forked from whittlem/pycryptobot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pycryptobot.py
807 lines (661 loc) · 40.4 KB
/
pycryptobot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
"""Python Crypto Bot consuming Coinbase Pro or Binance APIs"""
import functools
import os
import sched
import sys
import time
import pandas as pd
from datetime import datetime
from models.PyCryptoBot import PyCryptoBot, truncate as _truncate
from models.AppState import AppState
from models.Trading import TechnicalAnalysis
from models.TradingAccount import TradingAccount
from models.helper.MarginHelper import calculate_margin
from views.TradingGraphs import TradingGraphs
from models.Strategy import Strategy
from models.helper.LogHelper import Logger
# minimal traceback
sys.tracebacklimit = 1
app = PyCryptoBot()
account = TradingAccount(app)
technical_analysis = None
state = AppState(app, account)
state.initLastAction()
s = sched.scheduler(time.time, time.sleep)
def executeJob(sc=None, app: PyCryptoBot=None, state: AppState=None, trading_data=pd.DataFrame()):
"""Trading bot job which runs at a scheduled interval"""
global technical_analysis
# connectivity check (only when running live)
if app.isLive() and app.getTime() is None:
Logger.warning('Your connection to the exchange has gone down, will retry in 1 minute!')
# poll every 5 minute
list(map(s.cancel, s.queue))
s.enter(300, 1, executeJob, (sc, app, state))
return
# increment state.iterations
state.iterations = state.iterations + 1
if not app.isSimulation():
# retrieve the app.getMarket() data
trading_data = app.getHistoricalData(app.getMarket(), app.getGranularity())
else:
if len(trading_data) == 0:
return None
# analyse the market data
if app.isSimulation() and len(trading_data.columns) > 8:
df = trading_data
else:
trading_dataCopy = trading_data.copy()
technical_analysis = TechnicalAnalysis(trading_dataCopy)
technical_analysis.addAll()
df = technical_analysis.getDataFrame()
if app.isSimulation():
df_last = app.getInterval(df, state.iterations)
else:
df_last = app.getInterval(df)
if len(df_last.index.format()) > 0:
current_df_index = str(df_last.index.format()[0])
else:
current_df_index = state.last_df_index
formatted_current_df_index = f'{current_df_index} 00:00:00' if len(current_df_index) == 10 else current_df_index
if app.getSmartSwitch() == 1 and app.getGranularity() == 3600 and app.is1hEMA1226Bull() is True and app.is6hEMA1226Bull() is True:
Logger.info('*** smart switch from granularity 3600 (1 hour) to 900 (15 min) ***')
app.notifyTelegram(app.getMarket() + " smart switch from granularity 3600 (1 hour) to 900 (15 min)")
app.setGranularity(900)
list(map(s.cancel, s.queue))
s.enter(5, 1, executeJob, (sc, app, state))
if app.getSmartSwitch() == 1 and app.getGranularity() == 900 and app.is1hEMA1226Bull() is False and app.is6hEMA1226Bull() is False:
Logger.info("*** smart switch from granularity 900 (15 min) to 3600 (1 hour) ***")
app.notifyTelegram(app.getMarket() + " smart switch from granularity 900 (15 min) to 3600 (1 hour)")
app.setGranularity(3600)
list(map(s.cancel, s.queue))
s.enter(5, 1, executeJob, (sc, app, state))
if app.getExchange() == 'binance' and app.getGranularity() == 86400:
if len(df) < 250:
# data frame should have 250 rows, if not retry
Logger.error('error: data frame length is < 250 (' + str(len(df)) + ')')
list(map(s.cancel, s.queue))
s.enter(300, 1, executeJob, (sc, app, state))
else:
if len(df) < 300:
if not app.isSimulation():
# data frame should have 300 rows, if not retry
Logger.error('error: data frame length is < 300 (' + str(len(df)) + ')')
list(map(s.cancel, s.queue))
s.enter(300, 1, executeJob, (sc, app, state))
if len(df_last) > 0:
now = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
if not app.isSimulation():
ticker = app.getTicker(app.getMarket())
now = ticker[0]
price = ticker[1]
if price < df_last['low'].values[0] or price == 0:
price = float(df_last['close'].values[0])
else:
price = float(df_last['close'].values[0])
if price < 0.0001:
raise Exception(app.getMarket() + ' is unsuitable for trading, quote price is less than 0.0001!')
# technical indicators
ema12gtema26 = bool(df_last['ema12gtema26'].values[0])
ema12gtema26co = bool(df_last['ema12gtema26co'].values[0])
goldencross = bool(df_last['goldencross'].values[0])
macdgtsignal = bool(df_last['macdgtsignal'].values[0])
macdgtsignalco = bool(df_last['macdgtsignalco'].values[0])
ema12ltema26 = bool(df_last['ema12ltema26'].values[0])
ema12ltema26co = bool(df_last['ema12ltema26co'].values[0])
macdltsignal = bool(df_last['macdltsignal'].values[0])
macdltsignalco = bool(df_last['macdltsignalco'].values[0])
obv = float(df_last['obv'].values[0])
obv_pc = float(df_last['obv_pc'].values[0])
elder_ray_buy = bool(df_last['eri_buy'].values[0])
elder_ray_sell = bool(df_last['eri_sell'].values[0])
# if simulation interations < 200 set goldencross to true
if app.isSimulation() and state.iterations < 200:
goldencross = True
# candlestick detection
hammer = bool(df_last['hammer'].values[0])
inverted_hammer = bool(df_last['inverted_hammer'].values[0])
hanging_man = bool(df_last['hanging_man'].values[0])
shooting_star = bool(df_last['shooting_star'].values[0])
three_white_soldiers = bool(df_last['three_white_soldiers'].values[0])
three_black_crows = bool(df_last['three_black_crows'].values[0])
morning_star = bool(df_last['morning_star'].values[0])
evening_star = bool(df_last['evening_star'].values[0])
three_line_strike = bool(df_last['three_line_strike'].values[0])
abandoned_baby = bool(df_last['abandoned_baby'].values[0])
morning_doji_star = bool(df_last['morning_doji_star'].values[0])
evening_doji_star = bool(df_last['evening_doji_star'].values[0])
two_black_gapping = bool(df_last['two_black_gapping'].values[0])
strategy = Strategy(app, state, df, state.iterations)
state.action = strategy.getAction()
immediate_action = False
margin, profit, sell_fee = 0, 0, 0
if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY':
# update last buy high
if price > state.last_buy_high:
state.last_buy_high = price
if state.last_buy_high > 0:
change_pcnt_high = ((price / state.last_buy_high) - 1) * 100
else:
change_pcnt_high = 0
# buy and sell calculations
state.last_buy_fee = round(state.last_buy_size * app.getTakerFee(), 8)
state.last_buy_filled = round(((state.last_buy_size - state.last_buy_fee) / state.last_buy_price), 8)
# if not a simulation, sync with exchange orders
if not app.isSimulation():
exchange_last_buy = app.getLastBuy()
if exchange_last_buy is not None:
if state.last_buy_size != exchange_last_buy['size']:
state.last_buy_size = exchange_last_buy['size']
if state.last_buy_filled != exchange_last_buy['filled']:
state.last_buy_filled = exchange_last_buy['filled']
if state.last_buy_price != exchange_last_buy['price']:
state.last_buy_price = exchange_last_buy['price']
if app.getExchange() == 'coinbasepro':
if state.last_buy_fee != exchange_last_buy['fee']:
state.last_buy_fee = exchange_last_buy['fee']
margin, profit, sell_fee = calculate_margin(
buy_size=state.last_buy_size,
buy_filled=state.last_buy_filled,
buy_price=state.last_buy_price,
buy_fee=state.last_buy_fee,
sell_percent=app.getSellPercent(),
sell_price=price,
sell_taker_fee=app.getTakerFee())
# handle immedate sell actions
if strategy.isSellTrigger(price, technical_analysis.getTradeExit(price), margin, change_pcnt_high, obv_pc, macdltsignal):
state.action = 'SELL'
state.last_action = 'BUY'
immediate_action = True
# handle overriding wait actions (do not sell if sell at loss disabled!)
if strategy.isWaitTrigger(margin):
state.action = 'WAIT'
state.last_action = 'BUY'
immediate_action = False
bullbeartext = ''
if app.disableBullOnly() is True or (df_last['sma50'].values[0] == df_last['sma200'].values[0]):
bullbeartext = ''
elif goldencross is True:
bullbeartext = ' (BULL)'
elif goldencross is False:
bullbeartext = ' (BEAR)'
# polling is every 5 minutes (even for hourly intervals), but only process once per interval
if (immediate_action is True or state.last_df_index != current_df_index):
precision = 4
if (price < 0.01):
precision = 8
# Since precision does not change after this point, it is safe to prepare a tailored `truncate()` that would
# work with this precision. It should save a couple of `precision` uses, one for each `truncate()` call.
truncate = functools.partial(_truncate, n=precision)
price_text = 'Close: ' + truncate(price)
ema_text = app.compare(df_last['ema12'].values[0], df_last['ema26'].values[0], 'EMA12/26', precision)
macd_text = ''
if app.disableBuyMACD() is False:
macd_text = app.compare(df_last['macd'].values[0], df_last['signal'].values[0], 'MACD', precision)
obv_text = ''
if app.disableBuyOBV() is False:
obv_text = 'OBV: ' + truncate(df_last['obv'].values[0]) + ' (' + str(
truncate(df_last['obv_pc'].values[0])) + '%)'
state.eri_text = ''
if app.disableBuyElderRay() is False:
if elder_ray_buy is True:
state.eri_text = 'ERI: buy | '
elif elder_ray_sell is True:
state.eri_text = 'ERI: sell | '
else:
state.eri_text = 'ERI: | '
if hammer is True:
log_text = '* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up")'
Logger.info(log_text)
if shooting_star is True:
log_text = '* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")'
Logger.info(log_text)
if hanging_man is True:
log_text = '* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")'
Logger.info(log_text)
if inverted_hammer is True:
log_text = '* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")'
Logger.info(log_text)
if three_white_soldiers is True:
log_text = '*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if three_black_crows is True:
log_text = '* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if morning_star is True:
log_text = '*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if evening_star is True:
log_text = '*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if three_line_strike is True:
log_text = '** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if abandoned_baby is True:
log_text = '** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if morning_doji_star is True:
log_text = '** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if evening_doji_star is True:
log_text = '** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
if two_black_gapping is True:
log_text = '*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")'
Logger.info(log_text)
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text)
ema_co_prefix = ''
ema_co_suffix = ''
if ema12gtema26co is True:
ema_co_prefix = '*^ '
ema_co_suffix = ' ^*'
elif ema12ltema26co is True:
ema_co_prefix = '*v '
ema_co_suffix = ' v*'
elif ema12gtema26 is True:
ema_co_prefix = '^ '
ema_co_suffix = ' ^'
elif ema12ltema26 is True:
ema_co_prefix = 'v '
ema_co_suffix = ' v'
macd_co_prefix = ''
macd_co_suffix = ''
if app.disableBuyMACD() is False:
if macdgtsignalco is True:
macd_co_prefix = '*^ '
macd_co_suffix = ' ^*'
elif macdltsignalco is True:
macd_co_prefix = '*v '
macd_co_suffix = ' v*'
elif macdgtsignal is True:
macd_co_prefix = '^ '
macd_co_suffix = ' ^'
elif macdltsignal is True:
macd_co_prefix = 'v '
macd_co_suffix = ' v'
obv_prefix = ''
obv_suffix = ''
if app.disableBuyOBV() is False:
if float(obv_pc) > 0:
obv_prefix = '^ '
obv_suffix = ' ^ | '
elif float(obv_pc) < 0:
obv_prefix = 'v '
obv_suffix = ' v | '
if not app.isVerbose():
if state.last_action != '':
output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \
app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \
ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \
obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + \
' | Last Action: ' + state.last_action
else:
output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \
app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \
ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \
obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + ' '
if state.last_action == 'BUY':
if state.last_buy_size > 0:
margin_text = truncate(margin) + '%'
else:
margin_text = '0%'
output_text += ' | ' + margin_text + ' (delta: ' + str(round(price - state.last_buy_price, precision)) + ')'
Logger.info(output_text)
# Seasonal Autoregressive Integrated Moving Average (ARIMA) model (ML prediction for 3 intervals from now)
if not app.isSimulation():
try:
prediction = technical_analysis.seasonalARIMAModelPrediction(int(app.getGranularity() / 60) * 3) # 3 intervals from now
Logger.info(f'Seasonal ARIMA model predicts the closing price will be {str(round(prediction[1], 2))} at {prediction[0]} (delta: {round(prediction[1] - price, 2)})')
except:
pass
if state.last_action == 'BUY':
# display support, resistance and fibonacci levels
Logger.info(technical_analysis.printSupportResistanceFibonacciLevels(price))
else:
Logger.debug('-- Iteration: ' + str(state.iterations) + ' --' + bullbeartext)
if state.last_action == 'BUY':
if state.last_buy_size > 0:
margin_text = truncate(margin) + '%'
else:
margin_text = '0%'
Logger.debug('-- Margin: ' + margin_text + ' --')
Logger.debug('price: ' + truncate(price))
Logger.debug('ema12: ' + truncate(float(df_last['ema12'].values[0])))
Logger.debug('ema26: ' + truncate(float(df_last['ema26'].values[0])))
Logger.debug('ema12gtema26co: ' + str(ema12gtema26co))
Logger.debug('ema12gtema26: ' + str(ema12gtema26))
Logger.debug('ema12ltema26co: ' + str(ema12ltema26co))
Logger.debug('ema12ltema26: ' + str(ema12ltema26))
Logger.debug('sma50: ' + truncate(float(df_last['sma50'].values[0])))
Logger.debug('sma200: ' + truncate(float(df_last['sma200'].values[0])))
Logger.debug('macd: ' + truncate(float(df_last['macd'].values[0])))
Logger.debug('signal: ' + truncate(float(df_last['signal'].values[0])))
Logger.debug('macdgtsignal: ' + str(macdgtsignal))
Logger.debug('macdltsignal: ' + str(macdltsignal))
Logger.debug('obv: ' + str(obv))
Logger.debug('obv_pc: ' + str(obv_pc))
Logger.debug('action: ' + state.action)
# informational output on the most recent entry
Logger.info('')
Logger.info('================================================================================')
txt = ' Iteration : ' + str(state.iterations) + bullbeartext
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Timestamp : ' + str(df_last.index.format()[0])
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
Logger.info('--------------------------------------------------------------------------------')
txt = ' Close : ' + truncate(price)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' EMA12 : ' + truncate(float(df_last['ema12'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' EMA26 : ' + truncate(float(df_last['ema26'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Crossing Above : ' + str(ema12gtema26co)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Currently Above : ' + str(ema12gtema26)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Crossing Below : ' + str(ema12ltema26co)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Currently Below : ' + str(ema12ltema26)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
if (ema12gtema26 is True and ema12gtema26co is True):
txt = ' Condition : EMA12 is currently crossing above EMA26'
elif (ema12gtema26 is True and ema12gtema26co is False):
txt = ' Condition : EMA12 is currently above EMA26 and has crossed over'
elif (ema12ltema26 is True and ema12ltema26co is True):
txt = ' Condition : EMA12 is currently crossing below EMA26'
elif (ema12ltema26 is True and ema12ltema26co is False):
txt = ' Condition : EMA12 is currently below EMA26 and has crossed over'
else:
txt = ' Condition : -'
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' SMA20 : ' + truncate(float(df_last['sma20'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' SMA200 : ' + truncate(float(df_last['sma200'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
Logger.info('--------------------------------------------------------------------------------')
txt = ' MACD : ' + truncate(float(df_last['macd'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Signal : ' + truncate(float(df_last['signal'].values[0]))
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Currently Above : ' + str(macdgtsignal)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
txt = ' Currently Below : ' + str(macdltsignal)
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
if (macdgtsignal is True and macdgtsignalco is True):
txt = ' Condition : MACD is currently crossing above Signal'
elif (macdgtsignal is True and macdgtsignalco is False):
txt = ' Condition : MACD is currently above Signal and has crossed over'
elif (macdltsignal is True and macdltsignalco is True):
txt = ' Condition : MACD is currently crossing below Signal'
elif (macdltsignal is True and macdltsignalco is False):
txt = ' Condition : MACD is currently below Signal and has crossed over'
else:
txt = ' Condition : -'
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
Logger.info('--------------------------------------------------------------------------------')
txt = ' Action : ' + state.action
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
Logger.info('================================================================================')
if state.last_action == 'BUY':
txt = ' Margin : ' + margin_text
Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ')
Logger.info('================================================================================')
# if a buy signal
if state.action == 'BUY':
state.last_buy_price = price
state.last_buy_high = state.last_buy_price
# if live
if app.isLive():
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') BUY at ' + price_text)
if not app.isVerbose():
Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY')
else:
Logger.info('--------------------------------------------------------------------------------')
Logger.info('| *** Executing LIVE Buy Order *** |')
Logger.info('--------------------------------------------------------------------------------')
# display balances
Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency())))
Logger.info(app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency())))
# execute a live market buy
state.last_buy_size = float(account.getBalance(app.getQuoteCurrency()))
if app.getBuyMaxSize() and state.last_buy_size > app.getBuyMaxSize():
state.last_buy_size = app.getBuyMaxSize()
resp = app.marketBuy(app.getMarket(), state.last_buy_size, app.getBuyPercent())
Logger.debug(resp)
# display balances
Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency())))
Logger.info(app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency())))
# if not live
else:
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') TEST BUY at ' + price_text)
# TODO: Improve simulator calculations by including calculations for buy and sell limit configurations.
if state.last_buy_size == 0 and state.last_buy_filled == 0:
state.last_buy_size = 1000
state.first_buy_size = 1000
state.buy_count = state.buy_count + 1
state.buy_sum = state.buy_sum + state.last_buy_size
if not app.isVerbose():
Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY')
bands = technical_analysis.getFibonacciRetracementLevels(float(price))
Logger.info(' Fibonacci Retracement Levels:' + str(bands))
technical_analysis.printSupportResistanceLevel(float(price))
if len(bands) >= 1 and len(bands) <= 2:
if len(bands) == 1:
first_key = list(bands.keys())[0]
if first_key == 'ratio1':
state.fib_low = 0
state.fib_high = bands[first_key]
if first_key == 'ratio1_618':
state.fib_low = bands[first_key]
state.fib_high = bands[first_key] * 2
else:
state.fib_low = bands[first_key]
elif len(bands) == 2:
first_key = list(bands.keys())[0]
second_key = list(bands.keys())[1]
state.fib_low = bands[first_key]
state.fib_high = bands[second_key]
else:
Logger.info('--------------------------------------------------------------------------------')
Logger.info('| *** Executing TEST Buy Order *** |')
Logger.info('--------------------------------------------------------------------------------')
if app.shouldSaveGraphs():
tradinggraphs = TradingGraphs(technical_analysis)
ts = datetime.now().timestamp()
filename = app.getMarket() + '_' + app.printGranularity() + '_buy_' + str(ts) + '.png'
tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True)
# if a sell signal
elif state.action == 'SELL':
# if live
if app.isLive():
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') SELL at ' +
price_text + ' (margin: ' + margin_text + ', (delta: ' +
str(round(price - state.last_buy_price, precision)) + ')')
if not app.isVerbose():
Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | SELL')
bands = technical_analysis.getFibonacciRetracementLevels(float(price))
Logger.info(' Fibonacci Retracement Levels:' + str(bands))
if len(bands) >= 1 and len(bands) <= 2:
if len(bands) == 1:
first_key = list(bands.keys())[0]
if first_key == 'ratio1':
state.fib_low = 0
state.fib_high = bands[first_key]
if first_key == 'ratio1_618':
state.fib_low = bands[first_key]
state.fib_high = bands[first_key] * 2
else:
state.fib_low = bands[first_key]
elif len(bands) == 2:
first_key = list(bands.keys())[0]
second_key = list(bands.keys())[1]
state.fib_low = bands[first_key]
state.fib_high = bands[second_key]
else:
Logger.info('--------------------------------------------------------------------------------')
Logger.info('| *** Executing LIVE Sell Order *** |')
Logger.info('--------------------------------------------------------------------------------')
# display balances
Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency())))
Logger.info(app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency())))
# execute a live market sell
resp = app.marketSell(app.getMarket(), float(account.getBalance(app.getBaseCurrency())),
app.getSellPercent())
Logger.debug(resp)
# display balances
Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency())))
Logger.info(app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency())))
# if not live
else:
margin, profit, sell_fee = calculate_margin(
buy_size=state.last_buy_size,
buy_filled=state.last_buy_filled,
buy_price=state.last_buy_price,
buy_fee=state.last_buy_fee,
sell_percent=app.getSellPercent(),
sell_price=price,
sell_taker_fee=app.getTakerFee())
if state.last_buy_size > 0:
margin_text = truncate(margin) + '%'
else:
margin_text = '0%'
app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') TEST SELL at ' +
price_text + ' (margin: ' + margin_text + ', (delta: ' +
str(round(price - state.last_buy_price, precision)) + ')')
# Preserve next buy values for simulator
state.sell_count = state.sell_count + 1
buy_size = ((app.getSellPercent() / 100) * ((price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee)))
state.last_buy_size = buy_size - sell_fee
state.sell_sum = state.sell_sum + state.last_buy_size
if not app.isVerbose():
if price > 0:
margin_text = truncate(margin) + '%'
else:
margin_text = '0%'
Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' +
app.printGranularity() + ' | SELL | ' + str(price) + ' | BUY | ' +
str(state.last_buy_price) + ' | DIFF | ' + str(price - state.last_buy_price) +
' | DIFF | ' + str(profit) + ' | MARGIN NO FEES | ' +
margin_text + ' | MARGIN FEES | ' + str(round(sell_fee, precision)))
else:
Logger.info('--------------------------------------------------------------------------------')
Logger.info('| *** Executing TEST Sell Order *** |')
Logger.info('--------------------------------------------------------------------------------')
if app.shouldSaveGraphs():
tradinggraphs = TradingGraphs(technical_analysis)
ts = datetime.now().timestamp()
filename = app.getMarket() + '_' + app.printGranularity() + '_sell_' + str(ts) + '.png'
tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True)
# last significant action
if state.action in ['BUY', 'SELL']:
state.last_action = state.action
state.last_df_index = str(df_last.index.format()[0])
if not app.isLive() and state.iterations == len(df):
Logger.info("\nSimulation Summary: ")
if state.buy_count > state.sell_count and app.allowSellAtLoss():
# Calculate last sell size
state.last_buy_size = ((app.getSellPercent() / 100) * ((price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee)))
# Reduce sell fee from last sell size
state.last_buy_size = state.last_buy_size - state.last_buy_price * app.getTakerFee()
state.sell_sum = state.sell_sum + state.last_buy_size
state.sell_count = state.sell_count + 1
elif state.buy_count > state.sell_count and not app.allowSellAtLoss():
Logger.info("\n")
Logger.info(' Note : "sell at loss" is disabled and you have an open trade, if the margin')
Logger.info(' result below is negative it will assume you sold at the end of the')
Logger.info(' simulation which may not be ideal. Try setting --sellatloss 1')
Logger.info("\n")
Logger.info(' Buy Count : ' + str(state.buy_count))
Logger.info(' Sell Count : ' + str(state.sell_count))
Logger.info(' First Buy : ' + str(state.first_buy_size))
Logger.info(' Last Sell : ' + str(state.last_buy_size))
app.notifyTelegram(f"Simulation Summary\n Buy Count: {state.buy_count}\n Sell Count: {state.sell_count}\n First Buy: {state.first_buy_size}\n Last Sell: {state.last_buy_size}\n")
if state.sell_count > 0:
Logger.info("\n")
Logger.info(' Margin : ' + _truncate((((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4) + '%')
Logger.info("\n")
Logger.info(' ** non-live simulation, assuming highest fees')
app.notifyTelegram(f" Margin: {_truncate((((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4)}%\n ** non-live simulation, assuming highest fees\n")
else:
if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY':
# show profit and margin if already bought
Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price) + ' | Margin: ' + str(margin) + ' | Profit: ' + str(profit))
else:
Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price))
# decrement ignored iteration
state.iterations = state.iterations - 1
# if live
if not app.disableTracker() and app.isLive():
# update order tracker csv
if app.getExchange() == 'binance':
account.saveTrackerCSV(app.getMarket())
elif app.getExchange() == 'coinbasepro':
account.saveTrackerCSV()
if app.isSimulation():
if state.iterations < 300:
if app.simuluationSpeed() in ['fast', 'fast-sample']:
# fast processing
list(map(s.cancel, s.queue))
s.enter(0, 1, executeJob, (sc, app, state, df))
else:
# slow processing
list(map(s.cancel, s.queue))
s.enter(1, 1, executeJob, (sc, app, state, df))
else:
# poll every 1 minute
list(map(s.cancel, s.queue))
s.enter(60, 1, executeJob, (sc, app, state))
def main():
try:
message = 'Starting '
if app.getExchange() == 'coinbasepro':
message += 'Coinbase Pro bot'
elif app.getExchange() == 'binance':
message += 'Binance bot'
message += ' for ' + app.getMarket() + ' using granularity ' + app.printGranularity()
app.notifyTelegram(message)
# initialise and start application
trading_data = app.startApp(account, state.last_action)
def runApp():
# run the first job immediately after starting
if app.isSimulation():
executeJob(s, app, state, trading_data)
else:
executeJob(s, app, state)
s.run()
try:
runApp()
except KeyboardInterrupt:
raise
except(BaseException, Exception) as e:
if app.autoRestart():
# Wait 30 second and try to relaunch application
time.sleep(30)
Logger.critical('Restarting application after exception: ' + repr(e))
app.notifyTelegram('Auto restarting bot for ' + app.getMarket() + ' after exception: ' + repr(e))
# Cancel the events queue
map(s.cancel, s.queue)
# Restart the app
runApp()
else:
raise
# catches a keyboard break of app, exits gracefully
except KeyboardInterrupt:
Logger.warning(str(datetime.now()) + ' bot is closed via keyboard interrupt...')
try:
sys.exit(0)
except SystemExit:
os._exit(0)
except(BaseException, Exception) as e:
# catch all not managed exceptions and send a Telegram message if configured
app.notifyTelegram('Bot for ' + app.getMarket() + ' got an exception: ' + repr(e))
Logger.critical(repr(e))
raise
main()