Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CHAML 除 0 问题 #269

Open
Wonderdch opened this issue Jun 19, 2022 · 0 comments
Open

CHAML 除 0 问题 #269

Wonderdch opened this issue Jun 19, 2022 · 0 comments

Comments

@Wonderdch
Copy link

CHAML 严格按照 readme 操作后,在最后一步执行 run.sh 命令后报错“除 0”。

详细错误代码是:

(CHAML) dch@gpuadmin-SYS-7048GR-TR:~/source/CHAML$ sh run.sh
06/10 11:21:02 - INFO -   method is meta. HARD_TASK: True, HARD_USER: True, CURRICULUM: True, PACING_FUNCTION: ssp, PER_TEST_LOG: 2500, PATIENCE: 2
06/10 11:21:02 - INFO -   curriculum is: [0, 1, 2, 3, 4, 5, 6, 7]
06/10 11:21:02 - INFO -   Got config from config/config-chaml.json
{'update_lr': 0.001, 'meta_lr': 0.001, 'update_step': 1, 'update_step_test': 1, 'task_batch_size': 4, 'train_qry_batch_size': 512, 'max_train_steps': 100000, 'few_num': 512, 'num_poi_types': 230, 'num_time': 25, 'embed_dim': 50, 'poiid_dim': 50, 'mlp_hidden': 300, 'local_fix_var': 1, 'global_fix_var': 1, 'sample_batch_size': 1024, 'test_task_batch_size': 1, 'num_epoch': 10, 'with_cont_feat': True}
<model.meta.Meta object at 0x7fbc1dded7d8>
06/10 11:21:02 - INFO -   Total trainable tensors: 225653
06/10 11:21:06 - INFO -   Loaded all the data pickles!
/home/dch/source/CHAML/utils/metadataset.py:57: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  final_pos_samples.append(np.array([user_id, hist, pos_candi, label]))
/home/dch/source/CHAML/utils/metadataset.py:58: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  final_neg_samples.append(np.array([user_id, hist, neg_candi, 0]))
/home/common/anaconda3/envs/dch-CHAML/lib/python3.6/site-packages/paddle/fluid/dygraph/math_op_patch.py:165: RuntimeWarning: divide by zero encountered in double_scalars
  return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
Traceback (most recent call last):
  File "main.py", line 374, in <module>
    main_meta(meta_path, root_path, id_emb_path)
  File "main.py", line 283, in main_meta
    'stage1', CURRICULUM, HARD_TASK, batch_id=batch_id)
  File "main.py", line 222, in one_meta_training_step
    poiid_embs=poiid_embs, cont_feat_scalers=cont_feat_scalers)
  File "/home/common/anaconda3/envs/dch-CHAML/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 891, in __call__
    outputs = self.forward(*inputs, **kwargs)
  File "/home/dch/source/CHAML/model/meta.py", line 76, in forward
    vars=None, scaler=scaler)
  File "/home/common/anaconda3/envs/dch-CHAML/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 891, in __call__
    outputs = self.forward(*inputs, **kwargs)
  File "/home/dch/source/CHAML/model/learner.py", line 133, in forward
    hist_embed, mask)
  File "/home/dch/source/CHAML/model/learner.py", line 73, in attention
    score = paddle.where(mask==1, wall, score)
  File "/home/common/anaconda3/envs/dch-CHAML/lib/python3.6/site-packages/paddle/fluid/dygraph/math_op_patch.py", line 238, in __impl__
    return math_op(self, other_var, 'axis', axis)
RuntimeError: (NotFound) Operator equal does not have kernel for data_type[bool]:data_layout[ANY_LAYOUT]:place[CPUPlace]:library_type[PLAIN].
  [Hint: Expected kernel_iter != kernels.end(), but received kernel_iter == kernels.end().] (at /paddle/paddle/fluid/imperative/prepared_operator.cc:127)
  [operator < equal > error]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant