-
Notifications
You must be signed in to change notification settings - Fork 1
/
BinaryTree.java
493 lines (398 loc) · 15.2 KB
/
BinaryTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import java.util.*;
public class BinaryTree {
//Node Class for Binary Tree.
static class Node {
int data;
Node left;
Node right;
Node(int data) {
this.data = data;
this.left = null;
this.right = null;
}
}
static int idx = -1;
//Time Complexity: O(n)
public static Node buildTree(int[] nodes) {
idx++;
if (nodes[idx] == -1) {
return null;
}
Node newNode = new Node(nodes[idx]);
newNode.left = buildTree(nodes);
newNode.right = buildTree(nodes);
return newNode;
}
//Tree Traversal using Recursion.
/*#1. Preorder Traversal. Linear Time Complexity: O(n)
* - There are 3 Rules of Preorder Traversal:
1st Print the Root.
2nd Print Left subtree.
3rd Print Right subtree.*/
public static void preorder(Node root) { //Taking root of tree as a parameter.
if (root == null) { //Base Case
// System.out.print(-1 + " "); //Add this line if you want to print -1 to show NULL node as well.
return;
}
System.out.print(root.data + " "); //Printing Data. Rule-1
preorder(root.left); //Printing Left subtree. Rule-2
preorder(root.right); //Printing Right subtree. Rule-3
}
/*#2. Inorder Traversal. Linear Time Complexity: O(n)
Why Inorder? Because, Root comes IN BETWEEN the left and right subtree.
* - There are 3 Rules of Inorder Traversal:
1st Print Left subtree.
2nd Print Root.
3rd Print Right subtree.*/
public static void inorder(Node root) {
if (root == null) { //Base Case
System.out.print(-1 + " "); //Add this line if you want to print -1 to show NULL node as well.
return;
}
inorder(root.left); //Printing Left subtree. Rule-1
System.out.print(root.data + " "); //Printing Root. Rule-2
inorder(root.right); //Printing Right subtree. Rule-3
}
/*#3. Postorder Traversal. Linear Time Complexity: O(n)
Post means बाद में (Later).
* - There are 3 Rules of Postorder Traversal:
1st Print Left subtree.
2nd Print Right subtree.
3rd Print Root.*/
public static void postorder(Node root) {
if (root == null) { //Base Case
System.out.print(-1 + " "); //Add this line if you want to print -1 to show NULL node as well.
return;
}
postorder(root.left); //Printing Left subtree. Rule-1
postorder(root.right); //Printing Right subtree. Rule-2
System.out.print(root.data + " "); //Printing Root. Rule-3
}
/*Level Order Traversal. Linear Time Complexity: O(n)
- we'll use Queue Data Structure for this traversal.
- we'll use BFS (Breadth First Search) approach in this traversal.
- This traversal we'll solve by Iterative approach.*/
public static void levelOrder(Node root) {
if (root == null) { //Checking Root is empty or not.
return;
}
Queue<Node> q = new LinkedList<>(); //Created Queue.
q.add(root); //Firstly add root.
q.add(null); //Added NULL to know print next line.
while (!q.isEmpty()) {
Node currNode = q.remove(); //Removing each element from Q and saving it in 'currNode'.
if (currNode == null) { //Case for when we encounter NULL in a Queue.
System.out.println();
if (q.isEmpty()) { //Checking Queue is empty or NOT.
break;
} else {
q.add(null); //If Queue is NOT empty then add NULL in Queue again.
}
} else {
System.out.print(currNode.data + " "); //Printing data after removing element from Queue.
if (currNode.left != null) { //Checking Left Child of Node is empty or NOT.
q.add(currNode.left); //Adding Left Child Node in Queue.
}
if (currNode.right != null) { //Checking Right Child of Node is empty or NOT.
q.add(currNode.right); //Adding Right Child Node in Queue.
}
}
}
}
//Height of Tree. O(n)
public static int height(Node root) {
if (root == null) { //Base Case.
return 0;
}
int lh = height(root.left); //Counting Height of Left Subtree.
int rh = height(root.right); //Counting Height of Right Subtree.
return Math.max(lh, rh) + 1; //Finally, choosing maximum between left height & right height of tree and adding +1 in it and return.
}
//Count the Nodes of a Binary Tree. O(n)
public static int count(Node root) {
if (root == null) { //Base Case.
return 0;
}
int leftCount = count(root.left); //Counting Nodes of Left Subtree.
int rightCount = count(root.right); //Counting Nodes of Right Subtree.
return leftCount + rightCount + 1; //Adding Counts of both side & adding +1 in it and Return.
}
//Sum of Nodes. O(n)
public static int sum(Node root) {
if (root == null) { //Base Case.
return 0;
}
int leftSum = sum(root.left);
int rightSum = sum(root.right);
return leftSum + rightSum + root.data;
}
//Diameter of Tree: Approach-1 O(n^2)
/*public static int diameter(Node root) {
if (root == null) { //Base Case.
return 0;
}
int leftDiameter = diameter(root.left); //1st
int leftHeight = height(root.left); //Calculating Left Height for Self Diameter.
int rightDiameter = diameter(root.right); //2nd
int rightHeight = height(root.right); //Calculating Right Height for Self Diameter.
int selfDiameter = leftHeight + rightHeight + 1; //3rd
return Math.max(selfDiameter, Math.max(leftDiameter, rightDiameter));
}*/
//Diameter of Tree: Approach-2 O(n)
/*static class Info {
int diameter;
int height;
public Info(int diameter, int height) {
this.diameter = diameter;
this.height = height;
}
}
public static Info diameter(Node root) {
if (root == null) { //Base Case
return new Info(0, 0);
}
Info leftInfo = diameter(root.left);
Info rightInfo = diameter(root.right);
int diameter = Math.max(Math.max(leftInfo.diameter, rightInfo.diameter), leftInfo.height + rightInfo.height + 1);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
return new Info(diameter, height);
}*/
//Subtree of another Tree. (Find SubTree is existed in your Tree or NOT.)
public static boolean isIdentical(Node node, Node subRoot) {
if (node == null && subRoot == null) { //Base Case.
return true;
} else if (node == null || subRoot == null || node.data != subRoot.data) { //Non-Identical Cases.
return false;
}
if (!isIdentical(node.left, subRoot.left)) {
return false;
}
if (!isIdentical(node.right, subRoot.right)) {
return false;
}
return true;
}
public static boolean isSubTree(Node root, Node subRoot) {
if (root == null) { //Base Case.
return false;
}
if (root.data == subRoot.data) { //Step 1
if (isIdentical(root, subRoot)) {
return true;
}
}
//Step 2: all in 1 place.
return isIdentical(root.left, subRoot) || isIdentical(root.right, subRoot);
}
//Top View of a Tree. (Important Question)
static class Info {
Node node;
int hd;
public Info(Node node, int hd) {
this.node = node;
this.hd = hd;
}
}
public static void topView(Node root) {
//Level Order
Queue<Info> q = new LinkedList<>();
HashMap<Integer, Node> map = new HashMap<>();
int min = 0, max = 0;
q.add(new Info(root, 0));
q.add(null);
while (!q.isEmpty()) {
Info curr = q.remove();
if (curr == null) {
if (q.isEmpty()) {
break;
} else {
q.add(null);
}
} else {
//True if it contains key, False if not.
if (!map.containsKey(curr.hd)) { //First Time my HD is occurring.
map.put(curr.hd, curr.node); //Adding pair in within a map.
}
if (curr.node.left != null) {
q.add(new Info(curr.node.left, curr.hd - 1));
min = Math.min(min, curr.hd - 1);
}
if (curr.node.right != null) {
q.add(new Info(curr.node.right, curr.hd + 1));
max = Math.max(max, curr.hd + 1);
}
}
}
for (int i = min; i <= max; i++) {
System.out.print(map.get(i).data + " ");
}
}
//Kth Level of a Tree (Print). O(n)
public static void KthLevel(Node root, int level, int k) {
if (root == null) { //Base Case.
return;
}
if (level == k) { //If level is equals to K, then print the node data and return.
System.out.print(root.data + " ");
return;
}
KthLevel(root.left, level + 1, k);
KthLevel(root.right, level + 1, k);
}
//Approach-1: Lowest Common Ancestor (LCA). TC & SC: O(n)
public static boolean getPath(Node root, int n, ArrayList<Node> path) {
if (root == null) {
return false;
}
path.add(root);
if (root.data == n) { //Node Found.
return true;
}
//If Node not found.
boolean foundLeft = getPath(root.left, n, path);
boolean foundRight = getPath(root.right, n, path);
if (foundLeft || foundRight) { //If you found root on left or right side.
return true;
}
path.remove(path.size() - 1); //If NOT then removing that current root from path.
return false;
}
public static Node lca(Node root, int n1, int n2) {
ArrayList<Node> path1 = new ArrayList<>();
ArrayList<Node> path2 = new ArrayList<>();
getPath(root, n1, path1);
getPath(root, n2, path2);
//Last Common Ancestor.
int i = 0;
for (; i < path1.size() && i < path2.size(); i++) {
if (path1.get(i) != path2.get(i)) {
break;
}
}
/*Last Equal Node will be on at i - 1st node.
Why? Because, whenever this loop will break, the 'i' th Node is pointing towards UNEQUAL Node.*/
Node lca = path1.get(i - 1);
return lca;
}
//Approach-2: Lowest Common Ancestor (LCA). TC & SC: O(n)
public static Node lca2(Node root, int n1, int n2) {
//Base Case is included in this sentence.
if (root == null || root.data == n1 || root.data == n2) {
return root;
}
Node leftLca = lca2(root.left, n1, n2);
Node rightLca = lca2(root.right, n1, n2);
//CASE: leftLCA = value & rightLCA = null
if (rightLca == null) {
return leftLca;
}
//CASE: leftLCA = null & rightLCA = value
if (leftLca == null) {
return rightLca;
}
return root;
}
//Minimum Distance between Nodes. O(n)
public static int lcaDistance(Node root, int n) {
if (root == null) { //Base Case.
return -1;
}
if (root.data == n) { //If Root.data itself is equals to n.
return 0;
}
int leftDistance = lcaDistance(root.left, n); //Searching on Left Subtree.
int rightDistance = lcaDistance(root.right, n); //Searching on Right Subtree.
if (leftDistance == -1 && rightDistance == -1) { //If both subtrees returns -1 -> return -1.
return -1;
} else if (leftDistance == -1) { //Case: If N found on Left Subtree.
return rightDistance + 1;
} else { //Case: If N found on Right Subtree.
return leftDistance + 1;
}
}
public static int minimumDistance(Node root, int n1, int n2) {
Node lca = lca2(root, n1, n2); //Calculating Lowest Common Ancestor.
int distance1 = lcaDistance(lca, n1);
int distance2 = lcaDistance(lca, n2);
return distance1 + distance2;
}
//Kth Ancestor of node. O(n)
public static int kthAncestor(Node root, int n, int k) {
if (root == null) { //Base Case.
return -1;
}
if (root.data == n) { //Checking root itself == N or NOT.
return 0;
}
//If N not found on root then find it on Left & Right Subtrees.
int leftDistance = kthAncestor(root.left, n, k);
int rightDistance = kthAncestor(root.right, n, k);
if (leftDistance == -1 && rightDistance == -1) { //If Left and Right Subtrees return -1 -> return -1
return -1;
}
int maximum = Math.max(leftDistance, rightDistance); //Find max distance between Left & Right Subtree.
if (maximum + 1 == k) { //Checking max & myself count that is 1 == k or NOT.
System.out.print(root.data);
}
return maximum + 1;
}
//Transform to Sum Tree. O(n)
public static int transformSumTree(Node root) {
if (root == null) { //Base Case.
return 0;
}
int leftChild = transformSumTree(root.left); //Old Left Child Value.
int rightChild = transformSumTree(root.right); //Old Right Child Value.
int data = root.data; //Storing value of root in 'data' variable.
int newLeft = root.left == null ? 0 : root.left.data;
int newRight = root.right == null ? 0 : root.right.data;
root.data = (newLeft + leftChild) + (newRight + rightChild);
return data;
}
public static void main(String[] args) {
// int[] nodes = {1, 2, 4, -1, -1, 5, -1, -1, 3, -1, 6, -1, -1};
// BinaryTree tree = new BinaryTree();
// Node root = buildTree(nodes);
// System.out.println(root.data);
// preorder(root);
// inorder(root);
// postorder(root);
// levelOrder(root);
//Height of Tree. O(n)
/*
1
/ \
2 3
/ \ / \
4 5 6 7
Expected Sum Tree is:
27
/ \
9 13
/ \ / \
0 0 0 0
*/
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
// System.out.print(diameter(root).diameter);
/*
2
/ \
4 5
*/
/*Node subRoot = new Node(2);
subRoot.left = new Node(4);
subRoot.right = new Node(5);*/
// topView(root);
// KthLevel(root, 1, 3);
// int n = 4, k = 1;
// kthAncestor(root, n, k);
transformSumTree(root);
preorder(root);
}
}