-
Notifications
You must be signed in to change notification settings - Fork 19
/
b-17-Siniflandirma_Odev.py
129 lines (96 loc) · 3.71 KB
/
b-17-Siniflandirma_Odev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 15 04:18:20 2018
@author: regkr
"""
"""
Iris veri kümesi ünlü ve bilinmesi gerekn bir veri kümesidir.
Bu veri kümesi üzerindeki problemleri en iyi şekilde nasıl
çözeceğimizi öğrenmemiz gerekir.
Ben veriyi excel dosyasından yükledim ama bu veri
sci-kit learn kütüphanesi içinde hazır bulunuyor.
Iris ve başka veri kümeleri için sklearn sitesinden
aratabilirsiniz.
"""
#1. kutuphaneler
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix
#2. Veri Onisleme
#2.1. Veri Yukleme
veriler = pd.read_excel('Iris.xls')
#pd.read_csv("veriler.csv")
x = veriler.iloc[:,1:4].values #bağımsız değişkenler
y = veriler.iloc[:,4:].values #bağımlı değişken
#verilerin egitim ve test icin bolunmesi
from sklearn.cross_validation import train_test_split
x_train, x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,
random_state=0)
y_train = y_train.ravel()
#verilerin olceklenmesi
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(x_train)
X_test = sc.transform(x_test)
# Buradan itibaren sınıflandırma algoritmaları başlar
# 1. Logistic Regression
from sklearn.linear_model import LogisticRegression
logr = LogisticRegression(random_state=0)
logr.fit(x_train,y_train) #egitim
y_pred = logr.predict(x_test) #tahmin
#karmasiklik matrisi
cmlin = confusion_matrix(y_test,y_pred)
print("SONUÇLAR:\n-------------------------------")
print("Lineer Model Karmaşıklık Matrisi:")
print(cmlin,"\n-------------------------------")
# 2. KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, metric="minkowski")
knn.fit(x_train,y_train)
y_pred = knn.predict(x_test)
cm_knn = confusion_matrix(y_test,y_pred)
print("KNN Karmaşıklık Matrisi:")
print(cm_knn,"\n-------------------------------")
# 3. SVC (SVM classifier)
from sklearn.svm import SVC
svc = SVC(kernel='rbf')
svc.fit(x_train,y_train)
y_pred = svc.predict(x_test)
cm_svc = confusion_matrix(y_test,y_pred)
print('SVC Karmaşıklık Matrisi:')
print(cm_svc,"\n-------------------------------")
# 4. NAive Bayes
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train, y_train)
y_pred = gnb.predict(x_test)
cm_gnb = confusion_matrix(y_test,y_pred)
print('GNB Karmaşıklık Matrisi:')
print(cm_gnb,"\n-------------------------------")
# 5. Decision tree
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion = 'gini')
dtc.fit(x_train,y_train)
y_pred = dtc.predict(x_test)
cm_dt = confusion_matrix(y_test,y_pred)
print('DTC Karmaşıklık Matrisi:')
print(cm_dt,"\n-------------------------------")
# 6. Random Forest
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=11, criterion = 'gini')
rfc.fit(x_train,y_train)
y_pred = rfc.predict(x_test)
cm_rfc = confusion_matrix(y_test,y_pred)
print('RFC Karmaşıklık Matrisi:')
print(cm_rfc,"\n-------------------------------")
# 7. ROC , TPR, FPR değerleri
#proba tahmin olsaılıkları matrisidir. yüzde kaç erkektir örneğin. (ex: 0.2)
y_proba = rfc.predict_proba(X_test)
from sklearn import metrics
fpr , tpr , thold = metrics.roc_curve(y_test,y_proba[:,0],
pos_label='Iris-setosa')
print("False Positive Rate:\n",fpr,"\n-------------------------------")
print("True Positive Rate:\n",tpr,"\n-------------------------------")
print("Treshold:\n",thold,"\n-------------------------------")