-
Notifications
You must be signed in to change notification settings - Fork 0
/
Eval.v
235 lines (214 loc) · 6.62 KB
/
Eval.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
From ExtensibleCompiler.Theory Require Import
Algebra
Environment
Functor
ProgramAlgebra
SubFunctor
Sum1
UniversalProperty
.
Local Open Scope SubFunctor.
Local Open Scope Sum1.
(** [ValueFix] is just an alias for [WellFormedValue], but it makes it so that
code that depends on wrapping values can use this, in case we ever need to
change what type of fixed point to use. *)
Definition ValueFix
V `{Functor V}
:= WellFormedValue V.
Definition EvalResult
V `{Functor V}
:= Environment (ValueFix V) -> ValueFix V.
Variant ForEval := .
Definition eval
{L V}
`{Functor L} `{Functor V}
`{Eval__L : forall {T}, ProgramAlgebra ForEval L T (EvalResult V)}
: Fix L -> EvalResult V
:= mendlerFold (fun _ => programAlgebra).
(* Class MendlerEval F R `{Functor F} `{Functor R} := *)
(* { *)
(* evalMendlerAlgebra : MendlerAlgebra F (Fix R); *)
(* }. *)
(* Global *)
(* Instance *)
(* MendlerEvalSum1 *)
(* F G R *)
(* `{Functor F} `{Functor G} `{Functor R} *)
(* `{MFR : MendlerEval F R} `{MGR : MendlerEval G R} *)
(* : MendlerEval (F + G) R *)
(* | 2 := *)
(* {| *)
(* evalMendlerAlgebra := *)
(* fun A rec v => *)
(* match v with *)
(* | inl1 fa => evalMendlerAlgebra A rec fa *)
(* | inr1 ga => evalMendlerAlgebra A rec ga *)
(* end; *)
(* |}. *)
(* Global *)
(* Instance *)
(* MendlerEvalSum1OutputL *)
(* F G *)
(* `{Functor F} `{Functor G} *)
(* : MendlerEval F (F + G) *)
(* | 3 := *)
(* {| *)
(* evalMendlerAlgebra := fun A rec v => wrapF (inl1 (fmap rec v)); *)
(* |}. *)
(* Global *)
(* Instance *)
(* MendlerEvalSum1OutputR *)
(* F G *)
(* `{Functor F} `{Functor G} *)
(* : MendlerEval G (F + G) *)
(* | 4 := *)
(* {| *)
(* evalMendlerAlgebra := fun A rec v => wrapF (inr1 (fmap rec v)); *)
(* |}. *)
(* Global Instance MendlerEvalRefl F `{Functor F} : MendlerEval F F *)
(* | 1 := *)
(* {| *)
(* evalMendlerAlgebra := fun A rec v => wrapF (fmap rec v); *)
(* |}. *)
(* (** *)
(* [T] stands for the recursive occurence. *)
(* [F] stands for the input functor. *)
(* [A] stands for the output functor. *)
(* *) *)
(* Class MixinEval *)
(* T F A *)
(* `{Functor T} `{Functor F} `{Functor A} *)
(* := { evalMixinAlgebra : MixinAlgebra F (Fix T) (Fix A) }. *)
(* Global *)
(* Instance *)
(* MixinEvalSum1 *)
(* T F G R *)
(* `(MFR : MixinEval T F R) `(MGR : MixinEval T G R) *)
(* : MixinEval T (F + G) R *)
(* | 2 := *)
(* {| *)
(* evalMixinAlgebra := *)
(* fun rec v S alg => *)
(* match v with *)
(* | inl1 l => evalMixinAlgebra rec l S alg *)
(* | inr1 r => evalMixinAlgebra rec r S alg *)
(* end; *)
(* |}. *)
(* Global *)
(* Instance *)
(* MixinEvalSum1OutputL *)
(* T F G *)
(* `{Functor T} `{Functor F} `{Functor G} *)
(* : MixinEval T F (F + G) *)
(* | 3 := *)
(* {| *)
(* evalMixinAlgebra := fun rec v S alg => mendlerFold alg (wrapF (inl1 (fmap rec v))); *)
(* |}. *)
(* Global *)
(* Instance *)
(* MixinEvalSum1OutputR *)
(* T F G *)
(* `{Functor T} `{Functor F} `{Functor G} *)
(* : MixinEval T G (F + G) *)
(* | 3 := *)
(* {| *)
(* evalMixinAlgebra := fun rec v S alg => mendlerFold alg (wrapF (inr1 (fmap rec v))); *)
(* |}. *)
(* Fixpoint boundedFix *)
(* {A} {F} `{Functor F} *)
(* (n : nat) *)
(* (fM : MixinAlgebra F (Fix F) A) *)
(* (default : A) *)
(* (e : Fix F) *)
(* : A *)
(* := *)
(* match n with *)
(* | 0 => default *)
(* | S n => fM (boundedFix n fM default) (unwrapF e) *)
(* end. *)
(* Class WellFormedMendlerEval *)
(* F G A *)
(* `{MFA : MendlerEval F A} `{MGA : MendlerEval G A} *)
(* `{S : SubFunctor F G} *)
(* := *)
(* { *)
(* wellFormedMendlerEval : forall (R : Set) (rec : R -> Fix A) (e : F R), *)
(* evalMendlerAlgebra R rec (inj e) = evalMendlerAlgebra R rec e; *)
(* }. *)
(* Global Instance WellFormedMendlerEvalLeft *)
(* F G H A *)
(* `{Functor F} `{Functor G} `{Functor A} *)
(* `{MFA : ! MendlerEval F A} *)
(* `{MGA : ! MendlerEval G A} *)
(* `{S : ! SubFunctor F G} *)
(* `(WF : ! WellFormedMendlerEval F G A) *)
(* `{Functor H} *)
(* `(HA : ! MendlerEval H A) *)
(* : WellFormedMendlerEval F (G + H) A. *)
(* Proof. *)
(* constructor. *)
(* intros R rec e. *)
(* unfold evalMendlerAlgebra. *)
(* unfold MendlerEvalSum1. *)
(* apply wellFormedMendlerEval. *)
(* Defined. *)
(* Global Instance WellFormedMendlerEvalRight *)
(* F H A *)
(* `{Functor F} `{Functor H} `{Functor A} *)
(* `{MFA : ! MendlerEval F A} *)
(* `{MHA : ! MendlerEval H A} *)
(* `{S : ! SubFunctor F H} *)
(* `(WF : ! WellFormedMendlerEval F H A) *)
(* G `{Functor G} *)
(* `(GA : ! MendlerEval G A) *)
(* : WellFormedMendlerEval F (G + H) A. *)
(* Proof. *)
(* constructor. *)
(* intros R rec e. *)
(* unfold evalMendlerAlgebra. *)
(* unfold MendlerEvalSum1. *)
(* apply wellFormedMendlerEval. *)
(* Defined. *)
(* Class WellFormedMixinEval *)
(* T F G A *)
(* `{Functor T} `{Functor F} `{Functor G} `{Functor A} *)
(* `{TFA : ! MixinEval T F A} `{TGA : ! MixinEval T G A} *)
(* `{S : ! SubFunctor F G} *)
(* := *)
(* { *)
(* wellFormedMixinEval : forall (rec : Fix T -> Fix A) (e : F (Fix T)), *)
(* evalMixinAlgebra rec (inj e) = evalMixinAlgebra rec e *)
(* ; *)
(* }. *)
(* Global Instance WellFormedMixinEvalLeft *)
(* T F G H A *)
(* `{Functor T} `{Functor F} `{Functor G} `{Functor H} `{Functor A} *)
(* `{MFA : ! MixinEval T F A} *)
(* `{MGA : ! MixinEval T G A} *)
(* `{S : ! SubFunctor F G} *)
(* `(WF : WellFormedMixinEval T F G A) *)
(* `(HA : ! MixinEval T H A) *)
(* : WellFormedMixinEval T F (G + H) A. *)
(* Proof. *)
(* constructor. *)
(* intros rec e. *)
(* unfold evalMixinAlgebra. *)
(* unfold MixinEvalSum1. *)
(* apply wellFormedMixinEval. *)
(* Defined. *)
(* Global Instance WellFormedMixinEvalRight *)
(* T F G H A *)
(* `{Functor T} `{Functor F} `{Functor G} `{Functor H} `{Functor A} *)
(* `{MFA : ! MixinEval T F A} *)
(* `{MHA : ! MixinEval T H A} *)
(* `{S : ! SubFunctor F H} *)
(* `(WF : WellFormedMixinEval T F H A) *)
(* `(GA : ! MixinEval T G A) *)
(* : WellFormedMixinEval T F (G + H) A. *)
(* Proof. *)
(* constructor. *)
(* intros rec e. *)
(* unfold evalMixinAlgebra. *)
(* unfold MixinEvalSum1. *)
(* apply wellFormedMixinEval. *)
(* Defined. *)