forked from kiri-art/docker-diffusers-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_dreambooth.py
739 lines (629 loc) · 26.1 KB
/
train_dreambooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# Based on https://github.com/huggingface/diffusers/blob/8b84f8519264942fa0e52444881390767cb766c5/examples/dreambooth/train_dreambooth.py
# Reasons for not using that file directly:
#
# 1) Use our already loded model from `init()`
# 2) Callback to run after every iteration
# Deps
import argparse
import hashlib
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# DDA
from precision import revision, torch_dtype
from send import send, get_now
from utils import Storage
import subprocess
import re
import shutil
# Our original code in docker-diffusers-api:
HF_AUTH_TOKEN = os.getenv("HF_AUTH_TOKEN")
def TrainDreamBooth(model_id: str, pipeline, model_inputs, call_inputs):
# required inputs: instance_images instance_prompt
params = {
# Defaults
"pretrained_model_name_or_path": model_id, # DDA, TODO
"revision": revision, # DDA, was: None
"tokenizer_name": None,
"instance_data_dir": "instance_data_dir", # DDA TODO
"class_data_dir": "class_data_dir", # DDA, was: None,
# instance_prompt
"class_prompt": None,
"with_prior_preservation": False,
"prior_loss_weight": 1.0,
"num_class_images": 100,
"output_dir": "text-inversion-model",
"seed": None,
"resolution": 512,
"center_crop": None,
"train_text_encoder": None,
"train_batch_size": 1, # DDA, was: 4
"sample_batch_size": 1, # DDA, was: 4,
"num_train_epochs": 1,
"max_train_steps": 800, # DDA, was: None,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True, # DDA was: None (needed for 16GB)
"learning_rate": 5e-6,
"scale_lr": False,
"lr_scheduler": "constant",
"lr_warmup_steps": 0, # DDA, was: 500,
"use_8bit_adam": True, # DDA, was: None (needed for 16GB)
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"adam_weight_decay": 1e-6,
"adam_epsilon": 1e-08,
"max_grad_norm": 1.0,
"push_to_hub": None,
"hub_token": HF_AUTH_TOKEN,
"hub_model_id": None,
"logging_dir": "logs",
"mixed_precision": None if revision == "" else revision, # DDA, was: None
"local_rank": -1,
}
instance_images = model_inputs["instance_images"]
del model_inputs["instance_images"]
params.update(model_inputs)
print(model_inputs)
args = argparse.Namespace(**params)
print(args)
if not args.push_to_hub and call_inputs.get("dest_url", None) == None:
print()
print("WARNING: Neither modelInputs.push_to_hub nor callInputs.dest_url")
print("was given. After training, your model won't be uploaded anywhere.")
print()
# TODO, not save at all... we're just getting it working
# if its a hassle, in interim, at least save to unique dir
if not os.path.exists(args.instance_data_dir):
os.mkdir(args.instance_data_dir)
for i, image in enumerate(instance_images):
image.save(args.instance_data_dir + "/image" + str(i) + ".png")
subprocess.run(["ls", "-l", args.instance_data_dir])
result = main(args, pipeline)
dest_url = call_inputs.get("dest_url")
if dest_url:
storage = Storage(dest_url)
filename = storage.path if storage.path != "" else args.output_dir
filename = filename.split("/").pop()
print(filename)
if not re.search(r"\.", filename):
filename += ".tar.zstd"
print(filename)
# fp16 model timings: zip 1m20s, tar+zstd 4s and a tiny bit smaller!
compress_start = get_now()
# TODO, steaming upload (turns out docker disk write is super slow)
subprocess.run(
f"tar cf - -C {args.output_dir} . | zstd -o {filename}",
shell=True,
check=True, # TODO, rather don't raise and return an error in JSON
)
subprocess.run(["ls", "-l", filename])
compress_total = get_now() - compress_start
result.get("$timings").update({"compress": compress_total})
upload_result = storage.upload_file(filename, filename)
print(upload_result)
os.remove(filename)
result.get("$timings").update({"upload": upload_result["$time"]})
# Cleanup
shutil.rmtree(args.output_dir)
shutil.rmtree(args.class_data_dir, ignore_errors=True)
return result
# What follows is mostly the original train_dreambooth.py
# Any changes are marked with in comments with [DDA].
logger = get_logger(__name__)
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.CenterCrop(size)
if center_crop
else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(
self.instance_images_path[index % self.num_instance_images]
)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(
self.class_images_path[index % self.num_class_images]
)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(
model_id: str, organization: Optional[str] = None, token: Optional[str] = None
):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main(args, init_pipeline):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if (
args.train_text_encoder
and args.gradient_accumulation_steps > 1
and accelerator.num_processes > 1
):
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
set_seed(args.seed)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
# DDA
# torch_dtype = (
# torch.float16 if accelerator.device.type == "cuda" else torch.float32
# )
# DDA
pipeline = init_pipeline
pipeline.safety_checker = None
# pipeline = StableDiffusionPipeline.from_pretrained(
# args.pretrained_model_name_or_path,
# torch_dtype=torch_dtype,
# safety_checker=None,
# revision=args.revision,
# )
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(
sample_dataset, batch_size=args.sample_batch_size
)
sample_dataloader = accelerator.prepare(sample_dataloader)
# pipeline.to(accelerator.device) # DDA already done
for example in tqdm(
sample_dataloader,
desc="Generating class images",
disable=not accelerator.is_local_main_process,
):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = (
class_images_dir
/ f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
)
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(
Path(args.output_dir).name, token=args.hub_token
)
else:
repo_name = args.hub_model_id
repo = Repository(
args.output_dir,
clone_from=repo_name,
use_auth_token=args.hub_token, # DDA
private=True, # DDA
)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
use_auth_token=args.hub_token, # DDA
local_files_only=True, # DDA
)
elif args.pretrained_model_name_or_path:
tokenizer = init_pipeline.components["tokenizer"] # DDA
# tokenizer = CLIPTokenizer.from_pretrained(
# args.pretrained_model_name_or_path,
# subfolder="tokenizer",
# revision=args.revision,
# use_auth_token=args.hub_token, # DDA
# local_files_only=True, # DDA
# )
# Load models and create wrapper for stable diffusion
# text_encoder = CLIPTextModel.from_pretrained(
# args.pretrained_model_name_or_path,
# subfolder="text_encoder",
# revision=args.revision,
# use_auth_token=args.hub_token, # DDA
# local_files_only=True, # DDA
# )
# vae = AutoencoderKL.from_pretrained(
# args.pretrained_model_name_or_path,
# subfolder="vae",
# revision=args.revision,
# use_auth_token=args.hub_token, # DDA
# local_files_only=True, # DDA
# )
# unet = UNet2DConditionModel.from_pretrained(
# args.pretrained_model_name_or_path,
# subfolder="unet",
# revision=args.revision,
# use_auth_token=args.hub_token, # DDA
# local_files_only=True, # DDA
# )
# print("pipeline.disable_xformers_memory_efficient_attention()")
# init_pipeline.disable_xformers_memory_efficient_attention()
text_encoder = init_pipeline.components["text_encoder"] # DDA
vae = init_pipeline.components["vae"] # DDA
unet = init_pipeline.components["unet"] # DDA
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.scale_lr:
args.learning_rate = (
args.learning_rate
* args.gradient_accumulation_steps
* args.train_batch_size
* accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters()
)
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# noise_scheduler = DDPMScheduler.from_config(
# args.pretrained_model_name_or_path,
# subfolder="scheduler",
# use_auth_token=args.hub_token, # DDA
# local_files_only=True, # DDA
# )
noise_scheduler = init_pipeline.components["scheduler"] # DDA
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{"input_ids": input_ids},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=1,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
(
unet,
text_encoder,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
# DDA already loaded
# vae.to(accelerator.device, dtype=weight_dtype)
# if not args.train_text_encoder:
# text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = (
args.train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
progress_bar.set_description("Steps")
global_step = 0
# DDA
send("training", "start", {}, True)
training_start = get_now()
for epoch in range(args.num_train_epochs):
unet.train()
if args.train_text_encoder:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(
batch["pixel_values"].to(dtype=weight_dtype)
).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
noise_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
if args.with_prior_preservation:
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0)
noise, noise_prior = torch.chunk(noise, 2, dim=0)
# Compute instance loss
loss = (
F.mse_loss(noise_pred.float(), noise.float(), reduction="none")
.mean([1, 2, 3])
.mean()
)
# Compute prior loss
prior_loss = F.mse_loss(
noise_pred_prior.float(), noise_prior.float(), reduction="mean"
)
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(
noise_pred.float(), noise.float(), reduction="mean"
)
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# DDA
send("training", "done")
training_total = get_now() - training_start
upload_start = 0
upload_total = 0
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
revision=args.revision,
local_files_only=True, # DDA
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
# DDA
send("uploading", "start", {}, True)
upload_start = get_now()
repo.push_to_hub(
commit_message="End of training",
# DDA need to think about this, quite nice to not block, then could
# upload while training next request. But, timeout will kill an unused
# process... what else?
blocking=True, # DDA, was: False,
auto_lfs_prune=True,
)
# DDA
send("uploading", "done")
upload_total = get_now() - upload_start
accelerator.end_training()
# DDA
return {
"done": True,
"$timings": {"training": training_total, "upload": upload_total},
}