forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
115 lines (110 loc) · 3.34 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Collections:
- Name: SOLO
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- Convolution
- ResNet
Paper: https://arxiv.org/abs/1912.04488
README: configs/solo/README.md
Models:
- Name: decoupled_solo_r50_fpn_1x_coco
In Collection: SOLO
Config: configs/solo/decoupled_solo_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.8
Epochs: 12
inference time (ms/im):
- value: 116.4
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1333, 800)
Results:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 33.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_1x_coco/decoupled_solo_r50_fpn_1x_coco_20210820_233348-6337c589.pth
- Name: decoupled_solo_r50_fpn_3x_coco
In Collection: SOLO
Config: configs/solo/decoupled_solo_r50_fpn_3x_coco.py
Metadata:
Training Memory (GB): 7.9
Epochs: 36
inference time (ms/im):
- value: 117.2
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1333, 800)
Results:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_3x_coco/decoupled_solo_r50_fpn_3x_coco_20210821_042504-7b3301ec.pth
- Name: decoupled_solo_light_r50_fpn_3x_coco
In Collection: SOLO
Config: configs/solo/decoupled_solo_light_r50_fpn_3x_coco.py
Metadata:
Training Memory (GB): 2.2
Epochs: 36
inference time (ms/im):
- value: 35.0
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (852, 512)
Results:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 32.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_light_r50_fpn_3x_coco/decoupled_solo_light_r50_fpn_3x_coco_20210906_142703-e70e226f.pth
- Name: solo_r50_fpn_3x_coco
In Collection: SOLO
Config: configs/solo/solo_r50_fpn_3x_coco.py
Metadata:
Training Memory (GB): 7.4
Epochs: 36
inference time (ms/im):
- value: 94.2
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1333, 800)
Results:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 35.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth
- Name: solo_r50_fpn_1x_coco
In Collection: SOLO
Config: configs/solo/solo_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 8.0
Epochs: 12
inference time (ms/im):
- value: 95.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1333, 800)
Results:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 33.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_1x_coco/solo_r50_fpn_1x_coco_20210821_035055-2290a6b8.pth