forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
409 lines (353 loc) Β· 15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# coding=utf-8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
import random
import time
from urllib.error import URLError
from urllib.parse import urlencode
from urllib.request import Request, urlopen
import numpy as np
import paddle
from tqdm import tqdm
def set_seed(seed):
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
class ASRError(Exception):
pass
def mandarin_asr_api(api_key, secret_key, audio_file, audio_format="wav"):
"""Mandarin ASR
Args:
audio_file (str):
Audio file of Mandarin with sampling rate 16000.
audio_format (str):
The file extension of audio_file, 'wav' by default.
Please refer to https://github.com/Baidu-AIP/speech-demo for more demos.
"""
# Configurations.
TOKEN_URL = "http://aip.baidubce.com/oauth/2.0/token"
ASR_URL = "http://vop.baidu.com/server_api"
SCOPE = "audio_voice_assistant_get"
API_KEY = api_key
SECRET_KEY = secret_key
# Fetch tokens from TOKEN_URL.
post_data = urlencode(
{"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
).encode("utf-8")
request = Request(TOKEN_URL, post_data)
try:
result_str = urlopen(request).read()
except URLError as error:
print("token http response http code : " + str(error.code))
result_str = error.read()
result_str = result_str.decode()
result = json.loads(result_str)
if "access_token" in result.keys() and "scope" in result.keys():
if SCOPE and (SCOPE not in result["scope"].split(" ")):
raise ASRError("scope is not correct!")
token = result["access_token"]
else:
raise ASRError(
"MAYBE API_KEY or SECRET_KEY not correct: " + "access_token or scope not found in token response"
)
# Fetch results by ASR api.
with open(audio_file, "rb") as speech_file:
speech_data = speech_file.read()
length = len(speech_data)
if length == 0:
raise ASRError("file %s length read 0 bytes" % audio_file)
params_query = urlencode({"cuid": "ASR", "token": token, "dev_pid": 1537})
headers = {"Content-Type": "audio/%s; rate=16000" % audio_format, "Content-Length": length}
url = ASR_URL + "?" + params_query
request = Request(url, speech_data, headers)
try:
begin = time.time()
result_str = urlopen(request).read()
print("Request time cost %f" % (time.time() - begin))
except URLError as error:
print("asr http response http code : " + str(error.code))
result_str = error.read()
result_str = str(result_str, "utf-8")
result = json.loads(result_str)
return result["result"][0]
@paddle.no_grad()
def evaluate(model, metric, data_loader):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
"""
model.eval()
metric.reset()
for batch in data_loader:
input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch
start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids)
start_ids = paddle.cast(start_ids, "float32")
end_ids = paddle.cast(end_ids, "float32")
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
return precision, recall, f1
def convert_example(example, tokenizer, max_seq_len):
"""
example: {
title
prompt
content
result_list
}
"""
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
stride=len(example["prompt"]),
truncation=True,
max_seq_len=max_seq_len,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
)
encoded_inputs = encoded_inputs[0]
offset_mapping = [list(x) for x in encoded_inputs["offset_mapping"]]
bias = 0
for index in range(len(offset_mapping)):
if index == 0:
continue
mapping = offset_mapping[index]
if mapping[0] == 0 and mapping[1] == 0 and bias == 0:
bias = index
if mapping[0] == 0 and mapping[1] == 0:
continue
offset_mapping[index][0] += bias
offset_mapping[index][1] += bias
start_ids = [0 for x in range(max_seq_len)]
end_ids = [0 for x in range(max_seq_len)]
for item in example["result_list"]:
start = map_offset(item["start"] + bias, offset_mapping)
end = map_offset(item["end"] - 1 + bias, offset_mapping)
start_ids[start] = 1.0
end_ids[end] = 1.0
tokenized_output = [
encoded_inputs["input_ids"],
encoded_inputs["token_type_ids"],
encoded_inputs["position_ids"],
encoded_inputs["attention_mask"],
start_ids,
end_ids,
]
tokenized_output = [np.array(x, dtype="int64") for x in tokenized_output]
return tuple(tokenized_output)
def map_offset(ori_offset, offset_mapping):
"""
map ori offset to token offset
"""
for index, span in enumerate(offset_mapping):
if span[0] <= ori_offset < span[1]:
return index
return -1
def reader(data_path, max_seq_len=512):
"""
read json
"""
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
json_line = json.loads(line)
content = json_line["content"]
prompt = json_line["prompt"]
# Model Input is aslike: [CLS] Prompt [SEP] Content [SEP]
# It include three summary tokens.
if max_seq_len <= len(prompt) + 3:
raise ValueError("The value of max_seq_len is too small, please set a larger value")
max_content_len = max_seq_len - len(prompt) - 3
if len(content) <= max_content_len:
yield json_line
else:
result_list = json_line["result_list"]
json_lines = []
accumulate = 0
while True:
cur_result_list = []
for result in result_list:
if result["start"] + 1 <= max_content_len < result["end"]:
max_content_len = result["start"]
break
cur_content = content[:max_content_len]
res_content = content[max_content_len:]
while True:
if len(result_list) == 0:
break
elif result_list[0]["end"] <= max_content_len:
if result_list[0]["end"] > 0:
cur_result = result_list.pop(0)
cur_result_list.append(cur_result)
else:
cur_result_list = [result for result in result_list]
break
else:
break
json_line = {"content": cur_content, "result_list": cur_result_list, "prompt": prompt}
json_lines.append(json_line)
for result in result_list:
if result["end"] <= 0:
break
result["start"] -= max_content_len
result["end"] -= max_content_len
accumulate += max_content_len
max_content_len = max_seq_len - len(prompt) - 3
if len(res_content) == 0:
break
elif len(res_content) < max_content_len:
json_line = {"content": res_content, "result_list": result_list, "prompt": prompt}
json_lines.append(json_line)
break
else:
content = res_content
for json_line in json_lines:
yield json_line
def add_negative_example(examples, texts, prompts, label_set, negative_ratio):
with tqdm(total=len(prompts)) as pbar:
for i, prompt in enumerate(prompts):
negtive_sample = []
redundants_list = list(set(label_set) ^ set(prompt))
redundants_list.sort()
if len(examples[i]) == 0:
continue
else:
actual_ratio = math.ceil(len(redundants_list) / len(examples[i]))
if actual_ratio <= negative_ratio:
idxs = [k for k in range(len(redundants_list))]
else:
idxs = random.sample(range(0, len(redundants_list)), negative_ratio * len(examples[i]))
for idx in idxs:
negtive_result = {"content": texts[i], "result_list": [], "prompt": redundants_list[idx]}
negtive_sample.append(negtive_result)
examples[i].extend(negtive_sample)
pbar.update(1)
return examples
def construct_relation_prompt_set(entity_name_set, predicate_set):
relation_prompt_set = set()
for entity_name in entity_name_set:
for predicate in predicate_set:
# The relation prompt is constructed as follows:
# subject + "η" + predicate
relation_prompt = entity_name + "η" + predicate
relation_prompt_set.add(relation_prompt)
return sorted(list(relation_prompt_set))
def convert_ext_examples(raw_examples, negative_ratio):
texts = []
entity_examples = []
relation_examples = []
entity_prompts = []
relation_prompts = []
entity_label_set = []
entity_name_set = []
predicate_set = []
print("Converting doccano data...")
with tqdm(total=len(raw_examples)) as pbar:
for line in raw_examples:
items = json.loads(line)
entity_id = 0
if "data" in items.keys():
text = items["data"]
entities = []
for item in items["label"]:
entity = {"id": entity_id, "start_offset": item[0], "end_offset": item[1], "label": item[2]}
entities.append(entity)
entity_id += 1
relations = []
else:
text, relations, entities = items["text"], items["relations"], items["entities"]
texts.append(text)
entity_example = []
entity_prompt = []
entity_example_map = {}
entity_map = {} # id to entity name
for entity in entities:
entity_name = text[entity["start_offset"] : entity["end_offset"]]
entity_map[entity["id"]] = {
"name": entity_name,
"start": entity["start_offset"],
"end": entity["end_offset"],
}
entity_label = entity["label"]
result = {"text": entity_name, "start": entity["start_offset"], "end": entity["end_offset"]}
if entity_label not in entity_example_map.keys():
entity_example_map[entity_label] = {
"content": text,
"result_list": [result],
"prompt": entity_label,
}
else:
entity_example_map[entity_label]["result_list"].append(result)
if entity_label not in entity_label_set:
entity_label_set.append(entity_label)
if entity_name not in entity_name_set:
entity_name_set.append(entity_name)
entity_prompt.append(entity_label)
for v in entity_example_map.values():
entity_example.append(v)
entity_examples.append(entity_example)
entity_prompts.append(entity_prompt)
relation_example = []
relation_prompt = []
relation_example_map = {}
for relation in relations:
predicate = relation["type"]
subject_id = relation["from_id"]
object_id = relation["to_id"]
# The relation prompt is constructed as follows:
# subject + "η" + predicate
prompt = entity_map[subject_id]["name"] + "η" + predicate
result = {
"text": entity_map[object_id]["name"],
"start": entity_map[object_id]["start"],
"end": entity_map[object_id]["end"],
}
if prompt not in relation_example_map.keys():
relation_example_map[prompt] = {"content": text, "result_list": [result], "prompt": prompt}
else:
relation_example_map[prompt]["result_list"].append(result)
if predicate not in predicate_set:
predicate_set.append(predicate)
relation_prompt.append(prompt)
for v in relation_example_map.values():
relation_example.append(v)
relation_examples.append(relation_example)
relation_prompts.append(relation_prompt)
pbar.update(1)
print("Adding negative samples for first stage prompt...")
entity_examples = add_negative_example(entity_examples, texts, entity_prompts, entity_label_set, negative_ratio)
if len(predicate_set) != 0:
print("Constructing relation prompts...")
relation_prompt_set = construct_relation_prompt_set(entity_name_set, predicate_set)
print("Adding negative samples for second stage prompt...")
relation_examples = add_negative_example(
relation_examples, texts, relation_prompts, relation_prompt_set, negative_ratio
)
return entity_examples, relation_examples
def create_dataloader(dataset, mode="train", batch_size=1, batchify_fn=None, trans_fn=None):
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == "train" else False
if mode == "train":
batch_sampler = paddle.io.DistributedBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle)
else:
batch_sampler = paddle.io.BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle)
return paddle.io.DataLoader(dataset=dataset, batch_sampler=batch_sampler, collate_fn=batchify_fn, return_list=True)