-
Notifications
You must be signed in to change notification settings - Fork 4
/
losses.py
74 lines (62 loc) · 2.48 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import torchvision.models
import sys
sys.path.append("..")
def sequence_loss(flow_preds, flow_gt, gamma=0.8):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * i_loss.mean()
return flow_loss
class Vgg19(torch.nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_model = torchvision.models.vgg19(pretrained=True)
vgg_pretrained_features = vgg_model.features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self):
super(VGGLoss, self).__init__()
self.criterion = nn.L1Loss()
self.weights = [10.0, 1.0, 0.5, 0.5, 1.0]
def forward(self, x, y):
self.vgg = Vgg19().to(x)
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
# loss=[]
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
# loss.append(self.criterion(x_vgg[i], y_vgg[i].detach()))
return loss
def perceptualLoss(Y_est, Y_gt):
vggL = VGGLoss()
return vggL(Y_est, Y_gt)