkijk+SFof+e5akLA4+n6+LcBgqioqKGD16NBUVFUPedn85qsLBZrMxZ84c3n77bT796U+nt7/99tt86lOH+lYPBwdPaBJ+jcbNTcTaVlP3QQuiIuAqt+PKd+DIMgjti2KoXUWA2JGBwZYtI9klBElAUkQE6YDVJLArfFTFg8XRp/MDprd0hYdb2co8+XyuBU4u8PD3dVOw2wTcLgGXHZz25IBnmgKGaZKyuNplk8tOOXC727wufEU+JEVEVw0cPjuT//Z2+n1Hp/Ot39nCyRNzAPCdcmGXvhQ+8meif/kBJy/7T3rbOyXTSPi19MM61f/uxMPB9PUhHHv11zguu63LtvlbNrBq3qmctnJ1n9qwsDjR6XxvDpbOk3NREZLByGqytoLsksmfkkfpHbewPDo9uY9gEjRsbJJPpuAzYzlz9its/dmfyR6bR+aEUdjLy5kcXcNXPzWBZ953sPyldQCcdtEpzJjqYlx+ESU+J5JDQd9dgbJtC+GGZiSngxwgoqq4cn0Uz8+ndkVjj+JBciXtvZ2DpPtDSnRZLpoWw0lLSwv79++nqOjolyc86q5Kd999N5/73Oc45ZRTmDdvHr/73e+oqqriy1/u2c96uNGjBoHqZMpMQRGQFAnJlvTVlH1SlxVVpcOPU3En80mLkoAgiUhycjBKiQdbdrxfdSIUn5TOVQ0gysl21KDerzgLayAbeXR+0PREZ8vVsvLpSE6RBds+7rJPce0azp+ZgYiJKBiYCOimSFyXiWkKbREF3RAQhK6iIfjLb2CoavI8soTiVHBmuWle8sUu6VhTpERDZ2p3fIysxXGGm/H+933p7avmnYpwUDX2vlxvijezp1I6v4iT/rms1/0OFg0pZLvMWwUnpYs7WlhYHHkM1URQTIgaGFrSYu/IdNFQNAspeGBBwzAFEppES9yHc/J5TPmWE8PuwrA5UQG7v4ay/dtorP9Muu1Vb6xl77Zi7vhSKXvfq0RxV+PIsuPMdJA7qRh7bhbb//YhpaeOIXNiGYrHQbQ1Stv2EHrEQHKJXTwCFK+EzavQvn3gCVAOdvk6GOs5fOxwpOo4hEIhdu3alX69d+9eNm7cSHZ2NtnZ2SxZsoSrrrqKoqIiKisr+fa3v01ubm6XRfajxVEXDtdeey0tLS1873vfo66ujmnTpvH6668zevToI9aHzpMaQzVJ+A/4REpOEdkhoSd01LCG1mE1EBUBZ4kNe4YN2SkjySKiIiGIAmKHWEhlnTENE5tXIaao6TRvh8NV6iB3QjauXC+Ky44gimixBOHGdna9VNXn67IYuXQ3mRYVAdkn4SywY3PLKC4F2S4j2WQ2XXwOM14/ULvBffY1OHfVIWImM0+bIiIiopSMmYjKMgkdZKnrdy5S20ikOUg8GMM0TERZQnYoiErPw8HmXXUAKKjIgoYkOdFEG5KhEn33WbStH+P9yiOctnI1bxWcdMjx/SkI5chwEnvlV2i5JZiSjPe0S/t87JzlH/JOyTSW+qak096mgr8tLCyGh0u1HbzunIygCF0WtgzNBC35TI36Q+SF67FJJSR0Cd0QEDtlr0lgJ5I/DkOU0SUFWU8gxUKgquzb2vWZ17ivFptUSFt1griiYpQbxAMJMkbloOTmkFGagWiTkTxuXAU5ZI7KINIYIxpJIMoCtmyZ3MnZ+Eqy0BMagdp2QvuiyD4hHWc2mEQothy5S2yF5dZ07CBgDMxVqZ91HNauXcvChQvTr1OxuzfeeCNPPvkkn3zyCX/6059oa2ujqKiIhQsX8sILL+D1evvdt6HmqAsHgNtuu43bbut+BfFIcbB4gKQJ013swO61EWuLE2tOoAZ0REXAXqCQMdqLzW1DUqRe2zZ0E1ERkZxinwYjUREYc844ci9YgOFLZsERdB1Mg1xDp37zLwhVxA57PRYjk87/m87fO1ERyJubRUZJBnafE9lhS6dI7Ylp44uo2F3JhHHlh7y3bFMUWZdw21Q63+qtu+sINoRQwyqSTURxJt8TRJG2R+4gsyNda2ckDDRTQhWUpBuUIGIKAmXTpxD+oA6hk+hY1LCl35Vj0+dxiniKspN1JABB1wiueg0EEe+pF/epjVTBptedkwfUBwsLi/6x1DcFe4GCzacQrIhgqGY6Wxwk4x/8e1oZtfZtnPNmkNAPPDMFARRRT1pNxQPbDUFCd3iQswsYP2ssH7/f1eI62dhMqoauFtCRciQMTUf0ZlB02hQMLbnIZ2g6uqojygKiIqRTwypOhazJ5cRb2mir8uMb70Z2yLiyXcTaorRVBtNF4zqTslj05kHgLnaQaDlQ6FPxSZar8jHCkbI4LFiwALOX7E1vvvlmv/vwpz/9qV/733DDDf0+B4wQ4TBSOHgFWHKKCKKArhpoMT1tbQBwZNmwex3Y3DZEOTnYGZqOaZiYxoEvgyAKCJqOZEu6Hh2OVExF7sIzCY6dQ9iRjSGICKaJYsSxqREyyzKIVMatCr7HCSkhmj0hk7L5U7FleBHsNgSpd0GaojvRAHDeDCcAm3e1AO709lQsw7Ly6dh8CqetTBaK8f/gywiSRPtjd5Jx98+7tDVlfEmP53efdTWcdXW37/XVRSmFPceGZ+IYUBNIkXZMmwNdlECA4OrX+ywelvqmpP9+3TnZsjpYWAwTr8mTkFxisnpzSyKZJU454AqUIrg3QvWbH5E1v52wasM0DzwPJdFAMRMIpoEAoIOkJxC1BGhxbr7M5AXXKaxcuhaA7z50OsZz/4OoJK0HvjEefEVePCW5qMVjMUdPRYmHkVrqiO3cS7Qtlp7oi4qQjGXc2gxsRnHZCdVHyJ+ay+irLqB19oVkVW2g6R+vUrliD6E90XQ/hY7zeYqcaDGd1k9CdEdntydHgcK4i8ax/W87rTgIi2Hlpptu6vO+giBYwmGo6DzRMVWTeHuCREQ9xH1JcStIiogoS2nhAKRFg2kkVykEMTk4SrKI4pZJuA5dwUi36xJxltjIm5SLWjqRoDOXkOFFNyQETFxSBGe8HTWqjhjRkKo8nFrlteg/qUlt649uxzlxAig2kCRM4fBCsy9MG999MJUW0NOxMwCGqqW/r4PlYKtKisOJiGhDnKaVH5MzPYxcXIyQmYOgODBNAQSRwJqlCKbZq4BYcdJsRDlpOO6uSreFhcXQokeMQ+41yZkUE6k4PT1qULuujlMb1hDMXUhItaPqEqJgIgs6di2CYCQX5+yJALbqCuK7d4EoMtXp5SuLZnLVwtmUyDXkfvAw9XV+IDmZd/jsODLdSHYbqt1LzJmJx9AhESNQ1YyhJmtIpKy6Dp+d3EnF+CaPRSwdjSt/OXosQXja2XwcmULR6GImneenaVsdoT3RtAiyZcvoUQO7z8HYC8az6pP/0B2dn8+xBpXtf9uZfu5bbksjG8EcoKvSAI4Zavbu3XtEziOYvdlKjgECgQAZGRm0t7cPaQqszhOc1OpJKuuCb5ILX6kXV7YL2aEgiEnLRNLacOiXx9AMQo1Boq1RgvsiXXwfJZeYzsjkznORMy6X/LlTaT3/BvxCHropIQk6bjFMRrQB7971fHTPb3t1VbIGpGOX4OrXMQ+qYeKb23tZ+hTbdtX0ahnozDsl05B9EjaXgivXxaw3k1VaWx76Ejnf+W3/Ot0NqVX+3h6SPYkIySWSOyuTsjMm4Js+BaN8EoakQIcbQ+rzEXQNUY0hhtrA34za2EikrpnadXsIN0U5e9P6bs9p3R8WFkNHd3FaqWdawq91cdFJJRMpnJWPtyiTzIllSB43gs1G4wfrMTQdd0EW0ZYAjdvqiQcSuPOclMwdhy3DQ9uuGsJNAZq2tqBHjXSykhSSUyR3QjY5k4oRJQk9nqClop6W3a3pVNFn/egSWi75Mrd+P0KwpQ2Au+8/i0k5jZimgGbKKKLKmIaVVD32ayrfrkHxSmkXJ0M1yZ7pZeq187CddiY7f/hrqpc1DOozPFHGpOGarw0Fqb5tW/chXo+n38cHQyGmzDljRF7bUGNZHPqAoZrpapcAkk1MB0CnSFkaDl6xNQ0DQUymZxWl5IAqdmSd6TzAOjPteAs8eEtykbKTWWwcQgxRNHDoYVzhVhztdej1tYctEmZNjo5dOq+kB9YsPfBbEME0DhERgTVL09v6KhrggIVox7UXYvMcSL46FKIBBheQrEcM/JvbcfiqsGV6sZeOQRCltNUhjSjhPvsaAKJ/fwzR4UByKF1Sw3aHdX9YWAwf6YxKkLY2pFADyZX/+o2NHckZDDyl+chOO8G6NiItEeKBKFpcI9ISJd6gYuom1R/twuaxEawLEW9PoEcNsib48Bb5aNndQqQxhqmaJKIatasaEUQRT4EPQRSTC3od8RaCJhCpaSTv7f/jie/8D0+/P5ltG/aT7Y5jExLIgoqix7HHw0jtTQQbQsk6TEEd9ygHkk0ksDtCcG+Exg0ViJ/soWFNM5Bc8BhMQLXFyGCwlaNPBCzh0APd+WanzI+CKCDKYjprUm8krRHJtJeiIh1IA9cxkNmyZexeG64cF65cH7ZML8gynkgjbpqRtRhSLIgYasdsrCW0d/9h3S+sSdGxT2T5c0gdq+ymmHRbMiWZ4OrXEXQ1adI3DSRBJPzvv+E++xqif38MM7eQulGn0xDPQ5E0TBNOnZzV43kmvdD/AKz+0NvDtLf4BzWg07ChGZt7F2WzTkaQbV0CJw/GeXUyI0Vf14ksdwELi6EhdQ91vpfNg7ITHoweNTB1E9lhQ/G4ME0T2S6jJwyaK5IuSFpAT6YkNwzaKoN4S90IkoChmXjLXIy/9BRsJcU4P1hL9Zp9yA4ZSRFx53ooOXcOpqrRtm0P0dYo0ZoDsRc1q3dTbBoUV6/ifmclnClirAwglo5GyynBkGSkeAS9Zj9tFcHkcUDJKSUUXzCPrb//F4HqEIlwHE9BBno0meLVPcpBrDmBLVs+bPISi5HLseyq9PnPf77P+wqCwB/+8IcBnccSDgPANEwkReqTP3jKhUnsKAon2SVARVQEFK+EM9OOM8uJM8uNzetCUBSIx3FW7wBDx0zEMSNhtECQeLOfcEMbsk9C6qWew/G+onq8Xx+Aa8H1QLLQGZKEaXdhONxJlx3TBNNAMHRMwURUE0T/36OodfUoagJP/gSCspdZE/P6dK7w77+DqWp4bn24X31cf96ZXVb3Wx++DdMwyL7vN+ltiwPbejz+cPEOsQaVuk31jGqsRXA4k1YH6cA919dA6c50LtTUuZL38f59srAYbg7NTNj98ymdcUkScOZnIWX40NraEUSB9oowpmom3SizZRSHnNxeE0YoE7B7bUQaY4iKhJKTDYaJGokjO2Q8eW7K7vwS1UWn8V5bMbN8O7BV/5hgVeRApkSnSOP6VgLVIUqqWyg8/SRat+4hUNNKxqhteErzsGVngWlQt3IzWkBH8UkddSjcRGacQ+HMTcTad5E1Jp/aDVVpN2Y9rqfds1JeBRYWR5J3330XQTj8gjbQ5/26wxIOAyARTBbPOlCnoTelKab37Sw0hI58/XafA0eGE3tHBUxT19Hb26C9DVPTMTQNPRpDDUZIBCMYmk5GqQ+7N0akMUbCrw244uWxyok0yUsVOov86SGkjEyEzDxMSe4QD2Y6d7Sg2BFtNjBM7LF2Mn2tQN+Eg/uLDx12n/bH7sRIqEQbWij+2fMAh3UJ6o2+ZloKVcRo/2Q7WRmZmDlJq4NAMhVsZzet/nDw96fzhOdE+m5ZWAwnvT2TJKeYzEioKAiCgBFPoKtGMvOgk3QGQl+Jl8zRuUAlYsczVHHLaDGN8O59IAo0bKknXBOlfMEUflhxOcsf+QjYy6WfO4s7p09Bcm5MnzdZ0FUgWpNgr7+K/Str0AI6giLQvN2PzVuJMzuZLVGNahiqyZiLi3Fme8j+1OXsd4+iYFQBuRPbyJ43h/qP9zPrltlsfGpDMv4hmBRF0246iU1PHT5hSCrG0WLkcKTSsQ4HlZWVR+Q8lnAYALFGlbb97XgLdWS7nA6O7uy6lBIJgmimtwuikIyP6MhkI4oiilNBdihINhkMEy0cRY/G0OMJAExNR4vG0WIqhqYj2WSyynMwO1ZaQo1BQvURAjsi6XNbk5/jD9cN3zlkW2T5cwh60vpgOt3IJaWYDieiruKKt7F79x7ChpuI5kA1JGyShkuKkafVAiCYOrIWxxZtQ2mpIb51SzIPui35MDdNE1M7ENhoxBPE2sKsmT8v6TesG5y2cjUAVbdehac0r4u14XD0dVWu6NFn03+HVr6MKYlpf9LgqtcOKRC3+qzTOfWDj+grnUVMZ2uEdR9ZWPSPvqRfTiUbEUQRQ1UxYnG0cBQ1qiZrHXWK4ZPtMhnjR6G4nexdvh01HEWyiUg2icbNVShOhZg/jjPfjmtUMZGImj729edW8tWvj8fmVYgqCZwltg7hIJFwql1qTgAkWjSiSgK1XENSJOItyWewK9dL3hmzqSo7m+pwHqPKyylxOXmx+JucWvQuiEnvgViDmr6+uo37+/R5maqJlG0Jh5HEseyqdKSwsir1Ql8GQMkpIvskFLeM4paRHTKiKCAqEpJyQFDIdhldNWjf306oOorilXDlOcgqz0Zx2ZPCga7VppO/D3wZRVlCdtnxjC5BcrsQbHYwDfRAgEDFPj55ZlM6g0VfJz3WBOnEZFNFA7opYSJw8sScQ94PPnEPRiKBFo5iqCp53/u/Ye9Td/ebLUdmUcOWQ7aHVr6MKUqIWgKptRGtai+e237MlivO46R/LuvSZn/uhYOx7g0Li/7T27NT8SVrGrlLnJSfMxFXUR7+LXvx725KF11LxfE5S2yUzC0m4o/QuruNrHGZZJXnsO+DSsL7Y9iyZcZfOJ7cz30W3e7m1dhF/PqRFdx9/1lcuO7btHy8E8kmI8oSiVCM1soWvIU+is45mejpF+Pe/G92/eV17F4HGd95CEe0FWHFUmo++IRoW5Ss8lwKF56K1tZOrLEZ5YrrcdTsJF48HnvVdupeW0bRpxZR+9IbbH++ot+W/5KF+WhxjbkrVg7q8z5WOBayKu1a9d6AsyqNP23hiLy2ocayOAwCQzXT+aETipb0yXTLSDYxbV0QJBFJFjFcSQGQiCRTwklOES2md2SWMDsGN7GL9SL5t9gRjC0h2W0obgeS14PgcqcLhEmCiDM/eEjBnb5gTYxOPNbvbEFAwjBFDAQ+rmhk5oT8LvukvluCKBwR0QD9+y565n2K0MqXEaNBjKZ6QpW1VF9zAYHaQBex0J82+1uszsLConsOdy8Zmkk8mKC9shFJkVEjcXQtWQsiJRoERUAN6lStqMaek7QWyHYJxWXHU+gi0aaiBXS0mIrkb0AtnURVXfI5e457NZVvrCbaFqNwegm+iWMACDV8ROPWBtTISvJr6mltC6JGVUZfMIeHVpyEmtD53MWn4F19PUWzRuMsyKHx32tJhGKMuu4yzntAYfpZ1/GD8m00/L/X2ftmVZcaDak6EQ0f+vv0OdV90GQVpxxhCBhpF+D+HjfS+Mtf/sLPf/5ztm3bRix2aMC+rg+smrklHIaAVLrWBFo6E4TkFBEUAVEUESQBsymKYRgk/FrapzERVIm0RNDiOopTRnHa0gIiZYEQ5Y4ic4qC7LIjOR0IdgeCrCRPbhogSYh2WxdfScuSYNETnS0MG3Y2IwldB4/o848gyH2rWj1cLPVN6TWwGkBuqgZNJbS3iqat+wnUBAnXDi6bycHF6qz7yMJiaNGjBoImoAV0gg0h7L42Yu1R4oEEajA5FqWeqQBStkxmmY+MUTkoLjvxQATZLmNoJnrUoOo/VURb/075JfP4yqwY2XdcgnvjD2nfHyBzdCauwhykvDwEh4tR88N8/PS/aa7wE2mJoLgUTN1EKSrkwz+vYeY5M5nY/hENskTFG9vwFnvInViAtyQXLaeYnJIC/A3tuLZ9yPbtTRSdnkd7dZD2rQcqRWeNzqZpTWufrA+WaLAYLl555RVuvvlmbrrpJtavX8/nP/95YrEYr7zyCsXFxXzmM58ZcNuWcOiF/q5A6hEDUxGSA6MipFOvmqrZpdy95BTRMTBlgWhbnERYw+aWUVwJFKeCzW3vqEjdYXWQpaQ1QpKSEzrTwNQ7Ut0ZOnSoxs41IsASDxaHZ/bE3C6vI8ufQ7TZcN/y/aPUoySTr5lI6Mlv9ZrpyXH57cnfVybDwF93TsZQzUMm/wO9B3q7/61gaguLgZHKmGT32nBmJmvISDaZREA9JFOgKAs4smyUnjkVW14ORiyOUbGPaGvS3ddUTaI1CfY31iOIqygNhrhhWgOBzTtwZNhxZrmQnfZkzKFpoORkUzijgFh7NFkTIpggY1QGsYmn4M3J5MZLIfDkM7Tu85NoU2msayGrPIesk4qJe3J59vN7CHsLqXtkBYHdEQqmFdK2L5Dur6Ga7P7X3j6JBmvsGKGYJJOPDOS4EcSPfvQj7r77bn74wx/yhz/8gdtuu42TTz6Z+vp6zj77bEaNGjXgti3hMMSkBwzVROfQANBUmjpBEzA7hIUW0EkEVCRnHJtLQXHHyRAFbB5H11oRhoGRUDFCIQRZho4AbFPXwThQ1bIn+rKKa3Fik0oD2x9WnjoX2SFj99jIGJWNPcPD+sfXdLualqoofTja/vcPrG3J5pp+9KO7dg9Ov9rfh3VP+1sPfQuL/iO5RDylTmSnjM1tQ3HakgkZOoqjdq77InZkHnRk2HGMKkHw+hDa21DcDgRJRHbJCIpAvEHF0EyadjTjzNpLQWYGzqI8sse1YxoGkYYWIg0tJAIRck85ibJrLgJBpGX5fwhUtyDZZJx7Puahb93IxFe/y+YVu5AdEmXzSzE0nb3v7UFPaBQIItKkaTgUO8GEhh4xqHh5D2bHgqAtW8aZb6f1k9BhPwdr/Bi5HC/B0Tt27ODBBx9Mp13VtORic2FhIffffz+PPvpov+o+dMYSDsNMdxP5lBk25SAiKAJmNOnGlHBqiHIy7sGd68aV40kGSjvMZD0IXU+m4eywPgiCAKKYzLwU6OpyYg1OFkcCURLIGp2NtySHgh/9Kbnx8cm8VXASOVMymLP8QwDeKZnWp5W4My97H4Ci8aNIaGP47NkDzzcNyclKX0VDfy0JllXPwqJ7DrbYiZ0KnoqKhGxPWtIhmfjDleNECxyoTyT7JGw+BVGRwO7ATCQwolG0aBwAXdURxQPJSTyFLjxF2Yil5WibP0aURYJ1AcJNQURZwluUiVRUSqR0CmFXLrmxCJHX3idQ086uP75M+axN7FlZgSvXxeQvXEZs8lzsH/+bYMNSsiaWIuXlga5ir1iPb1Qengm16ToTilvBV+SjeWfzkf+gLYaUYzkda2d0XcdmsyGKIm63m/r6+vR7ZWVl7NmzZ8BtW8LhKKMGdCRXavBMujXFWjT0aIB4aQJD03FkOJEdKpJNTpp028OIsoQgJQde0zCJtgTSGZV6YnFgW9qdQ1SEHld+P7l0AfveqLMmRBZ94rSVq4m99EtMbwbBJ+4htLca2dfhaicJVN16FYlQrN/B+3aHjTlF1cDATarQexG6gxkqi4SFhUVXhA43XUFKJv+QFCmd8cg0TBSnkowBdCVTlmeMdaO4FCLNEbS6Otor9tG8s4HW3W3EGlVM1cSWLeMqdODItFN62ng8k8cjxCM0rNtJxB8hEU6ghlVsXhslZ0ylbdxcXG/8hdzps/B/tKFDUPgINQZp3LSPWHsMLaYTq9yHQxRo+uhjoi0xalftgFU7kO0ydp+LWFuyUN3YiychKjLhhlayJpWRCMdxZjuoff+AgHCW2siflkPL7lZCFTFrzLA4IowZM4ba2mTq9ZkzZ/LXv/6Vyy+/HIC///3vFBUVDbhtSzj0wpHKsJJaYek87Tc0k2hDHF1txZUTw+FLpmwVpc4Zl5ITMTWqEvFHDnGL6m419HBuItG//oixV5xNtO3tPruVWJzYvJk9FUERcBc7mH7DfPQvfZv5899Dq6mmad12mnfWE26KdsnP3hvnXj2PxXPjzFrzM3Z9dRm8/v4wX4GFhcVwkHr+vCZPwlRNtICOWWCCnIxrsPtc2DLcYJgYmo6hNoJqYiu1kVWeTeniM2k97VMk4gESG35Mw5oDE3JBETA0E1+Jl8KTx+EsK0EPBGlZ9TFN25vIGOVj7MVnsmbh93nhPZVETOOKuIeKiY9hN2HRHfPICe5HibQj1lWy6jvPEG9QERSBNT9bjuKVsHkVQnuiROviZE/LYNTp43GXFRHaW40oS6z7xTogVZti1yExGgDR6gS1gUYMzbREw7HAAF2VGGGuSueddx7vvPMOn/nMZ/ja177Gtddey5o1a7DZbOzYsYMf/ehHA27bEg49cLTTMqYGIC2gEyGKntCxe23IdrlDQCQLy5mGiRpVSQSTxWoGU+o+8vQSBLcbRBE1rJ5Q1agtemf/7Vfzyf9tRlCELiv46xacgbPIDkDBtEKCF9/MHnUMbSflUDBuH469jxNes59QZTSdZrE3Um5Kp08/g2jl/o6qsSMbK1DawuLwGB1JQhIRFYciJdOM22REScJAT2cSVHwSZWeWUnzeqcRnnEWVUY7DkWDKZefRXNFEy6b2ZDxBjh1vkYf8aWXYc7OTMYCxGFF/CHe+G3eeD2XSVNbvslO9q4bW+mbyPz0BW5mL73x7NTsXn8JDE1eibd9CsKqOhF9Djxq4CuzYvTYcGQ4izRGcJTY8xW6cmQ6CNc3YMtyE6lvx7/V3uTZ6GN8cBQq+MR7aKoJH5HO2GCSmOcDg6JE1X/rBD35APJ5067vmmmuQJIlnn30WQRC45557uOmmmwbctiUcRjB6xEhXmdYCUdRMDbtPwZnlBJuMSNLPMxFOEGtNpF1BRLqPrTgckX3VOIryUf1tg05raXH8EFizlOzZU7Blb8fQTLZfcwGT//Y2AIIkUHJKCbnTx7Ln8u/yxBt2Hj7pH7yo/Dfn59UR84fQIlqfRAPAf149hzMve58fPvAhdtctJKIxzA4x8Z9Xzxm2a7SwsBh+UvUbREnAyHYhCB0JPjoq1IuKgL1AwZ2fgejxIGkJdJtAVSAT38zLmfF1Ea2uBtHjwUwkSDT7UXweBIcDDCNdE8nusSUX1hxOzLCJ0+OgIRbnjq9vZtSUZE2H6soWYu2raNm6DzWSnGAJioDNpZA/JZl5KdYew5XnwOGzo0Y1mrbW4N/TQiKspStL90Yqi6LiVHDk2obpU7UYSo6X4Gi73Y7dbk+/vvLKK7nyyiuHpG2r1vkwIw6gKFtn1IBOrCNrhB7XibbFiQXiJMIJdFVHi+vEA4kugdEDKQT37xkn07BxL+1bd9Oydd8hgdYWJy5Rdy7i2MmUnF5Ixlg3pmGy63OXEFnxAvFggmhrGCU/jy31OUye5MHYs4MFhVvI+GQZrZXN2DNs5M3NIndOZr9W5eORKJ0L27c8eMtwXN6g6GxteN05+Sj3xsJiZJK67/WIQbQmQaguSqAuQGB/E627amnZUUPzzsa0VSLSHERv8SOHWvApEdpCElXRQtomn0XijItpO+1yoqdfjGPcWET3gWKoppGcvAmikMzWFGxjdJHA/IUlfPvBM/BkZWBoOtd9eT5Pn/s24domJJtM2/52PKVOfONcaDGd+k11FM4ey/Sf30ewKoIoS+SMz6dwZj56wiBSQrjq2AAASzhJREFUHSPh17q9Vskl4ihI1llKLeBllGYyf8uG4f6YLYYAwTQH/HOiYFkchpGUaBiM+1AKPZqsqik5ReJKMuBLEAUSEZV4g5quHQH0eXU3xevOyWRN9yJKAqH6Nho2N1puShYsnzITX7GHqV+/Ab22Ovl9C2s0bW+haFYhsYwiPPlJIdGy6mPOn7uBOqkM3LOQf/9jaur8hOojFM4ooHj+bOSCgkH15/K1/81/hujahprXnZO7FGC0sLDoSirLkh4xiKsq7WqQcFMEURTR43p6Ip7wa7TvbyWjrgFPXh5FuXvZquQRU2X8jkJcioeEYEeSvXgcTsxopIubiGmYJMIJtLhGYlcF541ZhTu8g7gwih+2yniyvFw4uQo+asSe5SURaiLmjzP365cglY8l/skmdr++DvecOazNPA81+C0AMieWkTlZJNr2EUEiPT4jbdkyvjIParANR76CI9uOaZjU3/M5Ch/58/B/0BYnLOeee26f9xUEgWXLlg3oPJZw6IahiG9IBksdWPkfqPtQilRxOUMzgUS6/kPydZL+Coa3Ck5CcooUnJZN8ZxyPKOLAQg1fEhgR2TAfbU4Psgsy2D0wum0r/gPrbvraK9uR4tohCvjxJqrMI0f0rAhGawoiAKjlz3PlPKxmLKCp7wYR24mLbuacOdnED/zEurdJWw/TDxAdNmfeeP+LC76vveIXedgSN3niwPbWFY+/Wh3x8JiRJMSD4ZqEmtQETut2qeej6aadGcK1bQgSttwBwNMPHMCYdWOgYAuyJimgCGImNEwZocft6npaJEoaiSOrhroqkHNB58gfrSVnbtaGP3c/wGt/Ne1YzDMGgKzz8c+ZS4F4VZCDU8g5eZi1tcguZwkIirBj1YxJxJk94JCik+bhH/rXsJNQfzb23vNYJjwa/gD7bhHOciZkI0rx4PsUGjdXUfhsH66FkOCaQws0HkEuCoZhpGu2wDJWg719fWMHj2awsJC6uvr2bdvH0VFRUyaNPB5riUchoGUX6PkFNPiIen603uBtsORrv/QTeaGg+nNJeQ1eRKiIjD3m2fgvOhymvOn0oKXVkyKQjvIWLONRlerVSzuBKOzYPZMcDD7loW8c+ZPKbrtNPwfHwjsEztE6+5/7SNzsoeYP07T1hb2L38V9ygH4xdNQhBFAtUtaDGd6tV7GZ/9DN5oHHe5HTWos9Q3BcUr4Sp0kFWeyZQX3wGg6nd/IWN0Pu/cvoC94xdTHc7hwfs/Sp/7zMveH1GxDhdHt7OsfPqQiobO/4fjIeB6pP3PLI4uB1d270wqFaviVtATGoGqRoLVTUwWf4U+aTZxM5ksQU6Ese/ZRGjTVgxNR48nCFS3UP1hMsjZVW7HmWlHiyeFSdkZY3BFW3j+p/n8ZaPJJcJ6ng1ezpZtQda9swFHxk/4zT+/y56l+wBwlTqwZWdQ8+pyRp8/h9D+OrKnjqHtjXXEGtRer89UTbwT3MTbE1S9W4t7lIPRZ5WnxziLkc2RinFYsWIFjz76KOvWraOuro6XXnqJK664AgBVVbn//vt5/fXX2bNnDxkZGZx//vn86Ec/ori4uMc2ly9fnv77jTfe4JZbbuE///kP8+bNS2//8MMPufbaa/nGN77Rr/52xhIOw4DQsQopOUUke4fvpWomrQPD7AJ0uIlG54HaWZhHe85Y2owsYroNRdSTwWgdVTEtTlziDSr73tnA/LZb+Li+a6B8ShSrQR0tplM8p4hQQxA12E6sOcG2l7YgygJqUEeUk9Vf963Yiqkn/Zf1qJG0oKkmhhYl3p5gCskCcXrUwJZdR1lDK6HdTzFxSiFLH7iVl0KL+N1PVwAjbyJ6XuUnQ9LO8ZqdaST9ryxGFgcXiTNVE101CdWGkwHFPju6ahCvrcdeHkZwZyMYOlIiihlOVmg2DRMtpqJGk7GA6exNioapq+hxnWZnA+ZTv6Jpex153/oAac9Wxk2/ELfDy6hRZ/PPp/9NwbmTqV5Vg82rkD81H/+WvbjzM9j3zjoyRuWQaA/SVtXe6/U4ChS8ZS7iAZVYo4oeMQjsiLArvIvRw/pJWgwVR6oAXDgcZubMmdx8881cddVVXd6LRCKsX7+e73znO8ycOZPW1lbuvPNOLr/8ctauXdun9u+//36WLFnSRTQAnHHGGTzwwAPcd999XHzxxf3qc4phEw6VlZU89NBDvPvuu9TX11NcXMx///d/c99992GzHcguUFVVxe233867776L0+nk+uuv5yc/+UmXfY5FUqJBdiSFg+EzMDQzOVkaJvHQ3wmHHovjiraQ5bbRJmejmxK6bMNT2L8gVovjDzWgU/1eAzUfNGJ2FAxMoUeT32U9YuDOc1J6wakYsTiVb6ym9sNGdAwSHeJAconYc2xE/TFC+6LJ4ztEqdGR110L6OnChKlz72zcnbTYiQLOvz/LNRe18DtKjvwH0Q8GM/HvPHk6XgXE/71rYlcYdCVwi+OLzrUeUmNAtCYBtCXjA3QTxbmH0uJCHKKE7vAgqjE0fyuJYCRpcUho6GpyXBEVAUeWDVERESWBzLJ87D4nbfuSbpVXr/8qjburGfvONZw6ayLqwk+zdlI5oao6CmfmY/M4EESB1spmtHgDk6+ahxaJUremgkhlvMfrkFwiznw7eiIpFkRFSMc3RqsPn4HJ4sRi8eLFLF68uNv3MjIyePvtt7tse/zxxzn11FOpqqqirKzssO1v2bKFUaO6L55aVlbG9u0Dr9E1bMJh+/btGIbBb3/7W8aPH8/mzZu55ZZbCIfD/OQnPwGSJbEvueQS8vLy+OCDD2hpaeHGG2/ENE0ef/zx4erasJJOv+aWUdwysuPAR2yqKeEwtBmL+jPBuFTbwVLfFGzZMvWrtlHisJM/fhJi+WnsSowh5Monc4K1NmJxwDUu9Z2WfRLxBrXLdmemE0wT0eUkc3QubVWBZOHCThYrLaIlhUb0UFe9nkS0HjGwZcvIdpnK97dTGo1z3Zef5/nfrBjWax4Mx9tEf6j5/LmWYLDomYOtD7HGpAVBlAUS4TjRyv24bDbE/BKEUBuB2kai/hCiLGJ2FJCD5KJdasEuZ3weJddfgZ6ZT/7Oj9nyh6VseuYDZIdEIqLSXt3GeEHgiise4Zof3wrAi/d62S+OYWrjO7T9/e/EW9tp39tA/cZGBEXoEq+o+CRkn0S0OoGpmunFEYCs6V7UsEasOcGihi1H6FO0GDQjNMahvb0dQRDIzMzs0/4FBQW8+OKLLFq06JD3/va3v1EwiGQlwyYcLrroIi666KL067Fjx7Jjxw6efPLJtHB466232Lp1K/v370/7bf30pz/lpptu4gc/+AE+n2+4utcrBw9g/UFyiijepKXB5lKQ7Mlqz5A0qQLp1dqh6mt/SQmY6lW1qNEEvpJd5J3VQPPcZLpLpQeVanHiIvskHFk2zI6gRki65AUbQgS278GWmQxmtrll4vKB1bVU+kXoPTlAd5nHTNUk1BAm3pJgZ9M2Lo9dycSHnudPLzQN9eUddTqvug61ABmONi0shhuzw+WIjmxl0eY2JGcNYmMTLZt20VrZjKmbiB3F5GJt8XTmQS2mY+jJmg6GL4eqvLl4cidif2EZmaMyKTpzBrHGFvYt38q+d9Zx+ewXeYJ8AK66JwhsAvJ561MT2f6XZbjz3GgBnYK52fiKM6leW40eNSiclU/m6Fw+/t3HGJ0WBUVFIFwT7ZLt0OLYYKCpVVPHBAKBLtsPrqcwEGKxGPfeey/XX399n+fFt912G/feey9+v5/rr78+HRz97LPP8tJLL/Hwww8PuD9HNMahvb2d7Ozs9OuVK1cybdq0LsEeF154IfF4nHXr1rFw4cJD2ojH4+lqeHDoP2moGIh4kFzJVVmbV0FxKyguBVEWEUQRxXngi5hKrTpYl6WBTgaMTpO//f56RLmBll2NTDYNyC3EjEYP04LF8cbhvuumamLoye9rapJvqiaBvSEqExXYXApaXCPa1tWUn8o6NBChnPBrqEEdxSsRa1TZ/rcd5O85nx+U57DxQj+z3hy51oeBcLSr1VtYjBRSz0Y9anRYHBJE/SEEsZFgrZ/26nZCddF0CldRFtLWCUMzUWMaCb9GpCWEGAsjopPl343zlHG03/gd/tUwmpMLqsjadwc162rw/OlZ4K4ufXjusQKaHvmEqd+5ld2jz6fk7utxZrlx5WeQOyGCM8tNw+Z62ve3H/Is905wMe68iez/aA/+LVbF6GMK0xygxSH5HTjYPeiBBx5gyZIlA+6Oqqpcd911GIbBr3/96z4fd8899xCJRHjkkUf4xz/+0dFFE4fDwX333cc999wz4D4dMeGwe/duHn/8cX7605+mt9XX1x9iLsnKysJms1FfX99tOw8//DAPPvjgsPZ1oHjKndjcSfcKUZG6vKc4FSRFRFJEREUEoofNztATQ7l6qEcMdKBxXQuR5n+guBXigQRnX9f/L9Xx6pt9vDGQCaoa1FGD0S6CNyVAE34NySkeYklLuTgByVTCvQjl7t5Lu0TJAs4SG1pAx+a2sX9VFe1bw1TLk7DlyHhKnZyxrm8BY4MlVeTt4mjSP7S71fzXnZPT7/eH4bpvrPvR4lhFjySFg7fQR+60MThPOolstw9Mg8TGdax6dBmJFo2U82/qtxbQcZbYKDljKptLL+WFt2ysXOrl/Gt+w6qHtvHchNvY9vc1GLpJqDLK7sBufl52L74iH7lTy6j6YDv7rggRa04g2V7G5n+WuGESbgoSbgoSbY1S80EDakDHXX7oanKoMsrW/7cZNahb2QmPNUyzS12Qfh0H7N+/v4tVYDDWBlVV+a//+i/27t3Lu+++228vnCVLlnDXXXexcuVKWlpayMnJ4fTTT++zu1NP9Fs4LFmy5LAT9zVr1nDKKaekX9fW1nLRRRdxzTXX8MUvfrHLvp1zzqYwTbPb7QDf+ta3uPvuu9OvA4FAjwEgR5JU8KggdUyUDANDFwADUQZBPFAcylCNHqtO9oXBuB70NGnUowbh2hii3HPwV2/tXartsCYoI4zU92QoVrJ7qxHS2UTfl+39RQ3o6fiIqndr030RFYHcaZmMOX8mW644j5P+ObBiNoNlqW9Kl8nBQESDhYVF76jBMPbWFozcEkJZZbg92Yxes4OGzY2E98e6LFq4yu0UzypCPPdSaoNerl4Y5nvT6mksruSdv7VxWctn+N3oCho3N+EssVF6Sinu/Az2r9pD8d2fYvK8eWi+PML/+H+07q7Dv6eVolnFCKJI3pzJyIVF1L66jB0v7kounLjELudXvNKALa0WxzY+n29I3OxToqGiooL33nuPnJycAbWTkZHRJWxgKOi3cPjKV77Cdddd1+s+5eXl6b9ra2tZuHAh8+bN43e/+12X/QoLC1m1alWXba2traiq2mPgxlD4i/WV/ky6DNVEV3X0hI4gCkhSsuS9aSQFgyCaaHGdWFuccG3sqFRm7u1aDNUk0ZIUM5YAOD7o7vubsgL0VsDoYEZCFfG060LkQOYUQRHIKs/FOW0aY8ePOyL9uDi6ndedk7sI5oNfHymOZOyCFSdhcbQQFIFYexS5oQ1BrsSblUM8bzJGVhmZYwowNB1B8hOpjqXHtVGnjoLv/pLvvVmAbsQYU+4jWn4Z99+1BgBvTiaRPREMzcRX7KbwrJnsffVDfEVepO3rwe5gRe7nOOcKnfBvf0+0MU7r3hZyJuSjzVuEEPIj2WQUr0TpGUWUnD2TD5e8nj5/ypvAumeOPQQGWMeB/h0TCoXYtWtX+vXevXvZuHEj2dnZFBcXc/XVV7N+/Xpee+01dF1Pe+FkZ2f3OeuoaZqsWbOGffv2Ee3GBf2GG27oV59T9Fs45Obmkpub26d9a2pqWLhwIXPmzOHpp59G7LTqDjBv3jx+8IMfUFdXR1FREZAMmLbb7cyZM6e/XTvq6FED02ViGuaB1HBictVVkJLBW8G9kUMmbZLrwOeSmhilCuEMZSD1cGANjCOP7sSCoAiYqkne3CzGXjCDHf9cR3tFeER/tw6HHjGoeG0XteurKZxRxLhrvn5EzntxdHv6Mx5Kq05/OZL3nnWfWxwNxI5xK1gXItoWo7WymYL2MPkOJ4gS/mgcR6abzDItuXAXTY5nBadP586/etm2ai0Oj4v17yZ4QT1g5f/vz88g9Pkw0eoEkjOCqWqMv/NmMHQa/vYKLRWNnDxnI2peFoHadvJn5pAxKpu8M2ajLX+Nlp1V6AkN3xgPWeOKUMZPIHdGJg2r/NgLFCv96rHMIF2V+sratWu7xPGmPGluvPFGlixZwiuvvALArFmzuhz33nvvsWDBgsO2v3PnTi6//HIqKiowu+mbIAhHTjj0ldraWhYsWEBZWRk/+clPaGo6kAmlsDBZeH3RokVMnTqVz33uczz66KP4/X6+8Y1vcMsttxy1jEoH059JgRbQ0dxJUSCkMil1BJSahkm0MZ4e2FKIioAoC9iyZQRFIOHX0KMGijcZIyGRDPySnCIJv5ZeeR2uFUBrgnD8ICoCrnI7ky+bgbMwh9ZtleTMnMhfJ/2Y63zfYN3jbxPuJS/5SCZ1HyRaNBItIdTYfirLpyM5RRZs+3jYz3/wuGDdNxYWQ0/yPjcIVUcR5Y5EC2oVprEUyaYQbmxHlCVsbjt2r424U0WPGkg+H7H9CURJQrHbUOw2Qv729ATqD4+v4h9fOIv1v/038QaVWH0TX644i1tuHsV015uEm6LUb9rPpOsnMvmmi9n3z3fZ/rcd1G6oJmt0JqOvPI/Qtp0UXXg2RulY4k4fEz51Glr8P3gKvNSpDZxfs/nofngWA+JIVY5esGBBtxP6FL291xduv/12YrEYL7zwAjNmzBhST51hEw5vvfUWu3btYteuXZSWlnZ5L/WBSJLEv/71L2677TbOPPPMLgXgjkX0qEGiTUV3drUoGJqJ4pax59jSAiBldUgNjK48B8Unl2FoOnuW7UZQBOxeW7oOhBbTUIOhYa88bXH84CyxUXJyMRmLzseUFXzRGInWdj7HM+x5byOxxoEF549EUoWZPGOdR+ycnVOodn5tYWExdKQKRULSbaldDRJr242pm8gOCckmoieS4iL1XG1YvooH772Wn708nVgkgWKT8fjstDaH2bZqK5NOmYix+HpmxhPseWczoTo/9Y3VbKsaQ+neRiZ/agbG577G+7FpnPPJj2nc2oygCNhcCoG6IKFtO4k0tOKdZSPxwXuINgXR7aJgWjGN2+ot0WBx1Fm9ejVPPfUUV1999ZC3PWzC4aabbuKmm2467H5lZWW89tprw9WNI0rnNKedERUB31wPnjw3giigqwZqVEWNqriyXTizXGSOLyFx5S28UX8yn/6ft6l+6MeYhoFpmERaIgT3RQbtVnK0XCosjhyd/7961KBpexOOl14lEYrh39tCw4d+JFcyjelIclMSFSGZyjhbRgvo/c44lrJABHZE2HTxOcx4/f3h6Ga3WILBwuL/t3fn4U2Vif7Av+ecLE2XlC7QFiiLssgiyuKCuOECg6DO4HVw44I6/OTqjDpe9Q6jAzgKqOhcZ7xXRh2v1324itugLO4KIiKisiMI07KUpYWmS5rlnPf3R3LSJE2bJs2e7+d58tCcnJO8JyTt+z3vljiuBhXOuuYOx17tXLYLA913YO7df8CKo2dg87ZmfPneBt/jl15YiBOPP4weZwzFroXrYOvmAO5bj5YWgX6Tx0KSZSi71mK8tA47zp6N/LduxZnbX8X3D7+E/LICHNtahapPDqLv028hx+91828B+sXv1CkRUnQBuEjl5+fHreeOHH4XigVZljyDqXLNyCm0oKDcim6V3ZBbkg9JlnH0h73I+2gpriz6FKYdG2EwG2C0mCAbFLhb1DZdnNhNicIpGVoE1aVh22vbsPfDfajbUg8AMBUbPFMHlyR0GZcOKRYZljIzCsryYLAqvlnKolG39wQ2XXoe1p15RgxLSJnoxKO/SXYRqBM07zTQarMGtbntCvSh7P96P1r+6xFMsz2FGZc2wFpa5HvsTw+tQc9/nYban/0KSxZ/jianAa/9qQd+dvpxKAOHQS4shHA60fD1Nxj83f9i6JaXcGLt19BUgaZjTdBUgYl12+J5ypQk+gJw0dxSyY033ohXX301Ls+dOjWHFBaLK/Wa5hk0LcmSb2pWSZbQdNSGpqNNnpUu3d+iYOdeVO85gvwyKww5Ju+iN55xEF2f2JKyiaVbDux1nuZ7/wH5+jgadwQzK8WbatdgP+yAo9YJV4PapZmcVLuGxsNNMOR4xgmd+PZDdBt1SayKShmk271PJrsIFAf5fS2wH3Hgp093o766Fn0u+hF/uOdB3PMfx337fN/zCvTS9uPNR3Jh/fYR2EZNQKOohGrJh1JSDtcP36LxUB1y+9bDNfpCWBsbYN11MGnTPlOCaJrnFs1xKWT48OF47bXXcMUVV+Dyyy8POZ3r1KlTo3puBocE0FwCriYX3A43jLmt02gJTaDpaBPsJxyQZRn2E3aoLhWORid6j+uFlmMnIDQNikmGqdgAzS26vJhMeyGIrQ2Zwf//d++q/SH30a/apRL/6YC7ynHYBbdNhcGq4PNhI3HSRQMYHIiySP2OJhSekgdTgQnNtc3Y9fZ6jOr3HE67YCa+/+x75OTnYkeNFX16ulG4Yy2EyQSD6sQp0hYozTbA5YT9cC2O7jyM8kvGIufgbjiOHGVoyAYJmlUp3q677joAnmleQw0HkCQJqhrdxUMGhwSx1zqQ060FBrMBkuzphqE63Wg+2gIAMHc3Irc4Fznd8mDtVYzG/UfRdKQe9hOeuXfH7/4hZmXxH9TJwJA5ggNhqoWDRNEXnsvt7el9XPXlXvQOcwwRZQ7NJWDb0wxjgQOKRYa1dz6at+/Av/2yBX9xDsPgIcUYVNYIs6MBy3v+Bqom4fz/vQGq04X9O2rQ+6wBsI46FVizC6KiD2qXvYXeT76e7NMi6rRPPvkkbs/N4JAgzjo36lz1aCqxQzHKUF0a3M1u2A84YbAqMPQ2wJDjGdMgyRL2froHzhMuGKwKjDnx+W9iaMgsmT74XcmVIbx9ncORjRLyyzyTERgtxgSUjohSid6yarQqcBa7sH/tdvQ1L8SCK29Abv0a2LVybJFH4T8XrAEAXD51EKAoqNtzBFVrdqJ7rQ0AMH/nL/Dok9cl81QokTJkcPQFF1wQt+eWRFcni00ym82GwsJC1NfXx33th1hUyvwXexMu4VuWXp9VRt/u3yddNkq4zL6jy69N2SHc5/SCP10OQ0kJvrjr5Zh1D4qnvH5mlAwqQsOhRtj2hJ9dzFRigGKRYbIaUb+tCYDne9fVbn5E8bD9qkswZNmHyS5GSoj0b6z/JAodXVAwWhWYy4yQZRnlI8rQ57orsGnADSg11aH3T5+ioedQKJoLkqZCEiqw4nV8/+JaKEYFRf0Kse/9g7zQFgOJrK9FSi9bzfK/wZqXG/nxTc0on/KrlDy3WGOLQ4K1qfS4hG9lX7etdVCobJR8P3dloChln3AtD466E2jYux8iTT5XktEzI5nq7NzYDOEScNrdcHindJWNEkMDpSyGBo9oLsxJfsFBRui/lfrfV8WooHRgMfpceznU4nL0VqpRsn8zmr9aB0vRNnx69kKc9/FvkTN4EGpraqHaNVh75qOwsgSmkiNdOTVKJ2nc4nDTTTfhD3/4A/r374+bbrqpw30lScJzzz0X1eswOEQgXl1BNJdos7AbwwLFy3fPfgUAAa1aqax5nwMH6mo6PQtU8HlpLoH3Laew1Y4oQ8hGCYpFhmKRPa32dg0qtPbDg0GCUD1rIrkP7MeRt1Yir6wI0qWXInfgyXAdOoSLNs3Hty+vhVDXwJhnwJl3TUTtZf8P3beuQuV/v5H4k6TkECLK4JD8Otsnn3yCO+64AwDw8ccfQ5Lan9a8o8fCYXCIUDL6kbOJlCLV0efU1aBCsaTPEi5dmXFJv9qYrQPFiTKFf1gwdTNCMcnQVE9lzQlXm7WOdJpLwNXguZjganLj+2dWo/GfdlgqzCjZcQAuuwv5PQpweEsN7Icd6HF6CU6efCYMQ0/Fca0YRXv2BCzyRpSq9u7d6/t53759cXsdBocU5N9NiaGBYk1t1gK6Ken9hDOhlctoVXwtDvp5CZeI+/eIM5QRxZep2IC8XhZYe1pRWFkMADi26zCcTU4IVcBx2AXNr+uvbPC0ROgLx+m/8+z7nQAAl60Ztp3NkI0STMV1UO0a+l7cCz3uux8Nlm4o2vwR3JUKCu96IlmnTEkQ7WJuqbYAXDwxOEQh3q0ODA0UD0quDEsvExp/bAn4Awt4mvI1V3p0XeqIFLTidKLCEL+rRPGT188MU4ERJSeXoPKma/Bl2TQU5TTjlHX/jfotO1G15kc0wjN1uanYAHOJCbIiwdngQssRV4erTWsugZbDLuQPzIHQBOqf/BMUkwH7jtSjzzffAQ+/mMAzpaTLkAXg4onBIUWxIkKxpOTKOGf+RHx10SNQzj8dll4mFJTloaXegcZ/2qG5M+NqibPWDVOJwTczmamEv+KIUp3/hTj/Fnedq0FFt/6FqLxqAl7QZuCl+z4HAEy+4feYesshnFLxOLa0fAFngwslg4pQfno/SAYFB9bvxjF7XaemcbZ0M6PPpLE4su4HbF+6HYpF5sD1bJQhC8ABwMsvv4wnnngC27dvR0tLS5vHo10ALn06OqcYVuwpnajNGr64dwVcY0Z4Bgq6BE7sa0DjP+3t9g1OV85aN1w2FTllRsgGKS2mnCUiT1fDUBV84RIoPqkU9cMuxFdfHvZtt9lc+N9PSlF75a/R55z+MOQa4Gh0omDoIFgqytB3/KkoGmht0xIZzLPuSwG+X7ICB7/dDwC45MCW2J4cUQK9++67uPHGGzFy5EjY7XbceOONuPbaa5GXl4eBAwdi7ty5UT83L8d1Qby6LDGUUCzon099jRDV7pnONL+vBapTQ8uRltYrcRkwviGYpYcZrhY3prACQJTyfGMTjBJy+5mRW2KBKc8Eg1lBj+F9kD9hIqqM3THjaivqLjsXn37ZhJISM0472YWKXZ/giFtFXncLcotzoTY14eDnm1B/oB7OBieMBUq7rQ766xotRuR0M6OxphkT67Yl4R2glJDG07H6e/jhh3HXXXdh4cKFeO6553Drrbdi1KhRqKmpwXnnnYfKysqon5vBIcUwNFCs6bMSmUoMyKvMgaYKqA6106swt6e9z2qiZh0LN6j7+ObGhJSDiLrOf/Y0xahgwKTTkXva6RAtzbjx639B9eN7UdyzEXPu6Ibx5jU4d2IuDhv74OQja+He8yNM1lx0P6UChlwzGnb/E7V7amHb3eRbWLU9kne2puP76tD9lDKM+mhtIk6XUlWGdFXauXMnHnjgAd+0q26357tVXl6O+++/H4sXLw671kN7GBy6INYVJIYGiie3TUULnLCUeQYaNrkcnTou0s+lvn+8A4Sv+0E7VxHNZUZcvG9zXMtARLFltCroPrgEOT3LodUdheh/Cqq3e6aZrDt4BH//oBd+ddkpOOnoOgxw/gjs3QXN6YTBbILT1owTPx2G6lIhVAHFIsNtU32zK4UiXAJul4rmoy04ad0/EnmqlIpElIOjU6zFQVVVmEwmyLKMvLw81NTU+B7r06cPfvrpp6ifm2McUsAU906GBoo7/yt61l4FUHLDf/278rmM92dabW67krR+TppLMDQQpRnZu5hb7e46VK9ch6bdeyE32QL2KeyWA4tsh+xqgbrlO9j3H4LL1gihaVCdbrgdbjQdbYKz2QVXgwqXTe2wZVXztryO3/1DvE+P0oHeVSmaWwrp378/Dh48CAA47bTT8Nprr/kee+ONN1BRURH1czM4dEEsKkYMDBQv7V3xb/ixGYc2HA27KFo6fr4FpzImSluKRYbmErDtaUb9gXq47Q5o+/fBlGMGAIyfejb+7ezt6HVgPaQjB3Bi+09oOXYCaosThjwLCk/qiR7D+6Bbn6IknwlRcl188cX48EPPrGB33HEHli5digEDBmDo0KH461//itmzZ0f93JIQKdYxK0I2mw2FhYWor6+H1WpNWjn0ShorLJRK2gsPif6c+n8/4t2FKVW/g/wdQdSW/+8DU4kBskFCj9NK0GN4H+RWlEJ1OOGos8FUmAcAMOTnwdSvH9TSXgAAR14JNIMJeQe3w7V9K1wnbLBVHcH+DdVo+LE57Dgufh8TJ1Xqa6HoZTu89HFYcy2RH99sR9m0f0+Zc3M4HHA4HL6yvPnmm3jllVcgSRKmTJmCmTNnRv3cHOMQI/zlQ6lI/1y+bzklqQsLJmrcQzrgKtNEoTlr3ZCNEur2noBiMkB1eFZ5/nH1DgiXQOkpxeh51mAYzbmwlZyEBmMRalpKYZRVjHRsgv3QUTQdPg778WYIVXjGQfkFB37vKKwMWQDObDbDbDb77k+dOhVTp0713RdC+AZOR4pdlYiywGX2HRxLk0IYoIhCfw80l4D9gBO1P9bh4KYq7P96Lxp/bEHLEReEJqCYTYDQ4FRyUNNSClVIGOT6AQffXIF9n+1AzQ+HUPtjHZwnXL6ui0Sdps+qFM0tQg0NDbjzzjvRt29fWCwWnHPOOdiwYUMcTirQq6++iiFDhkR9PFsciCgp/ENMNlSkg7tpsesSUWhqs4bGn+xoqm7xVf4Vi4y87gUwlXWHVlAERbhxpCEHjXYZowuakNPN05XJUe+E/YCnpSK4mxJb+yiV/OpXv8KWLVvw0ksvoWfPnnj55ZdxySWXYNu2bejVq1dUz1lfX4+3334bhw8fxqBBg3DFFVdAlj1tBG+++Sbmzp2Lbdu2oW/fvlGXm8GBiBIm2/9oJ2KMB1E6CPc98F+YUsmVUTq8G8rOGQH7yIuw3zIIh5q64T8XrAEA7J56IW67pQwjzlwJ2/fb8N0z38BlU+N+DpSBhIhyAbjIWhzsdjuWLVuGd955B+effz4AYP78+Xj77bexZMkSPPTQQxEXYffu3TjvvPNw5MgRX1ekCy64AG+//TauvfZarFy5Et26dcOjjz6K3/zmNxE/vy4hXZUcDgdOP/10SJKE7777LuCxqqoqXH755cjLy0NpaSluv/12OJ3ORBSLiDJMOgSTdCgjUTxFGp5NxQb0PX8obBdOwwbtTKzd0x3LP7b7Ht/xwwFUoy9cA0cif1B/FA8v7NR000RtaCL6GzyDrP1vDkfo9ZLcbjdUVUVOTk7AdovFgjVr1kRV9D/84Q+w2WyYP38+3nvvPfzlL3/Bjh07cM4552DFihW4+eabsWfPHtx9990B4x8ilZAWh3vvvRc9e/bE999/H7BdVVVMnjwZ3bt3x5o1a1BbW4sZM2ZACIEnn3wyEUUjohQQ7ZX4TKiEB593JpwTUUeimSzBcaIBJlczCs0tOKkcKMovQO3hk6AoMkafXYFauxsNBRUoqLfB2eCEqdgAe3PrRUh+r6hTol2TwXtMZWVlwOZ58+Zh/vz5bXYvKCjA2LFj8eCDD2LIkCEoKyvDa6+9hvXr12PgwIHRlByfffYZ7r//fsyZM8e3bcCAAZg0aRJmz56Np556KqrnDRb34LBixQqsXr0ay5Ytw4oVKwIeW716NbZt24bq6mr07NkTAPD4449j5syZWLBgQUpMaUVEiRH8hz14DECmVLDZVYnIo7MXDGSDBIfNjuKqH9D35Fw0FnSDM9+E3v9aBLeQoUh2GCQNbtkEY3kZVKcG1d5a+UvX3xWUBF2cVam6ujqg7trRlf2XXnoJN910E3r16gVFUTBq1Chcd911+PbbbyN/fQBHjx7FuHHjArade+65AIBp06ZF9ZyhxDU4HD58GLNmzcLbb7+N3NzcNo+vW7cOw4cP94UGAJg4cSIcDgc2btyI8ePHx7N4RJTCgv/Y+weIdK0IhKskpet5EUUqkgCdU2yGbJAh6o6hsGAXcvOLoclG9HHZIbmdgKygJbcY3QeeDQz8Hc6/9ndxLDlR+6xWa6cvep988sn47LPP0NTUBJvNhoqKCkybNg39+/eP6rVDdX3S7xcUFET1nKHELTgIITBz5kzMnj0bY8aMwb59+9rsU1NTg7KysoBtRUVFMJlMqKmpCfm8+qIWOpvNFnI/IsoMwUEhuAUiUyrbmXIeROFEEhpkowRLkQUmay60lhbINVXIMRyCUN1o3rodzsZmmPJz0X3es3EsMWWNKKdWjeoYr7y8POTl5eH48eNYtWoVHn300aifa+fOnTAYWqv2quqZJGDHjh1t9h01alRUrxFxcJg/fz4eeOCBDvfZsGEDvvzyS9hstoC+VqGEWoCio4UpFi1aFPb1iSjzyUYp7Kqwqaa9KWgZGohCUywyrD0LkVPSDRACorEBmhDQmu346aMtaDzYBFOBEePmJbuklBG6OMYhEqtWrYIQAoMHD8bu3btxzz33YPDgwbjxxhsjf32v9laEnj59uu9nvY6th4pIRRwcfv3rX+Oaa67pcJ9+/frhoYcewldffdWmf9eYMWNw/fXX44UXXkB5eTnWr18f8Pjx48fhcrnatETo5syZg7vuust332aztRmMQkSZY4p7Jz7sNRzOOjc0l/BVsg1WBc5ad5JL1zkdXWFlaCBqn2SUYCm1QrHkQLhVCE2DcDjhqDuBpqPNaNrnQBNCz1xDFDG/GZIiPi5C9fX1mDNnDvbv34/i4mJcddVVWLBgAYxGY+SvD+D555+P6rhISUJ0oX2lA1VVVQHdiA4ePIiJEyfijTfewFlnnYXevXtjxYoVmDJlCvbv34+KigoAwNKlSzFjxgwcOXKkU/3EbDYbCgsLUV9fz8HURBnqfcspkIwSZIPUZn72VK54txcY9EGhqVx2oniIdHIAJVdGj1FFUMwGKEYZskHBsLc/ilPpKJ5Sub6ml63m2bmw5uaEPyD4+OYWlM/6Y0qeW6zFbYxDnz59Au7n5+cD8AwG6d27NwBgwoQJGDp0KKZPn47Fixejrq4Od999N2bNmpXxbzwRdd5l9h34ZMAIqHYt7Rd20sMCQwNRx2Sjp8tyc10LFKMMSfHcX3fmGRCqwDkbv0lm8YiyUlJXSFEUBe+99x5ycnIwbtw4/PKXv8TPf/5zPPbYY8ksFhGlIMWsQDJKabOwU6grqwwLRJ2nuQSES0B1qRCagObSIFThuUXTnYQoHBHl4m/x6byTkhKyABzgGfcQqldUnz59sHz58kQVg4jS1PlbN2HLFePhbHKibkc9Wg67UrIiznUaiGJHDw+aUUBWJAYGiq8EDo5OV+lx6Y6ICMDwdz9BUb9SFJ5ckLWhgcGEso1q97Q06MZt2ohxmzYmsUSUqYSmRX3LFglrcSAiioX+z72D6JbHiR8u7EYUP846z+xpBqsCWeb1TqJkYnAgIopSZ67+xzo0MIRQttFcAi2HXVAaVEyybU92cSiTJWEBuHTD4EBEFIVkhAaidBZtNzt+jyhhNAFE0+0oi8besM2POmXtyNFYO3J0sotBlDLCVWZY2SHqGtkoIa+fOfyORLGitzhEc8sSDA4ZYuOF58T1+TkYjaitKe6dIQMCQwNRoEhbG2SjhPyTLOh9Vi/U/+nO+BSKKAgHR4fHrkoZYvSnXya7CERZj4GBKDT9u9FRgNAXfAMASy8TKs/ugx5jR0DuezLsH74Ayd6EnMtvjXtZiah9DA5ERF3EwEAUXrhWB80lIBslKBYZilmBu8UJ4XRCmC1QzXlAfjFyElRWylL6gm7RHJclGByIiIgoriLpqiQZJSgmGS31dtTv3IfioiIYiroDJsYGii8hNIgoFnOL5ph0xeBAKSv4Dw2v6hIRZQfVqcHZ6MSJfx5Drz//LtnFoWzBFoewODiaiCiFcGVoymaaS8BtU9FU3YLjP9pQX12f7CIRkR+2OFDKYgsDZSN+7ikTTXHv7HQo1lwCcAkIl8AlB76Jc8mI/AjNc4vmuCzB4EBEFKFNl54HABj5wRdJLglR+ujMzErB+xIlktAERBTdjqI5Jl0xOBARRYiBgahr/Kde1Wmurle+au6dHnKgasXiV7r83JQFhBbdytFZ1OLAMQ5ERESUMEqu7Jly1XszWBUYrAqUXNkXKKIZ63PonutjXVTKMkKIqG/Zgi0ORERElDA5PYy+nyW/lgfhEtDcAqpdg2rXsNwwOKIuS2xVIIo/BgciIiJKGClENyWilKBF2VUpmmPSFLsqERERUcLIctuqh97a4NvHIEE2SpyemBJKHxwdzS1bZGyLw+qyYZhweGuyi0FERER+zt+6CZ8OOc13XwQNilYsMoRBQLHI0NwCq4qHQnMLTLJtT3RRY0o/Z/18x+/+IZnFoVCEiHI61uwJDhnb4sDQQESd9d3E85NdBKKscuH27323YLJB8g2cNhYovp9Xlw3DquKhvlu60c93/O4foLkFPuw1PNlFoiCJbHE4cOAAbrjhBpSUlCA3Nxenn346Nm7cGIeziq2MbXEgIuqs01d9nuwiEGUt/cr7JwNGhHxcMkqQAVxyYEsCSxVfF+/bnOwiUBIdP34c48aNw/jx47FixQr06NEDe/bsQbdu3ZJdtLAYHIiIiCjp2HWHkk1oGkQUA50jPeaRRx5BZWUlnn/+ed+2fv36Rfy6yZCxXZWIiIiIiDpNE9HfANhstoCbw+EI+TLvvvsuxowZg6uvvho9evTAyJEj8eyzzybyTKPG4EBEREREWU8ILeobAFRWVqKwsNB3W7RoUcjX+emnn7BkyRIMHDgQq1atwuzZs3H77bfjxRdfTOTpRiXuweG9997DWWedBYvFgtLSUkydOjXg8aqqKlx++eXIy8tDaWkpbr/9djidzngXi4iIiIgoZqqrq1FfX++7zZkzJ+R+mqZh1KhRWLhwIUaOHIlbbrkFs2bNwpIlSxJc4sjFdYzDsmXLMGvWLCxcuBAXXXQRhBDYvLl1QJCqqpg8eTK6d++ONWvWoLa2FjNmzIAQAk8++WQ8i0ZERESUtiJdWZs6Ido1GbzHWK1WWK3WsLtXVFRg6NDAmcGGDBmCZcuWRf7aCRa34OB2u3HHHXdg8eLFuPnmm33bBw9uXcxl9erV2LZtG6qrq9GzZ08AwOOPP46ZM2diwYIFnXrziYiIiLINQ0MciChXjo5w7Ydx48Zh587A/79du3ahb9++kb92gsWtq9K3336LAwcOQJZljBw5EhUVFZg0aRK2bm1dX2HdunUYPny4LzQAwMSJE+FwONqdy9bhcLQZfEJERERE1BWJWsfht7/9Lb766issXLgQu3fvxquvvopnnnkGt912W5zOLHbiFhx++uknAMD8+fNx//33Y/ny5SgqKsIFF1yAuro6AEBNTQ3KysoCjisqKoLJZEJNTU3I5120aFHAwJPKysp4nQIRERERZQl9OtZobpE444wz8NZbb+G1117D8OHD8eCDD+KJJ57A9ddfH6czi52Ig8P8+fMhSVKHt2+++Qaa90287777cNVVV2H06NF4/vnnIUkSXn/9dd/zSZLU5jWEECG3A8CcOXMCBp5UV1dHegpEREREUVtuGOy7EUVjypQp2Lx5M1paWrB9+3bMmjUr2UXqlIjHOPz617/GNddc0+E+/fr1Q0NDAwAEDP4wm8046aSTUFVVBQAoLy/H+vXrA449fvw4XC5Xm5YI/+cwm82RFpuIiIgIyw2DIRs9Fycvs++I6jk4viAzCSEgROSDo6M5Jl1FHBxKS0tRWloadr/Ro0fDbDZj586dOPfccwEALpcL+/bt8w3+GDt2LBYsWIBDhw6hoqICgGfAtNlsxujRoyMtGhEREVGAFdYhmGTb7rvPSj+1S4tycHQ0x6SpuM2qZLVaMXv2bMybNw+VlZXo27cvFi9eDAC4+uqrAQATJkzA0KFDMX36dCxevBh1dXW4++67MWvWLM6oRERERBHbcP5YOBucaDnuhNumQriy52owdU00A53147JFXNdxWLx4MQwGA6ZPnw673Y6zzjoLH3/8MYqKigAAiqLgvffew6233opx48bBYrHguuuuw2OPPRbPYhEREVGGsL+8APZ/VqP4vr8CAM74fB0A4MNew6G5BTSXaDMWga0ORNGJa3AwGo147LHHOgwCffr0wfLly+NZDCIiIspQlhvug3jxQQDAxgvPgW1/oycwuEXI1gaGBmqP0KJrPYhwGYe0FtfgQERERBQPC5e6UZCvYHBvJ0aNugTa079HXvc8HFpTC0tvEwBAMkqQAWjeAMHQQB2JZmpV/bhsweBAREREaWXc5Z8F3J903ThcfXEv9C3shgMbXsLF+zYnqWSUzjjGITwGByIiIkpLeYUFOOnUfijvrsApTLBccy9O+mBtsotFaYotDuExOFCntbfQDZt+o9fVAXv8PyGibDD1N7shhICmaVAUBb0H90NZZRG6d89Fr3IF/bq3IEduAQD0f+6dJJeWKHMxOFC7Orsipr4fK6uBgt+X5YbBmOLe2eH7GqsgEMsZRPyfK/h5urJqajp8XtaPPROaKjD26w3JLgpR1rr3aTvefHIAfvesHYoiw2iUkZMjo7xURmGehuJcO7qZG2HW7Kj77jMUn35BsotMaUqIKLsqZdECcJJI87O12WwoLCxEfX09136IQnClsCsVwXBSsaIYz/Ol2JCNEiTvKq8AAhZySoZPh5yGC7d/n9QyEGWy1d87YJA1KJKALGkwyBokeKoqkiQgSwJnDC5KcikpUqlcX9PLtm3WlSgwGSM+vsHpwtBn30nJc4s1tjhkofYqy/GuRCfz6jQDQmaQDRJWFQ8FAEys25bk0hBRPFTkHodRckGRVChww6C5IHnnu9QDBMDgQLHHMQ7hMThkgWyuNGfzuWeC4NYGnWSUsLpsGCYc3grAs9CTvh1AmxlVPhkwAuN3/xCTMrG1gSi+Th1YHnC/9oc1nuAgBCRo3hAxHA3rl0NS3cg/5+dJKSdlHs6qFB6DQ5roqJ95R/tmM74PmUU2tA0QemAAEBAwPup3apv9PxkwAgBiFiCIMkEqjAnYvWcvZKgwqS3oPWh4m8cVdwtkTYWkqYDQIGkqmta+CcXtRO4F1yShxETZi8EhTfiPP4gkRGQbhoXMpweEUEGiM/QAEdySwZYEykbJDg1VP25HjlAhCxWK6sSxLetQOnws6r77DLJwQ9JUKG4nJD04eP+VVBVwO2Bf8Swktwtwu5Hzi9uTei6U/thVKTwGhxQRbYU30yvKHQWjTD/3bCeH6KIUT58OOc33M0MEUWzt270LktDQd+Apvm0127+FWaiQhIAsVMhuJ2ThRv3G1TD4WhgEZLejNTSonn+hqpBcDsDthlDdgKbC/soiWK6fk8SzpHTHrkrhZVxwYGUys+hTmAZvo+wlXAKSUYLmFlG3OujPA7RteQACQ0RnyLKM87duirosRJnO2lQDCIETmw5A0lQUjp6A8iGj0PD1+55AIDRIqssXFjwBwe352eUANOELDEL1bBdOp+dnVYXw3hqf+g/k3/pIsk83I3VminH/v9fp2DuCwSG8jAkOK4tGIVdSkl0MirH2fgkRBdMDha6zwSL4uEjJsgwA+HzYyDaPMUwQeRgdjb7xCRACTWvfBDQVij7oWQ8KmgpoApLmbg0LbpenK4g3OEATEKrbGxz0+63hgWLDPyj4//31v6AX/He5o1kbmwX/bzJBxgQHyizBgSFdrlZQ7GguEdBdKVQQCN4WbXiIlh4aiBKp+fOlIbcLSQYkCZBkCElOqdmGCs68DM2f/d0TEITmuXlDAoR3piS327td+FoVLFf/O+yvLGptZVC9rQ6aBuFwehbsUlUItzc4ZFFf80QJFQYy9UIexziEx+BAKamzVzEoO0XSShCv8NBRaGBLA8WDfeVzgCwh4NMseT+HQoPkFxwgyWj+9FXkXnhdMooaUu4F16DlH08BQvgCAoSnoiaE8LQmeIOF0DwtEQCgNja07utWfWFBc7q8YcEvPGRRBY5ij12VwmNwIKKUpbkEZLSOQ2iv1QFonWUpVKgI3idYV7srBft82EiGB4qplrf+Akn2fEZzrvxN6/Z3/ztwRz04ALBMmY2W95/2PST07ZNmwb7iWe/+bQOw5Wc3d62s7zzpq+jnTL0TAGB//XHPg6oKyzX3era9vKA1IGiapzVBCAi3ivx/W4SG/7oXDX+5G5rbDWgaNLfncc2teu673NDcfsHBu88/b/kF+j79VpfOIVtl+0U6oQloKoNDRxgciCjl+Vfs9fDQUbek9gY+d9T6EGl40DSt3VYHhob0s3PaREiyBEmWMPCVFckujo/95QWw3HAfREtz67a/Pxr+QFmC/f8We1sfAj/X9jf+BKmDFrOWN5/w/axfwbf8y12hy/d/iz0hwbNzwM+WG+4DADS/8EdPMPC2KjQ+/Xvk37IQakOjt3VBeIOBJyAITeD4w7d5QoQ3IAjN29rgvSIsVBWaW/UFB/9/T35hefj3h3yyPSz483y+oumqFFlwWLJkCZYsWYJ9+/YBAIYNG4a5c+di0qRJEb92oklCiLSOSTabDYWFhVgqn8zB0UQZzH+8Q3trOfhX/EMFhFDBoKNuTOGCBKdtTX2bp1wIAN5QIGPY2x8FPL7r2p8BAAa9ttK37acbLwcAqE43Br6yAjuuvhSSLEM2yJBk2Rcw9G2yQfHd1/8FAElRfK9d9vCLAICj99/o6W4kyyid/7eozqnhL3f7fu7oT7ikBwa/kKC3WrSn3QqQtzIV8Hp6GPB/3Hu8PkhZeIOAvo/mHczs/5jQBITwDwZ+2zUNmltrbVnwe0xzq1BdrWFCUwVOX/V5h+eXTTozq1EiQ0OzUDFN24P6+npYrdaEvW5n6HXJjVddjHxj5NfUG11ujF72UafP7R//+AcURcGAAQMAAC+88AIWL16MTZs2YdiwYRG/fiIxOBBRWtEDRHshIbiy31G4aG+fYFwsLrV9fe7Zvgqx7P1XUlor8gAgK97tcuu/egVfViS/7XLAPqrTDZfdFXCMvr++b2twkNoEC/3nNs9t8Py9qlj8StTnXbdgdsB9/Xz0K6ZtWhWkTrSohagSiKBQAKBNkPBdpfWr3OvHCL+WCM1vHIJ/OPBvNQgVEDQ1aJvq3V8V0LzbzlzzVfjzyzLBU6iGeixR0iE4fPOLi6IODmPe+rhL51ZcXIzFixfj5pu71lUw3thViYjSiubthqRXifQ1HQD4ujDp24HW8Q3Bj7e3j76fP+ESGL/7h9idBHWovTEiX4wY5ftZViTIxtaKv/6JUDXhqZxrArLs/SwoEjR3a0W6NUx4KrCaHBwqWp9XdalwOwKnkfQPIwGtDyEChb6//3YAvseqb/sXv30Cy+er+MuSZ+Az2m8xCNeSEIngVgf/+0K0BgTPY0EtDX6Ve//7+j7BrQn+j/kHhNb9BVSXdwC1X0gQqgZNFRj79YaYnXcmSoXAkE6SMThaVVW8/vrraGpqwtixY6N+nkRhcCCitKRP1+ofFEIFCP0xIPRAav/Hfc8dZjA1xcbakaPbbFOdnkpjqHUx/GkAJG8wUFUBSfH+nykS9OniheKtbGuS7yj/FgnN7dkqBXXl0QOFf1zwb3XwJ8sSJCWwRSFcoADQJlT4H+9fltafQ3c3imVgANoPDf79vv0r+/6PhQoIwfvprQVtQoPqFya8AUF/THV6uz2pra0NQhUcS9QBhoPodDU42Gy2gO1msxlmsznkMZs3b8bYsWPR0tKC/Px8vPXWWxg6dGjkhU4wBgciSlu+1od2AgQQeStEqP0u3rc5bFk+GTCCrRJh6Ctyy7Lsq2z781QYOzcwUYYMobT9A6+qra0M8Pazl/1eSwMgKTLgCw2Sd6v3eWUJqn58ELfd3frc/mXxuy8prS0DilEOaEUIFSj0x/z3Cw4D7Q1kbrtf50JERxWjtsGhbTelwJ9bA4A+G02o0KA/prlbQ4B/ONBbEIQaGCYA4Lwfvu3UeWUTBoPUVFlZGXB/3rx5mD9/fsh9Bw8ejO+++w4nTpzAsmXLMGPGDHz22WcpHx4YHIgo7Wl+FX//KlabEBF0XPDjQOgg0RkMDe37ZMAI3896KBP+FXzvfdXRuZVl9edQnVprJV5tbXEAgiq3anCFWgsZDGRF8kUIPQD4U12eq+Ghjm19bc85SLIEt+INC35hQm+haG/8RZtuSggKPn5TRcohytFReAh3JTV4GsqOWhn892/T8uAXCs74fB0AYP3YM33HCLVtqPAPjRxDFIghIXG6ugBcdXV1wBiH9lobAMBkMvkGR48ZMwYbNmzAn//8Zzz99NPtHpMK4hocdu3ahXvuuQdr166F0+nEqaeeioceegjjx4/37VNVVYXbbrsNH3/8MSwWC6677jo89thjMJlM8SwaEWUo/xAB/0BhlKAGd18KankAELCPvt/qssBZLiYc3orVZcNCdmW65MCWLpU/1X3Ya3in9/WFBP/33S1BGFqnvpX94pxklKDatbDBTX+Ozrx2Z4RbATw43Kj2zlUsggfw+87Zr8WlzaBtb9jw/Bx+NqRo+1YLte05tAkOfveDX8cXGvz28W8tEi4BzS3wUb9TAXha7T7sNdwX1PX/44l126Iqf6IFV97bm6UoFs9NydPVrkpWqzXqwdFCCDgcjqiOTaS4BofJkydj0KBBvlDwxBNPYMqUKdizZw/Ky8uhqiomT56M7t27Y82aNaitrcWMGTMghMCTTz4Zz6IRUZbRgiqjwVVFtZ11HEJVKVcVe5qS/ateEw5v7VoB00hwK027Qu3nFhAGCZJbgmKR23RN0iucHZER+N53+rXboXqfLZIxLa4GNfwx9tYfA6cQVttMKRwqVABtg0WwzlZywi1qJUI8HhwEAh7ze3/1rnx6qNQf8/9OrLAOwSTb9k6VVdfRjECJ0FGFvqtlY1hITZoqoMmRB4dIF437/e9/j0mTJqGyshINDQ34+9//jk8//RQrV64Mf3CSxS04HDt2DLt378b//M//YMQITzP1ww8/jKeeegpbt25FeXk5Vq9ejW3btqG6uho9e/YEADz++OOYOXMmFixYkHLTdRFR5ggOEkDokNBeoAAAeBeUS5erpuGEalkJFtyiooeoUNpbcE+D573WWw0k7xgVze25hWtxUF0Ckjt2g4Lba20KR7hE54/xhoj2AoO+TTJqAfd1nWlB6eh962zYa+85go+fcHir7/9+VfFQaG7RYTDoTGhIlcp0JOVYbhictGBDsZeoWZUOHz6M6dOn49ChQygsLMSIESOwcuVKXHrppRG/dqLFLTiUlJRgyJAhePHFFzFq1CiYzWY8/fTTKCsrw+jRnpk01q1bh+HDh/tCAwBMnDgRDocDGzduDOjSREQUb8FhIpsqBKECQPC2UAFJ37bCOiRgu14BDW4Z0CvDikVus6/bpkbUmhGrWa8iDQyA5zxczZH3hda7z+mjOcItbBhJl6tg4QJYp9/rEM/5vuWU1ufxbuvMgmORSJfvXzStD/77pkpgosR57rnnkl2EqMUtOEiShA8++ABXXnklCgoKIMsyysrKsHLlSnTr1g0AUFNTg7KysoDjioqKYDKZUFNTE/J5HQ5HQB+w4KmviIhiIV0qLbHSXgDorHBXlPWKpmSRPV2UQlRaw7U2aC4BJVcO2L8j0Qxyj4RslEK2XEUi1JicgFBhb3tMl18nAaK5Ep/s71yyKvAdnTdDRWIJEeXgaBHFRYQ0FXFwmD9/Ph544IEO99mwYQNGjx6NW2+9FT169MAXX3wBi8WCv/3tb5gyZQo2bNiAiooKAJ6AEUwIEXI7ACxatCjs6xMRUXQi7YfeWZfZd4TcHurKdUfUaK7yp6lEV/ZjLVSlN5pwEGnlubOvEatKebwCD0ND4iVjAbh0IwkRYn35Dhw7dgzHjh3rcJ9+/fph7dq1mDBhAo4fPx4wVmHgwIG4+eab8bvf/Q5z587FO++8g++/b5167fjx4yguLsbHH38csqtSqBaHyspKLJVPRq6kRHIqRERhJfsqaLpgJYfiJZ2+g/wetK9ZqJim7UF9fX3KjWG12WwoLCzEZ+efhXxD5J1xGt1uXPD5+pQ8t1iL+N0pLS1FaWlp2P2am5sBtJ3mTpZbZ9EYO3YsFixYgEOHDvlaIFavXg2z2ewbBxGso1X4iIhiLdkzuxBli1T5jrHyn73Y4hBe3MY4jB07FkVFRZgxYwbmzp0Li8WCZ599Fnv37sXkyZMBABMmTMDQoUMxffp0LF68GHV1dbj77rsxa9asjE9sRJReYj3wM9NMce9khYu6JNafn1DfU35GibombsGhtLQUK1euxH333YeLLroILpcLw4YNwzvvvIPTTjsNAKAoCt577z3ceuutGDduXMACcEREqSpWfbczjf4esHJGqUAfoM3PI3VWV1eOzgZxXQBuzJgxWLVqVYf79OnTB8uXL49nMYiI4o5hwoOVNEol/DxSJIQqIKQouipFuABcOotrcCAiymadqbRkWrjgFV4iSldCBbSogkMcCpOiGByIiJIo1aeEJCIi0jE4EBFlAF7lJyLqGiGinFUpspUN0hqDAxERERFlPU0V0BB5CNA4xoGIiIiIKHsIVYOAFNVx2YLBgYiIiIiyntCinFUpixaAk8PvQkRERERE2Y4tDkRERESU9TjGITwGByIiIiLKekIVEFEEBy4AR0RERESURTRVQItialUti8Y4pH1w0OfObRbZM6KdiIiIKJ3o9bRsWvMgE6V9cKitrQUA3Cj2IorWJSIiIiJKkIaGBhQWFia7GCEJl4CQOatSR9I+OBQXFwMAqqqqUvaDmI5sNhsqKytRXV0Nq9Wa7OJkDL6v8cH3NX743sYH39f44PsaH7F4X4UQaGhoQM+ePWNcutjR3AJaFMGBXZXSiCx7ZpQtLCzkL4k4sFqtfF/jgO9rfPB9jR++t/HB9zU++L7GR1ff11S/wMsWh/DSPjgQEREREXWVpoqoWg+iGVCdrrgAHBERERFRgj311FPo378/cnJyMHr0aHzxxRfJLlJYaR8czGYz5s2bB7PZnOyiZBS+r/HB9zU++L7GD9/b+OD7Gh98X+MjW95X4dKivkVq6dKluPPOO3Hfffdh06ZNOO+88zBp0iRUVVXF4cxiRxKcF4uIiIiIspTNZkNhYSFezxmAXEmJ+PhmoeLqlt2or6/v9BiQs846C6NGjcKSJUt824YMGYKf//znWLRoUcRlSJS0b3EgIiIiIuoq4RJR3yLhdDqxceNGTJgwIWD7hAkT8OWXX8bylGKOg6OJiIiIKOs1Q4tqTbBmeLoq2Wy2gO1mszlk965jx45BVVWUlZUFbC8rK0NNTU3kBUggBgciIiIiylomkwnl5eWYWbM36ufIz89HZWVlwLZ58+Zh/vz57R4jSVLAfSFEm22phsGBiIiIiLJWTk4O9u7dC6fTGfVzhKr0tzeYvLS0FIqitGldOHLkSJtWiFTD4EBEREREWS0nJwc5OTkJeS2TyYTRo0fjgw8+wC9+8Qvf9g8++ABXXnllQsoQLQYHIiIiIqIEuuuuuzB9+nSMGTMGY8eOxTPPPIOqqirMnj072UXrEIMDEREREVECTZs2DbW1tfjjH/+IQ4cOYfjw4Xj//ffRt2/fZBetQ1zHgYiIiIiIwuI6DkREREREFBaDAxERERERhcXgQEREREREYTE4EBERERFRWAwOREREREQUFoMDERERERGFxeBARERERERhMTgQEREREVFYDA5ERERERBQWgwMREREREYXF4EBERERERGExOBARERERUVj/H6yd7Ws18AUPAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "### Dataset dimension" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:24:59.410576Z", + "start_time": "2024-12-08T15:24:59.402466Z" + } + }, + "source": [ + "print(f\"Dataset dimensions: {dataset.shape}\")\n", + "print(f\"Dataset rows: {dataset.rows}\")\n", + "print(f\"Dataset columns: {dataset.columns}\")\n", + "print(f\"Dataset number of bands: {dataset.band_count}\")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset dimensions: (4, 360, 720)\n", + "Dataset rows: 360\n", + "Dataset columns: 720\n", + "Dataset number of bands: 4\n" + ] + } + ], + "execution_count": 5 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:02.114951Z", + "start_time": "2024-12-08T15:25:02.103848Z" + } + }, + "source": [ + "print(f\"Cell size: {dataset.cell_size}\")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cell size: 0.5\n" + ] + } + ], + "execution_count": 6 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:03.939358Z", + "start_time": "2024-12-08T15:25:03.930863Z" + } + }, + "source": [ + "dataset.band_names" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "['Band_1', 'Band_2', 'Band_3', 'Band_4']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 7 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "### Dataset spatial properties" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:05.734637Z", + "start_time": "2024-12-08T15:25:05.729885Z" + } + }, + "source": [ + "print(f\"EPSG: {dataset.epsg}\")\n", + "print(f\"Coordinate reference system: {dataset.crs}\")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "EPSG: 4326\n", + "Coordinate reference system: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]\n" + ] + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:10.096858Z", + "start_time": "2024-12-08T15:25:10.083277Z" + } + }, + "source": [ + "dataset.lon" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.5000e-01, 7.5000e-01, 1.2500e+00, 1.7500e+00, 2.2500e+00,\n", + " 2.7500e+00, 3.2500e+00, 3.7500e+00, 4.2500e+00, 4.7500e+00,\n", + " 5.2500e+00, 5.7500e+00, 6.2500e+00, 6.7500e+00, 7.2500e+00,\n", + " 7.7500e+00, 8.2500e+00, 8.7500e+00, 9.2500e+00, 9.7500e+00,\n", + " 1.0250e+01, 1.0750e+01, 1.1250e+01, 1.1750e+01, 1.2250e+01,\n", + " 1.2750e+01, 1.3250e+01, 1.3750e+01, 1.4250e+01, 1.4750e+01,\n", + " 1.5250e+01, 1.5750e+01, 1.6250e+01, 1.6750e+01, 1.7250e+01,\n", + " 1.7750e+01, 1.8250e+01, 1.8750e+01, 1.9250e+01, 1.9750e+01,\n", + " 2.0250e+01, 2.0750e+01, 2.1250e+01, 2.1750e+01, 2.2250e+01,\n", + " 2.2750e+01, 2.3250e+01, 2.3750e+01, 2.4250e+01, 2.4750e+01,\n", + " 2.5250e+01, 2.5750e+01, 2.6250e+01, 2.6750e+01, 2.7250e+01,\n", + " 2.7750e+01, 2.8250e+01, 2.8750e+01, 2.9250e+01, 2.9750e+01,\n", + " 3.0250e+01, 3.0750e+01, 3.1250e+01, 3.1750e+01, 3.2250e+01,\n", + " 3.2750e+01, 3.3250e+01, 3.3750e+01, 3.4250e+01, 3.4750e+01,\n", + " 3.5250e+01, 3.5750e+01, 3.6250e+01, 3.6750e+01, 3.7250e+01,\n", + " 3.7750e+01, 3.8250e+01, 3.8750e+01, 3.9250e+01, 3.9750e+01,\n", + " 4.0250e+01, 4.0750e+01, 4.1250e+01, 4.1750e+01, 4.2250e+01,\n", + " 4.2750e+01, 4.3250e+01, 4.3750e+01, 4.4250e+01, 4.4750e+01,\n", + " 4.5250e+01, 4.5750e+01, 4.6250e+01, 4.6750e+01, 4.7250e+01,\n", + " 4.7750e+01, 4.8250e+01, 4.8750e+01, 4.9250e+01, 4.9750e+01,\n", + " 5.0250e+01, 5.0750e+01, 5.1250e+01, 5.1750e+01, 5.2250e+01,\n", + " 5.2750e+01, 5.3250e+01, 5.3750e+01, 5.4250e+01, 5.4750e+01,\n", + " 5.5250e+01, 5.5750e+01, 5.6250e+01, 5.6750e+01, 5.7250e+01,\n", + " 5.7750e+01, 5.8250e+01, 5.8750e+01, 5.9250e+01, 5.9750e+01,\n", + " 6.0250e+01, 6.0750e+01, 6.1250e+01, 6.1750e+01, 6.2250e+01,\n", + " 6.2750e+01, 6.3250e+01, 6.3750e+01, 6.4250e+01, 6.4750e+01,\n", + " 6.5250e+01, 6.5750e+01, 6.6250e+01, 6.6750e+01, 6.7250e+01,\n", + " 6.7750e+01, 6.8250e+01, 6.8750e+01, 6.9250e+01, 6.9750e+01,\n", + " 7.0250e+01, 7.0750e+01, 7.1250e+01, 7.1750e+01, 7.2250e+01,\n", + " 7.2750e+01, 7.3250e+01, 7.3750e+01, 7.4250e+01, 7.4750e+01,\n", + " 7.5250e+01, 7.5750e+01, 7.6250e+01, 7.6750e+01, 7.7250e+01,\n", + " 7.7750e+01, 7.8250e+01, 7.8750e+01, 7.9250e+01, 7.9750e+01,\n", + " 8.0250e+01, 8.0750e+01, 8.1250e+01, 8.1750e+01, 8.2250e+01,\n", + " 8.2750e+01, 8.3250e+01, 8.3750e+01, 8.4250e+01, 8.4750e+01,\n", + " 8.5250e+01, 8.5750e+01, 8.6250e+01, 8.6750e+01, 8.7250e+01,\n", + " 8.7750e+01, 8.8250e+01, 8.8750e+01, 8.9250e+01, 8.9750e+01,\n", + " 9.0250e+01, 9.0750e+01, 9.1250e+01, 9.1750e+01, 9.2250e+01,\n", + " 9.2750e+01, 9.3250e+01, 9.3750e+01, 9.4250e+01, 9.4750e+01,\n", + " 9.5250e+01, 9.5750e+01, 9.6250e+01, 9.6750e+01, 9.7250e+01,\n", + " 9.7750e+01, 9.8250e+01, 9.8750e+01, 9.9250e+01, 9.9750e+01,\n", + " 1.0025e+02, 1.0075e+02, 1.0125e+02, 1.0175e+02, 1.0225e+02,\n", + " 1.0275e+02, 1.0325e+02, 1.0375e+02, 1.0425e+02, 1.0475e+02,\n", + " 1.0525e+02, 1.0575e+02, 1.0625e+02, 1.0675e+02, 1.0725e+02,\n", + " 1.0775e+02, 1.0825e+02, 1.0875e+02, 1.0925e+02, 1.0975e+02,\n", + " 1.1025e+02, 1.1075e+02, 1.1125e+02, 1.1175e+02, 1.1225e+02,\n", + " 1.1275e+02, 1.1325e+02, 1.1375e+02, 1.1425e+02, 1.1475e+02,\n", + " 1.1525e+02, 1.1575e+02, 1.1625e+02, 1.1675e+02, 1.1725e+02,\n", + " 1.1775e+02, 1.1825e+02, 1.1875e+02, 1.1925e+02, 1.1975e+02,\n", + " 1.2025e+02, 1.2075e+02, 1.2125e+02, 1.2175e+02, 1.2225e+02,\n", + " 1.2275e+02, 1.2325e+02, 1.2375e+02, 1.2425e+02, 1.2475e+02,\n", + " 1.2525e+02, 1.2575e+02, 1.2625e+02, 1.2675e+02, 1.2725e+02,\n", + " 1.2775e+02, 1.2825e+02, 1.2875e+02, 1.2925e+02, 1.2975e+02,\n", + " 1.3025e+02, 1.3075e+02, 1.3125e+02, 1.3175e+02, 1.3225e+02,\n", + " 1.3275e+02, 1.3325e+02, 1.3375e+02, 1.3425e+02, 1.3475e+02,\n", + " 1.3525e+02, 1.3575e+02, 1.3625e+02, 1.3675e+02, 1.3725e+02,\n", + " 1.3775e+02, 1.3825e+02, 1.3875e+02, 1.3925e+02, 1.3975e+02,\n", + " 1.4025e+02, 1.4075e+02, 1.4125e+02, 1.4175e+02, 1.4225e+02,\n", + " 1.4275e+02, 1.4325e+02, 1.4375e+02, 1.4425e+02, 1.4475e+02,\n", + " 1.4525e+02, 1.4575e+02, 1.4625e+02, 1.4675e+02, 1.4725e+02,\n", + " 1.4775e+02, 1.4825e+02, 1.4875e+02, 1.4925e+02, 1.4975e+02,\n", + " 1.5025e+02, 1.5075e+02, 1.5125e+02, 1.5175e+02, 1.5225e+02,\n", + " 1.5275e+02, 1.5325e+02, 1.5375e+02, 1.5425e+02, 1.5475e+02,\n", + " 1.5525e+02, 1.5575e+02, 1.5625e+02, 1.5675e+02, 1.5725e+02,\n", + " 1.5775e+02, 1.5825e+02, 1.5875e+02, 1.5925e+02, 1.5975e+02,\n", + " 1.6025e+02, 1.6075e+02, 1.6125e+02, 1.6175e+02, 1.6225e+02,\n", + " 1.6275e+02, 1.6325e+02, 1.6375e+02, 1.6425e+02, 1.6475e+02,\n", + " 1.6525e+02, 1.6575e+02, 1.6625e+02, 1.6675e+02, 1.6725e+02,\n", + " 1.6775e+02, 1.6825e+02, 1.6875e+02, 1.6925e+02, 1.6975e+02,\n", + " 1.7025e+02, 1.7075e+02, 1.7125e+02, 1.7175e+02, 1.7225e+02,\n", + " 1.7275e+02, 1.7325e+02, 1.7375e+02, 1.7425e+02, 1.7475e+02,\n", + " 1.7525e+02, 1.7575e+02, 1.7625e+02, 1.7675e+02, 1.7725e+02,\n", + " 1.7775e+02, 1.7825e+02, 1.7875e+02, 1.7925e+02, 1.7975e+02,\n", + " 1.8025e+02, 1.8075e+02, 1.8125e+02, 1.8175e+02, 1.8225e+02,\n", + " 1.8275e+02, 1.8325e+02, 1.8375e+02, 1.8425e+02, 1.8475e+02,\n", + " 1.8525e+02, 1.8575e+02, 1.8625e+02, 1.8675e+02, 1.8725e+02,\n", + " 1.8775e+02, 1.8825e+02, 1.8875e+02, 1.8925e+02, 1.8975e+02,\n", + " 1.9025e+02, 1.9075e+02, 1.9125e+02, 1.9175e+02, 1.9225e+02,\n", + " 1.9275e+02, 1.9325e+02, 1.9375e+02, 1.9425e+02, 1.9475e+02,\n", + " 1.9525e+02, 1.9575e+02, 1.9625e+02, 1.9675e+02, 1.9725e+02,\n", + " 1.9775e+02, 1.9825e+02, 1.9875e+02, 1.9925e+02, 1.9975e+02,\n", + " 2.0025e+02, 2.0075e+02, 2.0125e+02, 2.0175e+02, 2.0225e+02,\n", + " 2.0275e+02, 2.0325e+02, 2.0375e+02, 2.0425e+02, 2.0475e+02,\n", + " 2.0525e+02, 2.0575e+02, 2.0625e+02, 2.0675e+02, 2.0725e+02,\n", + " 2.0775e+02, 2.0825e+02, 2.0875e+02, 2.0925e+02, 2.0975e+02,\n", + " 2.1025e+02, 2.1075e+02, 2.1125e+02, 2.1175e+02, 2.1225e+02,\n", + " 2.1275e+02, 2.1325e+02, 2.1375e+02, 2.1425e+02, 2.1475e+02,\n", + " 2.1525e+02, 2.1575e+02, 2.1625e+02, 2.1675e+02, 2.1725e+02,\n", + " 2.1775e+02, 2.1825e+02, 2.1875e+02, 2.1925e+02, 2.1975e+02,\n", + " 2.2025e+02, 2.2075e+02, 2.2125e+02, 2.2175e+02, 2.2225e+02,\n", + " 2.2275e+02, 2.2325e+02, 2.2375e+02, 2.2425e+02, 2.2475e+02,\n", + " 2.2525e+02, 2.2575e+02, 2.2625e+02, 2.2675e+02, 2.2725e+02,\n", + " 2.2775e+02, 2.2825e+02, 2.2875e+02, 2.2925e+02, 2.2975e+02,\n", + " 2.3025e+02, 2.3075e+02, 2.3125e+02, 2.3175e+02, 2.3225e+02,\n", + " 2.3275e+02, 2.3325e+02, 2.3375e+02, 2.3425e+02, 2.3475e+02,\n", + " 2.3525e+02, 2.3575e+02, 2.3625e+02, 2.3675e+02, 2.3725e+02,\n", + " 2.3775e+02, 2.3825e+02, 2.3875e+02, 2.3925e+02, 2.3975e+02,\n", + " 2.4025e+02, 2.4075e+02, 2.4125e+02, 2.4175e+02, 2.4225e+02,\n", + " 2.4275e+02, 2.4325e+02, 2.4375e+02, 2.4425e+02, 2.4475e+02,\n", + " 2.4525e+02, 2.4575e+02, 2.4625e+02, 2.4675e+02, 2.4725e+02,\n", + " 2.4775e+02, 2.4825e+02, 2.4875e+02, 2.4925e+02, 2.4975e+02,\n", + " 2.5025e+02, 2.5075e+02, 2.5125e+02, 2.5175e+02, 2.5225e+02,\n", + " 2.5275e+02, 2.5325e+02, 2.5375e+02, 2.5425e+02, 2.5475e+02,\n", + " 2.5525e+02, 2.5575e+02, 2.5625e+02, 2.5675e+02, 2.5725e+02,\n", + " 2.5775e+02, 2.5825e+02, 2.5875e+02, 2.5925e+02, 2.5975e+02,\n", + " 2.6025e+02, 2.6075e+02, 2.6125e+02, 2.6175e+02, 2.6225e+02,\n", + " 2.6275e+02, 2.6325e+02, 2.6375e+02, 2.6425e+02, 2.6475e+02,\n", + " 2.6525e+02, 2.6575e+02, 2.6625e+02, 2.6675e+02, 2.6725e+02,\n", + " 2.6775e+02, 2.6825e+02, 2.6875e+02, 2.6925e+02, 2.6975e+02,\n", + " 2.7025e+02, 2.7075e+02, 2.7125e+02, 2.7175e+02, 2.7225e+02,\n", + " 2.7275e+02, 2.7325e+02, 2.7375e+02, 2.7425e+02, 2.7475e+02,\n", + " 2.7525e+02, 2.7575e+02, 2.7625e+02, 2.7675e+02, 2.7725e+02,\n", + " 2.7775e+02, 2.7825e+02, 2.7875e+02, 2.7925e+02, 2.7975e+02,\n", + " 2.8025e+02, 2.8075e+02, 2.8125e+02, 2.8175e+02, 2.8225e+02,\n", + " 2.8275e+02, 2.8325e+02, 2.8375e+02, 2.8425e+02, 2.8475e+02,\n", + " 2.8525e+02, 2.8575e+02, 2.8625e+02, 2.8675e+02, 2.8725e+02,\n", + " 2.8775e+02, 2.8825e+02, 2.8875e+02, 2.8925e+02, 2.8975e+02,\n", + " 2.9025e+02, 2.9075e+02, 2.9125e+02, 2.9175e+02, 2.9225e+02,\n", + " 2.9275e+02, 2.9325e+02, 2.9375e+02, 2.9425e+02, 2.9475e+02,\n", + " 2.9525e+02, 2.9575e+02, 2.9625e+02, 2.9675e+02, 2.9725e+02,\n", + " 2.9775e+02, 2.9825e+02, 2.9875e+02, 2.9925e+02, 2.9975e+02,\n", + " 3.0025e+02, 3.0075e+02, 3.0125e+02, 3.0175e+02, 3.0225e+02,\n", + " 3.0275e+02, 3.0325e+02, 3.0375e+02, 3.0425e+02, 3.0475e+02,\n", + " 3.0525e+02, 3.0575e+02, 3.0625e+02, 3.0675e+02, 3.0725e+02,\n", + " 3.0775e+02, 3.0825e+02, 3.0875e+02, 3.0925e+02, 3.0975e+02,\n", + " 3.1025e+02, 3.1075e+02, 3.1125e+02, 3.1175e+02, 3.1225e+02,\n", + " 3.1275e+02, 3.1325e+02, 3.1375e+02, 3.1425e+02, 3.1475e+02,\n", + " 3.1525e+02, 3.1575e+02, 3.1625e+02, 3.1675e+02, 3.1725e+02,\n", + " 3.1775e+02, 3.1825e+02, 3.1875e+02, 3.1925e+02, 3.1975e+02,\n", + " 3.2025e+02, 3.2075e+02, 3.2125e+02, 3.2175e+02, 3.2225e+02,\n", + " 3.2275e+02, 3.2325e+02, 3.2375e+02, 3.2425e+02, 3.2475e+02,\n", + " 3.2525e+02, 3.2575e+02, 3.2625e+02, 3.2675e+02, 3.2725e+02,\n", + " 3.2775e+02, 3.2825e+02, 3.2875e+02, 3.2925e+02, 3.2975e+02,\n", + " 3.3025e+02, 3.3075e+02, 3.3125e+02, 3.3175e+02, 3.3225e+02,\n", + " 3.3275e+02, 3.3325e+02, 3.3375e+02, 3.3425e+02, 3.3475e+02,\n", + " 3.3525e+02, 3.3575e+02, 3.3625e+02, 3.3675e+02, 3.3725e+02,\n", + " 3.3775e+02, 3.3825e+02, 3.3875e+02, 3.3925e+02, 3.3975e+02,\n", + " 3.4025e+02, 3.4075e+02, 3.4125e+02, 3.4175e+02, 3.4225e+02,\n", + " 3.4275e+02, 3.4325e+02, 3.4375e+02, 3.4425e+02, 3.4475e+02,\n", + " 3.4525e+02, 3.4575e+02, 3.4625e+02, 3.4675e+02, 3.4725e+02,\n", + " 3.4775e+02, 3.4825e+02, 3.4875e+02, 3.4925e+02, 3.4975e+02,\n", + " 3.5025e+02, 3.5075e+02, 3.5125e+02, 3.5175e+02, 3.5225e+02,\n", + " 3.5275e+02, 3.5325e+02, 3.5375e+02, 3.5425e+02, 3.5475e+02,\n", + " 3.5525e+02, 3.5575e+02, 3.5625e+02, 3.5675e+02, 3.5725e+02,\n", + " 3.5775e+02, 3.5825e+02, 3.5875e+02, 3.5925e+02, 3.5975e+02])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 9 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:12.576247Z", + "start_time": "2024-12-08T15:25:12.561912Z" + } + }, + "source": [ + "dataset.lat" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 89.75, 89.25, 88.75, 88.25, 87.75, 87.25, 86.75, 86.25,\n", + " 85.75, 85.25, 84.75, 84.25, 83.75, 83.25, 82.75, 82.25,\n", + " 81.75, 81.25, 80.75, 80.25, 79.75, 79.25, 78.75, 78.25,\n", + " 77.75, 77.25, 76.75, 76.25, 75.75, 75.25, 74.75, 74.25,\n", + " 73.75, 73.25, 72.75, 72.25, 71.75, 71.25, 70.75, 70.25,\n", + " 69.75, 69.25, 68.75, 68.25, 67.75, 67.25, 66.75, 66.25,\n", + " 65.75, 65.25, 64.75, 64.25, 63.75, 63.25, 62.75, 62.25,\n", + " 61.75, 61.25, 60.75, 60.25, 59.75, 59.25, 58.75, 58.25,\n", + " 57.75, 57.25, 56.75, 56.25, 55.75, 55.25, 54.75, 54.25,\n", + " 53.75, 53.25, 52.75, 52.25, 51.75, 51.25, 50.75, 50.25,\n", + " 49.75, 49.25, 48.75, 48.25, 47.75, 47.25, 46.75, 46.25,\n", + " 45.75, 45.25, 44.75, 44.25, 43.75, 43.25, 42.75, 42.25,\n", + " 41.75, 41.25, 40.75, 40.25, 39.75, 39.25, 38.75, 38.25,\n", + " 37.75, 37.25, 36.75, 36.25, 35.75, 35.25, 34.75, 34.25,\n", + " 33.75, 33.25, 32.75, 32.25, 31.75, 31.25, 30.75, 30.25,\n", + " 29.75, 29.25, 28.75, 28.25, 27.75, 27.25, 26.75, 26.25,\n", + " 25.75, 25.25, 24.75, 24.25, 23.75, 23.25, 22.75, 22.25,\n", + " 21.75, 21.25, 20.75, 20.25, 19.75, 19.25, 18.75, 18.25,\n", + " 17.75, 17.25, 16.75, 16.25, 15.75, 15.25, 14.75, 14.25,\n", + " 13.75, 13.25, 12.75, 12.25, 11.75, 11.25, 10.75, 10.25,\n", + " 9.75, 9.25, 8.75, 8.25, 7.75, 7.25, 6.75, 6.25,\n", + " 5.75, 5.25, 4.75, 4.25, 3.75, 3.25, 2.75, 2.25,\n", + " 1.75, 1.25, 0.75, 0.25, -0.25, -0.75, -1.25, -1.75,\n", + " -2.25, -2.75, -3.25, -3.75, -4.25, -4.75, -5.25, -5.75,\n", + " -6.25, -6.75, -7.25, -7.75, -8.25, -8.75, -9.25, -9.75,\n", + " -10.25, -10.75, -11.25, -11.75, -12.25, -12.75, -13.25, -13.75,\n", + " -14.25, -14.75, -15.25, -15.75, -16.25, -16.75, -17.25, -17.75,\n", + " -18.25, -18.75, -19.25, -19.75, -20.25, -20.75, -21.25, -21.75,\n", + " -22.25, -22.75, -23.25, -23.75, -24.25, -24.75, -25.25, -25.75,\n", + " -26.25, -26.75, -27.25, -27.75, -28.25, -28.75, -29.25, -29.75,\n", + " -30.25, -30.75, -31.25, -31.75, -32.25, -32.75, -33.25, -33.75,\n", + " -34.25, -34.75, -35.25, -35.75, -36.25, -36.75, -37.25, -37.75,\n", + " -38.25, -38.75, -39.25, -39.75, -40.25, -40.75, -41.25, -41.75,\n", + " -42.25, -42.75, -43.25, -43.75, -44.25, -44.75, -45.25, -45.75,\n", + " -46.25, -46.75, -47.25, -47.75, -48.25, -48.75, -49.25, -49.75,\n", + " -50.25, -50.75, -51.25, -51.75, -52.25, -52.75, -53.25, -53.75,\n", + " -54.25, -54.75, -55.25, -55.75, -56.25, -56.75, -57.25, -57.75,\n", + " -58.25, -58.75, -59.25, -59.75, -60.25, -60.75, -61.25, -61.75,\n", + " -62.25, -62.75, -63.25, -63.75, -64.25, -64.75, -65.25, -65.75,\n", + " -66.25, -66.75, -67.25, -67.75, -68.25, -68.75, -69.25, -69.75,\n", + " -70.25, -70.75, -71.25, -71.75, -72.25, -72.75, -73.25, -73.75,\n", + " -74.25, -74.75, -75.25, -75.75, -76.25, -76.75, -77.25, -77.75,\n", + " -78.25, -78.75, -79.25, -79.75, -80.25, -80.75, -81.25, -81.75,\n", + " -82.25, -82.75, -83.25, -83.75, -84.25, -84.75, -85.25, -85.75,\n", + " -86.25, -86.75, -87.25, -87.75, -88.25, -88.75, -89.25, -89.75])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 10 + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "#### Bounding box" + ] + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:14.545417Z", + "start_time": "2024-12-08T15:25:14.536526Z" + } + }, + "source": [ + "dataset.bbox" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "[0.0, -90.0, 360.0, 90.0]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 11 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:16.777354Z", + "start_time": "2024-12-08T15:25:16.755639Z" + } + }, + "source": "print(dataset.bounds)", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " geometry\n", + "0 POLYGON ((0 90, 0 -90, 360 -90, 360 90, 0 90))\n" + ] + } + ], + "execution_count": 12 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:18.690265Z", + "start_time": "2024-12-08T15:25:18.583308Z" + } + }, + "source": [ + "dataset.bounds.plot()" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAEjCAYAAADzFUHYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbxklEQVR4nO3df2yV5f3/8dcB2kOH7QE8tOd0LW39waYWWSzMtlP54axtEH9gDGji2qg1jpYNgRgYGgr+KHNCXHTAnKSRqIElE4OrU4pQlABbZV2s6EydRar02NFJT0U9VXp9//iE892hpbSOu+c6p89Hcie9r/s693m/z0U4r9znbo/LGGMEAABgqRHRLgAAAKA/hBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKuNinYB/6uenh4dPXpUycnJcrlc0S4HAAAMgDFGXV1dSk9P14gR/V87ifmwcvToUWVmZka7DAAA8B20trYqIyOj3zkxH1aSk5Ml/V+zKSkpUa4GAAAMRDAYVGZmZvh9vD8xH1ZOffSTkpJCWAEAIMYM5BYObrAFAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFaL+b9g67TsZbXRLgEAgKg6vGZ2VJ+fKysAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAVnM0rGRnZ8vlcvXaKioqJEllZWW9juXn5ztZEgAAiDGjnDx5Q0ODTp48Gd5/9913dd111+m2224LjxUXF6umpia8n5iY6GRJAAAgxjgaViZMmBCxv2bNGl144YWaPn16eMztdsvn8w34nKFQSKFQKLwfDAb/90IBAIC1huyele7ubj3//PO666675HK5wuP19fVKTU3VpEmTVF5ervb29n7PU11dLY/HE94yMzOdLh0AAETRkIWVl19+WcePH1dZWVl4rKSkRC+88IJ27dqltWvXqqGhQbNmzYq4cnK65cuXq7OzM7y1trYOQfUAACBaHP0Y6L9t2rRJJSUlSk9PD4/Nmzcv/HNubq6mTp2qrKws1dbWau7cuX2ex+12y+12O14vAACww5CElY8//lg7d+7USy+91O88v9+vrKwsNTc3D0VZAAAgBgzJx0A1NTVKTU3V7Nmz+53X0dGh1tZW+f3+oSgLAADEAMfDSk9Pj2pqalRaWqpRo/7/hZwvvvhCS5cu1f79+3X48GHV19drzpw58nq9uuWWW5wuCwAAxAjHPwbauXOnjhw5orvuuitifOTIkWpqatLmzZt1/Phx+f1+zZw5U1u3blVycrLTZQEAgBjheFgpKiqSMabXeFJSkl5//XWnnx4AAMQ4vhsIAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqzkaVqqqquRyuSI2n88XPm6MUVVVldLT05WUlKQZM2bo0KFDTpYEAABijONXVi677DK1tbWFt6ampvCxxx9/XOvWrdPTTz+thoYG+Xw+XXfdderq6nK6LAAAECMcDyujRo2Sz+cLbxMmTJD0f1dVnnzySa1YsUJz585Vbm6unnvuOX355Zd68cUXnS4LAADECMfDSnNzs9LT05WTk6P58+fro48+kiS1tLQoEAioqKgoPNftdmv69Onat2/fGc8XCoUUDAYjNgAAEL8cDStXXnmlNm/erNdff11/+MMfFAgEVFhYqI6ODgUCAUlSWlpaxGPS0tLCx/pSXV0tj8cT3jIzM51sAQAARJmjYaWkpES33nqrJk+erJ/+9Keqra2VJD333HPhOS6XK+IxxpheY/9t+fLl6uzsDG+tra3OFA8AAKwwpL+6PGbMGE2ePFnNzc3h3wo6/SpKe3t7r6st/83tdislJSViAwAA8WtIw0ooFNL7778vv9+vnJwc+Xw+1dXVhY93d3drz549KiwsHMqyAACAxUY5efKlS5dqzpw5mjhxotrb2/XII48oGAyqtLRULpdLixYt0mOPPaaLL75YF198sR577DF973vf0x133OFkWQAAIIY4GlY++eQT3X777Tp27JgmTJig/Px8HThwQFlZWZKkBx54QF999ZUWLFigzz//XFdeeaV27Nih5ORkJ8sCAAAxxGWMMdEu4n8RDAbl8XjU2dnpyP0r2ctqz/k5AQCIJYfXzD7n5xzM+zffDQQAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVHA0r1dXVmjZtmpKTk5Wamqqbb75ZH3zwQcScsrIyuVyuiC0/P9/JsgAAQAxxNKzs2bNHFRUVOnDggOrq6vTtt9+qqKhIJ06ciJhXXFystra28Pbqq686WRYAAIgho5w8+WuvvRaxX1NTo9TUVB08eFDXXHNNeNztdsvn8zlZCgAAiFFDes9KZ2enJGn8+PER4/X19UpNTdWkSZNUXl6u9vb2M54jFAopGAxGbAAAIH4NWVgxxmjx4sW66qqrlJubGx4vKSnRCy+8oF27dmnt2rVqaGjQrFmzFAqF+jxPdXW1PB5PeMvMzByqFgAAQBS4jDFmKJ6ooqJCtbW12rt3rzIyMs44r62tTVlZWdqyZYvmzp3b63goFIoIMsFgUJmZmers7FRKSso5rzt7We05PycAALHk8JrZ5/ycwWBQHo9nQO/fjt6zcsrChQu1fft2vfnmm/0GFUny+/3KyspSc3Nzn8fdbrfcbrcTZQIAAAs5GlaMMVq4cKG2bdum+vp65eTknPUxHR0dam1tld/vd7I0AAAQIxy9Z6WiokLPP/+8XnzxRSUnJysQCCgQCOirr76SJH3xxRdaunSp9u/fr8OHD6u+vl5z5syR1+vVLbfc4mRpAAAgRjh6ZWXDhg2SpBkzZkSM19TUqKysTCNHjlRTU5M2b96s48ePy+/3a+bMmdq6dauSk5OdLA0AAMQIxz8G6k9SUpJef/11J0sAAAAxju8GAgAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDUrwsr69euVk5Oj0aNHKy8vT2+99Va0SwIAAJaIeljZunWrFi1apBUrVqixsVFXX321SkpKdOTIkWiXBgAALBD1sLJu3Trdfffduueee3TJJZfoySefVGZmpjZs2NDn/FAopGAwGLEBAID4FdWw0t3drYMHD6qoqChivKioSPv27evzMdXV1fJ4POEtMzNzKEoFAABREtWwcuzYMZ08eVJpaWkR42lpaQoEAn0+Zvny5ers7Axvra2tQ1EqAACIklHRLkCSXC5XxL4xptfYKW63W263eyjKAgAAFojqlRWv16uRI0f2uorS3t7e62oLAAAYnqIaVhITE5WXl6e6urqI8bq6OhUWFkapKgAAYJOofwy0ePFi3XnnnZo6daoKCgr0zDPP6MiRI7rvvvuiXRoAALBA1MPKvHnz1NHRodWrV6utrU25ubl69dVXlZWVFe3SAACABaIeViRpwYIFWrBgQbTLAAAAFor6H4UDAADoD2EFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAVnMsrBw+fFh33323cnJylJSUpAsvvFArV65Ud3d3xDyXy9Vr27hxo1NlAQCAGDPKqRP/85//VE9Pj37/+9/roosu0rvvvqvy8nKdOHFCTzzxRMTcmpoaFRcXh/c9Ho9TZQEAgBjjWFgpLi6OCCAXXHCBPvjgA23YsKFXWBk7dqx8Pp9TpQAAgBg2pPesdHZ2avz48b3GKysr5fV6NW3aNG3cuFE9PT1nPEcoFFIwGIzYAABA/HLsysrp/vWvf+mpp57S2rVrI8YffvhhXXvttUpKStIbb7yhJUuW6NixY3rwwQf7PE91dbVWrVo1FCUDAAALuIwxZjAPqKqqOmtYaGho0NSpU8P7R48e1fTp0zV9+nQ9++yz/T527dq1Wr16tTo7O/s8HgqFFAqFwvvBYFCZmZnq7OxUSkrKIDoZmOxltef8nAAAxJLDa2af83MGg0F5PJ4BvX8P+spKZWWl5s+f3++c7Ozs8M9Hjx7VzJkzVVBQoGeeeeas58/Pz1cwGNRnn32mtLS0XsfdbrfcbvdgywYAADFq0GHF6/XK6/UOaO6nn36qmTNnKi8vTzU1NRox4uy3yDQ2Nmr06NEaO3bsYEsDAABxyLF7Vo4ePaoZM2Zo4sSJeuKJJ/Tvf/87fOzUb/688sorCgQCKigoUFJSknbv3q0VK1bo3nvv5eoJAACQ5GBY2bFjhz788EN9+OGHysjIiDh26jaZhIQErV+/XosXL1ZPT48uuOACrV69WhUVFU6VBQAAYsygb7C1zWBu0PkuuMEWADDcRfsGW74bCAAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcIKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKs5Glays7PlcrkitmXLlkXMOXLkiObMmaMxY8bI6/XqF7/4hbq7u50sCwAAxJBRTj/B6tWrVV5eHt4/77zzwj+fPHlSs2fP1oQJE7R37151dHSotLRUxhg99dRTTpcGAABigONhJTk5WT6fr89jO3bs0HvvvafW1lalp6dLktauXauysjI9+uijSklJcbo8AABgOcfvWfn1r3+t888/Xz/60Y/06KOPRnzEs3//fuXm5oaDiiRdf/31CoVCOnjwYJ/nC4VCCgaDERsAAIhfjl5Z+eUvf6krrrhC48aN09/+9jctX75cLS0tevbZZyVJgUBAaWlpEY8ZN26cEhMTFQgE+jxndXW1Vq1a5WTZAADAIoO+slJVVdXrptnTt7fffluSdP/992v69Om6/PLLdc8992jjxo3atGmTOjo6wudzuVy9nsMY0+e4JC1fvlydnZ3hrbW1dbAtAACAGDLoKyuVlZWaP39+v3Oys7P7HM/Pz5ckffjhhzr//PPl8/n017/+NWLO559/rm+++abXFZdT3G633G73YMsGAAAxatBhxev1yuv1fqcna2xslCT5/X5JUkFBgR599FG1tbWFx3bs2CG32628vLzv9BwAACC+OHbPyv79+3XgwAHNnDlTHo9HDQ0Nuv/++3XjjTdq4sSJkqSioiJdeumluvPOO/Wb3/xG//nPf7R06VKVl5fzm0AAAECSg2HF7XZr69atWrVqlUKhkLKyslReXq4HHnggPGfkyJGqra3VggUL9JOf/ERJSUm644479MQTTzhVFgAAiDGOhZUrrrhCBw4cOOu8iRMn6s9//rNTZQAAgBjHdwMBAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsBphBQAAWI2wAgAArEZYAQAAViOsAAAAqxFWAACA1QgrAADAaoQVAABgNcfCSn19vVwuV59bQ0NDeF5fxzdu3OhUWQAAIMaMcurEhYWFamtrixh76KGHtHPnTk2dOjVivKamRsXFxeF9j8fjVFkAACDGOBZWEhMT5fP5wvvffPONtm/frsrKSrlcroi5Y8eOjZgLAABwypDds7J9+3YdO3ZMZWVlvY5VVlbK6/Vq2rRp2rhxo3p6es54nlAopGAwGLEBAID45diVldNt2rRJ119/vTIzMyPGH374YV177bVKSkrSG2+8oSVLlujYsWN68MEH+zxPdXW1Vq1aNRQlAwAAC7iMMWYwD6iqqjprWGhoaIi4L+WTTz5RVlaW/vjHP+rWW2/t97Fr167V6tWr1dnZ2efxUCikUCgU3g8Gg8rMzFRnZ6dSUlIG0cnAZC+rPefnBAAglhxeM/ucnzMYDMrj8Qzo/XvQV1YqKys1f/78fudkZ2dH7NfU1Oj888/XjTfeeNbz5+fnKxgM6rPPPlNaWlqv4263W263e1A1AwCA2DXosOL1euX1egc83xijmpoa/exnP1NCQsJZ5zc2Nmr06NEaO3bsYEsDAABxyPF7Vnbt2qWWlhbdfffdvY698sorCgQCKigoUFJSknbv3q0VK1bo3nvv5eoJAACQNARhZdOmTSosLNQll1zS61hCQoLWr1+vxYsXq6enRxdccIFWr16tiooKp8sCAAAxwvGw8uKLL57xWHFxccQfgwMAADgd3w0EAACsRlgBAABWI6wAAACrEVYAAIDVCCsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUc/yLDWHd4zexolwAAwLDGlRUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYLWY/wu2xhhJUjAYjHIlAABgoE69b596H+9PzIeVrq4uSVJmZmaUKwEAAIPV1dUlj8fT7xyXGUiksVhPT4+OHj2q5ORkuVyuc3ruYDCozMxMtba2KiUl5Zye22bDtW+J3odj78O1b2n49j5c+5bs6t0Yo66uLqWnp2vEiP7vSon5KysjRoxQRkaGo8+RkpIS9UWNhuHat0Tvw7H34dq3NHx7H659S/b0frYrKqdwgy0AALAaYQUAAFiNsNIPt9utlStXyu12R7uUITVc+5bofTj2Plz7loZv78O1byl2e4/5G2wBAEB848oKAACwGmEFAABYjbACAACsRlgBAABWI6wAAACrEVbOYP369crJydHo0aOVl5ent956K9olnVNVVVVyuVwRm8/nCx83xqiqqkrp6elKSkrSjBkzdOjQoShW/N29+eabmjNnjtLT0+VyufTyyy9HHB9Ir6FQSAsXLpTX69WYMWN044036pNPPhnCLr6bs/VeVlbW699Bfn5+xJxY7L26ulrTpk1TcnKyUlNTdfPNN+uDDz6ImBOP6z6QvuN1zTds2KDLL788/JdZCwoK9Je//CV8PB7X+5Sz9R4Pa05Y6cPWrVu1aNEirVixQo2Njbr66qtVUlKiI0eORLu0c+qyyy5TW1tbeGtqagofe/zxx7Vu3To9/fTTamhokM/n03XXXRf+4shYcuLECU2ZMkVPP/10n8cH0uuiRYu0bds2bdmyRXv37tUXX3yhG264QSdPnhyqNr6Ts/UuScXFxRH/Dl599dWI47HY+549e1RRUaEDBw6orq5O3377rYqKinTixInwnHhc94H0LcXnmmdkZGjNmjV6++239fbbb2vWrFm66aabwoEkHtf7lLP1LsXBmhv08uMf/9jcd999EWM//OEPzbJly6JU0bm3cuVKM2XKlD6P9fT0GJ/PZ9asWRMe+/rrr43H4zEbN24cogqdIcls27YtvD+QXo8fP24SEhLMli1bwnM+/fRTM2LECPPaa68NWe3/q9N7N8aY0tJSc9NNN53xMfHSe3t7u5Fk9uzZY4wZPut+et/GDJ81N8aYcePGmWeffXbYrPd/O9W7MfGx5lxZOU13d7cOHjyooqKiiPGioiLt27cvSlU5o7m5Wenp6crJydH8+fP10UcfSZJaWloUCAQiXgO3263p06fH3WswkF4PHjyob775JmJOenq6cnNz4+L1qK+vV2pqqiZNmqTy8nK1t7eHj8VL752dnZKk8ePHSxo+635636fE+5qfPHlSW7Zs0YkTJ1RQUDBs1lvq3fspsb7mMf+ty+fasWPHdPLkSaWlpUWMp6WlKRAIRKmqc+/KK6/U5s2bNWnSJH322Wd65JFHVFhYqEOHDoX77Os1+Pjjj6NRrmMG0msgEFBiYqLGjRvXa06s/5soKSnRbbfdpqysLLW0tOihhx7SrFmzdPDgQbnd7rjo3RijxYsX66qrrlJubq6k4bHuffUtxfeaNzU1qaCgQF9//bXOO+88bdu2TZdeemn4DTee1/tMvUvxseaElTNwuVwR+8aYXmOxrKSkJPzz5MmTVVBQoAsvvFDPPfdc+MareH8N/tt36TUeXo958+aFf87NzdXUqVOVlZWl2tpazZ0794yPi6XeKysr9c4772jv3r29jsXzup+p73he8x/84Af6xz/+oePHj+tPf/qTSktLtWfPnvDxeF7vM/V+6aWXxsWa8zHQabxer0aOHNkrTba3t/dK5fFkzJgxmjx5spqbm8O/FTQcXoOB9Orz+dTd3a3PP//8jHPihd/vV1ZWlpqbmyXFfu8LFy7U9u3btXv3bmVkZITH433dz9R3X+JpzRMTE3XRRRdp6tSpqq6u1pQpU/Tb3/427tdbOnPvfYnFNSesnCYxMVF5eXmqq6uLGK+rq1NhYWGUqnJeKBTS+++/L7/fr5ycHPl8vojXoLu7W3v27Im712Agvebl5SkhISFiTltbm9599924ez06OjrU2toqv98vKXZ7N8aosrJSL730knbt2qWcnJyI4/G67mfruy/xsuZ9McYoFArF7Xr351TvfYnJNR/yW3pjwJYtW0xCQoLZtGmTee+998yiRYvMmDFjzOHDh6Nd2jmzZMkSU19fbz766CNz4MABc8MNN5jk5ORwj2vWrDEej8e89NJLpqmpydx+++3G7/ebYDAY5coHr6uryzQ2NprGxkYjyaxbt840Njaajz/+2BgzsF7vu+8+k5GRYXbu3Gn+/ve/m1mzZpkpU6aYb7/9NlptDUh/vXd1dZklS5aYffv2mZaWFrN7925TUFBgvv/978d87z//+c+Nx+Mx9fX1pq2tLbx9+eWX4TnxuO5n6zue13z58uXmzTffNC0tLeadd94xv/rVr8yIESPMjh07jDHxud6n9Nd7vKw5YeUMfve735msrCyTmJhorrjiiohf/YsH8+bNM36/3yQkJJj09HQzd+5cc+jQofDxnp4es3LlSuPz+Yzb7TbXXHONaWpqimLF393u3buNpF5baWmpMWZgvX711VemsrLSjB8/3iQlJZkbbrjBHDlyJArdDE5/vX/55ZemqKjITJgwwSQkJJiJEyea0tLSXn3FYu999SzJ1NTUhOfE47qfre94XvO77ror/H/2hAkTzLXXXhsOKsbE53qf0l/v8bLmLmOMGbrrOAAAAIPDPSsAAMBqhBUAAGA1wgoAALAaYQUAAFiNsAIAAKxGWAEAAFYjrAAAAKsRVgAAgNUIKwAAwGqEFQAAYDXCCgAAsNr/A/tG7NsUTsijAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 13 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:20.268309Z", + "start_time": "2024-12-08T15:25:20.263492Z" + } + }, + "source": [ + "dataset.geotransform" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 0.5, 0.0, 90.0, 0.0, -0.5)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 14 + }, + { + "cell_type": "code", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-08T15:25:21.505181Z", + "start_time": "2024-12-08T15:25:21.486399Z" + } + }, + "source": [ + "dataset.top_left_corner" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 90.0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 15 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/examples/notebooks/02spatial-operation-methods.ipynb b/examples/notebooks/02spatial-operation-methods.ipynb index 684b36bbf..224eb5b58 100644 --- a/examples/notebooks/02spatial-operation-methods.ipynb +++ b/examples/notebooks/02spatial-operation-methods.ipynb @@ -29,12 +29,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:26:43.986080Z", - "start_time": "2024-12-06T22:26:43.982806Z" + "end_time": "2024-12-08T15:35:11.440339Z", + "start_time": "2024-12-08T15:35:10.800979Z" } }, "outputs": [], - "execution_count": 2 + "execution_count": 1 }, { "cell_type": "code", @@ -44,12 +44,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:26:46.587737Z", - "start_time": "2024-12-06T22:26:46.507070Z" + "end_time": "2024-12-08T15:35:12.238283Z", + "start_time": "2024-12-08T15:35:12.132117Z" } }, "outputs": [], - "execution_count": 3 + "execution_count": 2 }, { "cell_type": "code", @@ -59,8 +59,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:26:55.696830Z", - "start_time": "2024-12-06T22:26:55.692795Z" + "end_time": "2024-12-08T15:35:13.107588Z", + "start_time": "2024-12-08T15:35:13.103725Z" } }, "outputs": [ @@ -81,7 +81,7 @@ ] } ], - "execution_count": 4 + "execution_count": 3 }, { "cell_type": "code", @@ -91,8 +91,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:26:58.918851Z", - "start_time": "2024-12-06T22:26:57.996575Z" + "end_time": "2024-12-08T15:35:15.288684Z", + "start_time": "2024-12-08T15:35:14.441969Z" } }, "outputs": [ @@ -113,12 +113,12 @@ " )" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 5 + "execution_count": 4 }, { "cell_type": "markdown", @@ -137,8 +137,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:12.371705Z", - "start_time": "2024-12-06T22:27:12.367025Z" + "end_time": "2024-12-08T15:35:17.287966Z", + "start_time": "2024-12-08T15:35:17.284107Z" } }, "outputs": [ @@ -150,7 +150,7 @@ ] } ], - "execution_count": 7 + "execution_count": 5 }, { "cell_type": "code", @@ -160,12 +160,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:14.119754Z", - "start_time": "2024-12-06T22:27:14.092187Z" + "end_time": "2024-12-08T15:35:19.048657Z", + "start_time": "2024-12-08T15:35:19.006454Z" } }, "outputs": [], - "execution_count": 8 + "execution_count": 6 }, { "cell_type": "code", @@ -175,8 +175,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:16.099466Z", - "start_time": "2024-12-06T22:27:15.909121Z" + "end_time": "2024-12-08T15:35:20.980920Z", + "start_time": "2024-12-08T15:35:20.791907Z" } }, "outputs": [ @@ -197,12 +197,12 @@ " )" ] }, - "execution_count": 9, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 9 + "execution_count": 7 }, { "cell_type": "markdown", @@ -223,8 +223,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:19.637965Z", - "start_time": "2024-12-06T22:27:19.633681Z" + "end_time": "2024-12-08T15:35:25.517442Z", + "start_time": "2024-12-08T15:35:25.503449Z" } }, "outputs": [ @@ -238,7 +238,7 @@ ] } ], - "execution_count": 10 + "execution_count": 8 }, { "cell_type": "code", @@ -248,12 +248,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:23.481471Z", - "start_time": "2024-12-06T22:27:23.462005Z" + "end_time": "2024-12-08T15:35:26.747011Z", + "start_time": "2024-12-08T15:35:26.720545Z" } }, "outputs": [], - "execution_count": 11 + "execution_count": 9 }, { "cell_type": "code", @@ -263,8 +263,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:25.454365Z", - "start_time": "2024-12-06T22:27:25.450027Z" + "end_time": "2024-12-08T15:35:28.387607Z", + "start_time": "2024-12-08T15:35:28.382385Z" } }, "outputs": [ @@ -285,7 +285,7 @@ ] } ], - "execution_count": 12 + "execution_count": 10 }, { "cell_type": "code", @@ -295,8 +295,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:29.152124Z", - "start_time": "2024-12-06T22:27:28.978012Z" + "end_time": "2024-12-08T15:35:29.894552Z", + "start_time": "2024-12-08T15:35:29.679892Z" } }, "outputs": [ @@ -317,12 +317,12 @@ " )" ] }, - "execution_count": 13, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 13 + "execution_count": 11 }, { "cell_type": "markdown", @@ -342,12 +342,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:33.910021Z", - "start_time": "2024-12-06T22:27:33.903555Z" + "end_time": "2024-12-08T15:35:33.122145Z", + "start_time": "2024-12-08T15:35:33.102227Z" } }, "outputs": [], - "execution_count": 14 + "execution_count": 12 }, { "cell_type": "code", @@ -357,8 +357,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:36.042546Z", - "start_time": "2024-12-06T22:27:36.035041Z" + "end_time": "2024-12-08T15:35:35.284507Z", + "start_time": "2024-12-08T15:35:35.271271Z" } }, "outputs": [ @@ -379,7 +379,7 @@ ] } ], - "execution_count": 15 + "execution_count": 13 }, { "cell_type": "code", @@ -392,8 +392,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:37.777101Z", - "start_time": "2024-12-06T22:27:37.604723Z" + "end_time": "2024-12-08T15:35:36.807552Z", + "start_time": "2024-12-08T15:35:36.637237Z" } }, "outputs": [ @@ -408,7 +408,7 @@ "output_type": "display_data" } ], - "execution_count": 16 + "execution_count": 14 }, { "cell_type": "code", @@ -418,12 +418,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:41.216510Z", - "start_time": "2024-12-06T22:27:41.204559Z" + "end_time": "2024-12-08T15:35:37.902628Z", + "start_time": "2024-12-08T15:35:37.876822Z" } }, "outputs": [], - "execution_count": 17 + "execution_count": 15 }, { "cell_type": "code", @@ -433,8 +433,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:42.739736Z", - "start_time": "2024-12-06T22:27:42.543411Z" + "end_time": "2024-12-08T15:35:39.236862Z", + "start_time": "2024-12-08T15:35:39.043723Z" } }, "outputs": [ @@ -454,12 +454,12 @@ "(
, )" ] }, - "execution_count": 18, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 18 + "execution_count": 16 }, { "cell_type": "code", @@ -469,12 +469,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:45.192987Z", - "start_time": "2024-12-06T22:27:45.162486Z" + "end_time": "2024-12-08T15:35:40.101682Z", + "start_time": "2024-12-08T15:35:40.065214Z" } }, "outputs": [], - "execution_count": 19 + "execution_count": 17 }, { "cell_type": "code", @@ -484,8 +484,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:46.864993Z", - "start_time": "2024-12-06T22:27:46.668549Z" + "end_time": "2024-12-08T15:35:41.256231Z", + "start_time": "2024-12-08T15:35:41.064795Z" } }, "outputs": [ @@ -505,12 +505,12 @@ "(
, )" ] }, - "execution_count": 20, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 20 + "execution_count": 18 }, { "cell_type": "code", @@ -520,8 +520,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:27:51.033898Z", - "start_time": "2024-12-06T22:27:51.027104Z" + "end_time": "2024-12-08T15:35:42.298240Z", + "start_time": "2024-12-08T15:35:42.290546Z" } }, "outputs": [ @@ -542,12 +542,12 @@ " " ] }, - "execution_count": 21, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 21 + "execution_count": 19 } ], "metadata": { diff --git a/examples/notebooks/03convert-longitude.ipynb b/examples/notebooks/03convert-longitude.ipynb index 276ec68f0..40a69465b 100644 --- a/examples/notebooks/03convert-longitude.ipynb +++ b/examples/notebooks/03convert-longitude.ipynb @@ -38,8 +38,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:17.623436Z", - "start_time": "2024-12-06T22:28:17.001939Z" + "end_time": "2024-12-08T15:35:54.037374Z", + "start_time": "2024-12-08T15:35:53.446767Z" } }, "outputs": [], @@ -62,8 +62,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:21.423983Z", - "start_time": "2024-12-06T22:28:21.407105Z" + "end_time": "2024-12-08T15:35:56.482833Z", + "start_time": "2024-12-08T15:35:56.468546Z" } }, "outputs": [], @@ -77,8 +77,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:22.902677Z", - "start_time": "2024-12-06T22:28:22.897795Z" + "end_time": "2024-12-08T15:35:58.168199Z", + "start_time": "2024-12-08T15:35:58.147556Z" } }, "outputs": [ @@ -110,8 +110,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:28.136325Z", - "start_time": "2024-12-06T22:28:28.132669Z" + "end_time": "2024-12-08T15:35:59.140280Z", + "start_time": "2024-12-08T15:35:59.131222Z" } }, "outputs": [ @@ -124,7 +124,7 @@ ] } ], - "execution_count": 5 + "execution_count": 4 }, { "cell_type": "markdown", @@ -146,8 +146,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:33.705411Z", - "start_time": "2024-12-06T22:28:32.844565Z" + "end_time": "2024-12-08T15:36:01.849338Z", + "start_time": "2024-12-08T15:36:00.984381Z" } }, "outputs": [ @@ -162,7 +162,7 @@ "output_type": "display_data" } ], - "execution_count": 6 + "execution_count": 5 }, { "cell_type": "markdown", @@ -181,12 +181,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:37.199547Z", - "start_time": "2024-12-06T22:28:37.182305Z" + "end_time": "2024-12-08T15:36:03.515033Z", + "start_time": "2024-12-08T15:36:03.497539Z" } }, "outputs": [], - "execution_count": 7 + "execution_count": 6 }, { "cell_type": "code", @@ -199,8 +199,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:40.889878Z", - "start_time": "2024-12-06T22:28:40.688072Z" + "end_time": "2024-12-08T15:36:05.230230Z", + "start_time": "2024-12-08T15:36:05.023895Z" } }, "outputs": [ @@ -221,12 +221,12 @@ " )" ] }, - "execution_count": 8, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 8 + "execution_count": 7 }, { "cell_type": "code", @@ -237,8 +237,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:48.073999Z", - "start_time": "2024-12-06T22:28:48.067906Z" + "end_time": "2024-12-08T15:36:06.713116Z", + "start_time": "2024-12-08T15:36:06.709603Z" } }, "outputs": [ @@ -251,7 +251,7 @@ ] } ], - "execution_count": 10 + "execution_count": 8 }, { "cell_type": "code", @@ -261,12 +261,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:28:49.476849Z", - "start_time": "2024-12-06T22:28:49.443316Z" + "end_time": "2024-12-08T15:36:08.554040Z", + "start_time": "2024-12-08T15:36:08.508617Z" } }, "outputs": [], - "execution_count": 11 + "execution_count": 9 } ], "metadata": { diff --git a/examples/notebooks/04datacube.ipynb b/examples/notebooks/04datacube.ipynb index 48310f4e3..35f9c63b7 100644 --- a/examples/notebooks/04datacube.ipynb +++ b/examples/notebooks/04datacube.ipynb @@ -11,8 +11,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:00.375020Z", - "start_time": "2024-12-06T22:28:59.374690Z" + "end_time": "2024-12-07T16:02:08.627802Z", + "start_time": "2024-12-07T16:02:07.416486Z" } }, "outputs": [], @@ -69,8 +69,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:05.172869Z", - "start_time": "2024-12-06T22:29:05.164740Z" + "end_time": "2024-12-07T16:02:13.175730Z", + "start_time": "2024-12-07T16:02:13.169865Z" } }, "outputs": [ @@ -146,8 +146,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:12.095968Z", - "start_time": "2024-12-06T22:29:12.067165Z" + "end_time": "2024-12-07T16:02:18.458682Z", + "start_time": "2024-12-07T16:02:18.407423Z" } }, "outputs": [], @@ -170,8 +170,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:15.175441Z", - "start_time": "2024-12-06T22:29:15.168422Z" + "end_time": "2024-12-07T16:02:21.751010Z", + "start_time": "2024-12-07T16:02:21.747506Z" } }, "outputs": [ @@ -218,8 +218,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:20.061134Z", - "start_time": "2024-12-06T22:29:20.040176Z" + "end_time": "2024-12-07T16:02:27.101317Z", + "start_time": "2024-12-07T16:02:27.087060Z" } }, "outputs": [], @@ -234,8 +234,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:29:22.019816Z", - "start_time": "2024-12-06T22:29:22.011773Z" + "end_time": "2024-12-07T16:02:29.209579Z", + "start_time": "2024-12-07T16:02:29.204396Z" } }, "outputs": [ @@ -325,8 +325,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:30:30.406998Z", - "start_time": "2024-12-06T22:30:30.191163Z" + "end_time": "2024-12-07T16:02:32.680144Z", + "start_time": "2024-12-07T16:02:32.305556Z" } }, "outputs": [ @@ -353,7 +353,7 @@ ] } ], - "execution_count": 8 + "execution_count": 7 }, { "cell_type": "code", @@ -364,8 +364,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-12-06T22:30:39.473738Z", - "start_time": "2024-12-06T22:30:38.152979Z" + "end_time": "2024-12-07T16:02:36.533249Z", + "start_time": "2024-12-07T16:02:35.427552Z" } }, "outputs": [ @@ -560,42 +560,42 @@ "\n", "\n", "
\n", - " \n", + " \n", "
\n", - " \n", + " oninput=\"anim627b453a0050482792ec28a0d8e3e3f3.set_frame(parseInt(this.value));\">\n", "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", "
\n", - "
\n", - " \n", - " \n", - " Once\n", + " \n", - " \n", - " Loop\n", + " \n", - " \n", + " \n", "
\n", "
\n", "
\n", @@ -605,9 +605,9 @@ " /* Instantiate the Animation class. */\n", " /* The IDs given should match those used in the template above. */\n", " (function() {\n", - " var img_id = \"_anim_img7d03f0e80da84255b1975cb7d695c2f3\";\n", - " var slider_id = \"_anim_slider7d03f0e80da84255b1975cb7d695c2f3\";\n", - " var loop_select_id = \"_anim_loop_select7d03f0e80da84255b1975cb7d695c2f3\";\n", + " var img_id = \"_anim_img627b453a0050482792ec28a0d8e3e3f3\";\n", + " var slider_id = \"_anim_slider627b453a0050482792ec28a0d8e3e3f3\";\n", + " var loop_select_id = \"_anim_loop_select627b453a0050482792ec28a0d8e3e3f3\";\n", " var frames = new Array(10);\n", " \n", " frames[0] = \"\\\n", @@ -4228,19 +4228,19 @@ " /* set a timeout to make sure all the above elements are created before\n", " the object is initialized. */\n", " setTimeout(function() {\n", - " anim7d03f0e80da84255b1975cb7d695c2f3 = new Animation(frames, img_id, slider_id, 200.0,\n", + " anim627b453a0050482792ec28a0d8e3e3f3 = new Animation(frames, img_id, slider_id, 200.0,\n", " loop_select_id);\n", " }, 0);\n", " })()\n", "\n" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 9 + "execution_count": 8 } ], "metadata": { diff --git a/examples/notebooks/south-america.ipynb b/examples/notebooks/south-america.ipynb index 07b632e2b..4c7a544d3 100644 --- a/examples/notebooks/south-america.ipynb +++ b/examples/notebooks/south-america.ipynb @@ -9,8 +9,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:23.367005Z", - "start_time": "2024-12-06T23:34:23.363262Z" + "end_time": "2024-12-08T15:36:18.246410Z", + "start_time": "2024-12-08T15:36:17.629939Z" } }, "cell_type": "code", @@ -20,13 +20,13 @@ ], "id": "bd5aab35e70cd90b", "outputs": [], - "execution_count": 2 + "execution_count": 1 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:25.570938Z", - "start_time": "2024-12-06T23:34:25.555886Z" + "end_time": "2024-12-08T15:36:18.297066Z", + "start_time": "2024-12-08T15:36:18.273621Z" } }, "cell_type": "code", @@ -53,13 +53,13 @@ ] } ], - "execution_count": 3 + "execution_count": 2 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:30.242387Z", - "start_time": "2024-12-06T23:34:29.471844Z" + "end_time": "2024-12-08T15:36:21.085051Z", + "start_time": "2024-12-08T15:36:20.352218Z" } }, "cell_type": "code", @@ -82,12 +82,12 @@ "(
, )" ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 4 + "execution_count": 3 }, { "metadata": {}, @@ -98,8 +98,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:36.285692Z", - "start_time": "2024-12-06T23:34:36.282140Z" + "end_time": "2024-12-08T15:36:23.452180Z", + "start_time": "2024-12-08T15:36:23.438010Z" } }, "cell_type": "code", @@ -114,13 +114,13 @@ ] } ], - "execution_count": 6 + "execution_count": 4 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:37.241839Z", - "start_time": "2024-12-06T23:34:37.238815Z" + "end_time": "2024-12-08T15:36:25.604889Z", + "start_time": "2024-12-08T15:36:25.597010Z" } }, "cell_type": "code", @@ -135,13 +135,13 @@ ] } ], - "execution_count": 7 + "execution_count": 5 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:38.536931Z", - "start_time": "2024-12-06T23:34:38.532409Z" + "end_time": "2024-12-08T15:36:27.505024Z", + "start_time": "2024-12-08T15:36:27.492745Z" } }, "cell_type": "code", @@ -156,13 +156,13 @@ ] } ], - "execution_count": 8 + "execution_count": 6 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:39.734414Z", - "start_time": "2024-12-06T23:34:39.731300Z" + "end_time": "2024-12-08T15:36:28.531743Z", + "start_time": "2024-12-08T15:36:28.523332Z" } }, "cell_type": "code", @@ -177,7 +177,7 @@ ] } ], - "execution_count": 9 + "execution_count": 7 }, { "metadata": {}, @@ -188,8 +188,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:42.329045Z", - "start_time": "2024-12-06T23:34:42.324968Z" + "end_time": "2024-12-08T15:36:31.649952Z", + "start_time": "2024-12-08T15:36:31.637285Z" } }, "cell_type": "code", @@ -204,13 +204,13 @@ ] } ], - "execution_count": 10 + "execution_count": 8 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:44.206850Z", - "start_time": "2024-12-06T23:34:44.203443Z" + "end_time": "2024-12-08T15:36:33.921424Z", + "start_time": "2024-12-08T15:36:33.906105Z" } }, "cell_type": "code", @@ -225,13 +225,13 @@ ] } ], - "execution_count": 11 + "execution_count": 9 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:45.527787Z", - "start_time": "2024-12-06T23:34:45.524398Z" + "end_time": "2024-12-08T15:36:36.102616Z", + "start_time": "2024-12-08T15:36:36.083847Z" } }, "cell_type": "code", @@ -246,13 +246,13 @@ ] } ], - "execution_count": 12 + "execution_count": 10 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:46.988935Z", - "start_time": "2024-12-06T23:34:46.985480Z" + "end_time": "2024-12-08T15:36:37.926286Z", + "start_time": "2024-12-08T15:36:37.923154Z" } }, "cell_type": "code", @@ -267,13 +267,13 @@ ] } ], - "execution_count": 13 + "execution_count": 11 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:48.324865Z", - "start_time": "2024-12-06T23:34:48.321402Z" + "end_time": "2024-12-08T15:36:43.276851Z", + "start_time": "2024-12-08T15:36:43.271560Z" } }, "cell_type": "code", @@ -288,7 +288,7 @@ ] } ], - "execution_count": 14 + "execution_count": 12 }, { "metadata": {}, @@ -299,8 +299,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:50.676182Z", - "start_time": "2024-12-06T23:34:50.671632Z" + "end_time": "2024-12-08T15:36:47.054884Z", + "start_time": "2024-12-08T15:36:47.045141Z" } }, "cell_type": "code", @@ -319,13 +319,13 @@ ] } ], - "execution_count": 15 + "execution_count": 13 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:51.968267Z", - "start_time": "2024-12-06T23:34:51.955319Z" + "end_time": "2024-12-08T15:36:49.674462Z", + "start_time": "2024-12-08T15:36:49.649191Z" } }, "cell_type": "code", @@ -341,13 +341,13 @@ ] } ], - "execution_count": 16 + "execution_count": 14 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:53.301364Z", - "start_time": "2024-12-06T23:34:53.298326Z" + "end_time": "2024-12-08T15:36:51.864910Z", + "start_time": "2024-12-08T15:36:51.859233Z" } }, "cell_type": "code", @@ -362,13 +362,13 @@ ] } ], - "execution_count": 17 + "execution_count": 15 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:54.598802Z", - "start_time": "2024-12-06T23:34:54.595729Z" + "end_time": "2024-12-08T15:36:53.806002Z", + "start_time": "2024-12-08T15:36:53.794976Z" } }, "cell_type": "code", @@ -387,13 +387,13 @@ ] } ], - "execution_count": 18 + "execution_count": 16 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:55.869656Z", - "start_time": "2024-12-06T23:34:55.865941Z" + "end_time": "2024-12-08T15:36:58.051561Z", + "start_time": "2024-12-08T15:36:58.042475Z" } }, "cell_type": "code", @@ -408,13 +408,13 @@ ] } ], - "execution_count": 19 + "execution_count": 17 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:57.256832Z", - "start_time": "2024-12-06T23:34:57.249024Z" + "end_time": "2024-12-08T15:36:59.791442Z", + "start_time": "2024-12-08T15:36:59.781589Z" } }, "cell_type": "code", @@ -523,13 +523,13 @@ ] } ], - "execution_count": 20 + "execution_count": 18 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:34:58.987854Z", - "start_time": "2024-12-06T23:34:58.978983Z" + "end_time": "2024-12-08T15:37:01.567269Z", + "start_time": "2024-12-08T15:37:01.550652Z" } }, "cell_type": "code", @@ -673,7 +673,7 @@ ] } ], - "execution_count": 21 + "execution_count": 19 }, { "metadata": { @@ -793,8 +793,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:01.555824Z", - "start_time": "2024-12-06T23:35:01.547691Z" + "end_time": "2024-12-08T15:37:03.883685Z", + "start_time": "2024-12-08T15:37:03.876986Z" } }, "cell_type": "code", @@ -938,7 +938,7 @@ ] } ], - "execution_count": 23 + "execution_count": 20 }, { "metadata": {}, @@ -949,8 +949,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:04.004315Z", - "start_time": "2024-12-06T23:35:04.000800Z" + "end_time": "2024-12-08T15:37:06.936437Z", + "start_time": "2024-12-08T15:37:06.930610Z" } }, "cell_type": "code", @@ -965,13 +965,13 @@ ] } ], - "execution_count": 24 + "execution_count": 21 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:05.081567Z", - "start_time": "2024-12-06T23:35:05.077118Z" + "end_time": "2024-12-08T15:37:08.691062Z", + "start_time": "2024-12-08T15:37:08.675632Z" } }, "cell_type": "code", @@ -986,13 +986,13 @@ ] } ], - "execution_count": 25 + "execution_count": 22 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:06.274526Z", - "start_time": "2024-12-06T23:35:06.270760Z" + "end_time": "2024-12-08T15:37:10.604976Z", + "start_time": "2024-12-08T15:37:10.601193Z" } }, "cell_type": "code", @@ -1007,13 +1007,13 @@ ] } ], - "execution_count": 26 + "execution_count": 23 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:08.628838Z", - "start_time": "2024-12-06T23:35:08.624113Z" + "end_time": "2024-12-08T15:37:12.347995Z", + "start_time": "2024-12-08T15:37:12.336601Z" } }, "cell_type": "code", @@ -1028,7 +1028,7 @@ ] } ], - "execution_count": 27 + "execution_count": 24 }, { "metadata": {}, @@ -1039,8 +1039,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:11.641272Z", - "start_time": "2024-12-06T23:35:11.634522Z" + "end_time": "2024-12-08T15:37:15.113128Z", + "start_time": "2024-12-08T15:37:15.093146Z" } }, "cell_type": "code", @@ -1067,7 +1067,7 @@ ] } ], - "execution_count": 28 + "execution_count": 25 }, { "metadata": {}, @@ -1078,8 +1078,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:13.550374Z", - "start_time": "2024-12-06T23:35:13.534696Z" + "end_time": "2024-12-08T15:37:17.351942Z", + "start_time": "2024-12-08T15:37:17.336213Z" } }, "cell_type": "code", @@ -1108,7 +1108,7 @@ ] } ], - "execution_count": 29 + "execution_count": 26 }, { "metadata": {}, @@ -1119,8 +1119,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:15.269756Z", - "start_time": "2024-12-06T23:35:15.265225Z" + "end_time": "2024-12-08T15:37:20.063414Z", + "start_time": "2024-12-08T15:37:20.050359Z" } }, "cell_type": "code", @@ -1138,13 +1138,13 @@ ] } ], - "execution_count": 30 + "execution_count": 27 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:17.012144Z", - "start_time": "2024-12-06T23:35:17.006947Z" + "end_time": "2024-12-08T15:37:21.920501Z", + "start_time": "2024-12-08T15:37:21.903801Z" } }, "cell_type": "code", @@ -1164,18 +1164,18 @@ " dtype=float32)" ] }, - "execution_count": 31, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 31 + "execution_count": 28 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:20.354199Z", - "start_time": "2024-12-06T23:35:20.350519Z" + "end_time": "2024-12-08T15:37:24.919400Z", + "start_time": "2024-12-08T15:37:24.910434Z" } }, "cell_type": "code", @@ -1201,13 +1201,13 @@ ] } ], - "execution_count": 32 + "execution_count": 29 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:23.049361Z", - "start_time": "2024-12-06T23:35:23.038531Z" + "end_time": "2024-12-08T15:37:26.705685Z", + "start_time": "2024-12-08T15:37:26.688740Z" } }, "cell_type": "code", @@ -1341,12 +1341,12 @@ "" ] }, - "execution_count": 33, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 33 + "execution_count": 30 }, { "metadata": {}, @@ -1357,8 +1357,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:25.612441Z", - "start_time": "2024-12-06T23:35:25.601393Z" + "end_time": "2024-12-08T15:37:29.346095Z", + "start_time": "2024-12-08T15:37:29.328780Z" } }, "cell_type": "code", @@ -1412,12 +1412,12 @@ "" ] }, - "execution_count": 34, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 34 + "execution_count": 31 }, { "metadata": {}, @@ -1434,8 +1434,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:28.853417Z", - "start_time": "2024-12-06T23:35:28.848398Z" + "end_time": "2024-12-08T15:37:31.771055Z", + "start_time": "2024-12-08T15:37:31.763477Z" } }, "cell_type": "code", @@ -1458,7 +1458,7 @@ ] } ], - "execution_count": 35 + "execution_count": 32 }, { "metadata": {}, @@ -1469,8 +1469,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-06T23:35:31.448782Z", - "start_time": "2024-12-06T23:35:31.442471Z" + "end_time": "2024-12-08T15:37:33.513258Z", + "start_time": "2024-12-08T15:37:33.501309Z" } }, "cell_type": "code", @@ -1492,7 +1492,7 @@ ], "id": "a4a0ad7c33abfd4", "outputs": [], - "execution_count": 36 + "execution_count": 33 } ], "metadata": { diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 000000000..0893560c1 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,109 @@ +[project] +name = "pyramids-gis" +version = "0.7.1" +description = "GIS utility package" +readme = {file = "README.md", content-type = "text/markdown"} +authors = [ + { name = "Mostafa Farrag", email = "moah.farag@gmail.com" } +] +license = {text = "GNU General Public License v3"} +keywords = ["GIS", "gdal"] + +classifiers = [ + "Development Status :: 5 - Production/Stable", + "Environment :: Console", + "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", + "Natural Language :: English", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", + "Topic :: Scientific/Engineering :: GIS", + "Intended Audience :: Science/Research", + "Intended Audience :: Developers", +] + +requires-python = ">=3.0" + +dependencies = [ + "gdal == 3.10.0", + "geopandas >=1.0.1", + "hpc-utils >=0.1.4", + "loguru >=0.7.2", + "numpy >=2.1.3", + "pandas >=2.2.3", + "pip >=24.3.1", + "pyproj >=3.7.0", + "PyYAML >=6.0.2", + "Shapely >=2.0.6", +] + +[project.optional-dependencies] +dev = [ + "black >=24.4.2", + "darglint >=1.8.1", + "flake8-bandit >=4.1.1", + "flake8-bugbear >=24.4.26", + "flake8-docstrings >=1.7.0", + "flake8-rst-docstrings >=0.3.0", + "nbval >=0.11.0", + "pep8-naming >=0.14.1", + "pre-commit >=3.7.1", + "pre-commit-hooks >=4.6.0", + "pytest >=8.2.2", + "pytest-cov >=5.0.0", + "reorder-python-imports >=3.13.0", + "flake8-pyproject >=1.2.3" +] +viz = ["cleopatra>=0.5.1"] + +test = [ + "pytest >= 8.2.2", + "pytest-cov >= 5.0.0", + "nbval >= 0.11.0", + "coverage" +] + + +[tool.setuptools] + +[tool.setuptools.packages.find] +where = ["src"] +include = ["pyramids", "pyramids.*"] + + +[tool.setuptools.package-data] +pyramids = ["*.yaml", "include/gdal/*.h"] + + +[tool.pip.index-url] +url = "https://girder.github.io/large_image_wheels" + +[project.urls] +homepage = "https://github.com/Serapieum-of-alex/pyramids" +repository = "https://github.com/Serapieum-of-alex/pyramids" +documentation = "https://pyramids-gis.readthedocs.io/" +Changelog = "https://github.com/Serapieum-of-alex/pyramids/HISTORY.rst" + +[tool.flake8] +ignore = "E203, E266, E501, W503, E722, C901, E741, E731" +max-line-length = 88 +max-complexity = 18 +select = "B,C,E,F,W,T4" + + +[tool.pytest.ini_options] +markers = [ + "vfs: mark a test as a virtual file system.", + "slow: mark test as slow.", + "fast: mark test as fast.", + "plot: test plotting function optional package (deselect with '-m \"not plot\"')" +] + + +[build-system] +requires = [ + "setuptools>=61", + "wheel", +# "tomli>=1.1.0", +] +build-backend = "setuptools.build_meta" diff --git a/pytest.ini b/pytest.ini deleted file mode 100644 index 6d366f348..000000000 --- a/pytest.ini +++ /dev/null @@ -1,6 +0,0 @@ -[pytest] -markers = - vfs: mark a test as a virtual file system. - slow: mark test as slow. - fast: mark test as fast. - plot: test plotting function optional package (deselect with '-m "not plot"') diff --git a/requirements-dev.txt b/requirements-dev.txt deleted file mode 100644 index c7a8bfd70..000000000 --- a/requirements-dev.txt +++ /dev/null @@ -1,13 +0,0 @@ -black >=24.4.2 -darglint >=1.8.1 -flake8-bandit >=4.1.1 -flake8-bugbear >=24.4.26 -flake8-docstrings >=1.7.0 -flake8-rst-docstrings >=0.3.0 -nbval >=0.11.0 -pep8-naming >=0.14.1 -pre-commit >=3.7.1 -pre-commit-hooks >=4.6.0 -pytest >=8.2.2 -pytest-cov >=5.0.0 -reorder-python-imports >=3.13.0 diff --git a/requirements-optional-packages.txt b/requirements-optional-packages.txt deleted file mode 100644 index 8d986808b..000000000 --- a/requirements-optional-packages.txt +++ /dev/null @@ -1,11 +0,0 @@ -cleopatra >=0.5.1 -gdal ==3.10.0 -geopandas >=1.0.1 -hpc-utils >=0.1.4 -loguru >=0.7.2 -numpy >=2.1.3 -pandas >=2.2.3 -pip >=24.3.1 -pyproj >=3.7.0 -PyYAML >=6.0.2 -Shapely >=2.0.6 diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index 77f3959b5..000000000 --- a/requirements.txt +++ /dev/null @@ -1,10 +0,0 @@ -gdal ==3.10.0 -geopandas >=1.0.1 -hpc-utils >=0.1.4 -loguru >=0.7.2 -numpy >=2.1.3 -pandas >=2.2.3 -pip >=24.3.1 -pyproj >=3.7.0 -PyYAML >=6.0.2 -Shapely >=2.0.6 diff --git a/setup.py b/setup.py deleted file mode 100644 index 41f4e6119..000000000 --- a/setup.py +++ /dev/null @@ -1,49 +0,0 @@ -from setuptools import find_packages, setup - -with open("README.md", "r") as readme_file: - readme = readme_file.read() - -with open("HISTORY.rst") as history_file: - history = history_file.read() - -requirements = [line.strip() for line in open("requirements.txt").readlines()] -requirements_dev = [line.strip() for line in open("requirements-dev.txt").readlines()] -requirements_all = [ - line.strip() for line in open("requirements-optional-packages.txt").readlines() -] - -setup( - name="pyramids-gis", - version="0.7.1", - description="GIS utility package", - author="Mostafa Farrag", - author_email="moah.farag@gmail.com", - url="https://github.com/Serapieum-of-alex/pyramids", - keywords=["GIS", "gdal"], - long_description=readme + "\n\n" + history, - repository="https://github.com/MAfarrag/pyramids", - documentation="https://pyramids-gis.readthedocs.io/", - long_description_content_type="text/markdown", - license="GNU General Public License v3", - zip_safe=False, - packages=find_packages(include=["pyramids", "pyramids.*"]), - install_requires=requirements, - extras_require={ - "dev": requirements_dev, - "viz": ["cleopatra>=0.4.0"], - "all": requirements_all, - }, - classifiers=[ - "Development Status :: 5 - Production/Stable", - "Environment :: Console", - "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", - "Natural Language :: English", - "Programming Language :: Python :: 3", - "Programming Language :: Python :: 3.11", - "Topic :: Scientific/Engineering :: GIS", - "Intended Audience :: Science/Research", - "Intended Audience :: Developers", - ], - include_package_data=True, - package_data={"": ["gdal_drivers.yaml", "ogr_drivers.yaml", "config.yaml"]}, -) diff --git a/pyramids/__init__.py b/src/pyramids/__init__.py similarity index 100% rename from pyramids/__init__.py rename to src/pyramids/__init__.py diff --git a/pyramids/_errors.py b/src/pyramids/_errors.py similarity index 94% rename from pyramids/_errors.py rename to src/pyramids/_errors.py index af117b291..2a4fba042 100644 --- a/pyramids/_errors.py +++ b/src/pyramids/_errors.py @@ -10,8 +10,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class DatasetNoFoundError(Exception): """DatasetNoFoundError.""" @@ -20,8 +18,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class NoDataValueError(Exception): """NoDataValueError.""" @@ -30,8 +26,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class AlignmentError(Exception): """Alignment Error.""" @@ -40,8 +34,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class DriverNotExistError(Exception): """Driver-Not-exist Error.""" @@ -50,8 +42,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class FileFormatNotSupported(Exception): """File Format Not Supported.""" @@ -60,8 +50,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class OptionalPackageDoesNotExist(Exception): """Optional Package does not exist.""" @@ -70,8 +58,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class FailedToSaveError(Exception): """Failed to save error.""" @@ -80,8 +66,6 @@ def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - pass - class OutOfBoundsError(Exception): """Out-of-bounds error.""" @@ -89,5 +73,3 @@ class OutOfBoundsError(Exception): def __init__(self, error_message: str): """__init__.""" logger.error(error_message) - - pass diff --git a/pyramids/_io.py b/src/pyramids/_io.py similarity index 100% rename from pyramids/_io.py rename to src/pyramids/_io.py diff --git a/pyramids/_utils.py b/src/pyramids/_utils.py similarity index 100% rename from pyramids/_utils.py rename to src/pyramids/_utils.py diff --git a/pyramids/abstract_dataset.py b/src/pyramids/abstract_dataset.py similarity index 100% rename from pyramids/abstract_dataset.py rename to src/pyramids/abstract_dataset.py diff --git a/pyramids/config.py b/src/pyramids/config.py similarity index 100% rename from pyramids/config.py rename to src/pyramids/config.py diff --git a/pyramids/config.yaml b/src/pyramids/config.yaml similarity index 100% rename from pyramids/config.yaml rename to src/pyramids/config.yaml diff --git a/pyramids/datacube.py b/src/pyramids/datacube.py similarity index 100% rename from pyramids/datacube.py rename to src/pyramids/datacube.py diff --git a/pyramids/dataset.py b/src/pyramids/dataset.py similarity index 100% rename from pyramids/dataset.py rename to src/pyramids/dataset.py diff --git a/pyramids/featurecollection.py b/src/pyramids/featurecollection.py similarity index 100% rename from pyramids/featurecollection.py rename to src/pyramids/featurecollection.py diff --git a/pyramids/gdal_drivers.yaml b/src/pyramids/gdal_drivers.yaml similarity index 100% rename from pyramids/gdal_drivers.yaml rename to src/pyramids/gdal_drivers.yaml diff --git a/pyramids/netcdf.py b/src/pyramids/netcdf.py similarity index 100% rename from pyramids/netcdf.py rename to src/pyramids/netcdf.py diff --git a/pyramids/ogr_drivers.yaml b/src/pyramids/ogr_drivers.yaml similarity index 100% rename from pyramids/ogr_drivers.yaml rename to src/pyramids/ogr_drivers.yaml