forked from h2oai/driverlessai-recipes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
text_lang_detect_transformer.py
52 lines (43 loc) · 2.03 KB
/
text_lang_detect_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""Detect the language for a text value using Google's 'langdetect' package"""
import importlib
# https://github.com/Mimino666/langdetect
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
import numpy as np
class TextLangDetectTransformer(CustomTransformer):
_unsupervised = True
_modules_needed_by_name = ['langdetect']
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
language_codes = ['af', 'ar', 'bg', 'bn', 'ca', 'cs', 'cy', 'da', 'de',
'el', 'en', 'es', 'et', 'fa', 'fi', 'fr', 'gu', 'he',
'hi', 'hr', 'hu', 'id', 'it', 'ja', 'kn', 'ko', 'lt',
'lv', 'mk', 'ml', 'mr', 'ne', 'nl', 'no', 'pa', 'pl',
'pt', 'ro', 'ru', 'sk', 'sl', 'so', 'sq', 'sv', 'sw',
'ta', 'te', 'th', 'tl', 'tr', 'uk', 'ur', 'vi', 'zh',
'zh-cn', 'zh-tw']
@staticmethod
def get_default_properties():
return dict(col_type="text", min_cols=1, max_cols=1, relative_importance=1)
def __init__(self, **kwargs):
super().__init__(**kwargs)
from langdetect import DetectorFactory
DetectorFactory.seed = 0
@staticmethod
def detectLanguageAndEncode(s):
# mod = importlib.import_module("langdetect")
# detect_method = getattr(mod, "detect")
# code = detect_method(s)
from langdetect import detect
code = detect(s)
code_index = TextLangDetectTransformer.language_codes.index(
code) if code in TextLangDetectTransformer.language_codes else -1
return code_index
def fit_transform(self, X: dt.Frame, y: np.array = None):
return self.transform(X)
def transform(self, X: dt.Frame):
from langdetect.lang_detect_exception import LangDetectException
try:
return X.to_pandas().astype(str).iloc[:, 0].apply(
lambda x: self.detectLanguageAndEncode(x))
except LangDetectException:
return dt.Frame(np.zeros((X.nrows, 1)))