forked from h2oai/driverlessai-recipes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
nixtla_arimax.py
688 lines (566 loc) · 24 KB
/
nixtla_arimax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
"""AutoARIMA for TimeSeries Forecasting
Uses AutoARIMA implemented in https://github.com/Nixtla/statsforecast
Current limitations:
(1) No handling for prediction "gap"
(2) Enable user to pass in seasonality length to run AutoARIMA with seasonality. NOTE: Not passing any seasonality parameter will result in ARIMA (current default)
"""
import importlib
import datatable as dt
import numpy as np
from h2oaicore.models import CustomTimeSeriesModel
from h2oaicore.systemutils import (
make_experiment_logger,
loggerinfo,
loggerwarning,
loggerdebug,
)
from h2oaicore.systemutils import (
small_job_pool,
save_obj,
load_obj,
user_dir,
remove,
config,
max_threads,
)
from h2oaicore.systemutils_more import arch_type
import os
import pandas as pd
import shutil
import random
import uuid
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
FREQS = {"MS": 12, "M": 12, "D": 7, "Q": 4, "QS": 4, "H": 24}
class suppress_stdout_stderr(object):
def __init__(self):
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
self.save_fds = [os.dup(1), os.dup(2)]
def __enter__(self):
os.dup2(self.null_fds[0], 1)
os.dup2(self.null_fds[1], 2)
def __exit__(self, *_):
os.dup2(self.save_fds[0], 1)
os.dup2(self.save_fds[1], 2)
for fd in self.null_fds + self.save_fds:
os.close(fd)
# Parallel implementation requires methods being called from different processes
# Global methods support this feature
# We use global methods as a wrapper for member methods of the transformer
def MyParallelAutoARIMATransformer_fit_async(*args, **kwargs):
return AutoARIMAParallelModel._fit_async(*args, **kwargs)
def MyParallelAutoARIMATransformer_transform_async(*args, **kwargs):
return AutoARIMAParallelModel._transform_async(*args, **kwargs)
class AutoARIMAParallelModel(CustomTimeSeriesModel):
_regression = True
_binary = False
_multiclass = False
_display_name = "Auto_ARIMA_Parallel"
_description = "Auto ARIMA TimeSeries forecasting with multi process support"
_parallel_task = True
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_modules_needed_by_name = ['statsforecast==1.5.0']
@staticmethod
def is_enabled():
return not (arch_type == "ppc64le")
@staticmethod
def can_use(accuracy, interpretability, **kwargs):
return True # by default too slow unless only enabled
@staticmethod
def do_acceptance_test():
return True
def set_default_params(
self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs
):
#only main parameter to set by user is the seasonality period for ARIMA.
#if not set defaults to non-seasonal ARIMA
self.params = dict(
season_length=kwargs.get("season_length", 1)
)
def mutate_params(self, accuracy, time_tolerance, interpretability, **kwargs):
# No mutation required for any parameters for AutoARIMA
pass
@staticmethod
def _get_n_jobs(logger, **kwargs):
if "n_jobs_arima" in config.recipe_dict:
return min(config.recipe_dict["n_jobs_arima"], max_threads())
try:
if config.fixed_num_folds <= 0:
n_jobs = max(
1,
int(
int(
max_threads() / min(config.num_folds, kwargs["max_workers"])
)
),
)
else:
n_jobs = max(
1,
int(
int(
max_threads()
/ min(
config.fixed_num_folds,
config.num_folds,
kwargs["max_workers"],
)
)
),
)
except KeyError:
loggerinfo(logger, "autoarima No Max Worker in kwargs. Set n_jobs to 1")
n_jobs = 1
return n_jobs if n_jobs > 1 else 1
def _clean_tmp_folder(self, logger, tmp_folder):
try:
shutil.rmtree(tmp_folder)
loggerinfo(logger, "autoarima cleaned up temporary file folder.")
except:
loggerwarning(
logger, "autoarima could not delete the temporary file folder."
)
def _create_tmp_folder(self, logger):
# Create a temp folder to store files used during multi processing experiment
# This temp folder will be removed at the end of the process
# Set the default value without context available (required to pass acceptance test
tmp_folder = os.path.join(
user_dir(), "%s_autoarima_model_folder" % uuid.uuid4()
)
# Make a real tmp folder when experiment is available
if self.context and self.context.experiment_id:
tmp_folder = os.path.join(
self.context.experiment_tmp_dir,
"%s_autoarima_model_folder" % uuid.uuid4(),
)
# Now let's try to create that folder
try:
os.mkdir(tmp_folder)
except PermissionError:
# This should not occur so log a warning
loggerwarning(logger, "autoarima was denied temp folder creation rights")
tmp_folder = os.path.join(
user_dir(), "%s_autoarima_model_folder" % uuid.uuid4()
)
os.mkdir(tmp_folder)
except FileExistsError:
# We should never be here since temp dir name is expected to be unique
loggerwarning(logger, "autoarima temp folder already exists")
tmp_folder = os.path.join(
self.context.experiment_tmp_dir,
"%s_autoarima_model_folder" % uuid.uuid4(),
)
os.mkdir(tmp_folder)
except:
# Revert to temporary file path
tmp_folder = os.path.join(
user_dir(), "%s_autoarima_model_folder" % uuid.uuid4()
)
os.mkdir(tmp_folder)
loggerinfo(logger, "autoarima temp folder {}".format(tmp_folder))
return tmp_folder
@staticmethod
def _fit_async(X_path, grp_hash, tmp_folder, exogenous_vars, params): #, cap):
"""
Fits a autoarima model for a particular time group
:param X_path: Path to the data used to fit the autoarima model
:param grp_hash: Time group identifier
:exogenous_vars: column names of additional predictors,
:return: time group identifier and path to the pickled model
"""
np.random.seed(1234)
random.seed(1234)
X = load_obj(X_path)
# Commented for performance, uncomment for debug
# print("autoarima - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash))
#if X.shape[0] < 20:
# return grp_hash, None
# Import autoarima model
mod = importlib.import_module("statsforecast.models")
model = mod.AutoARIMA(season_length = params["season_length"], allowmean=True, approximation = True)
with suppress_stdout_stderr():
try:
if len(exogenous_vars) > 0:
model.fit(X['y'].values, X.loc[:, exogenous_vars].values.astype(float)) #AutoArima accepts only numpy arrays
else:
model.fit(X['y'].values)
except:
model = None # model fit failed for AutoARIMA
model_path = os.path.join(tmp_folder, "autoarima_model" + str(uuid.uuid4()))
save_obj(model, model_path)
remove(X_path) # remove to indicate success
return grp_hash, model_path
def get_hash(self, key):
# Create dict key to store the min max scaler
if isinstance(key, tuple):
key = list(key)
elif isinstance(key, list):
pass
else:
# Not tuple, not list
key = [key]
grp_hash = "_".join(map(str, key))
return grp_hash
def fit(
self,
X,
y,
sample_weight=None,
eval_set=None,
sample_weight_eval_set=None,
**kwargs,
):
# Get TGC and time column
self.tgc = self.params_base.get("tgc", None)
self.time_column = self.params_base.get("time_column", None)
self.nan_value = np.mean(y)
self.prior = np.mean(y)
if self.time_column is None:
self.time_column = self.tgc[0]
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(
experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir,
)
loggerinfo(
logger, "Start Fitting autoarima Model with params : {}".format(self.params)
)
try:
# Add value of autoarima_top_n in recipe_dict variable inside of config.toml file
# eg1: recipe_dict="{'autoarima_top_n': 200}"
# eg2: recipe_dict="{'autoarima_top_n':10}"
self.top_n = config.recipe_dict["autoarima_top_n"]
except KeyError:
self.top_n = 50
loggerinfo(
logger,
f"autoarima will use {self.top_n} groups as well as average target data.",
)
# Get temporary folders for multi process communication
tmp_folder = self._create_tmp_folder(logger)
n_jobs = self._get_n_jobs(logger, **kwargs)
tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
X = X.to_pandas()
#collect the column names of the non TGC columns used as predictors
exogenous_vars = list( np.setdiff1d(X.columns, self.tgc + [self.time_column] ) )
# Fill NaNs or None
X = X.replace([None, np.nan], 0)
# Add target, Label encoder is only used for Classif. which we don't support...
if self.labels is not None:
y = LabelEncoder().fit(self.labels).transform(y)
X["y"] = np.array(y)
self.nan_value = X["y"].mean()
# Change date feature name to match autoarima requirements
X.rename(columns={self.time_column: "ds"}, inplace=True)
#Sort the X dataframe expects target values to be in sorted order
if len(tgc_wo_time) > 0:
cols_to_sort = tgc_wo_time + ["ds"]
else:
cols_to_sort = ["ds"]
X.sort_values(cols_to_sort, inplace=True, ignore_index = True)
# transform to datetime to try to infer the frequency
X["ds"] = pd.to_datetime(X["ds"])
infered_freq = pd.infer_freq(X["ds"].iloc[:5])
if infered_freq is not None:
# update season length
self.params["season_length"] = FREQS.get(infered_freq, 1)
loggerinfo(
logger, "Updated season_length based on inference"
)
# Create a general scale now that will be used for unknown groups at prediction time
# Can we do smarter than that ?
general_scaler = MinMaxScaler().fit(
X[["y", "ds"]].groupby("ds").median().values
)
# Go through groups and standard scale them
if len(tgc_wo_time) > 0:
X_groups = X.groupby(tgc_wo_time)
else:
X_groups = [([None], X)]
scalers = {}
scaled_ys = []
print("Number of groups : ", len(X_groups))
for g in tgc_wo_time:
print(f"Number of groups in {g} groups : {X[g].unique().shape}") #improve message >>>>>>
for key, X_grp in X_groups:
# Create dict key to store the min max scaler
grp_hash = self.get_hash(key)
# Scale target for current group
scalers[grp_hash] = MinMaxScaler()
y_skl = scalers[grp_hash].fit_transform(X_grp[["y"]].values)
# Put back in a DataFrame to keep track of original index
y_skl_df = pd.DataFrame(y_skl, columns=["y"])
y_skl_df.index = X_grp.index
scaled_ys.append(y_skl_df)
# Set target back in original frame but keep original
X["y_orig"] = X["y"]
X["y"] = pd.concat(tuple(scaled_ys), axis=0)
# Now Average groups
X_avg = X[["ds", "y"]].groupby("ds").mean().reset_index()
# Send that to autoarima
mod = importlib.import_module("statsforecast.models")
model = mod.AutoARIMA(season_length = self.params["season_length"], allowmean=True, approximation = True)
with suppress_stdout_stderr():
try:
model.fit(X['y'].values)
except:
#try a fallback model i.e. SeasonalNaive
model = mod.SeasonalNaive(season_length=self.params["season_length"])
model.fit(X_avg['y'].values)
top_groups = None
if len(tgc_wo_time) > 0:
if self.top_n > 0:
top_n_grp = (
X.groupby(tgc_wo_time)
.size()
.sort_values()
.reset_index()[tgc_wo_time]
.iloc[-self.top_n:]
.values
)
top_groups = ["_".join(map(str, key)) for key in top_n_grp]
grp_models = {}
priors = {}
if top_groups:
# Prepare for multi processing
num_tasks = len(top_groups)
def processor(out, res):
out[res[0]] = res[1]
pool_to_use = small_job_pool
loggerinfo(logger, f"autoarima will use {n_jobs} workers for fitting.")
pool = pool_to_use(
logger=None,
processor=processor,
num_tasks=num_tasks,
max_workers=n_jobs,
)
# Fit 1 autoarima model per time group column
nb_groups = len(X_groups)
# Put y back to its unscaled value for top groups
X["y"] = X["y_orig"]
for _i_g, (key, X) in enumerate(X_groups):
# Just log where we are in the fitting process
if (_i_g + 1) % max(1, nb_groups // 20) == 0:
loggerinfo(
logger,
"autoarima : %d%% of groups fitted"
% (100 * (_i_g + 1) // nb_groups),
)
grp_hash = self.get_hash(key)
if grp_hash not in top_groups:
continue
X_path = os.path.join(tmp_folder, "autoarima" + str(uuid.uuid4()))
X = X.reset_index(drop=True)
save_obj(X, X_path)
priors[grp_hash] = X["y"].mean()
args = (X_path, grp_hash, tmp_folder, exogenous_vars, self.params)
kwargs = {}
pool.submit_tryget(
None,
MyParallelAutoARIMATransformer_fit_async,
args=args,
kwargs=kwargs,
out=grp_models,
)
pool.finish()
for k, v in grp_models.items():
grp_models[k] = load_obj(v) if v is not None else None
remove(v)
self._clean_tmp_folder(logger, tmp_folder)
self.set_model_properties(
model={
"avg": model,
"group": grp_models,
"priors": priors,
"topgroups": top_groups,
"skl": scalers,
"gen_scaler": general_scaler,
"exogenous_vars" : exogenous_vars
},
features=self.tgc + exogenous_vars,
importances=np.ones(len(self.tgc + exogenous_vars)),
iterations=-1, # Does not have iterations
)
return None
@staticmethod
def _transform_async(model_path, X_path, nan_value, exogenous_vars, tmp_folder):
"""
Predicts target for a particular time group
:param model_path: path to the stored model
:param X_path: Path to the data used to fit the autoarima model
:param nan_value: Value of target prior, used when no fitted model has been found
:return: self
"""
model = load_obj(model_path)
XX_path = os.path.join(tmp_folder, "autoarima_XXt" + str(uuid.uuid4()))
X = load_obj(X_path)
# autoarima returns the predictions ordered by time
# So we should keep track of the time order for each group so that
# predictions are ordered the same as the imput frame
# Keep track of the order
order = np.argsort(pd.to_datetime(X["ds"]))
if model is not None:
try:
# Run AutoARIMA
# Run AutoARIMA
if len(exogenous_vars) > 0:
yhat = model.predict(h = X.shape[0], X = X.sort_values("ds").loc[:, exogenous_vars].values.astype(float))['mean'] #AutoArima accepts only numpy arrays
else:
yhat = model.predict(h = X.shape[0])['mean']
XX = pd.DataFrame(yhat, columns=["yhat"])
except:
XX = pd.DataFrame(
np.full((X.shape[0], 1), nan_value), columns=["yhat"]
) # AutoARIMA generated error while predicting
else:
XX = pd.DataFrame(
np.full((X.shape[0], 1), nan_value), columns=["yhat"]
) # invalid models
XX.index = X.index[order]
assert XX.shape[1] == 1
save_obj(XX, XX_path)
remove(model_path) # indicates success, no longer need
remove(X_path) # indicates success, no longer need
return XX_path
def predict(self, X: dt.Frame, **kwargs):
"""
Uses fitted models (1 per time group) to predict the target
:param X: Datatable Frame containing the features
:return: autoarima predictions
"""
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(
experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir,
)
if self.tgc is None or not all([x in X.names for x in self.tgc]):
loggerdebug(logger, "Return 0 predictions")
return np.ones(X.shape[0]) * self.nan_value
models, _, _, _ = self.get_model_properties()
avg_model = models["avg"]
grp_models = models["group"]
priors = models["priors"]
top_groups = models["topgroups"]
scalers = models["skl"]
general_scaler = models["gen_scaler"]
exogenous_vars = models["exogenous_vars"]
tmp_folder = self._create_tmp_folder(logger)
n_jobs = self._get_n_jobs(logger, **kwargs)
tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
X = X.to_pandas()
# Fill NaNs or None
X = X.replace([None, np.nan], 0)
# Change date feature name to match autoarima requirements
X.rename(columns={self.time_column: "ds"}, inplace=True)
# Predict y using unique dates
X_time = X[["ds"]].groupby("ds").first().reset_index()
with suppress_stdout_stderr():
y_avg = avg_model.predict(h = X_time.shape[0])['mean']
### AutoARIMA returns the results in sorted time order so allow for that
X_time.sort_values("ds", inplace=True)
X_time["yhat"] = y_avg
X_time.sort_index(inplace=True)
# Merge back into original frame on 'ds'
# pd.merge wipes the index ... so keep it to provide it again
indices = X.index
X = pd.merge(left=X, right=X_time[["ds", "yhat"]], on="ds", how="left")
X.index = indices
# Go through groups and recover the scaled target for knowed groups
if len(tgc_wo_time) > 0:
X_groups = X.groupby(tgc_wo_time)
else:
X_groups = [([None], X)]
inverted_ys = []
for key, X_grp in X_groups:
grp_hash = self.get_hash(key)
# Scale target for current group
if grp_hash in scalers.keys():
inverted_y = scalers[grp_hash].inverse_transform(X_grp[["yhat"]])
else:
inverted_y = general_scaler.inverse_transform(X_grp[["yhat"]])
# Put back in a DataFrame to keep track of original index
inverted_df = pd.DataFrame(inverted_y, columns=["yhat"])
inverted_df.index = X_grp.index
inverted_ys.append(inverted_df)
XX_general = pd.concat(tuple(inverted_ys), axis=0).sort_index()
if top_groups:
# Go though the groups and predict only top
XX_paths = []
model_paths = []
def processor(out, res):
out.append(res)
num_tasks = len(top_groups)
pool_to_use = small_job_pool
pool = pool_to_use(
logger=None,
processor=processor,
num_tasks=num_tasks,
max_workers=n_jobs,
)
nb_groups = len(X_groups)
for _i_g, (key, X_grp) in enumerate(X_groups):
# Just log where we are in the fitting process
if (_i_g + 1) % max(1, nb_groups // 20) == 0:
loggerinfo(
logger,
"autoarima : %d%% of groups predicted"
% (100 * (_i_g + 1) // nb_groups),
)
# Create dict key to store the min max scaler
grp_hash = self.get_hash(key)
X_path = os.path.join(tmp_folder, "autoarima_Xt" + str(uuid.uuid4()))
if grp_hash not in top_groups:
XX = pd.DataFrame(
np.full((X_grp.shape[0], 1), np.nan), columns=["yhat"]
) # unseen groups
XX.index = X_grp.index
save_obj(XX, X_path)
XX_paths.append(X_path)
continue
if grp_models[grp_hash] is None:
XX = pd.DataFrame(
np.full((X_grp.shape[0], 1), np.nan), columns=["yhat"]
) # unseen groups
XX.index = X_grp.index
save_obj(XX, X_path)
XX_paths.append(X_path)
continue
model = grp_models[grp_hash]
model_path = os.path.join(
tmp_folder, "autoarima_modelt" + str(uuid.uuid4())
)
save_obj(model, model_path)
save_obj(X_grp, X_path)
model_paths.append(model_path)
args = (model_path, X_path, priors[grp_hash], exogenous_vars, tmp_folder)
kwargs = {}
pool.submit_tryget(
None,
MyParallelAutoARIMATransformer_transform_async,
args=args,
kwargs=kwargs,
out=XX_paths,
)
pool.finish()
XX_top_groups = pd.concat(
(load_obj(XX_path) for XX_path in XX_paths), axis=0
).sort_index()
for p in XX_paths + model_paths:
remove(p)
self._clean_tmp_folder(logger, tmp_folder)
features_df = pd.DataFrame()
features_df["GrpAvg"] = XX_general["yhat"]
if top_groups:
features_df[f"_Top{self.top_n}Grp"] = XX_top_groups["yhat"]
features_df.loc[
features_df[f"_Top{self.top_n}Grp"].notnull(), "GrpAvg"
] = features_df.loc[
features_df[f"_Top{self.top_n}Grp"].notnull(), f"_Top{self.top_n}Grp"
]
# Models have to return a numpy array
return features_df["GrpAvg"].values