-
Notifications
You must be signed in to change notification settings - Fork 1
/
humidity.py
441 lines (363 loc) · 15.9 KB
/
humidity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import numpy as np
import pickle
from GTC import ureal,exp,log,pow,rp,type_a
class gen2500:
def __init__(self,uncertainty_mode=False):
self.Ps_input=[] #Saturation pressure PSI
self.Ts_input=[] #Saturation temperature C
self.Pc_input=[] #Chamber pressure PSI
self.Tc_input=[] #Chamber temperature C
self.Ps=[] #Saturation pressure Pa
self.Ts=[] #Saturation temperature K
self.Pc=[] #Chamber pressure Pa
self.Tc=[] #Chamber temperature K
self.flow=20 # air flow in liters/min
self.eta=1 #saturation efficiency coefficient
self.k=2
self.RH=[]
self.DewPoint=[]
self.SVP_Tc=[] #saturation vapour pressure for temperature of chamber
self.SVP_Ts = [] # saturation vapour pressure for temperature of saturator
self.f_TcPc=[] #enhancement factor for chamber pressure and temperature
self.f_TsPs = [] # enhancement factor for chamber pressure and temperature
#data for GTC uncertainty mode
self.uncertainty_mode=uncertainty_mode # True if GTC uncertainty calculations available
self.Ps_u=0 #Saturation pressure standard uncertainty
self.Ts_u=0 #Saturation temperature standard uncertainty
self.Pc_u=0 #Chamber pressure standard uncertainty
self.Tc_u=0 #Chamber pressure standard uncertainty
self.eta_u = 0 ##saturation efficiency coefficient standard uncertainty, 1%=0.01
self.Ps_GTC=ureal(0,0) #Saturation pressure GTC number
self.Ts_GTC=ureal(0,0) #Saturation temperature GTC number
self.Pc_GTC=ureal(0,0) #Chamber pressure GTC number
self.Tc_GTC=ureal(0,0) #Chamber pressure GTC number
self.RH_GTC=ureal(0,0) #GTC number
self.DewPoint_GTC=ureal(0,0) #GTC number
self.SVP_Tc_GTC=ureal(0,0) #saturation vapour pressure for temperature of chamber GTC number
self.SVP_Ts_GTC=ureal(0,0) # saturation vapour pressure for temperature of saturator GTC number
self.f_TcPc_GTC=ureal(0,0) #enhancement factor for chamber pressure and temperature GTC number
self.f_TsPs_GTC=ureal(0,0) # enhancement factor for chamber pressure and temperature GTC number
self.eta_u_GTC=ureal(0,0)
# reset data for experiment
self.N=0 # number of iterations
self.history=[]
self.mean=0
self.std=0
#initiate new object for storage VISA commands
self.VISA=VISA()
def set_values(self,Ps_PSI,Ts_C,Pc_PSI,Tc_C,flow=20,Ps_u_PSI=0,Ts_u_C=0,Pu_u__PSI=0,Tc_u_C=0, eta=1,eta_u=0):
#print('Ts_C=',Ts_C)
#write initial values to object
self.Ps_input=Ps_PSI
self.Ts_input=Ts_C
self.Pc_input=Pc_PSI
self.Tc_input=Tc_C
self.flow=flow
self.eta=eta
self.eta_u=eta_u
#convert initial values to proper format -! values in PSI and Celsius !!!
self.Ps_GTC = Ps_PSI if conv.isGTC(Ps_PSI) else ureal(Ps_PSI,Ps_u_PSI,label='Ps')
self.Ts_GTC = Ts_C if conv.isGTC(Ts_C) else ureal(Ts_C, Ts_u_C, label='Ts')
self.Pc_GTC = Pc_PSI if conv.isGTC(Pc_PSI) else ureal(Pc_PSI, Pc_u_PSI, label='Pc')
self.Tc_GTC = Tc_C if conv.isGTC(Tc_C) else ureal(Tc_C, Ts_u_C, label='Tc')
self.eta_u_GTC = eta if conv.isGTC(eta) else ureal(eta, eta_u, label='eta')
#conversion of units
self.Ps_GTC=conv.PSI2Pa(self.Ps_GTC)
self.Ts_GTC=conv.Celsius2Kelvin(self.Ts_GTC)
self.Pc_GTC=conv.PSI2Pa(self.Pc_GTC)
self.Tc_GTC=conv.Celsius2Kelvin(self.Tc_GTC)
self.DewPoint=[]
self.SVP_Ts_GTC = conv.calculate_SVP(self.Ts_GTC) # saturation vapour pressure for temperature of saturator
self.SVP_Tc_GTC=conv.calculate_SVP(self.Tc_GTC) #saturation vapour pressure for temperature of chamber
self.f_TsPs_GTC =conv.calculate_enh_fact(self.Ts_GTC,self.Ps_GTC) # enhancement factor for saturator pressure and temperature
self.f_TcPc_GTC = conv.calculate_enh_fact(self.Tc_GTC, self.Pc_GTC) # enhancement factor for chamber pressure and temperature
self.RH_GTC=conv.calculate_RH_from_PT(self.Ps_GTC,self.Ts_GTC,self.Pc_GTC,self.Tc_GTC,self.eta_u_GTC)
self.DewPoint_GTC=conv.calculate_DewPoint2RH(self.RH_GTC,self.Tc_GTC)
self.SVP_Ts=self.SVP_Ts_GTC.x
self.SVP_Tc = self.SVP_Tc_GTC.x
self.f_TsPs=self.f_TsPs_GTC.x
self.f_TsPs = self.f_TsPs_GTC.x
self.RH=self.RH_GTC.x
self.DewPoint=self.DewPoint_GTC.x
#print('self.SVP_Ts=', self.SVP_Ts)
#print('self.SVP_Tc=',self.SVP_Tc)
#print('self.f_TsPs=', self.f_TsPs)
#print('self.f_TcPc=', self.f_TcPc)
#print('self.RH_GTC=', self.RH_GTC)
self.f_TcPc=[] #enhancement factor for chamber pressure and temperature
self.f_TsPs = [] # enhancement factor for chamber pressure and temperature
#self.RH = conv.calculate_RH_from_PT(self.Ps_GTC, self.Ts_GTC, self.Pc_GTC, self.Tc_GTC, self.eta_u_GTC)
# Data for experiment
self.N+=1
self.history.append(self.RH_GTC)
self.mean=type_a.mean(self.history)
self.std=type_a.standard_uncertainty(self.history) if self.N>1 else 0
#VISA Datas
def reset(self):
Pass
def summary(self):
print('\n------------------------------------------------------------')
print("Summary for humidity generator \n")
if self.uncertainty_mode==False:
print('Saturator pressure= {} PSI'.format(self.Ps_input))
print('Saturator temperature= {} C'.format(self.Ts_input))
print('Chamber pressure= {} PSI'.format(self.Pc_input))
print('Chamber temperature= {} C'.format(self.Tc_input))
print('\n--------------------- Calculations ---------------------')
print('Relative humidity RH= {} %'.format(self.RH_GTC.x))
print('Dew point = {} C'.format(self.DewPoint_GTC.x))
print('Saturation vapour pressure - saturator = {} Pa'.format(self.SVP_Ts_GTC.x))
print('Saturation vapour pressure - chamber = {} Pa'.format(self.SVP_Tc_GTC.x))
print('enhancement factor - saturator = {}'.format(self.f_TsPs_GTC.x))
print('enhancement factor - chamber = {}'.format(self.f_TcPc_GTC.x))
print('---------------------------------- ---------------------\n')
else:
print('Saturator pressure= {} Pa with standard uncertainty {}'.format(self.Ps_GTC.x,self.Ps_GTC.u))
print('Saturator temperature= {} K with standard uncertainty {}'.format(self.Ts_GTC.x, self.Ts_GTC.u))
print('Chamber pressure= {} Pa with standard uncertainty {}'.format(self.Pc_GTC.x,self.Pc_GTC.u))
print('Chamber temperature= {} K with standard uncertainty {}'.format(self.Tc_GTC.x, self.Tc_GTC.u))
print('\n--------------------- Calculations ---------------------')
print('Relative humidity RH= {} % with standard uncertainty {}'.format(self.RH_GTC.x,self.RH_GTC.u))
print('Dew point = {} C with standard uncertainty {}'.format(self.DewPoint_GTC.x,self.DewPoint_GTC.u))
print('Saturation vapour pressure - saturator = {} Pa with standard uncertainty {}'.format(self.SVP_Ts_GTC.x,self.SVP_Ts_GTC.u))
print('Saturation vapour pressure - chamber = {} Pa with standard uncertainty {}'.format(self.SVP_Tc_GTC.x,self.SVP_Tc_GTC.u))
print('enhancement factor - saturator = {} with standard uncertainty {}'.format(self.f_TsPs_GTC.x,self.f_TsPs_GTC.u))
print('enhancement factor - chamber = {} with standard uncertainty {}'.format(self.f_TcPc_GTC.x,self.f_TcPc_GTC.u))
print('---------------------------------- ---------------------\n')
print('------- Uncertainty budget for RH ---------------')
for cpt in rp.budget(self.RH_GTC):
print("{0.label}:{0.u:.3f}".format(cpt))
class VISA:
def __init__(self):
self.Adres=''
self.ReadActualValues_command='?'
self.ReadSetpoints_command='?SP'
self.ReaRunStatus_command='?R'
self.ReadErrorNumber_command='?ER'
self.ReadCabinetFanTemperature='?TF'
self.Start_command='RUN'
self.Stop_command='STOP'
self.PrintSystemData_command='PRINT'
self.ChangeRH_Pc_Setpoint_command='R1='
self.ChangeRH_PcTc_Setpoint_command = 'R2='
self.ChangeSaturationPressurePoint_command='PS='
self.ChangeSaturationTempSetpoint_command='TS='
self.ChangeFlowRateSetpoint_command='FS='
#system attributes
self.att_RH_Pc_actual=[]
self.att_RH_PcTc_actual = []
self.att_Ps_PSI_actual=[]
self.att_Ts_C_actual=[]
self.att_Pc_PSI_actual=[]
self.att_Tc_C_actual=[]
self.att_Flow_Rate_actual = []
self.att_System_Status=[]
self.att_RH_Pc_setpoint= []
self.att_RH_PcTc_setpoint = []
self.att_Ps_PSI_setpoint=[]
self.att_Flow_Rate_setpoint = []
self.att_Current_Control_Mode=[]
self.att_Errors=[]
self.att_Fan_Temperature=[]
#conversion functions for humidity calculations
class conv:
#checkin is type GTC uncertainty
def isGTC(value):
typeGTC=type(ureal(0,0))
if type(value)==typeGTC:
return True
else:
return False
#converting float type to GTC uncertainty type
def float2GTC(value):
if conv.isGTC(value):
return value
else:
return ureal(value,0)
#converting Pressure in PSI to Pascals
def PSI2Pa(PSI_value):
P=conv.float2GTC(PSI_value)
return 6894.7572931783*P
#converting Pressure in Pascals to PSI
def Pa2PSI(Pa_value):
P=conv.float2GTC(Pa_value)
return 0.0001450377*P
#converting temperature in Celsius degrees to Kelvin
def Kelvin2Celsius(K_value):
T = conv.float2GTC(K_value)
return T - 273.15
#converting temperature in Kelvin degrees to Celsius
def Celsius2Kelvin(C_value):
T = conv.float2GTC(C_value)
return T+273.15
#calculating saturation vapour pressure
def calculate_SVP(T_kelvin, method='wexler',medium='water'):
#possible options method='wexler' or 'sonntag', medium='water' or 'ice'
T=conv.float2GTC(T_kelvin)
SVP=ureal(0,0)
# WEXLER WATER
if (method=='wexler') and (medium=='water'):
s06=0 # sum of gi*T^(i-2) for i=0:6
g=np.zeros(8)
g[0]=-2.83657440e3
g[1] = -6.02807656e3
g[2] = 1.95426361e1
g[3] = -2.73783019e-2
g[4] = 1.62616980e-5
g[5] = 7.02290560e-10
g[6] = -1.86800090e-13
g[7] = 2.71503050
for i in range(7):
s06+=g[i]*pow(T,i-2)
s7=g[7]*log(T) #gi*ln(T) for i=7
s07=s06+s7
SVP=exp(s07)
#WEXLER ICE
elif (method=='wexler') and (medium=='ice'):
s04=0 # sum of ki*T^(i-1) for i=0:4
k=np.zeros(6)
k[0]=-5.8666426e3
k[1] =2.2328702e1
k[2] =1.39387003e-2
k[3] =-3.42624020e-5
k[4] =2.7040955e-8
k[5] =6.70635220e-1
for i in range(5):
s04+=k[i]*pow(T,i-1)
s5=k[5]*log(T) #ki*ln(T) for i=5
s05=s04+s5
SVP=exp(s05)
#SONNTAG WATER
elif (method=='sonntag') and (medium=='water'):
s03=0 # sum of ki*T^(i-1) for i=0:3
g=np.zeros(5)
g[0]=-6096.9385
g[1] =21.2409642
g[2] =-2.711193e-2
g[3] =1.673952e-5
g[4] =2.433502
for i in range(4):
s03+=g[i]*pow(T,i-1)
s4=g[4]*log(T) #gi*ln(T) for i=4
s04=s03+s4
SVP=exp(s04)
#SONNTAG ICE
elif (method=='sonntag') and (medium=='ice'):
s03=0 # sum of ki*T^(i-1) for i=0:3
k=np.zeros(5)
k[0]=-6024.5282
k[1] =29.32707
k[2] =1.0613868e-2
k[3] =-1.3198825e-5
k[4] =-0.49382577
for i in range(4):
s03+=k[i]*pow(T,i-1)
s4=k[4]*log(T) #ki*ln(T) for i=4
s04=s03+s4
SVP=exp(s04)
else:
print("Error - possible options for function method='wexler' or 'sonntag', medium='water' or 'ice'")
SVP=SVP+ureal(0,1,label='SVP_aprox')
return SVP
#calculate enhancement factor
def calculate_enh_fact(T_kelvin,P_Pa):
T = conv.float2GTC(T_kelvin)
P = conv.float2GTC(P_Pa)
if T.x<273.15:
medium='ice'
else:
medium='water'
#calculate vapour pressure eT
eT=conv.calculate_SVP(T,medium=medium)
#initialize a,b coefficient
A=np.zeros(4)
B=np.zeros(4)
if medium=='ice':
A[0]=-5.5898101e-2
A[1] =6.7140389e-4
A[2] =-2.7492721e-6
A[3] =3.8268958e-9
B[0]=-8.1985393e1
B[1] =5.8230823e-1
B[2] =-1.6340527e-3
B[3] =1.6725084e-6
elif medium=='water':
A[0]=-1.6302041e-1
A[1] =1.8071570e-3
A[2] =-6.7703064e-6
A[3] =8.5813609e-9
B[0]=-5.9890467e1
B[1] =3.4378043e-1
B[2] =-7.7326396e-4
B[3] =6.3405286e-7
a=ureal(0,0)
b=ureal(0,0)
#calculate a coefficient
for i in range(4):
a+=A[i]*pow(T,i)
# calculate b coefficient
for i in range(4):
b+=B[i]*pow(T,i)
b=exp(b)
s1=a*(1-eT/P)
s2 = b * (P/eT-1)
f=exp(s1+s2)
return f
def calculate_RH_from_PT(Ps_Pa,Ts_K,Pc_Pa,Tc_K,eta=1,verbose=False):
Ps = conv.float2GTC(Ps_Pa)
Ts = conv.float2GTC(Ts_K)
Pc = conv.float2GTC(Pc_Pa)
Tc = conv.float2GTC(Tc_K)
#eta = conv.float2GTC(eta)
if Ps.label=='': Ps.label='Ps'
if Ts.label=='': Ts.label='Ts'
if Pc.label=='': Pc.label='Pc'
if Tc.label=='': Tc.label='Tc'
#if eta.label == '': eta.label = 'eta'
eTs=conv.calculate_SVP(Ts)
eTc=conv.calculate_SVP(Tc)
fTsPs=conv.calculate_enh_fact(Ts,Ps)
fTcPc=conv.calculate_enh_fact(Tc,Pc)
RH=(Pc/Ps)*(fTsPs/fTcPc)*(eTs/eTc)*100*eta
if verbose==True:
print('Uncertainty budget')
for cpt in rp.budget(RH):
print("{0.label}:{0.u:.3f}".format(cpt))
return RH
def calculate_DewPoint2RH(RH,T_Kelvin):
#Calculation according to The relationship between Relative Humidity and the Dewpoint Temperature in moist Air, Mark G. Lawrence
RH = conv.float2GTC(RH)
T_Kelvin = conv.float2GTC(T_Kelvin)
T_Celsius=conv.Kelvin2Celsius(T_Kelvin)
#constants
A1=17.625
B1=243.03 #Celsius
numerattor=B1*(log(RH/100)+A1*T_Celsius/(B1+T_Celsius))
denominator=A1-log(RH/100)-A1*T_Celsius/(B1+T_Celsius)
DewPoint=numerattor/denominator
return DewPoint
########################################################3
Ps=ureal(14.7,7e-5,label='Ps')
Ts=ureal(2,0.01,label='Ts')
Pc=ureal(14.65,7e-5,label='Pc')
Tc=ureal(31,0.01,label='Tc')
eta=ureal(1,0.001,label='eta')
#RH=conv.calculate_RH_from_PT(Ps,Ts,Pc,Tc,verbose=True,eta=eta)
#print('RH value=',RH.x,'U(f)=',2*RH.u)
#Real data from generator
gen=gen2500(uncertainty_mode=True)
Ps_PSI=ureal(14.7,7e-5,label='Ps')
Ts_C=ureal(2,0.01,label='Ts')
Pc_PSI=ureal(14.65,7e-5,label='Pc')
Tc_C=ureal(31,0.01,label='Tc')
#eta=ureal(1,0.01,label='eta')
for i in range(5):
gen.set_values(Ps_PSI=Ps_PSI,Ts_C=Ts_C,Pc_PSI=Pc_PSI,Tc_C=Tc_C)
print('N=',gen.N, 'mean=',gen.mean, 'RHi=', gen.history[i])
print('RH=',gen.RH_GTC.x,gen.RH_GTC.u)
with open('gen.pickle', 'wb') as f:
pickle.dump(gen, f)
with open('gen.pickle', 'rb') as f:
var_you_want_to_load_into = pickle.load(f)
#print( 'RH=',conv.calculate_DewPoint2RH(65,293.15))
gen.summary()