forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
benchmark_utils.py
239 lines (201 loc) Β· 8.9 KB
/
benchmark_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import paddle
import paddle.nn as nn
from paddle.optimizer.lr import LambdaDecay
from rouge import Rouge
from sklearn.metrics import accuracy_score
from paddlenlp.metrics import BLEU
from paddlenlp.trainer import PrinterCallback, ProgressCallback, Trainer
from paddlenlp.trainer.integrations import TrainerCallback
from paddlenlp.utils.log import logger
class AverageStatistical(object):
def __init__(self):
self.reset()
def reset(self):
self.total_cnt = 0
self.time = 0
def record(self, val, cnt=1):
self.time += val
self.total_cnt += cnt
def get_average(self):
if self.total_cnt == 0:
return 0
return self.time / self.total_cnt
def get_average_per_sec(self):
if self.time == 0.0:
return 0.0
return float(self.total_cnt) / self.time
def get_total_cnt(self):
return self.total_cnt
def get_total_time(self):
return self.time
class BenchmarkCallback(TrainerCallback):
def __init__(self, benchmark=True, profiler_options=None):
self.benchmark = benchmark
self.profiler_options = profiler_options
def on_train_begin(self, args, state, control, **kwargs):
assert args.gradient_accumulation_steps == 1 and not args.do_eval and not args.do_predict
if self.benchmark:
self.reader_cost_avg = AverageStatistical()
def on_epoch_begin(self, args, state, control, **kwargs):
if self.benchmark:
self.epoch_start = time.time()
self.batch_start = time.time()
def on_step_begin(self, args, state, control, **kwargs):
if self.benchmark:
self.reader_cost_avg.record(time.time() - self.batch_start)
def on_step_end(self, args, state, control, **kwargs):
if self.benchmark:
self.batch_start = time.time()
if control.should_log:
self.maybe_log_save_evaluate_start = time.time()
def on_log(self, args, state, control, logs=None, **kwargs):
if self.benchmark:
if logs is not None and "interval_steps_per_second" in logs:
self.batch_start = self.batch_start + (time.time() - self.maybe_log_save_evaluate_start)
ips = logs["interval_steps_per_second"] * args.train_batch_size
avg_batch_cost = 1 / logs["interval_steps_per_second"]
max_mem_reserved_msg = ""
max_mem_allocated_msg = ""
if paddle.device.is_compiled_with_cuda():
max_mem_reserved_msg = (
f"max_mem_reserved: {paddle.device.cuda.max_memory_reserved() // (1024 ** 2)} MB,"
)
max_mem_allocated_msg = (
f"max_mem_allocated: {paddle.device.cuda.max_memory_allocated() // (1024 ** 2)} MB"
)
logger.info(
"global step %d / %d, loss: %f, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, "
"avg_samples: %.5f, ips: %.5f sample/sec, %s %s"
% (
state.global_step,
state.max_steps,
logs["loss"],
self.reader_cost_avg.get_average(),
avg_batch_cost,
args.train_batch_size,
ips,
max_mem_reserved_msg,
max_mem_allocated_msg,
)
)
self.reader_cost_avg.reset()
def on_epoch_end(self, args, state, control, **kwargs):
if self.benchmark:
train_epoch_cost = time.time() - self.epoch_start
logger.info("train epoch: %d, epoch_cost: %.5f s" % (state.epoch, train_epoch_cost))
class LlamaTrainer(Trainer):
def __init__(self, do_generation: bool, **kwargs):
super().__init__(**kwargs)
self.add_callback(BenchmarkCallback(benchmark=True, profiler_options=self.args.profiler_options))
if self.args.disable_tqdm:
self.pop_callback(PrinterCallback)
else:
self.pop_callback(ProgressCallback)
self.do_generation = do_generation
def prediction_step(
self,
model: nn.Layer,
inputs: Dict[str, Union[paddle.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[paddle.Tensor]]:
if prediction_loss_only:
return super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
elif not self.do_generation:
loss, logits, labels = super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
# argmax here to avoid gather all logits, which is too memory-consuming.
# keepdim in order to maintain the same shape as logits
return (loss, logits.argmax(axis=-1, keepdim=True), labels)
model.eval()
preds = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=self.args.tgt_length,
min_length=0,
use_cache=True,
temperature=1.0,
top_k=1,
top_p=1.0,
repetition_penalty=1.0,
decode_strategy="sampling",
)[0]
all_labels = []
for label in inputs["labels"].numpy():
label = [x for x in label[label != self.tokenizer.pad_token_id]]
all_labels.append(label)
max_label_length = max([len(x) for x in all_labels])
for index, labels in enumerate(all_labels):
all_labels[index] = labels + [-100] * (max_label_length - len(labels))
return (None, paddle.to_tensor(preds), paddle.to_tensor(all_labels))
def create_scheduler(self, num_training_steps: int):
num_warmup_steps = (
self.args.warmup_steps if self.args.warmup_steps > 0 else self.args.warmup_ratio * num_training_steps
)
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
else:
decay_step_ratio = (current_step - num_warmup_steps) / (num_training_steps - num_warmup_steps)
return 1.0 - (1.0 - self.args.lr_decay_ratio) * decay_step_ratio
if self.lr_scheduler is None:
self.lr_scheduler = LambdaDecay(self.args.learning_rate, lr_lambda, last_epoch=-1)
return self.lr_scheduler
def log(self, logs: Dict[str, float], **kwargs) -> None:
if "loss" in logs:
logs["ppl"] = np.exp(logs["loss"])
if "eval_loss" in logs:
logs["eval_ppl"] = np.exp(logs["eval_loss"])
super(LlamaTrainer, self).log(logs, **kwargs)
def compute_metrics(preds, targets):
assert len(preds) == len(targets), (
"The length of pred_responses should be equal to the length of "
"target_responses. But received {} and {}.".format(len(preds), len(targets))
)
rouge = Rouge()
bleu4 = BLEU(n_size=4)
scores = []
for pred, target in zip(preds, targets):
try:
score = rouge.get_scores(" ".join(pred), " ".join(target))
scores.append([score[0]["rouge-1"]["f"], score[0]["rouge-2"]["f"], score[0]["rouge-l"]["f"]])
except ValueError:
scores.append([0, 0, 0])
bleu4.add_inst(pred, [target])
rouge1 = np.mean([i[0] for i in scores])
rouge2 = np.mean([i[1] for i in scores])
rougel = np.mean([i[2] for i in scores])
rouge1 = round(rouge1, 4)
rouge2 = round(rouge2, 4)
rougel = round(rougel, 4)
bleu4 = round(bleu4.score(), 4)
return dict(
rouge1=rouge1,
rouge2=rouge2,
rougel=rougel,
bleu4=bleu4,
)
def compute_metrics_not_do_generation(eval_preds):
flattened_preds = np.array(eval_preds.predictions).flatten()
flattened_labels = np.array(eval_preds.label_ids).flatten()
filtered_preds = flattened_preds[flattened_labels != -100]
filtered_labels = flattened_labels[flattened_labels != -100]
accuracy = accuracy_score(y_true=filtered_labels, y_pred=filtered_preds)
return {
"accuracy": accuracy,
}