diff --git a/src/systems/diffeqs/abstractodesystem.jl b/src/systems/diffeqs/abstractodesystem.jl index 87ee6e823d..06c83073bf 100644 --- a/src/systems/diffeqs/abstractodesystem.jl +++ b/src/systems/diffeqs/abstractodesystem.jl @@ -512,7 +512,6 @@ function SciMLBase.BVProblem{iip, specialize}(sys::AbstractODESystem, u0map = [] eval_expression = false, eval_module = @__MODULE__, kwargs...) where {iip, specialize} - if !iscomplete(sys) error("A completed system is required. Call `complete` or `structural_simplify` on the system before creating an `BVProblem`") end @@ -528,12 +527,12 @@ function SciMLBase.BVProblem{iip, specialize}(sys::AbstractODESystem, u0map = [] if cbs !== nothing kwargs1 = merge(kwargs1, (callback = cbs,)) end - + # Construct initial conditions. _u0 = u0 isa Function ? u0(tspan[1]) : u0 # Define the boundary conditions. - bc = if iip + bc = if iip (residual, u, p, t) -> (residual .= u[1] .- _u0) else (u, p, t) -> (u[1] - _u0) @@ -544,11 +543,13 @@ end get_callback(prob::BVProblem) = error("BVP solvers do not support callbacks.") -@inline function create_array(::Type{Base.ReinterpretArray}, ::Nothing, ::Val{1}, ::Val{dims}, elems...) where dims +@inline function create_array(::Type{Base.ReinterpretArray}, ::Nothing, + ::Val{1}, ::Val{dims}, elems...) where {dims} [elems...] end -@inline function create_array(::Type{Base.ReinterpretArray}, T, ::Val{1}, ::Val{dims}, elems...) where dims +@inline function create_array( + ::Type{Base.ReinterpretArray}, T, ::Val{1}, ::Val{dims}, elems...) where {dims} T[elems...] end diff --git a/test/bvproblem.jl b/test/bvproblem.jl index 86e3722eec..1072874917 100644 --- a/test/bvproblem.jl +++ b/test/bvproblem.jl @@ -4,49 +4,51 @@ using ModelingToolkit: t_nounits as t, D_nounits as D solvers = [MIRK4, RadauIIa5, LobattoIIIa3] -@parameters α = 7.5 β = 4. γ = 8. δ = 5. -@variables x(t) = 1. y(t) = 2. +@parameters α=7.5 β=4.0 γ=8.0 δ=5.0 +@variables x(t)=1.0 y(t)=2.0 -eqs = [D(x) ~ α*x - β*x*y, - D(y) ~ -γ*y + δ*x*y] +eqs = [D(x) ~ α * x - β * x * y, + D(y) ~ -γ * y + δ * x * y] -u0map = [:x => 1., :y => 2.] -parammap = [:α => 7.5, :β => 4, :γ => 8., :δ => 5.] -tspan = (0., 10.) +u0map = [:x => 1.0, :y => 2.0] +parammap = [:α => 7.5, :β => 4, :γ => 8.0, :δ => 5.0] +tspan = (0.0, 10.0) @mtkbuild lotkavolterra = ODESystem(eqs, t) op = ODEProblem(lotkavolterra, u0map, tspan, parammap) osol = solve(op, Vern9()) -bvp = SciMLBase.BVProblem{true, SciMLBase.AutoSpecialize}(lotkavolterra, u0map, tspan, parammap; eval_expression = true) +bvp = SciMLBase.BVProblem{true, SciMLBase.AutoSpecialize}( + lotkavolterra, u0map, tspan, parammap; eval_expression = true) for solver in solvers sol = solve(bvp, solver(), dt = 0.01) @test isapprox(sol.u[end], osol.u[end]; atol = 0.01) - @test sol.u[1] == [1., 2.] + @test sol.u[1] == [1.0, 2.0] end # Test out of place -bvp2 = SciMLBase.BVProblem{false, SciMLBase.AutoSpecialize}(lotkavolterra, u0map, tspan, parammap; eval_expression = true) +bvp2 = SciMLBase.BVProblem{false, SciMLBase.AutoSpecialize}( + lotkavolterra, u0map, tspan, parammap; eval_expression = true) for solver in solvers sol = solve(bvp2, solver(), dt = 0.01) - @test isapprox(sol.u[end],osol.u[end]; atol = 0.01) - @test sol.u[1] == [1., 2.] + @test isapprox(sol.u[end], osol.u[end]; atol = 0.01) + @test sol.u[1] == [1.0, 2.0] end ### Testing on pendulum -@parameters g = 9.81 L = 1. -@variables θ(t) = π/2 +@parameters g=9.81 L=1.0 +@variables θ(t) = π / 2 eqs = [D(D(θ)) ~ -(g / L) * sin(θ)] @mtkbuild pend = ODESystem(eqs, t) -u0map = [θ => π/2, D(θ) => π/2] -parammap = [:L => 1., :g => 9.81] -tspan = (0., 6.) +u0map = [θ => π / 2, D(θ) => π / 2] +parammap = [:L => 1.0, :g => 9.81] +tspan = (0.0, 6.0) op = ODEProblem(pend, u0map, tspan, parammap) osol = solve(op, Vern9()) @@ -55,7 +57,7 @@ bvp = SciMLBase.BVProblem{true, SciMLBase.AutoSpecialize}(pend, u0map, tspan, pa for solver in solvers sol = solve(bvp, solver(), dt = 0.01) @test isapprox(sol.u[end], osol.u[end]; atol = 0.01) - @test sol.u[1] == [π/2, π/2] + @test sol.u[1] == [π / 2, π / 2] end # Test out-of-place @@ -63,6 +65,6 @@ bvp2 = SciMLBase.BVProblem{false, SciMLBase.FullSpecialize}(pend, u0map, tspan, for solver in solvers sol = solve(bvp2, solver(), dt = 0.01) - @test isapprox(sol.u[end],osol.u[end]; atol = 0.01) - @test sol.u[1] == [π/2, π/2] + @test isapprox(sol.u[end], osol.u[end]; atol = 0.01) + @test sol.u[1] == [π / 2, π / 2] end