-
Notifications
You must be signed in to change notification settings - Fork 0
/
convdata.py
291 lines (245 loc) · 14.3 KB
/
convdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from python_util.data import *
import numpy.random as nr
import numpy as n
import random as r
from time import time
from threading import Thread
from math import sqrt
import sys
#from matplotlib import pylab as pl
from PIL import Image
from StringIO import StringIO
from time import time
import itertools as it
class JPEGBatchLoaderThread(Thread):
def __init__(self, dp, batch_num, label_offset, list_out):
Thread.__init__(self)
self.list_out = list_out
self.label_offset = label_offset
self.dp = dp
self.batch_num = batch_num
@staticmethod
def load_jpeg_batch(rawdics, dp, label_offset):
if type(rawdics) != list:
rawdics = [rawdics]
nc_total = sum(len(r['data']) for r in rawdics)
jpeg_strs = list(it.chain.from_iterable(rd['data'] for rd in rawdics))
labels = list(it.chain.from_iterable(rd['labels'] for rd in rawdics))
img_mat = n.empty((nc_total * dp.data_mult, dp.inner_pixels * dp.num_colors), dtype=n.float32)
lab_mat = n.zeros((nc_total, dp.get_num_classes()), dtype=n.float32)
dp.convnet.libmodel.decodeJpeg(jpeg_strs, img_mat, dp.img_size, dp.inner_size, dp.test, dp.multiview)
lab_vec = n.tile(n.asarray([(l[nr.randint(len(l))] if len(l) > 0 else -1) + label_offset for l in labels], dtype=n.single).reshape((nc_total, 1)), (dp.data_mult,1))
for c in xrange(nc_total):
lab_mat[c, [z + label_offset for z in labels[c]]] = 1
lab_mat = n.tile(lab_mat, (dp.data_mult, 1))
return {'data': img_mat[:nc_total * dp.data_mult,:],
'labvec': lab_vec[:nc_total * dp.data_mult,:],
'labmat': lab_mat[:nc_total * dp.data_mult,:]}
def run(self):
rawdics = self.dp.get_batch(self.batch_num)
p = JPEGBatchLoaderThread.load_jpeg_batch(rawdics,
self.dp,
self.label_offset)
self.list_out.append(p)
class ColorNoiseMakerThread(Thread):
def __init__(self, pca_stdevs, pca_vecs, num_noise, list_out):
Thread.__init__(self)
self.pca_stdevs, self.pca_vecs = pca_stdevs, pca_vecs
self.num_noise = num_noise
self.list_out = list_out
def run(self):
noise = n.dot(nr.randn(self.num_noise, 3).astype(n.single) * self.pca_stdevs.T, self.pca_vecs.T)
self.list_out.append(noise)
class ImageDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean'].astype(n.single)
self.color_eig = self.batch_meta['color_pca'][1].astype(n.single)
self.color_stdevs = n.c_[self.batch_meta['color_pca'][0].astype(n.single)]
self.color_noise_coeff = dp_params['color_noise']
self.num_colors = 3
self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors))
self.mini = dp_params['minibatch_size']
self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.img_size
self.inner_pixels = self.inner_size **2
self.border_size = (self.img_size - self.inner_size) / 2
self.multiview = dp_params['multiview_test'] and test
self.num_views = 5*2
self.data_mult = self.num_views if self.multiview else 1
self.batch_size = self.batch_meta['batch_size']
self.label_offset = 0 if 'label_offset' not in self.batch_meta else self.batch_meta['label_offset']
self.scalar_mean = dp_params['scalar_mean']
# Maintain pointers to previously-returned data matrices so they don't get garbage collected.
self.data = [None, None] # These are pointers to previously-returned data matrices
self.loader_thread, self.color_noise_thread = None, None
self.convnet = dp_params['convnet']
self.num_noise = self.batch_size
self.batches_generated, self.loaders_started = 0, 0
self.data_mean_crop = self.data_mean.reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((1,3*self.inner_size**2))
if self.scalar_mean >= 0:
self.data_mean_crop = self.scalar_mean
def showimg(self, img):
from matplotlib import pylab as pl
pixels = img.shape[0] / 3
size = int(sqrt(pixels))
img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1)
pl.imshow(img, interpolation='nearest')
pl.show()
def get_data_dims(self, idx=0):
if idx == 0:
return self.inner_size**2 * 3
if idx == 2:
return self.get_num_classes()
return 1
def start_loader(self, batch_idx):
self.load_data = []
self.loader_thread = JPEGBatchLoaderThread(self,
self.batch_range[batch_idx],
self.label_offset,
self.load_data)
self.loader_thread.start()
def start_color_noise_maker(self):
color_noise_list = []
self.color_noise_thread = ColorNoiseMakerThread(self.color_stdevs, self.color_eig, self.num_noise, color_noise_list)
self.color_noise_thread.start()
return color_noise_list
def set_labels(self, datadic):
pass
def get_data_from_loader(self):
if self.loader_thread is None:
self.start_loader(self.batch_idx)
self.loader_thread.join()
self.data[self.d_idx] = self.load_data[0]
self.start_loader(self.get_next_batch_idx())
else:
# Set the argument to join to 0 to re-enable batch reuse
self.loader_thread.join()
if not self.loader_thread.is_alive():
self.data[self.d_idx] = self.load_data[0]
self.start_loader(self.get_next_batch_idx())
#else:
# print "Re-using batch"
self.advance_batch()
def add_color_noise(self):
# At this point the data already has 0 mean.
# So I'm going to add noise to it, but I'm also going to scale down
# the original data. This is so that the overall scale of the training
# data doesn't become too different from the test data.
s = self.data[self.d_idx]['data'].shape
cropped_size = self.get_data_dims(0) / 3
ncases = s[0]
if self.color_noise_thread is None:
self.color_noise_list = self.start_color_noise_maker()
self.color_noise_thread.join()
self.color_noise = self.color_noise_list[0]
self.color_noise_list = self.start_color_noise_maker()
else:
self.color_noise_thread.join(0)
if not self.color_noise_thread.is_alive():
self.color_noise = self.color_noise_list[0]
self.color_noise_list = self.start_color_noise_maker()
self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases*3, cropped_size))
self.color_noise = self.color_noise[:ncases,:].reshape((3*ncases, 1))
self.data[self.d_idx]['data'] += self.color_noise * self.color_noise_coeff
self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases, 3* cropped_size))
self.data[self.d_idx]['data'] *= 1.0 / (1.0 + self.color_noise_coeff) # <--- NOTE: This is the slow line, 0.25sec. Down from 0.75sec when I used division.
def get_next_batch(self):
self.d_idx = self.batches_generated % 2
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.get_data_from_loader()
# Subtract mean
self.data[self.d_idx]['data'] -= self.data_mean_crop
if self.color_noise_coeff > 0 and not self.test:
self.add_color_noise()
self.batches_generated += 1
return epoch, batchnum, [self.data[self.d_idx]['data'].T, self.data[self.d_idx]['labvec'].T, self.data[self.d_idx]['labmat'].T]
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data, add_mean=True):
mean = self.data_mean_crop.reshape((data.shape[0],1)) if data.flags.f_contiguous or self.scalar_mean else self.data_mean_crop.reshape((data.shape[0],1))
return n.require((data + (mean if add_mean else 0)).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class CIFARDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.img_size = 32
self.num_colors = 3
self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.batch_meta['img_size']
self.border_size = (self.img_size - self.inner_size) / 2
self.multiview = dp_params['multiview_test'] and test
self.num_views = 9
self.scalar_mean = dp_params['scalar_mean']
self.data_mult = self.num_views if self.multiview else 1
self.data_dic = []
for i in batch_range:
self.data_dic += [unpickle(self.get_data_file_name(i))]
self.data_dic[-1]["labels"] = n.require(self.data_dic[-1]['labels'], dtype=n.single)
self.data_dic[-1]["labels"] = n.require(n.tile(self.data_dic[-1]["labels"].reshape((1, n.prod(self.data_dic[-1]["labels"].shape))), (1, self.data_mult)), requirements='C')
self.data_dic[-1]['data'] = n.require(self.data_dic[-1]['data'] - self.scalar_mean, dtype=n.single, requirements='C')
self.cropped_data = [n.zeros((self.get_data_dims(), self.data_dic[0]['data'].shape[1]*self.data_mult), dtype=n.single) for x in xrange(2)]
self.batches_generated = 0
self.data_mean = self.batch_meta['data_mean'].reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1))
def get_next_batch(self):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
bidx = batchnum - self.batch_range[0]
cropped = self.cropped_data[self.batches_generated % 2]
self.__trim_borders(self.data_dic[bidx]['data'], cropped)
cropped -= self.data_mean
self.batches_generated += 1
return epoch, batchnum, [cropped, self.data_dic[bidx]['labels']]
def get_data_dims(self, idx=0):
return self.inner_size**2 * self.num_colors if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
def __trim_borders(self, x, target):
y = x.reshape(self.num_colors, self.img_size, self.img_size, x.shape[1])
if self.test: # don't need to loop over cases
if self.multiview:
start_positions = [(0,0), (0, self.border_size), (0, self.border_size*2),
(self.border_size, 0), (self.border_size, self.border_size), (self.border_size, self.border_size*2),
(self.border_size*2, 0), (self.border_size*2, self.border_size), (self.border_size*2, self.border_size*2)]
end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions]
for i in xrange(self.num_views):
target[:,i * x.shape[1]:(i+1)* x.shape[1]] = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:].reshape((self.get_data_dims(),x.shape[1]))
else:
pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now
target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1]))
else:
for c in xrange(x.shape[1]): # loop over cases
startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1)
endY, endX = startY + self.inner_size, startX + self.inner_size
pic = y[:,startY:endY,startX:endX, c]
if nr.randint(2) == 0: # also flip the image with 50% probability
pic = pic[:,:,::-1]
target[:,c] = pic.reshape((self.get_data_dims(),))
class DummyConvNetLogRegDataProvider(LabeledDummyDataProvider):
def __init__(self, data_dim):
LabeledDummyDataProvider.__init__(self, data_dim)
self.img_size = int(sqrt(data_dim/3))
def get_next_batch(self):
epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self)
dic = {'data': dic[0], 'labels': dic[1]}
print dic['data'].shape, dic['labels'].shape
return epoch, batchnum, [dic['data'], dic['labels']]
# Returns the dimensionality of the two data matrices returned by get_next_batch
def get_data_dims(self, idx=0):
return self.batch_meta['num_vis'] if idx == 0 else 1