From 36c1e266b38414b89a759b68952144123d8968dd Mon Sep 17 00:00:00 2001 From: Gustavo Marques Date: Mon, 31 Jul 2023 10:39:17 -0600 Subject: [PATCH 1/4] Make tracer diffusivities 3D This commit adds a vertical dimension to the tracer diffusivities (Kh_u and Kh_v) and associated coefficiets (coef_x and coef_y). The following diagnostics were changed from 2D (lat/lon) to 3D (lat/lon/depth): KhTr_u, KhTr_v, and KhTr_h. To preserve old answers, the values of all modified arrays are depth independent by default. The option to apply the equivalent barotropic structure as the vertical structure of the tracer diffusivity is also introduced and this can be controlled via a new parameter: KHTR_USE_EBT_STRUCT (default is false). --- src/tracer/MOM_tracer_hor_diff.F90 | 196 ++++++++++++++++++++--------- 1 file changed, 136 insertions(+), 60 deletions(-) diff --git a/src/tracer/MOM_tracer_hor_diff.F90 b/src/tracer/MOM_tracer_hor_diff.F90 index 79e99f8bb7..6f4e5d0f90 100644 --- a/src/tracer/MOM_tracer_hor_diff.F90 +++ b/src/tracer/MOM_tracer_hor_diff.F90 @@ -52,6 +52,8 @@ module MOM_tracer_hor_diff real :: max_diff_CFL !< If positive, locally limit the along-isopycnal !! tracer diffusivity to keep the diffusive CFL !! locally at or below this value [nondim]. + logical :: KhTh_use_ebt_struct !< If true, uses the equivalent barotropic structure + !! as the vertical structure of tracer diffusivity. logical :: Diffuse_ML_interior !< If true, diffuse along isopycnals between !! the mixed layer and the interior. logical :: check_diffusive_CFL !< If true, automatically iterate the diffusion @@ -135,19 +137,22 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online real, dimension(SZI_(G),SZJ_(G)) :: & Ihdxdy, & ! The inverse of the volume or mass of fluid in a layer in a ! grid cell [H-1 L-2 ~> m-3 or kg-1]. - Kh_h, & ! The tracer diffusivity averaged to tracer points [L2 T-1 ~> m2 s-1]. CFL, & ! A diffusive CFL number for each cell [nondim]. dTr ! The change in a tracer's concentration, in units of concentration [Conc]. + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)+1) :: Kh_h + ! The tracer diffusivity averaged to tracer points [L2 T-1 ~> m2 s-1]. real, dimension(SZIB_(G),SZJ_(G)) :: & - khdt_x, & ! The value of Khtr*dt times the open face width divided by + khdt_x ! The value of Khtr*dt times the open face width divided by ! the distance between adjacent tracer points [L2 ~> m2]. + real, dimension(SZI_(G),SZJB_(G)) :: & + khdt_y ! The value of Khtr*dt times the open face width divided by + ! the distance between adjacent tracer points [L2 ~> m2]. + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)+1) :: & Coef_x, & ! The coefficients relating zonal tracer differences to time-integrated ! fluxes, in [L2 ~> m2] for some schemes and [H L2 ~> m3 or kg] for others. Kh_u ! Tracer mixing coefficient at u-points [L2 T-1 ~> m2 s-1]. - real, dimension(SZI_(G),SZJB_(G)) :: & - khdt_y, & ! The value of Khtr*dt times the open face width divided by - ! the distance between adjacent tracer points [L2 ~> m2]. + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)+1) :: & Coef_y, & ! The coefficients relating meridional tracer differences to time-integrated ! fluxes, in [L2 ~> m2] for some schemes and [H L2 ~> m3 or kg] for others. Kh_v ! Tracer mixing coefficient at u-points [L2 T-1 ~> m2 s-1]. @@ -224,12 +229,12 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online if (CS%KhTr_max > 0.) Kh_loc = min(Kh_loc, CS%KhTr_max) if (Resoln_scaled) & Kh_loc = Kh_loc * 0.5*(VarMix%Res_fn_h(i,j) + VarMix%Res_fn_h(i+1,j)) - Kh_u(I,j) = max(Kh_loc, CS%KhTr_min) + Kh_u(I,j,1) = max(Kh_loc, CS%KhTr_min) if (CS%KhTr_passivity_coeff>0.) then ! Apply passivity Rd_dx=0.5*( VarMix%Rd_dx_h(i,j)+VarMix%Rd_dx_h(i+1,j) ) ! Rd/dx at u-points - Kh_loc = Kh_u(I,j)*max( CS%KhTr_passivity_min, CS%KhTr_passivity_coeff*Rd_dx ) + Kh_loc = Kh_u(I,j,1)*max( CS%KhTr_passivity_min, CS%KhTr_passivity_coeff*Rd_dx ) if (CS%KhTr_max > 0.) Kh_loc = min(Kh_loc, CS%KhTr_max) ! Re-apply max - Kh_u(I,j) = max(Kh_loc, CS%KhTr_min) ! Re-apply min + Kh_u(I,j,1) = max(Kh_loc, CS%KhTr_min) ! Re-apply min endif enddo ; enddo !$OMP parallel do default(shared) private(Kh_loc,Rd_dx) @@ -241,41 +246,41 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online if (CS%KhTr_max > 0.) Kh_loc = min(Kh_loc, CS%KhTr_max) if (Resoln_scaled) & Kh_loc = Kh_loc * 0.5*(VarMix%Res_fn_h(i,j) + VarMix%Res_fn_h(i,j+1)) - Kh_v(i,J) = max(Kh_loc, CS%KhTr_min) + Kh_v(i,J,1) = max(Kh_loc, CS%KhTr_min) if (CS%KhTr_passivity_coeff>0.) then ! Apply passivity Rd_dx = 0.5*( VarMix%Rd_dx_h(i,j)+VarMix%Rd_dx_h(i,j+1) ) ! Rd/dx at v-points - Kh_loc = Kh_v(i,J)*max( CS%KhTr_passivity_min, CS%KhTr_passivity_coeff*Rd_dx ) + Kh_loc = Kh_v(i,J,1)*max( CS%KhTr_passivity_min, CS%KhTr_passivity_coeff*Rd_dx ) if (CS%KhTr_max > 0.) Kh_loc = min(Kh_loc, CS%KhTr_max) ! Re-apply max - Kh_v(i,J) = max(Kh_loc, CS%KhTr_min) ! Re-apply min + Kh_v(i,J,1) = max(Kh_loc, CS%KhTr_min) ! Re-apply min endif enddo ; enddo !$OMP parallel do default(shared) do j=js,je ; do I=is-1,ie - khdt_x(I,j) = dt*(Kh_u(I,j)*(G%dy_Cu(I,j)*G%IdxCu(I,j))) + khdt_x(I,j) = dt*(Kh_u(I,j,1)*(G%dy_Cu(I,j)*G%IdxCu(I,j))) enddo ; enddo !$OMP parallel do default(shared) do J=js-1,je ; do i=is,ie - khdt_y(i,J) = dt*(Kh_v(i,J)*(G%dx_Cv(i,J)*G%IdyCv(i,J))) + khdt_y(i,J) = dt*(Kh_v(i,J,1)*(G%dx_Cv(i,J)*G%IdyCv(i,J))) enddo ; enddo elseif (Resoln_scaled) then !$OMP parallel do default(shared) private(Res_fn) do j=js,je ; do I=is-1,ie Res_fn = 0.5 * (VarMix%Res_fn_h(i,j) + VarMix%Res_fn_h(i+1,j)) - Kh_u(I,j) = max(CS%KhTr * Res_fn, CS%KhTr_min) + Kh_u(I,j,1) = max(CS%KhTr * Res_fn, CS%KhTr_min) khdt_x(I,j) = dt*(CS%KhTr*(G%dy_Cu(I,j)*G%IdxCu(I,j))) * Res_fn enddo ; enddo !$OMP parallel do default(shared) private(Res_fn) do J=js-1,je ; do i=is,ie Res_fn = 0.5*(VarMix%Res_fn_h(i,j) + VarMix%Res_fn_h(i,j+1)) - Kh_v(i,J) = max(CS%KhTr * Res_fn, CS%KhTr_min) + Kh_v(i,J,1) = max(CS%KhTr * Res_fn, CS%KhTr_min) khdt_y(i,J) = dt*(CS%KhTr*(G%dx_Cv(i,J)*G%IdyCv(i,J))) * Res_fn enddo ; enddo else ! Use a simple constant diffusivity. if (CS%id_KhTr_u > 0) then !$OMP parallel do default(shared) do j=js,je ; do I=is-1,ie - Kh_u(I,j) = CS%KhTr + Kh_u(I,j,1) = CS%KhTr khdt_x(I,j) = dt*(CS%KhTr*(G%dy_Cu(I,j)*G%IdxCu(I,j))) enddo ; enddo else @@ -287,7 +292,7 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online if (CS%id_KhTr_v > 0) then !$OMP parallel do default(shared) do J=js-1,je ; do i=is,ie - Kh_v(i,J) = CS%KhTr + Kh_v(i,J,1) = CS%KhTr khdt_y(i,J) = dt*(CS%KhTr*(G%dx_Cv(i,J)*G%IdyCv(i,J))) enddo ; enddo else @@ -306,7 +311,7 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online if (khdt_x(I,j) > khdt_max) then khdt_x(I,j) = khdt_max if (dt*(G%dy_Cu(I,j)*G%IdxCu(I,j)) > 0.0) & - Kh_u(I,j) = khdt_x(I,j) / (dt*(G%dy_Cu(I,j)*G%IdxCu(I,j))) + Kh_u(I,j,1) = khdt_x(I,j) / (dt*(G%dy_Cu(I,j)*G%IdxCu(I,j))) endif enddo ; enddo else @@ -323,7 +328,7 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online if (khdt_y(i,J) > khdt_max) then khdt_y(i,J) = khdt_max if (dt*(G%dx_Cv(i,J)*G%IdyCv(i,J)) > 0.0) & - Kh_v(i,J) = khdt_y(i,J) / (dt*(G%dx_Cv(i,J)*G%IdyCv(i,J))) + Kh_v(i,J,1) = khdt_y(i,J) / (dt*(G%dx_Cv(i,J)*G%IdyCv(i,J))) endif enddo ; enddo else @@ -393,14 +398,36 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online call do_group_pass(CS%pass_t, G%Domain, clock=id_clock_pass) - do J=js-1,je ; do i=is,ie - Coef_y(i,J) = I_numitts * khdt_y(i,J) - enddo ; enddo - do j=js,je - do I=is-1,ie - Coef_x(I,j) = I_numitts * khdt_x(I,j) + do k=1,nz+1 + do J=js-1,je + do i=is,ie + Coef_y(i,J,K) = I_numitts * khdt_y(i,J) + enddo enddo enddo + do k=1,nz+1 + do j=js,je + do I=is-1,ie + Coef_x(I,j,K) = I_numitts * khdt_x(I,j) + enddo + enddo + enddo + if (CS%KhTh_use_ebt_struct) then + do K=2,nz+1 + do J=js-1,je + do i=is,ie + Coef_y(i,J,K) = Coef_y(i,J,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i,j+1,k-1) ) + enddo + enddo + enddo + do k=2,nz+1 + do j=js,je + do I=is-1,ie + Coef_x(I,j,K) = Coef_x(I,j,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i+1,j,k-1) ) + enddo + enddo + enddo + endif do itt=1,num_itts if (CS%show_call_tree) call callTree_waypoint("Calling horizontal boundary diffusion (tracer_hordiff)",itt) @@ -426,14 +453,37 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online else call neutral_diffusion_calc_coeffs(G, GV, US, h, tv%T, tv%S, CS%neutral_diffusion_CSp) endif - do J=js-1,je ; do i=is,ie - Coef_y(i,J) = I_numitts * khdt_y(i,J) - enddo ; enddo - do j=js,je - do I=is-1,ie - Coef_x(I,j) = I_numitts * khdt_x(I,j) + + do k=1,nz+1 + do J=js-1,je + do i=is,ie + Coef_y(i,J,K) = I_numitts * khdt_y(i,J) + enddo + enddo + enddo + do k=1,nz+1 + do j=js,je + do I=is-1,ie + Coef_x(I,j,K) = I_numitts * khdt_x(I,j) + enddo enddo enddo + if (CS%KhTh_use_ebt_struct) then + do K=2,nz+1 + do J=js-1,je + do i=is,ie + Coef_y(i,J,K) = Coef_y(i,J,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i,j+1,k-1) ) + enddo + enddo + enddo + do k=2,nz+1 + do j=js,je + do I=is-1,ie + Coef_x(I,j,K) = Coef_x(I,j,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i+1,j,k-1) ) + enddo + enddo + enddo + endif do itt=1,num_itts if (CS%show_call_tree) call callTree_waypoint("Calling neutral diffusion (tracer_hordiff)",itt) @@ -467,13 +517,13 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online endif do J=js-1,je ; do i=is,ie - Coef_y(i,J) = ((scale * khdt_y(i,J))*2.0*(h(i,j,k)*h(i,j+1,k))) / & + Coef_y(i,J,1) = ((scale * khdt_y(i,J))*2.0*(h(i,j,k)*h(i,j+1,k))) / & (h(i,j,k)+h(i,j+1,k)+h_neglect) enddo ; enddo do j=js,je do I=is-1,ie - Coef_x(I,j) = ((scale * khdt_x(I,j))*2.0*(h(i,j,k)*h(i+1,j,k))) / & + Coef_x(I,j,1) = ((scale * khdt_x(I,j))*2.0*(h(i,j,k)*h(i+1,j,k))) / & (h(i,j,k)+h(i+1,j,k)+h_neglect) enddo @@ -485,25 +535,25 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online do m=1,ntr do j=js,je ; do i=is,ie dTr(i,j) = Ihdxdy(i,j) * & - ((Coef_x(I-1,j) * (Reg%Tr(m)%t(i-1,j,k) - Reg%Tr(m)%t(i,j,k)) - & - Coef_x(I,j) * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i+1,j,k))) + & - (Coef_y(i,J-1) * (Reg%Tr(m)%t(i,j-1,k) - Reg%Tr(m)%t(i,j,k)) - & - Coef_y(i,J) * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i,j+1,k)))) + ((Coef_x(I-1,j,1) * (Reg%Tr(m)%t(i-1,j,k) - Reg%Tr(m)%t(i,j,k)) - & + Coef_x(I,j,1) * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i+1,j,k))) + & + (Coef_y(i,J-1,1) * (Reg%Tr(m)%t(i,j-1,k) - Reg%Tr(m)%t(i,j,k)) - & + Coef_y(i,J,1) * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i,j+1,k)))) enddo ; enddo if (associated(Reg%Tr(m)%df_x)) then ; do j=js,je ; do I=G%IscB,G%IecB - Reg%Tr(m)%df_x(I,j,k) = Reg%Tr(m)%df_x(I,j,k) + Coef_x(I,j) & + Reg%Tr(m)%df_x(I,j,k) = Reg%Tr(m)%df_x(I,j,k) + Coef_x(I,j,1) & * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i+1,j,k)) * Idt enddo ; enddo ; endif if (associated(Reg%Tr(m)%df_y)) then ; do J=G%JscB,G%JecB ; do i=is,ie - Reg%Tr(m)%df_y(i,J,k) = Reg%Tr(m)%df_y(i,J,k) + Coef_y(i,J) & + Reg%Tr(m)%df_y(i,J,k) = Reg%Tr(m)%df_y(i,J,k) + Coef_y(i,J,1) & * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i,j+1,k)) * Idt enddo ; enddo ; endif if (associated(Reg%Tr(m)%df2d_x)) then ; do j=js,je ; do I=G%IscB,G%IecB - Reg%Tr(m)%df2d_x(I,j) = Reg%Tr(m)%df2d_x(I,j) + Coef_x(I,j) & + Reg%Tr(m)%df2d_x(I,j) = Reg%Tr(m)%df2d_x(I,j) + Coef_x(I,j,1) & * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i+1,j,k)) * Idt enddo ; enddo ; endif if (associated(Reg%Tr(m)%df2d_y)) then ; do J=G%JscB,G%JecB ; do i=is,ie - Reg%Tr(m)%df2d_y(i,J) = Reg%Tr(m)%df2d_y(i,J) + Coef_y(i,J) & + Reg%Tr(m)%df2d_y(i,J) = Reg%Tr(m)%df2d_y(i,J) + Coef_y(i,J,1) & * (Reg%Tr(m)%t(i,j,k) - Reg%Tr(m)%t(i,j+1,k)) * Idt enddo ; enddo ; endif do j=js,je ; do i=is,ie @@ -542,43 +592,65 @@ subroutine tracer_hordiff(h, dt, MEKE, VarMix, G, GV, US, CS, Reg, tv, do_online ! post diagnostics for 2d tracer diffusivity if (CS%id_KhTr_u > 0) then do j=js,je ; do I=is-1,ie - Kh_u(I,j) = G%mask2dCu(I,j)*Kh_u(I,j) + Kh_u(I,j,:) = G%mask2dCu(I,j)*Kh_u(I,j,1) enddo ; enddo - call post_data(CS%id_KhTr_u, Kh_u, CS%diag, mask=G%mask2dCu) + if (CS%KhTh_use_ebt_struct) then + do K=2,nz+1 + do j=js,je + do I=is-1,ie + Kh_u(I,j,K) = Kh_u(I,j,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i+1,j,k-1) ) + enddo + enddo + enddo + endif + !call post_data(CS%id_KhTr_u, Kh_u, CS%diag, is_static=.false., mask=G%mask2dCu) + call post_data(CS%id_KhTr_u, Kh_u, CS%diag) endif if (CS%id_KhTr_v > 0) then do J=js-1,je ; do i=is,ie - Kh_v(i,J) = G%mask2dCv(i,J)*Kh_v(i,J) + Kh_v(i,J,:) = G%mask2dCv(i,J)*Kh_v(i,J,1) enddo ; enddo - call post_data(CS%id_KhTr_v, Kh_v, CS%diag, mask=G%mask2dCv) + if (CS%KhTh_use_ebt_struct) then + do K=2,nz+1 + do J=js-1,je + do i=is,ie + Kh_v(i,J,K) = Kh_v(i,J,1) * 0.5 * ( VarMix%ebt_struct(i,j,k-1) + VarMix%ebt_struct(i,j+1,k-1) ) + enddo + enddo + enddo + endif + !call post_data(CS%id_KhTr_v, Kh_v, CS%diag, is_static=.false., mask=G%mask2dCv) + call post_data(CS%id_KhTr_v, Kh_v, CS%diag) endif if (CS%id_KhTr_h > 0) then - Kh_h(:,:) = 0.0 + Kh_h(:,:,:) = 0.0 do j=js,je ; do I=is-1,ie - Kh_u(I,j) = G%mask2dCu(I,j)*Kh_u(I,j) + Kh_u(I,j,1) = G%mask2dCu(I,j)*Kh_u(I,j,1) enddo ; enddo do J=js-1,je ; do i=is,ie - Kh_v(i,J) = G%mask2dCv(i,J)*Kh_v(i,J) + Kh_v(i,J,1) = G%mask2dCv(i,J)*Kh_v(i,J,1) enddo ; enddo + do j=js,je ; do i=is,ie normalize = 1.0 / ((G%mask2dCu(I-1,j)+G%mask2dCu(I,j)) + & (G%mask2dCv(i,J-1)+G%mask2dCv(i,J)) + 1.0e-37) - Kh_h(i,j) = normalize*G%mask2dT(i,j)*((Kh_u(I-1,j)+Kh_u(I,j)) + & - (Kh_v(i,J-1)+Kh_v(i,J))) + Kh_h(i,j,:) = normalize*G%mask2dT(i,j)*((Kh_u(I-1,j,1)+Kh_u(I,j,1)) + & + (Kh_v(i,J-1,1)+Kh_v(i,J,1))) + if (CS%KhTh_use_ebt_struct) then + do K=2,nz+1 + Kh_h(i,j,K) = normalize*G%mask2dT(i,j)*VarMix%ebt_struct(i,j,k-1)*((Kh_u(I-1,j,1)+Kh_u(I,j,1)) + & + (Kh_v(i,J-1,1)+Kh_v(i,J,1))) + enddo + endif enddo ; enddo - call post_data(CS%id_KhTr_h, Kh_h, CS%diag, mask=G%mask2dT) + !call post_data(CS%id_KhTr_h, Kh_h, CS%diag, is_static=.false., mask=G%mask2dT) + call post_data(CS%id_KhTr_h, Kh_h, CS%diag) endif - if (CS%debug) then call uvchksum("After tracer diffusion khdt_[xy]", khdt_x, khdt_y, & G%HI, haloshift=0, symmetric=.true., scale=US%L_to_m**2, & scalar_pair=.true.) - if (CS%use_neutral_diffusion) then - call uvchksum("After tracer diffusion Coef_[xy]", Coef_x, Coef_y, & - G%HI, haloshift=0, symmetric=.true., scale=US%L_to_m**2, & - scalar_pair=.true.) - endif endif if (CS%id_khdt_x > 0) call post_data(CS%id_khdt_x, khdt_x, CS%diag) @@ -1489,6 +1561,10 @@ subroutine tracer_hor_diff_init(Time, G, GV, US, param_file, diag, EOS, diabatic call get_param(param_file, mdl, "KHTR", CS%KhTr, & "The background along-isopycnal tracer diffusivity.", & units="m2 s-1", default=0.0, scale=US%m_to_L**2*US%T_to_s) + call get_param(param_file, mdl, "KHTR_USE_EBT_STRUCT", CS%KhTh_use_ebt_struct, & + "If true, uses the equivalent barotropic structure "//& + "as the vertical structure of the tracer diffusivity.",& + default=.false.) call get_param(param_file, mdl, "KHTR_SLOPE_CFF", CS%KhTr_Slope_Cff, & "The scaling coefficient for along-isopycnal tracer "//& "diffusivity using a shear-based (Visbeck-like) "//& @@ -1558,11 +1634,11 @@ subroutine tracer_hor_diff_init(Time, G, GV, US, param_file, diag, EOS, diabatic CS%id_KhTr_h = -1 CS%id_CFL = -1 - CS%id_KhTr_u = register_diag_field('ocean_model', 'KHTR_u', diag%axesCu1, Time, & + CS%id_KhTr_u = register_diag_field('ocean_model', 'KHTR_u', diag%axesCui, Time, & 'Epipycnal tracer diffusivity at zonal faces of tracer cell', 'm2 s-1', conversion=US%L_to_m**2*US%s_to_T) - CS%id_KhTr_v = register_diag_field('ocean_model', 'KHTR_v', diag%axesCv1, Time, & + CS%id_KhTr_v = register_diag_field('ocean_model', 'KHTR_v', diag%axesCvi, Time, & 'Epipycnal tracer diffusivity at meridional faces of tracer cell', 'm2 s-1', conversion=US%L_to_m**2*US%s_to_T) - CS%id_KhTr_h = register_diag_field('ocean_model', 'KHTR_h', diag%axesT1, Time, & + CS%id_KhTr_h = register_diag_field('ocean_model', 'KHTR_h', diag%axesTi, Time, & 'Epipycnal tracer diffusivity at tracer cell center', 'm2 s-1', conversion=US%L_to_m**2*US%s_to_T, & cmor_field_name='diftrelo', & cmor_standard_name= 'ocean_tracer_epineutral_laplacian_diffusivity', & From a588033727ea2e366d3893fe7670b1cda16cb03e Mon Sep 17 00:00:00 2001 From: Gustavo Marques Date: Mon, 31 Jul 2023 10:53:07 -0600 Subject: [PATCH 2/4] Make HBD work with 3D diffusivities Following up on the previous commit, where a vertical dimension was added to the tracer diffusivities, this commit modifies the HBD module to work with this change. To do so, parameter khtr_u (diffusivity times the time step) is calculated at cell centers and then remapped onto the HBD vertical grid. All unit tests in this module were updated to conform with this change. This commit also makes the default value of HBD_DEBUG equal to the value set for DEBUG. --- src/tracer/MOM_hor_bnd_diffusion.F90 | 81 ++++++++++++++++------------ 1 file changed, 47 insertions(+), 34 deletions(-) diff --git a/src/tracer/MOM_hor_bnd_diffusion.F90 b/src/tracer/MOM_hor_bnd_diffusion.F90 index b89552e8e4..4f6f198ff8 100644 --- a/src/tracer/MOM_hor_bnd_diffusion.F90 +++ b/src/tracer/MOM_hor_bnd_diffusion.F90 @@ -88,6 +88,7 @@ logical function hor_bnd_diffusion_init(Time, G, GV, US, param_file, diag, diaba ! local variables character(len=80) :: string ! Temporary strings logical :: boundary_extrap ! controls if boundary extrapolation is used in the HBD code + logical :: debug !< If true, write verbose checksums for debugging purposes if (ASSOCIATED(CS)) then call MOM_error(FATAL, "hor_bnd_diffusion_init called with associated control structure.") @@ -145,9 +146,10 @@ logical function hor_bnd_diffusion_init(Time, G, GV, US, param_file, diag, diaba call initialize_remapping( CS%remap_CS, string, boundary_extrapolation = boundary_extrap ,& check_reconstruction=.false., check_remapping=.false.) call extract_member_remapping_CS(CS%remap_CS, degree=CS%deg) + call get_param(param_file, mdl, "DEBUG", debug, default=.false., do_not_log=.true.) call get_param(param_file, mdl, "HBD_DEBUG", CS%debug, & "If true, write out verbose debugging data in the HBD module.", & - default=.false.) + default=debug) id_clock_hbd = cpu_clock_id('(Ocean HBD)', grain=CLOCK_MODULE) @@ -160,17 +162,16 @@ end function hor_bnd_diffusion_init !! 3) remap fluxes to the native grid !! 4) update tracer by adding the divergence of F subroutine hor_bnd_diffusion(G, GV, US, h, Coef_x, Coef_y, dt, Reg, CS) - type(ocean_grid_type), intent(inout) :: G !< Grid type - type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure - type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type - real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), & - intent(in) :: h !< Layer thickness [H ~> m or kg m-2] - real, dimension(SZIB_(G),SZJ_(G)), intent(in) :: Coef_x !< dt * Kh * dy / dx at u-points [L2 ~> m2] - real, dimension(SZI_(G),SZJB_(G)), intent(in) :: Coef_y !< dt * Kh * dx / dy at v-points [L2 ~> m2] - real, intent(in) :: dt !< Tracer time step * I_numitts - !! (I_numitts in tracer_hordiff) [T ~> s] - type(tracer_registry_type), pointer :: Reg !< Tracer registry - type(hbd_CS), pointer :: CS !< Control structure for this module + type(ocean_grid_type), intent(inout) :: G !< Grid type + type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure + type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), intent(in) :: h !< Layer thickness [H ~> m or kg m-2] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)+1), intent(in) :: Coef_x !< dt * Kh * dy / dx at u-points [L2 ~> m2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)+1), intent(in) :: Coef_y !< dt * Kh * dx / dy at v-points [L2 ~> m2] + real, intent(in) :: dt !< Tracer time step * I_numitts + !! (I_numitts in tracer_hordiff) [T ~> s] + type(tracer_registry_type), pointer :: Reg !< Tracer registry + type(hbd_CS), pointer :: CS !< Control structure for this module ! Local variables real, dimension(SZI_(G),SZJ_(G)) :: hbl !< Boundary layer depth [H ~> m or kg m-2] @@ -224,9 +225,9 @@ subroutine hor_bnd_diffusion(G, GV, US, h, Coef_x, Coef_y, dt, Reg, CS) do j=G%jsc,G%jec do i=G%isc-1,G%iec if (G%mask2dCu(I,j)>0.) then - call fluxes_layer_method(SURFACE, G%ke, hbl(I,j), hbl(I+1,j), & + call fluxes_layer_method(SURFACE, GV%ke, hbl(I,j), hbl(I+1,j), & h(I,j,:), h(I+1,j,:), tracer%t(I,j,:), tracer%t(I+1,j,:), & - Coef_x(I,j), uFlx(I,j,:), G%areaT(I,j), G%areaT(I+1,j), CS%hbd_u_kmax(I,j), & + Coef_x(I,j,:), uFlx(I,j,:), G%areaT(I,j), G%areaT(I+1,j), CS%hbd_u_kmax(I,j), & CS%hbd_grd_u(I,j,:), CS) endif enddo @@ -236,7 +237,7 @@ subroutine hor_bnd_diffusion(G, GV, US, h, Coef_x, Coef_y, dt, Reg, CS) if (G%mask2dCv(i,J)>0.) then call fluxes_layer_method(SURFACE, GV%ke, hbl(i,J), hbl(i,J+1), & h(i,J,:), h(i,J+1,:), tracer%t(i,J,:), tracer%t(i,J+1,:), & - Coef_y(i,J), vFlx(i,J,:), G%areaT(i,J), G%areaT(i,J+1), CS%hbd_v_kmax(i,J), & + Coef_y(i,J,:), vFlx(i,J,:), G%areaT(i,J), G%areaT(i,J+1), CS%hbd_v_kmax(i,J), & CS%hbd_grd_v(i,J,:), CS) endif enddo @@ -667,8 +668,8 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ real, dimension(ke), intent(in ) :: h_R !< Thicknesses in the native grid (right) [H ~> m or kg m-2] real, dimension(ke), intent(in ) :: phi_L !< Tracer values in the native grid (left) [conc] real, dimension(ke), intent(in ) :: phi_R !< Tracer values in the native grid (right) [conc] - real, intent(in ) :: khtr_u !< Horizontal diffusivities times the time step - !! at a velocity point [L2 ~> m2] + real, dimension(ke+1),intent(in ) :: khtr_u !< Horizontal diffusivities times the time step + !! at a velocity point and vertical interfaces [L2 ~> m2] real, dimension(ke), intent( out) :: F_layer !< Layerwise diffusive flux at U- or V-point !! in the native grid [H L2 conc ~> m3 conc] real, intent(in ) :: area_L !< Area of the horizontal grid (left) [L2 ~> m2] @@ -681,10 +682,12 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ real, allocatable :: phi_L_z(:) !< Tracer values in the ztop grid (left) [conc] real, allocatable :: phi_R_z(:) !< Tracer values in the ztop grid (right) [conc] real, allocatable :: F_layer_z(:) !< Diffusive flux at U/V-point in the ztop grid [H L2 conc ~> m3 conc] - real :: h_vel(ke) !< Thicknesses at u- and v-points in the native grid + real, allocatable :: khtr_ul_z(:) !< khtr_u at layer centers in the ztop grid [H L2 conc ~> m3 conc] + real, dimension(ke) :: h_vel !< Thicknesses at u- and v-points in the native grid !! The harmonic mean is used to avoid zero values [H ~> m or kg m-2] + real, dimension(ke) :: khtr_ul !< khtr_u at the vertical layer of the native grid [L2 ~> m2] real :: htot !< Total column thickness [H ~> m or kg m-2] - integer :: k + integer :: k !< Index used in the vertical direction integer :: k_bot_min !< Minimum k-index for the bottom integer :: k_bot_max !< Maximum k-index for the bottom integer :: k_bot_diff !< Difference between bottom left and right k-indices @@ -695,11 +698,12 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ real :: zeta_bot_L, zeta_bot_R !< distance from the bottom of a layer to the boundary !! layer depth in the native grid [nondim] real :: wgt !< weight to be used in the linear transition to the interior [nondim] - real :: a !< coefficient to be used in the linear transition to the interior [nondim] + real :: a !< coefficient used in the linear transition to the interior [nondim] real :: tmp1, tmp2 !< dummy variables [H ~> m or kg m-2] real :: htot_max !< depth below which no fluxes should be applied [H ~> m or kg m-2] F_layer(:) = 0.0 + khtr_ul(:) = 0.0 if (hbl_L == 0. .or. hbl_R == 0.) then return endif @@ -708,6 +712,7 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ allocate(phi_L_z(nk), source=0.0) allocate(phi_R_z(nk), source=0.0) allocate(F_layer_z(nk), source=0.0) + allocate(khtr_ul_z(nk), source=0.0) ! remap tracer to dz_top call remapping_core_h(CS%remap_cs, ke, h_L(:), phi_L(:), nk, dz_top(:), phi_L_z(:), & @@ -715,6 +720,18 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ call remapping_core_h(CS%remap_cs, ke, h_R(:), phi_R(:), nk, dz_top(:), phi_R_z(:), & CS%H_subroundoff, CS%H_subroundoff) + ! thicknesses at velocity points & khtr_u at layer centers + do k = 1,ke + h_vel(k) = harmonic_mean(h_L(k), h_R(k)) + ! GMM, writting 0.5 * (A(k) + A(k+1)) as A(k) + 0.5 * (A(k+1) - A(k)) to recover + ! answers with depth-independent khtr + khtr_ul(k) = khtr_u(k) + 0.5 * (khtr_u(k+1) - khtr_u(k)) + enddo + + ! remap khtr_ul to khtr_ul_z + call remapping_core_h(CS%remap_cs, ke, h_vel(:), khtr_ul(:), nk, dz_top(:), khtr_ul_z(:), & + CS%H_subroundoff, CS%H_subroundoff) + ! Calculate vertical indices containing the boundary layer in dz_top call boundary_k_range(boundary, nk, dz_top, hbl_L, k_top_L, zeta_top_L, k_bot_L, zeta_bot_L) call boundary_k_range(boundary, nk, dz_top, hbl_R, k_top_R, zeta_top_R, k_bot_R, zeta_bot_R) @@ -728,7 +745,7 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ if ((CS%linear) .and. (k_bot_diff > 1)) then ! apply linear decay at the base of hbl do k = k_bot_min,1,-1 - F_layer_z(k) = -(dz_top(k) * khtr_u) * (phi_R_z(k) - phi_L_z(k)) + F_layer_z(k) = -(dz_top(k) * khtr_ul_z(k)) * (phi_R_z(k) - phi_L_z(k)) if (CS%limiter_remap) call flux_limiter(F_layer_z(k), area_L, area_R, phi_L_z(k), & phi_R_z(k), dz_top(k), dz_top(k)) enddo @@ -741,14 +758,14 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ htot = 0. do k = k_bot_min+1,k_bot_max, 1 wgt = (a*(htot + (dz_top(k) * 0.5))) + 1.0 - F_layer_z(k) = -(dz_top(k) * khtr_u) * (phi_R_z(k) - phi_L_z(k)) * wgt + F_layer_z(k) = -(dz_top(k) * khtr_ul_z(k)) * (phi_R_z(k) - phi_L_z(k)) * wgt htot = htot + dz_top(k) if (CS%limiter_remap) call flux_limiter(F_layer_z(k), area_L, area_R, phi_L_z(k), & phi_R_z(k), dz_top(k), dz_top(k)) enddo else do k = k_bot_min,1,-1 - F_layer_z(k) = -(dz_top(k) * khtr_u) * (phi_R_z(k) - phi_L_z(k)) + F_layer_z(k) = -(dz_top(k) * khtr_ul_z(k)) * (phi_R_z(k) - phi_L_z(k)) if (CS%limiter_remap) call flux_limiter(F_layer_z(k), area_L, area_R, phi_L_z(k), & phi_R_z(k), dz_top(k), dz_top(k)) enddo @@ -757,11 +774,6 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ !GMM, TODO: boundary == BOTTOM - ! thicknesses at velocity points - do k = 1,ke - h_vel(k) = harmonic_mean(h_L(k), h_R(k)) - enddo - ! remap flux to h_vel (native grid) call reintegrate_column(nk, dz_top(:), F_layer_z(:), ke, h_vel(:), F_layer(:)) @@ -792,6 +804,7 @@ subroutine fluxes_layer_method(boundary, ke, hbl_L, hbl_R, h_L, h_R, phi_L, phi_ deallocate(phi_L_z) deallocate(phi_R_z) deallocate(F_layer_z) + deallocate(khtr_ul_z) end subroutine fluxes_layer_method @@ -805,7 +818,7 @@ logical function near_boundary_unit_tests( verbose ) real, dimension(:), allocatable :: h1 ! Upates layer thicknesses [m] real, dimension(nk) :: phi_L, phi_R ! Tracer values (left and right column) [conc] real, dimension(nk) :: h_L, h_R ! Layer thickness (left and right) [m] - real :: khtr_u ! Horizontal diffusivities at U-point [m2 s-1] + real, dimension(nk+1) :: khtr_u ! Horizontal diffusivities at U-point and interfaces[m2 s-1] real :: hbl_L, hbl_R ! Depth of the boundary layer (left and right) [m] real, dimension(nk) :: F_layer ! Diffusive flux within each layer at U-point [conc m3 s-1] character(len=120) :: test_name ! Title of the unit test @@ -983,7 +996,7 @@ logical function near_boundary_unit_tests( verbose ) hbl_L = 2.; hbl_R = 2. h_L = (/2.,2./) ; h_R = (/2.,2./) phi_L = (/0.,0./) ; phi_R = (/1.,1./) - khtr_u = 1. + khtr_u = (/1.,1.,1./) call hbd_grid_test(SURFACE, hbl_L, hbl_R, h_L, h_R, CS) call fluxes_layer_method(SURFACE, nk, hbl_L, hbl_R, h_L, h_R, phi_L, phi_R, & khtr_u, F_layer, 1., 1., CS%hbd_u_kmax(1,1), CS%hbd_grd_u(1,1,:), CS) @@ -994,7 +1007,7 @@ logical function near_boundary_unit_tests( verbose ) hbl_L = 2.; hbl_R = 2. h_L = (/2.,2./) ; h_R = (/2.,2./) phi_L = (/2.,1./) ; phi_R = (/1.,1./) - khtr_u = 0.5 + khtr_u = (/0.5,0.5,0.5/) call hbd_grid_test(SURFACE, hbl_L, hbl_R, h_L, h_R, CS) call fluxes_layer_method(SURFACE, nk, hbl_L, hbl_R, h_L, h_R, phi_L, phi_R, & khtr_u, F_layer, 1., 1., CS%hbd_u_kmax(1,1), CS%hbd_grd_u(1,1,:), CS) @@ -1005,7 +1018,7 @@ logical function near_boundary_unit_tests( verbose ) hbl_L = 2; hbl_R = 2 h_L = (/1.,2./) ; h_R = (/1.,2./) phi_L = (/0.,0./) ; phi_R = (/0.5,2./) - khtr_u = 2. + khtr_u = (/2.,2.,2./) call hbd_grid_test(SURFACE, hbl_L, hbl_R, h_L, h_R, CS) call fluxes_layer_method(SURFACE, nk, hbl_L, hbl_R, h_L, h_R, phi_L, phi_R, & khtr_u, F_layer, 1., 1., CS%hbd_u_kmax(1,1), CS%hbd_grd_u(1,1,:), CS) @@ -1016,7 +1029,7 @@ logical function near_boundary_unit_tests( verbose ) hbl_L = 12; hbl_R = 20 h_L = (/6.,6./) ; h_R = (/10.,10./) phi_L = (/1.,1./) ; phi_R = (/1.,1./) - khtr_u = 1. + khtr_u = (/1.,1.,1./) call hbd_grid_test(SURFACE, hbl_L, hbl_R, h_L, h_R, CS) call fluxes_layer_method(SURFACE, nk, hbl_L, hbl_R, h_L, h_R, phi_L, phi_R, & khtr_u, F_layer, 1., 1., CS%hbd_u_kmax(1,1), CS%hbd_grd_u(1,1,:), CS) @@ -1028,7 +1041,7 @@ logical function near_boundary_unit_tests( verbose ) hbl_L = 15; hbl_R = 10. h_L = (/10.,5./) ; h_R = (/10.,0./) phi_L = (/1.,1./) ; phi_R = (/0.,0./) - khtr_u = 1. + khtr_u = (/1.,1.,1./) call hbd_grid_test(SURFACE, hbl_L, hbl_R, h_L, h_R, CS) call fluxes_layer_method(SURFACE, nk, hbl_L, hbl_R, h_L, h_R, phi_L, phi_R, & khtr_u, F_layer, 1., 1., CS%hbd_u_kmax(1,1), CS%hbd_grd_u(1,1,:), CS) From 27518f750f83697c97b4caee718314856cae259f Mon Sep 17 00:00:00 2001 From: Gustavo Marques Date: Mon, 31 Jul 2023 11:17:34 -0600 Subject: [PATCH 3/4] Make neutral diffusion work with 3D diffusivities This commit modifies the neutral diffusion module to work with 3D diffusivities. When the diffusivities are depth dependent (KHTR_USE_EBT_STRUCT=True), a new array (Coef_h, with values at tracer points and at vertical interfaces) with a four-point average between Coef_x and Coef_y is introduced. This array is then used to calculate zonal and meridional neutral fluxes via optional arguments and using an existing four-point average (vertical interfaces of two tracer cells) inside subroutine neutral_surface_flux. The same approach is already used when tapering the neutral diffusive fluxes. In this case, however, the unit of the output from neutral_surface_flux (Flx) is modified because the flux of the tracer between pairs of neutral layers is multiplied by the average of Coef_h. To avoid double counting Coef_h, the code block for updating the tracer concentration from divergence of neutral diffusive flux components also had to be modified for when KHTR_USE_EBT_STRUCT=True. Similar for diagnostics trans_x_2d and trans_y_2d. This commit also makes the default value of NDIFF_DEBUG equal to the value set for DEBUG. --- src/tracer/MOM_neutral_diffusion.F90 | 370 +++++++++++++++++++-------- 1 file changed, 261 insertions(+), 109 deletions(-) diff --git a/src/tracer/MOM_neutral_diffusion.F90 b/src/tracer/MOM_neutral_diffusion.F90 index ee2d5e6a03..3b777c1453 100644 --- a/src/tracer/MOM_neutral_diffusion.F90 +++ b/src/tracer/MOM_neutral_diffusion.F90 @@ -56,6 +56,8 @@ module MOM_neutral_diffusion logical :: tapering = .false. !< If true, neutral diffusion linearly decays towards zero within a !! transition zone defined using boundary layer depths. Only available when !! interior_only=true. + logical :: KhTh_use_ebt_struct !< If true, uses the equivalent barotropic structure + !! as the vertical structure of tracer diffusivity. logical :: use_unmasked_transport_bug !< If true, use an older form for the accumulation of !! neutral-diffusion transports that were unmasked, as used prior to Jan 2018. real, allocatable, dimension(:,:) :: hbl !< Boundary layer depth [H ~> m or kg m-2] @@ -64,6 +66,8 @@ module MOM_neutral_diffusion !! at cell interfaces real, allocatable, dimension(:) :: coeff_r !< Non-dimensional coefficient in the right column, !! at cell interfaces + ! Array used when KhTh_use_ebt_struct is true + real, allocatable, dimension(:,:,:) :: Coef_h !< Coef_x and Coef_y averaged at t-points [L2 ~> m2] ! Positions of neutral surfaces in both the u, v directions real, allocatable, dimension(:,:,:) :: uPoL !< Non-dimensional position with left layer uKoL-1, u-point [nondim] real, allocatable, dimension(:,:,:) :: uPoR !< Non-dimensional position with right layer uKoR-1, u-point [nondim] @@ -136,13 +140,15 @@ logical function neutral_diffusion_init(Time, G, GV, US, param_file, diag, EOS, type(neutral_diffusion_CS), pointer :: CS !< Neutral diffusion control structure ! Local variables - character(len=80) :: string ! Temporary strings + character(len=80) :: string ! Temporary strings integer :: default_answer_date ! The default setting for the various ANSWER_DATE flags. logical :: default_2018_answers ! The default setting for the various 2018_ANSWERS flags. - logical :: remap_answers_2018 ! If true, use the order of arithmetic and expressions that - ! recover the answers for remapping from the end of 2018. - ! Otherwise, use more robust forms of the same expressions. - logical :: boundary_extrap + logical :: remap_answers_2018 ! If true, use the order of arithmetic and expressions that + ! recover the answers for remapping from the end of 2018. + ! Otherwise, use more robust forms of the same expressions. + logical :: debug ! If true, write verbose checksums for debugging purposes. + logical :: boundary_extrap ! Indicate whether high-order boundary + !! extrapolation should be used within boundary cells. if (associated(CS)) then call MOM_error(FATAL, "neutral_diffusion_init called with associated control structure.") @@ -187,6 +193,10 @@ logical function neutral_diffusion_init(Time, G, GV, US, param_file, diag, EOS, "a transition zone defined using boundary layer depths. "//& "Only applicable when NDIFF_INTERIOR_ONLY=True", default=.false.) endif + call get_param(param_file, mdl, "KHTR_USE_EBT_STRUCT", CS%KhTh_use_ebt_struct, & + "If true, uses the equivalent barotropic structure "//& + "as the vertical structure of the tracer diffusivity.",& + default=.false.,do_not_log=.true.) call get_param(param_file, mdl, "NDIFF_USE_UNMASKED_TRANSPORT_BUG", CS%use_unmasked_transport_bug, & "If true, use an older form for the accumulation of neutral-diffusion "//& "transports that were unmasked, as used prior to Jan 2018. This is not "//& @@ -257,10 +267,10 @@ logical function neutral_diffusion_init(Time, G, GV, US, param_file, diag, EOS, "exiting the iterative loop to find the neutral surface", & default=10) endif + call get_param(param_file, mdl, "DEBUG", debug, default=.false., do_not_log=.true.) call get_param(param_file, mdl, "NDIFF_DEBUG", CS%debug, & "Turns on verbose output for discontinuous neutral "//& - "diffusion routines.", & - default=.false.) + "diffusion routines.", default=debug) call get_param(param_file, mdl, "HARD_FAIL_HEFF", CS%hard_fail_heff, & "Bring down the model if a problem with heff is detected",& default=.true.) @@ -275,10 +285,14 @@ logical function neutral_diffusion_init(Time, G, GV, US, param_file, diag, EOS, endif if (CS%tapering) then - allocate(CS%coeff_l(SZK_(GV)+1), source=0.) - allocate(CS%coeff_r(SZK_(GV)+1), source=0.) + allocate(CS%coeff_l(SZK_(GV)+1), source=1.) + allocate(CS%coeff_r(SZK_(GV)+1), source=1.) endif endif + + if (CS%KhTh_use_ebt_struct) & + allocate(CS%Coef_h(G%isd:G%ied,G%jsd:G%jed,SZK_(GV)+1), source=0.) + ! Store a rescaling factor for use in diagnostic messages. CS%R_to_kg_m3 = US%R_to_kg_m3 @@ -583,16 +597,16 @@ end subroutine neutral_diffusion_calc_coeffs !> Update tracer concentration due to neutral diffusion; layer thickness unchanged by this update. subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) - type(ocean_grid_type), intent(in) :: G !< Ocean grid structure - type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure - real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), intent(in) :: h !< Layer thickness [H ~> m or kg m-2] - real, dimension(SZIB_(G),SZJ_(G)), intent(in) :: Coef_x !< dt * Kh * dy / dx at u-points [L2 ~> m2] - real, dimension(SZI_(G),SZJB_(G)), intent(in) :: Coef_y !< dt * Kh * dx / dy at v-points [L2 ~> m2] - real, intent(in) :: dt !< Tracer time step * I_numitts [T ~> s] + type(ocean_grid_type), intent(in) :: G !< Ocean grid structure + type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), intent(in) :: h !< Layer thickness [H ~> m or kg m-2] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)+1), intent(in) :: Coef_x !< dt * Kh * dy / dx at u-points [L2 ~> m2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)+1), intent(in) :: Coef_y !< dt * Kh * dx / dy at v-points [L2 ~> m2] + real, intent(in) :: dt !< Tracer time step * I_numitts [T ~> s] !! (I_numitts in tracer_hordiff) - type(tracer_registry_type), pointer :: Reg !< Tracer registry - type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type - type(neutral_diffusion_CS), pointer :: CS !< Neutral diffusion control structure + type(tracer_registry_type), pointer :: Reg !< Tracer registry + type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type + type(neutral_diffusion_CS), pointer :: CS !< Neutral diffusion control structure ! Local variables real, dimension(SZIB_(G),SZJ_(G),CS%nsurf-1) :: uFlx ! Zonal flux of tracer [H conc ~> m conc or conc kg m-2] @@ -606,12 +620,13 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) real, dimension(SZI_(G),SZJB_(G)) :: trans_y_2d ! depth integrated diffusive tracer y-transport diagn real, dimension(SZK_(GV)) :: dTracer ! change in tracer concentration due to ndiffusion ! [H L2 conc ~> m3 conc or kg conc] + real :: normalize ! normalization used for averaging Coef_x and Coef_y to t-points. + type(tracer_type), pointer :: Tracer => NULL() ! Pointer to the current tracer integer :: i, j, k, m, ks, nk real :: Idt ! The inverse of the time step [T-1 ~> s-1] real :: h_neglect, h_neglect_edge ! Negligible thicknesses [H ~> m or kg m-2] - h_neglect = GV%H_subroundoff ; h_neglect_edge = GV%H_subroundoff if (.not. CS%continuous_reconstruction) then @@ -620,6 +635,22 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) endif endif + if (CS%KhTh_use_ebt_struct) then + ! Compute Coef at h points + CS%Coef_h(:,:,:) = 0. + do j = G%jsc,G%jec ; do i = G%isc,G%iec + if (G%mask2dT(i,j)>0.) then + normalize = 1.0 / ((G%mask2dCu(I-1,j)+G%mask2dCu(I,j)) + & + (G%mask2dCv(i,J-1)+G%mask2dCv(i,J)) + 1.0e-37) + do k = 1, GV%ke+1 + CS%Coef_h(i,j,k) = normalize*G%mask2dT(i,j)*((Coef_x(I-1,j,k)+Coef_x(I,j,k)) + & + (Coef_y(i,J-1,k)+Coef_y(i,J,k))) + enddo + endif + enddo; enddo + call pass_var(CS%Coef_h,G%Domain) + endif + nk = GV%ke do m = 1,Reg%ntr ! Loop over tracer registry @@ -637,87 +668,179 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) vFlx(:,:,:) = 0. ! x-flux - do j = G%jsc,G%jec ; do I = G%isc-1,G%iec - if (G%mask2dCu(I,j)>0.) then - if (CS%tapering) then - ! compute coeff_l and coeff_r and pass them to neutral_surface_flux - call compute_tapering_coeffs(G%ke+1, CS%hbl(I,j), CS%hbl(I+1,j), CS%coeff_l(:), CS%coeff_r(:), & - h(I,j,:), h(I+1,j,:)) - - call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & - tracer%t(i,j,:), tracer%t(i+1,j,:), & - CS%uPoL(I,j,:), CS%uPoR(I,j,:), & - CS%uKoL(I,j,:), CS%uKoR(I,j,:), & - CS%uhEff(I,j,:), uFlx(I,j,:), & - CS%continuous_reconstruction, h_neglect, & - CS%remap_CS, h_neglect_edge, CS%coeff_l(:), CS%coeff_r(:)) - else - call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & - tracer%t(i,j,:), tracer%t(i+1,j,:), & - CS%uPoL(I,j,:), CS%uPoR(I,j,:), & - CS%uKoL(I,j,:), CS%uKoR(I,j,:), & - CS%uhEff(I,j,:), uFlx(I,j,:), & - CS%continuous_reconstruction, h_neglect, CS%remap_CS, h_neglect_edge) + if (CS%KhTh_use_ebt_struct) then + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then + if (CS%tapering) then + ! compute coeff_l and coeff_r and pass them to neutral_surface_flux + call compute_tapering_coeffs(G%ke+1, CS%hbl(I,j), CS%hbl(I+1,j), CS%coeff_l(:), CS%coeff_r(:), & + h(I,j,:), h(I+1,j,:)) + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & + tracer%t(i,j,:), tracer%t(i+1,j,:), & + CS%uPoL(I,j,:), CS%uPoR(I,j,:), & + CS%uKoL(I,j,:), CS%uKoR(I,j,:), & + CS%uhEff(I,j,:), uFlx(I,j,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%coeff_l(:)*CS%Coef_h(i,j,:), & + CS%coeff_r(:)*CS%Coef_h(i+1,j,:)) + else + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & + tracer%t(i,j,:), tracer%t(i+1,j,:), & + CS%uPoL(I,j,:), CS%uPoR(I,j,:), & + CS%uKoL(I,j,:), CS%uKoR(I,j,:), & + CS%uhEff(I,j,:), uFlx(I,j,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%Coef_h(i,j,:), & + CS%Coef_h(i+1,j,:)) + endif endif - endif - enddo ; enddo + enddo ; enddo + else + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then + if (CS%tapering) then + ! compute coeff_l and coeff_r and pass them to neutral_surface_flux + call compute_tapering_coeffs(G%ke+1, CS%hbl(I,j), CS%hbl(I+1,j), CS%coeff_l(:), CS%coeff_r(:), & + h(I,j,:), h(I+1,j,:)) + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & + tracer%t(i,j,:), tracer%t(i+1,j,:), & + CS%uPoL(I,j,:), CS%uPoR(I,j,:), & + CS%uKoL(I,j,:), CS%uKoR(I,j,:), & + CS%uhEff(I,j,:), uFlx(I,j,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%coeff_l(:), & + CS%coeff_r(:)) + else + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & + tracer%t(i,j,:), tracer%t(i+1,j,:), & + CS%uPoL(I,j,:), CS%uPoR(I,j,:), & + CS%uKoL(I,j,:), CS%uKoR(I,j,:), & + CS%uhEff(I,j,:), uFlx(I,j,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge) + endif + endif + enddo ; enddo + endif ! y-flux - do J = G%jsc-1,G%jec ; do i = G%isc,G%iec - if (G%mask2dCv(i,J)>0.) then - if (CS%tapering) then - ! compute coeff_l and coeff_r and pass them to neutral_surface_flux - call compute_tapering_coeffs(G%ke+1, CS%hbl(i,J), CS%hbl(i,J+1), CS%coeff_l(:), CS%coeff_r(:), & - h(i,J,:), h(i,J+1,:)) - - call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & - tracer%t(i,j,:), tracer%t(i,j+1,:), & - CS%vPoL(i,J,:), CS%vPoR(i,J,:), & - CS%vKoL(i,J,:), CS%vKoR(i,J,:), & - CS%vhEff(i,J,:), vFlx(i,J,:), & - CS%continuous_reconstruction, h_neglect, & - CS%remap_CS, h_neglect_edge, CS%coeff_l(:), CS%coeff_r(:)) - else + if (CS%KhTh_use_ebt_struct) then + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then + if (CS%tapering) then + ! compute coeff_l and coeff_r and pass them to neutral_surface_flux + call compute_tapering_coeffs(G%ke+1, CS%hbl(i,J), CS%hbl(i,J+1), CS%coeff_l(:), CS%coeff_r(:), & + h(i,J,:), h(i,J+1,:)) + + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & + tracer%t(i,j,:), tracer%t(i,j+1,:), & + CS%vPoL(i,J,:), CS%vPoR(i,J,:), & + CS%vKoL(i,J,:), CS%vKoR(i,J,:), & + CS%vhEff(i,J,:), vFlx(i,J,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%coeff_l(:)*CS%Coef_h(i,j,:), & + CS%coeff_r(:)*CS%Coef_h(i,j+1,:)) + else - call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & - tracer%t(i,j,:), tracer%t(i,j+1,:), & - CS%vPoL(i,J,:), CS%vPoR(i,J,:), & - CS%vKoL(i,J,:), CS%vKoR(i,J,:), & - CS%vhEff(i,J,:), vFlx(i,J,:), & - CS%continuous_reconstruction, h_neglect, CS%remap_CS, h_neglect_edge) + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & + tracer%t(i,j,:), tracer%t(i,j+1,:), & + CS%vPoL(i,J,:), CS%vPoR(i,J,:), & + CS%vKoL(i,J,:), CS%vKoR(i,J,:), & + CS%vhEff(i,J,:), vFlx(i,J,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%Coef_h(i,j,:), & + CS%Coef_h(i,j+1,:)) + endif endif - endif - enddo ; enddo + enddo ; enddo + else + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then + if (CS%tapering) then + ! compute coeff_l and coeff_r and pass them to neutral_surface_flux + call compute_tapering_coeffs(G%ke+1, CS%hbl(i,J), CS%hbl(i,J+1), CS%coeff_l(:), CS%coeff_r(:), & + h(i,J,:), h(i,J+1,:)) + + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & + tracer%t(i,j,:), tracer%t(i,j+1,:), & + CS%vPoL(i,J,:), CS%vPoR(i,J,:), & + CS%vKoL(i,J,:), CS%vKoR(i,J,:), & + CS%vhEff(i,J,:), vFlx(i,J,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge, CS%coeff_l(:), & + CS%coeff_r(:)) + else + + call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & + tracer%t(i,j,:), tracer%t(i,j+1,:), & + CS%vPoL(i,J,:), CS%vPoR(i,J,:), & + CS%vKoL(i,J,:), CS%vKoR(i,J,:), & + CS%vhEff(i,J,:), vFlx(i,J,:), & + CS%continuous_reconstruction, h_neglect, & + CS%remap_CS, h_neglect_edge) + endif + endif + enddo ; enddo + endif ! Update the tracer concentration from divergence of neutral diffusive flux components - do j = G%jsc,G%jec ; do i = G%isc,G%iec - if (G%mask2dT(i,j)>0.) then + if (CS%KhTh_use_ebt_struct) then + do j = G%jsc,G%jec ; do i = G%isc,G%iec + if (G%mask2dT(i,j)>0.) then + dTracer(:) = 0. + do ks = 1,CS%nsurf-1 + k = CS%uKoL(I,j,ks) + dTracer(k) = dTracer(k) + uFlx(I,j,ks) + k = CS%uKoR(I-1,j,ks) + dTracer(k) = dTracer(k) - uFlx(I-1,j,ks) + k = CS%vKoL(i,J,ks) + dTracer(k) = dTracer(k) + vFlx(i,J,ks) + k = CS%vKoR(i,J-1,ks) + dTracer(k) = dTracer(k) - vFlx(i,J-1,ks) + enddo + do k = 1, GV%ke + tracer%t(i,j,k) = tracer%t(i,j,k) + dTracer(k) * & + ( G%IareaT(i,j) / ( h(i,j,k) + GV%H_subroundoff ) ) + if (abs(tracer%t(i,j,k)) < tracer%conc_underflow) tracer%t(i,j,k) = 0.0 + enddo - dTracer(:) = 0. - do ks = 1,CS%nsurf-1 - k = CS%uKoL(I,j,ks) - dTracer(k) = dTracer(k) + Coef_x(I,j) * uFlx(I,j,ks) - k = CS%uKoR(I-1,j,ks) - dTracer(k) = dTracer(k) - Coef_x(I-1,j) * uFlx(I-1,j,ks) - k = CS%vKoL(i,J,ks) - dTracer(k) = dTracer(k) + Coef_y(i,J) * vFlx(i,J,ks) - k = CS%vKoR(i,J-1,ks) - dTracer(k) = dTracer(k) - Coef_y(i,J-1) * vFlx(i,J-1,ks) - enddo - do k = 1, GV%ke - tracer%t(i,j,k) = tracer%t(i,j,k) + dTracer(k) * & - ( G%IareaT(i,j) / ( h(i,j,k) + GV%H_subroundoff ) ) - if (abs(tracer%t(i,j,k)) < tracer%conc_underflow) tracer%t(i,j,k) = 0.0 - enddo + if (tracer%id_dfxy_conc > 0 .or. tracer%id_dfxy_cont > 0 .or. tracer%id_dfxy_cont_2d > 0 ) then + do k = 1, GV%ke + tendency(i,j,k) = dTracer(k) * G%IareaT(i,j) * Idt + enddo + endif - if (tracer%id_dfxy_conc > 0 .or. tracer%id_dfxy_cont > 0 .or. tracer%id_dfxy_cont_2d > 0 ) then + endif + enddo ; enddo + else + do j = G%jsc,G%jec ; do i = G%isc,G%iec + if (G%mask2dT(i,j)>0.) then + dTracer(:) = 0. + do ks = 1,CS%nsurf-1 + k = CS%uKoL(I,j,ks) + dTracer(k) = dTracer(k) + Coef_x(I,j,1) * uFlx(I,j,ks) + k = CS%uKoR(I-1,j,ks) + dTracer(k) = dTracer(k) - Coef_x(I-1,j,1) * uFlx(I-1,j,ks) + k = CS%vKoL(i,J,ks) + dTracer(k) = dTracer(k) + Coef_y(i,J,1) * vFlx(i,J,ks) + k = CS%vKoR(i,J-1,ks) + dTracer(k) = dTracer(k) - Coef_y(i,J-1,1) * vFlx(i,J-1,ks) + enddo do k = 1, GV%ke - tendency(i,j,k) = dTracer(k) * G%IareaT(i,j) * Idt + tracer%t(i,j,k) = tracer%t(i,j,k) + dTracer(k) * & + ( G%IareaT(i,j) / ( h(i,j,k) + GV%H_subroundoff ) ) + if (abs(tracer%t(i,j,k)) < tracer%conc_underflow) tracer%t(i,j,k) = 0.0 enddo - endif - endif - enddo ; enddo + if (tracer%id_dfxy_conc > 0 .or. tracer%id_dfxy_cont > 0 .or. tracer%id_dfxy_cont_2d > 0 ) then + do k = 1, GV%ke + tendency(i,j,k) = dTracer(k) * G%IareaT(i,j) * Idt + enddo + endif + + endif + enddo ; enddo + endif ! Do user controlled underflow of the tracer concentrations. if (tracer%conc_underflow > 0.0) then @@ -729,30 +852,58 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) ! Diagnose vertically summed zonal flux, giving zonal tracer transport from ndiff. ! Note sign corresponds to downgradient flux convention. if (tracer%id_dfx_2d > 0) then - do j = G%jsc,G%jec ; do I = G%isc-1,G%iec - trans_x_2d(I,j) = 0. - if (G%mask2dCu(I,j)>0.) then - do ks = 1,CS%nsurf-1 - trans_x_2d(I,j) = trans_x_2d(I,j) - Coef_x(I,j) * uFlx(I,j,ks) - enddo - trans_x_2d(I,j) = trans_x_2d(I,j) * Idt - endif - enddo ; enddo + + if (CS%KhTh_use_ebt_struct) then + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + trans_x_2d(I,j) = 0. + if (G%mask2dCu(I,j)>0.) then + do ks = 1,CS%nsurf-1 + trans_x_2d(I,j) = trans_x_2d(I,j) - uFlx(I,j,ks) + enddo + trans_x_2d(I,j) = trans_x_2d(I,j) * Idt + endif + enddo ; enddo + else + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + trans_x_2d(I,j) = 0. + if (G%mask2dCu(I,j)>0.) then + do ks = 1,CS%nsurf-1 + trans_x_2d(I,j) = trans_x_2d(I,j) - Coef_x(I,j,1) * uFlx(I,j,ks) + enddo + trans_x_2d(I,j) = trans_x_2d(I,j) * Idt + endif + enddo ; enddo + endif + call post_data(tracer%id_dfx_2d, trans_x_2d(:,:), CS%diag) endif ! Diagnose vertically summed merid flux, giving meridional tracer transport from ndiff. ! Note sign corresponds to downgradient flux convention. if (tracer%id_dfy_2d > 0) then - do J = G%jsc-1,G%jec ; do i = G%isc,G%iec - trans_y_2d(i,J) = 0. - if (G%mask2dCv(i,J)>0.) then - do ks = 1,CS%nsurf-1 - trans_y_2d(i,J) = trans_y_2d(i,J) - Coef_y(i,J) * vFlx(i,J,ks) - enddo - trans_y_2d(i,J) = trans_y_2d(i,J) * Idt - endif - enddo ; enddo + + if (CS%KhTh_use_ebt_struct) then + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + trans_y_2d(i,J) = 0. + if (G%mask2dCv(i,J)>0.) then + do ks = 1,CS%nsurf-1 + trans_y_2d(i,J) = trans_y_2d(i,J) - vFlx(i,J,ks) + enddo + trans_y_2d(i,J) = trans_y_2d(i,J) * Idt + endif + enddo ; enddo + else + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + trans_y_2d(i,J) = 0. + if (G%mask2dCv(i,J)>0.) then + do ks = 1,CS%nsurf-1 + trans_y_2d(i,J) = trans_y_2d(i,J) - Coef_y(i,J,1) * vFlx(i,J,ks) + enddo + trans_y_2d(i,J) = trans_y_2d(i,J) * Idt + endif + enddo ; enddo + endif + call post_data(tracer%id_dfy_2d, trans_y_2d(:,:), CS%diag) endif @@ -2043,7 +2194,8 @@ subroutine neutral_surface_flux(nk, nsurf, deg, hl, hr, Tl, Tr, PiL, PiR, KoL, K integer, dimension(nsurf), intent(in) :: KoR !< Index of first right interface above neutral surface real, dimension(nsurf-1), intent(in) :: hEff !< Effective thickness between two neutral !! surfaces [H ~> m or kg m-2] - real, dimension(nsurf-1), intent(inout) :: Flx !< Flux of tracer between pairs of neutral layers (conc H) + real, dimension(nsurf-1), intent(inout) :: Flx !< Flux of tracer between pairs of neutral layers + !! (conc H or conc H L2) logical, intent(in) :: continuous !< True if using continuous reconstruction real, intent(in) :: h_neglect !< A negligibly small width for the !! purpose of cell reconstructions [H ~> m or kg m-2] @@ -2051,8 +2203,8 @@ subroutine neutral_surface_flux(nk, nsurf, deg, hl, hr, Tl, Tr, PiL, PiR, KoL, K !! to create sublayers real, optional, intent(in) :: h_neglect_edge !< A negligibly small width used for !! edge value calculations if continuous is false [H ~> m or kg m-2] - real, dimension(nk+1), optional, intent(in) :: coeff_l !< Left-column diffusivity [L2 T-1 ~> m2 s-1] - real, dimension(nk+1), optional, intent(in) :: coeff_r !< Right-column diffusivity [L2 T-1 ~> m2 s-1] + real, dimension(nk+1), optional, intent(in) :: coeff_l !< Left-column diffusivity [L2 ~> m2 or nondim] + real, dimension(nk+1), optional, intent(in) :: coeff_r !< Right-column diffusivity [L2 ~> m2 or nondim] ! Local variables integer :: k_sublayer, klb, klt, krb, krt From c57789f4145e5e7ea9079acd7e63a5e154172769 Mon Sep 17 00:00:00 2001 From: Gustavo Marques Date: Tue, 22 Aug 2023 15:08:29 -0600 Subject: [PATCH 4/4] Rearrange do-loops and if statements Follow Marshall Ward suggestion and rearrange the code to be closer to what the compilers will do (or we hope they would do). This commit aims to potentially enhance performance. Answers are bit-wise identical. --- src/tracer/MOM_neutral_diffusion.F90 | 66 +++++++++++++++++----------- 1 file changed, 40 insertions(+), 26 deletions(-) diff --git a/src/tracer/MOM_neutral_diffusion.F90 b/src/tracer/MOM_neutral_diffusion.F90 index 65e2232ab1..d0f75e8197 100644 --- a/src/tracer/MOM_neutral_diffusion.F90 +++ b/src/tracer/MOM_neutral_diffusion.F90 @@ -669,9 +669,9 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) ! x-flux if (CS%KhTh_use_ebt_struct) then - do j = G%jsc,G%jec ; do I = G%isc-1,G%iec - if (G%mask2dCu(I,j)>0.) then - if (CS%tapering) then + if (CS%tapering) then + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then ! compute coeff_l and coeff_r and pass them to neutral_surface_flux call compute_tapering_coeffs(G%ke+1, CS%hbl(I,j), CS%hbl(I+1,j), CS%coeff_l(:), CS%coeff_r(:), & h(I,j,:), h(I+1,j,:)) @@ -683,7 +683,11 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge, CS%coeff_l(:)*CS%Coef_h(i,j,:), & CS%coeff_r(:)*CS%Coef_h(i+1,j,:)) - else + endif + enddo ; enddo + else + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & tracer%t(i,j,:), tracer%t(i+1,j,:), & CS%uPoL(I,j,:), CS%uPoR(I,j,:), & @@ -693,12 +697,12 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%remap_CS, h_neglect_edge, CS%Coef_h(i,j,:), & CS%Coef_h(i+1,j,:)) endif - endif - enddo ; enddo + enddo ; enddo + endif else - do j = G%jsc,G%jec ; do I = G%isc-1,G%iec - if (G%mask2dCu(I,j)>0.) then - if (CS%tapering) then + if (CS%tapering) then + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then ! compute coeff_l and coeff_r and pass them to neutral_surface_flux call compute_tapering_coeffs(G%ke+1, CS%hbl(I,j), CS%hbl(I+1,j), CS%coeff_l(:), CS%coeff_r(:), & h(I,j,:), h(I+1,j,:)) @@ -710,7 +714,11 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge, CS%coeff_l(:), & CS%coeff_r(:)) - else + endif + enddo ; enddo + else + do j = G%jsc,G%jec ; do I = G%isc-1,G%iec + if (G%mask2dCu(I,j)>0.) then call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i+1,j,:), & tracer%t(i,j,:), tracer%t(i+1,j,:), & CS%uPoL(I,j,:), CS%uPoR(I,j,:), & @@ -719,15 +727,15 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge) endif - endif - enddo ; enddo + enddo ; enddo + endif endif ! y-flux if (CS%KhTh_use_ebt_struct) then - do J = G%jsc-1,G%jec ; do i = G%isc,G%iec - if (G%mask2dCv(i,J)>0.) then - if (CS%tapering) then + if (CS%tapering) then + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then ! compute coeff_l and coeff_r and pass them to neutral_surface_flux call compute_tapering_coeffs(G%ke+1, CS%hbl(i,J), CS%hbl(i,J+1), CS%coeff_l(:), CS%coeff_r(:), & h(i,J,:), h(i,J+1,:)) @@ -740,8 +748,11 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge, CS%coeff_l(:)*CS%Coef_h(i,j,:), & CS%coeff_r(:)*CS%Coef_h(i,j+1,:)) - else - + endif + enddo ; enddo + else + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & tracer%t(i,j,:), tracer%t(i,j+1,:), & CS%vPoL(i,J,:), CS%vPoR(i,J,:), & @@ -751,12 +762,12 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%remap_CS, h_neglect_edge, CS%Coef_h(i,j,:), & CS%Coef_h(i,j+1,:)) endif - endif - enddo ; enddo + enddo ; enddo + endif else - do J = G%jsc-1,G%jec ; do i = G%isc,G%iec - if (G%mask2dCv(i,J)>0.) then - if (CS%tapering) then + if (CS%tapering) then + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then ! compute coeff_l and coeff_r and pass them to neutral_surface_flux call compute_tapering_coeffs(G%ke+1, CS%hbl(i,J), CS%hbl(i,J+1), CS%coeff_l(:), CS%coeff_r(:), & h(i,J,:), h(i,J+1,:)) @@ -769,8 +780,11 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge, CS%coeff_l(:), & CS%coeff_r(:)) - else - + endif + enddo ; enddo + else + do J = G%jsc-1,G%jec ; do i = G%isc,G%iec + if (G%mask2dCv(i,J)>0.) then call neutral_surface_flux(nk, CS%nsurf, CS%deg, h(i,j,:), h(i,j+1,:), & tracer%t(i,j,:), tracer%t(i,j+1,:), & CS%vPoL(i,J,:), CS%vPoR(i,J,:), & @@ -779,8 +793,8 @@ subroutine neutral_diffusion(G, GV, h, Coef_x, Coef_y, dt, Reg, US, CS) CS%continuous_reconstruction, h_neglect, & CS%remap_CS, h_neglect_edge) endif - endif - enddo ; enddo + enddo ; enddo + endif endif ! Update the tracer concentration from divergence of neutral diffusive flux components