forked from whittlem/pycryptobot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scanner.py
126 lines (109 loc) · 4.88 KB
/
scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import time
import json
import pandas as pd
from controllers.PyCryptoBot import PyCryptoBot
from models.exchange import kucoin
from models.helper.TelegramBotHelper import TelegramBotHelper as TGBot
from models.Trading import TechnicalAnalysis
from models.exchange.binance import PublicAPI as BPublicAPI
from models.exchange.coinbase import AuthAPI as CBAuthAPI
from models.exchange.coinbase_pro import PublicAPI as CPublicAPI
from models.exchange.kucoin import PublicAPI as KPublicAPI
from models.exchange.Granularity import Granularity
from models.exchange.ExchangesEnum import Exchange
GRANULARITY = Granularity(Granularity.ONE_HOUR)
try:
with open("scanner.json", encoding='utf8') as json_file:
config = json.load(json_file)
except IOError as err:
print(err)
try:
with open("config.json", encoding='utf8') as json_file:
bot_config = json.load(json_file)
except IOError as err:
print(err)
for exchange in config:
ex = Exchange(exchange)
app = PyCryptoBot(exchange=ex)
for quote in config[ex.value]["quote_currency"]:
if ex == Exchange.BINANCE:
api = BPublicAPI(bot_config[ex.value]["api_url"])
elif ex == Exchange.COINBASE:
api = CBAuthAPI(bot_config[ex.value]["api_key"], bot_config[ex.value]["api_secret"], bot_config[ex.value]["api_url"])
elif ex == Exchange.COINBASEPRO:
api = CPublicAPI()
elif ex == Exchange.KUCOIN:
api = KPublicAPI(bot_config[ex.value]["api_url"])
else:
raise ValueError(f"Invalid exchange: {ex}")
markets = []
resp = api.get_markets_24hr_stats()
if ex == Exchange.BINANCE:
for row in resp:
if row["symbol"].endswith(quote):
markets.append(row)
elif ex == Exchange.COINBASE:
for market in resp:
if market.endswith(f"-{quote}"):
resp[market]["stats_24hour"]["market"] = market
markets.append(resp[market]["stats_24hour"])
elif ex == Exchange.COINBASEPRO:
for market in resp:
if market.endswith(f"-{quote}"):
resp[market]["stats_24hour"]["market"] = market
markets.append(resp[market]["stats_24hour"])
elif ex == Exchange.KUCOIN:
results = resp["data"]["ticker"]
for result in results:
if result["symbol"].endswith(f"-{quote}"):
markets.append(result)
df_markets = pd.DataFrame(markets)
if ex == Exchange.BINANCE:
df_markets = df_markets[["symbol", "lastPrice", "quoteVolume"]]
elif ex == Exchange.COINBASE:
df_markets = df_markets[["market", "last", "volume"]]
elif ex == Exchange.COINBASEPRO:
df_markets = df_markets[["market", "last", "volume"]]
elif ex == Exchange.KUCOIN:
df_markets = df_markets[["symbol", "last", "volValue"]]
df_markets.columns = ["market", "price", "volume"]
df_markets["price"] = df_markets["price"].astype(float)
df_markets["volume"] = df_markets["volume"].astype(float).round(0).astype(int)
df_markets.sort_values(by=["market"], ascending=True, inplace=True)
df_markets.set_index("market", inplace=True)
print("Processing, please wait...")
ROW = 1
for market, data in df_markets.T.items():
print(f"[{ROW}/{len(df_markets)}] {market} {round((ROW/len(df_markets))*100, 2)}%")
try:
if int(data["volume"]) > 0:
ta = TechnicalAnalysis(api.get_historical_data(market, GRANULARITY, None), app=app)
ta.add_ema(12)
ta.add_ema(26)
ta.add_atr(72)
df_1h = ta.get_df()
df_1h["ema12ltema26"] = df_1h.ema12 < df_1h.ema26
df_1h_last = df_1h.tail(1)
# volatility over the last 72 hours
df_markets.at[market, "atr72"] = float(df_1h_last[["atr72"]].values[0][0])
df_markets["atr72_pcnt"] = (
df_markets["atr72"] / df_markets["price"] * 100
).round(2)
df_markets.at[market, "buy_next"] = df_1h_last[df_1h_last["market"] == market][
"ema12ltema26"
].values[0]
except Exception as err:
print(err)
# don't flood exchange, sleep 1 second
time.sleep(2)
# current position
ROW += 1
# clear screen
print(chr(27) + "[2J")
# markets sorted by next buy action, then by most volatile
print(
df_markets.sort_values(
by=["buy_next", "atr72_pcnt"], ascending=[False, False], inplace=False
)
)
TGBot(app, scanner=True).save_scanner_output(ex.value, quote, df_markets)