Skip to content

Latest commit

 

History

History
107 lines (90 loc) · 3.07 KB

README.md

File metadata and controls

107 lines (90 loc) · 3.07 KB

SUnbox

SUnbox is an open-source SBox analysis utility written in Python. It provides a set of commands to automatically analyze substitution boxes (SBoxes), mainly used in cryptography. The utility aims to assist in reverse engineering SBoxes by computing various tables and providing relevant information.

Features

  • Compute the Linear Approximation Table (LAT) of the SBoxes
  • Compute the Difference Distribution Table (DDT) of the SBoxes
  • Compute the Autocorrelation Table (ACT) of the SBoxes
  • Perform automatic analysis of the SBoxes

Installation

git clone https://github.com/PoustouFlan/SUnbox.git
cd SUnbox
pip install -r requirements.txt

Usage

The utility can be used by running the main.py script with appropriate command-line arguments. Here are the available options:

usage: main.py [-h] -in [INPUT_FILES ...] [-lat] [-ddt]
               [-act] [-auto] [-format {ansi,csv,png}]
               [-out OUTPUT]
  • -in path/to/your/sboxes: specify the SBoxes to analyze. The files should contain only the integers representing the corresponding SBox, in either binary, decimal or hexadecimal form.
  • -lat: use this option to display the Linear Approximation Table of all the SBoxes
  • -ddt: use this option to display the Difference Distribution Table of all the SBoxes
  • -act: use this option to display the Autocorrelation Table of all the SBoxes
  • -format {ansi, csv, png}: use this option to specify the format of the table to be displayed.
  • -out path/to/folder: use this option to specify the output folder for the tables. If not specified, everything is printed on standard output.
  • -auto: use this option to perform an automatic analysis of all the SBoxes. It will display any relevant information.

Examples

Many example SBoxes can be found in the examples folder. You can add your own SBox using a similar format.

$ python main.py -in examples/He2002 -ddt -format csv
16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,0,0,0,2,0,2,4,0,4,2,0,0,
0,0,0,2,0,6,2,2,0,2,0,0,0,0,2,0,
0,0,2,0,2,0,0,0,0,4,2,0,2,0,0,4,
0,0,0,2,0,0,6,0,0,2,0,4,2,0,0,0,
0,4,0,0,0,2,2,0,0,0,4,0,2,0,0,2,
0,0,0,4,0,4,0,0,0,0,0,0,2,2,2,2,
0,0,2,2,2,0,2,0,0,2,2,0,0,0,0,4,
0,0,0,0,0,0,2,2,0,0,0,4,0,4,2,2,
0,2,0,0,2,0,0,4,2,0,2,2,2,0,0,0,
0,2,2,0,0,0,0,0,6,0,0,2,0,0,4,0,
0,0,8,0,0,2,0,2,0,0,0,0,0,2,0,2,
0,2,0,0,2,2,2,0,0,0,0,2,0,6,0,0,
0,4,0,0,0,0,0,4,2,0,2,0,2,0,2,0,
0,0,2,4,2,0,0,0,6,0,0,0,0,0,2,0,
0,2,0,0,6,0,0,0,0,4,0,2,0,0,2,0,

$ python main.py -in examples/affine -auto
Automatic analysis.
SBox is affine! It is equivalent to the following matrices A, B:
0 0 0 1 0 1 0 0       0
1 0 0 1 1 1 1 0       1
0 1 0 0 1 1 1 1       0
1 0 1 1 0 0 1 1       1
0 1 0 0 1 1 0 1       0
1 0 1 0 0 1 1 0       1
0 1 0 1 0 0 1 1       0
0 0 1 0 1 0 0 1       0
That is, SBox(x) = A·x ⊕ B for all x. (x represented as a column binary vector)

License

SUnbox is released under the MIT License

Contributing

Contributions are welcome! If you encounter any issues or have suggestions for improvement, please open an issue or submit a pull request.