forked from erhanbas/pipeline-descriptor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
curveDescriptor.m
513 lines (478 loc) · 15.7 KB
/
curveDescriptor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
function des = curveDescriptor(inputimage,outputfile,siz,sig1,sig2,ROI,rt,withpadding)
%GENDESCTIPTOR returns difference of gaussian Descriptors
%
% [OUTPUTARGS] = DOGDESCTIPTOR(INPUTARGS)
% dog = gauss1(sig1)-gauss2(sig1) : difference kernel
% out = input*dog : convolution
% out > max(out)/rt : only keep signal > ratio threshold
% out : [x-y-z-Ifilt-Iraw] : spatial location (0 index) and filter & raw intensity at that location
%
% Inputs:
% inputimage: input file can be tif or h5
% siz: gaussian kernel width
% sig1: scale of first gaussian
% sig2: scale of secong gaussian
% ROI: reject anything outside of BoundingBox
% rt: threshold ratio
% withpadding: [1: default]: flag to pre/post pad [siz] size image with
% mirroring or not. Useful to get rid of edge artifacts on the
% image
%
% Outputs:
% outputfile: text file that has x-y-z-I values as row vectors
% des: [Nx5]: x-y-z-Ifilt-Iraw row vector
%
% Examples:
% dogDescriptor('/nobackup2/mouselight/cluster/2016-09-25/classifier_output/2016-10-02/00/00314/00314-prob.0.h5',...
% '/groups/mousebrainmicro/mousebrainmicro/cluster/Stitching/2016-09-25/Descriptors/13844-prob.0.txt',...
% '[11 11 11]','[3.405500 3.405500 3.405500]','[4.049845 4.049845 4.049845]','[5 1019 5 1531 10 250]','4')
%
% See also: zmatch.m
% $Author: base $ $Date: 2016/09/20 14:30:14 $ $Revision: 0.1 $
% Copyright: HHMI 2016
if nargin<1
brain = '2017-06-10';
deployment(brain)
end
if nargin < 8
withpadding = 1;
end
tload=tic;
[~,~,fileext] = fileparts(inputimage);
if strcmp(fileext,'.h5')
It = permute(squeeze(h5read(inputimage,'/exported_data')),[2 1 3]);
else
It = deployedtiffread(inputimage);
end
%%
fprintf('Read %s in %f sec\n',inputimage,toc(tload))
dims = size(It);
sig1 = eval(sig1);
sig2 = eval(sig2);
siz = eval(siz);
if nargin<6
ROI = ['''',num2str([1 dims(2) 1 dims(1) 1 dims(3)]),''''];
rt='4';
elseif nargin<7
rt='4';
end
ROI = eval(ROI);
rt = eval(rt);
%%
sig = sig1;
[x,y,z] = ndgrid(-siz(1):siz(1),-siz(2):siz(2),-siz(3):siz(3));
h = exp(-(x.*x/2/sig(1)^2 + y.*y/2/sig(2)^2 + z.*z/2/sig(3)^2));
gauss1 = h/sum(h(:));
sig = sig2;
[x,y,z] = ndgrid(-siz(1):siz(1),-siz(2):siz(2),-siz(3):siz(3));
h = exp(-(x.*x/2/sig(1)^2 + y.*y/2/sig(2)^2 + z.*z/2/sig(3)^2));
gauss2 = h/sum(h(:));
dog = gauss1 - gauss2;
%%
% padarrays
if withpadding
It = padarray(It,siz(1)*ones(1,3),'symmetric','both');
end
outsiz = size(It)+size(dog);%2.^nextpow2(size(It)+size(dog));
tcon = tic;
It = fftn(It,outsiz);
fftdog = fftn(dog,outsiz);
It = ifftn(It.*fftdog);
It = real(It);
fprintf('Convolution of %s in %f sec\n',inputimage,toc(tcon))
% A = ifftn( fftn(A, fftSize) .* fftn(h, fftSize), 'symmetric' );
if withpadding
st = siz(1)+(size(dog)+1)/2+1;
else
st = (size(dog)+1)/2+1;
end
ed = st+dims-1;
It = It(st(1):ed(1),st(2):ed(2),st(3):ed(3)); % crop. Shifted -1 to make indicies 0 based
%% normalization factor % THIS IS BUGGY: convolution always return double, never get into first two conditions
if isa(It,'uint16')
normfac = 2^16-1;
elseif isa(It,'uint8')
normfac = 2^8-1;
else
maxIt = max(max(max(It,[],3),[],2));
if maxIt>1
normfac = 2^16-1;
else
normfac = 1;
end
end
imnormfac = normfac;
normfac = normfac*sum(dog(dog>0)); % max posible filter result will be at truncated filter
%%
maxIt = max(max(max(It,[],3),[],2));
emptyimage=0;
if 1
%thr = graythresh(It/maxIt)*maxIt;
if isempty(It(It>maxIt/20))
thr=0;
emptyimage=1;
else
thr = min(maxIt*7/10, max(maxIt/10,getThresh(It(It>maxIt/20)))); % make sure it is within [0.1 0.9]*maxIt range
end
else
thr = maxIt/rt;
end
%%
if emptyimage
des=[];
else
% It(It<(max(It(:))/rt))=0; % slow
It = It.*(It>=(thr));
%%
tloc = tic;
if 0
It = imregionalmax(It,26);
[yy,xx,zz] = ind2sub(size(It),find(It));
else
s = regionprops(It>0, 'BoundingBox');
clear submax
for ii=1:length(s)
bb = s(ii).BoundingBox;
st = bb([2 1 3])+.5;
en = st+bb([5 4 6])-1;
if any(bb([5 4 6])<[3 3 3])
bb([5 4 6])
continue
end
It_ = It(st(1):en(1),st(2):en(2),st(3):en(3));
% figure, imshow3D(It_)
immax = imregionalmax(It_.*double(It_>0));
idxmax = find(immax);
[iy,ix,iz] = ind2sub(size(immax),idxmax);
submax{ii} = ones(length(iy),1)*st+[iy(:),ix(:),iz(:)]-1;
end
localmax = cat(1,submax{:});
xx = localmax(:,2);
yy = localmax(:,1);
zz = localmax(:,3);
end
fprintf('Local maxima of %s in %f sec\n',inputimage,toc(tloc))
%%
validinds = xx>=ROI(1)&xx<=ROI(2)&yy>=ROI(3)&yy<=ROI(4)&zz>=ROI(5)&zz<=ROI(6);
loc = [xx(:),yy(:),zz(:)];
loc = loc(validinds,:);
desvals = double(It(sub2ind(size(It),loc(:,2),loc(:,1),loc(:,3)))); % descriptors are "0" indexed
%%
% reload input image
if strcmp(fileext,'.h5')
It = permute(squeeze(h5read(inputimage,'/exported_data')),[2 1 3]);
else
It = deployedtiffread(inputimage);
end
vals = double(It(sub2ind(size(It),loc(:,2)+1,loc(:,1)+1,loc(:,3)+1))); % intensity vals. +1 as original image is not 0 indexed
des = [loc desvals/normfac vals/imnormfac];
end
%%
if ~isempty(outputfile)
fid = fopen(outputfile,'w');
fprintf(fid,'%d %d %d %.3f %.3f\n',des');
fclose(fid);
unix(sprintf('chmod g+rxw %s',outputfile))
end
if nargout<1
des = [];
end
end
function [threshold,x1,x2,maxarg,vals,bins] = getThresh(In,nbins,perc)
%GETTHRESH finds the binary threshold based on histogram maximal distance
%
% [OUTPUTARGS] = GETTHRESH(INPUTARGS) Explain usage here
%
% Examples:
%
% Provide sample usage code here
%
% See also: List related files here
% $Author: base $ $Date: 2015/08/19 10:37:18 $ $Revision: 0.1 $
% Copyright: HHMI 2015
%%
if nargin<2
nbins = 256;
perc = 0;
elseif nargin<3
perc=0;
end
[vals,bins] = hist(double(In(:)),nbins);
[x12,locmax] = max(vals);
% below works better if there are multiple peaks (dark pixel and background have different peaks)
% append 0 to both sides
xleft = [0 vals(1:end-1)];
xright = [vals(2:end) 0];
maximas = find(vals(1:nbins/2)>xleft(1:nbins/2) &vals(1:nbins/2)>xright(1:nbins/2) & vals(1:nbins/2)>vals(locmax)/2);
if isempty(maximas) %assume single peak
[x12,locmax] = max(vals);
else
locmax = maximas(end);
x12 = vals(locmax);
end
x1 = [bins(locmax) x12]';
% % apply suppresion
% [vals,bins] = hist(double(In(In>bins(locmax))),100);
if perc
% find the percentile that has %95 of right hand data
idx2 = find((cumsum(vals)/sum(vals(:)))>perc,1,'first');
else
idx2 = length(bins);
end
x2 = [bins(idx2) 0]';
x0 = [bins(locmax+1:end);vals(locmax+1:end)] ;
% make sure solution is in the convex region (this is necessary for perc
% calculations)
x0 = x0(:,x0(1,:)<x2(1) & x0(1,:)>x1(1));
[maxval,maxarg,d]=dist2line(x1,x2,x0);
if numel(maxarg)
threshold = maxarg(1);
else
maxIn = max(In(:));
threshold = max(1,graythresh(In/maxIn)*maxIn); % for heavy peaked distributions, OTSU returns 0
end
end
function [maxval,maxarg,dists] = dist2line(x1,x2,x0)
%DIST2LINE finds the distance of x0 to line specified by x1&x2
%
% [OUTPUTARGS] = DIST2LINE(INPUTARGS) Explain usage here
%
% Examples:
%
% Provide sample usage code here
%
% See also: List related files here
% $Author: base $ $Date: 2015/08/19 10:30:44 $ $Revision: 0.1 $
% Copyright: HHMI 2015
% x2-x1)*(y1-y0)-(x1-x0)*(y2-y1)//sqrt((x2-x1)^2+
% d = abs((x2(1,:)-x1(1,:)) * (x1(2)-x0(2)) - (x1(1,:)-x0(1,:)).*(x2(2,:)-x1(2,:)))/norm(x2-x1);
m10 = (x1(2)-x0(2,:))./(x1(1)-x0(1,:));
m12 = (x1(2)-x2(2))/(x1(1)-x2(1));
dists = abs((m10-m12).*(x2(1)-x1(1)).*(x1(1)-x0(1,:))/norm(x2-x1));
[maxval,maxloc] = max(dists);
maxarg = x0(:,maxloc);
end
function [Iout] = deployedtiffread(fileName,slices)
%DEPLOYEDTIFFREAD Summary of this function goes here
%
% [OUTPUTARGS] = DEPLOYEDTIFFREAD(INPUTARGS) Explain usage here
%
% Examples:
%
% Provide sample usage code here
%
% See also: List related files here
% $Author: base $ $Date: 2015/08/21 12:26:16 $ $Revision: 0.1 $
% Copyright: HHMI 2015
warning off
info = imfinfo(fileName, 'tif');
if nargin<2
slices = 1:length(info);
end
wIm=info(1).Width;
hIm=info(1).Height;
numIm = numel(slices);
Iout = zeros(hIm, wIm, numIm,'uint16');
for i=1:numIm
Iout(:,:,i) = imread(fileName,'Index',slices(i),'Info',info);
end
end
function deployment(brain)
%%
% totest from matlab window:
% sigma1 = 3.4055002;
% sigma2 = 4.0498447;
%
%% read sh file
if 0
fid = fopen('/groups/mousebrainmicro/home/base/CODE/MATLAB/pipeline/descriptor/shfiles/dogdescriptorrun_2017-05-04_miss.sh');
tline = fgets(fid);
while ischar(tline)
inds = strfind(tline,'''');
C = strsplit(tline(inds(1)+1:inds(2)-1),' ');
siz=strjoin(C(4:6));siz=siz(2:end-1);
sig1=strjoin(C(7:9));sig1=sig1(2:end-1);
sig2=strjoin(C(10:12));sig2=sig2(2:end-1);
ROI=strjoin(C(13:18));ROI=ROI(2:end-1);
dogDescriptor(C{2},C{3},siz,sig1,sig2,ROI,C{19})
tline = fgets(fid);
end
fclose(fid);
end
%%
% dogDescriptor('/nrs/mouselight/cluster/classifierOutputs/2017-01-15/classifier_output/2017-01-15/00/00056/00056-prob.0.h5',...
% 'test.txt',...
% '[11 11 11]',...
% sprintf('[%f %f %f]',[3.405500 3.405500 3.405500]),...
% sprintf('[%f %f %f]',[4.049845 4.049845 4.049845]),...
% '[5 1019 5 1531 5 250]',...
% '4');
% '/groups/mousebrainmicro/mousebrainmicro/cluster/Stitching/2016-09-25/Descriptors/13844-prob.0.txt',...
% dogDescriptor('/nobackup2/mouselight/cluster/2016-10-25/classifier_output/2016-10-27/01/01068/01068-prob.1.h5',...
% 'test.txt',...
% '[11 11 11]','[3.405500 3.405500 3.405500]','[4.049845 4.049845 4.049845]','[5 1019 5 1531 10 250]','4')
% dogDescriptor('/groups/mousebrainmicro/mousebrainmicro/data/2016-12-05/2016-12-13/01/01783/01783-ngc.1.tif',...
% './05371-ngc.0.txt',...
% '[11 11 11]','[3.405500 3.405500 3.405500]','[4.049845 4.049845 4.049845]','[5 1019 5 1915 5 240]','4')
% /groups/mousebrainmicro/mousebrainmicro/cluster/Stitching/2016-12-05/Descriptors/05374-ngc.1.txt "[11 11 11]" "[3.405500 3.405500 3.405500]" "[4.049845 4.049845 4.049845]" "[5 1019 5 1915 5 240]" 4> output.log'
%%
tag=''
addpath(genpath('./common'))
% brain = '2016-12-05';
imagesiz = [1024 1536 251]
% imagesiz = [1024 1920 241]
if 1
% old
inputfold = '/nrs/mouselight/cluster/classifierOutputs';
end
outputlocation = '/groups/mousebrainmicro/mousebrainmicro/cluster/Stitching/';
outputfold = fullfile(outputlocation,sprintf('%s%s/Descriptors/',brain,tag));
if 1
args.level = 3;
args.ext = 'h5';
if 1
opt.inputfolder = fullfile(inputfold,sprintf('%s%s/classifier_output',brain,tag));
else
% you can also provide raw tiles for descriptors
opt.inputfolder = '/groups/mousebrainmicro/mousebrainmicro/data/2016-12-05'
end
opt.seqtemp = fullfile(opt.inputfolder,'filelist.txt')
if exist(opt.seqtemp, 'file') == 2
% load file directly
else
args.fid = fopen(opt.seqtemp,'w');
recdir(opt.inputfolder,args)
end
end
% dogDescriptor(inputimage,outputfile,siz,sig1,sig2,ROI,rt)
mkdir(outputfold)
unix(sprintf('umask g+rxw %s',outputfold))
unix(sprintf('chmod g+rxw %s',outputfold))
% fid=fopen(fullfile(inputfold,sprintf('%s/classifier_output/filelist.txt',brain)),'r');
fid=fopen(opt.seqtemp,'r');
inputfiles = textscan(fid,'%s');
inputfiles = inputfiles{1};
fclose(fid);
%%
if 0
intxt = fullfile(opt.inputfolder,'filelist.txt')
missingfiles = missinigFiles([brain,tag],intxt);
else
missingfiles = ones(1,size(inputfiles,1));
end
sum(missingfiles)
%% mcc -m -R -nojvm -v <function.m> -d <outfolder/> -a <addfolder>
numcores = 3;
pre = 'prob' % or ngc
rt = 4;
myfile = fullfile(pwd,sprintf('./shfiles/dogdescriptorrun_%s%s_miss.sh',brain,tag));
% myshfile = fullfile(experimentfolder,sprintf('cluster_ilastik_%s.sh',brain));
compiledfunc = '/groups/mousebrainmicro/home/base/CODE/MATLAB/compiledfunctions/dogDescriptor/dogDescriptor'
if 0
mkdir(fileparts(compiledfunc))
unix(sprintf('umask g+rxw %s',fileparts(compiledfunc)))
sprintf('mcc -m -v -R -singleCompThread %s/dogDescriptor.m -d %s',pwd,fileparts(compiledfunc))
unix(sprintf('chmod g+rwx %s',compiledfunc))
end
%find number of random characters to choose from
s = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
numRands = length(s);
%specify length of random string to generate
sLength = 10;
ROI = [5 imagesiz(1)-5 5 imagesiz(2)-5 5 imagesiz(3)-1];
%-o /dev/null
esttime = 6*60;
%
fid = fopen(myfile,'w');
outputlogfold = fullfile('/groups/mousebrainmicro/mousebrainmicro/LOG',brain,'descriptor')
mkdir(outputlogfold)
unix(sprintf('chmod g+rwx %s',outputlogfold))
logout=0
vv=find(missingfiles);
% vv(vv<25497)
for ii=6044*2-1%vv;%(vv<22131)%find(missingfiles)%
%%
%generate random string
randString = s( ceil(rand(1,sLength)*numRands) );
name = sprintf('dog_%05d-%s',ii,randString);
outfile = fullfile(outputfold,sprintf('%05d-%s.%d.txt',floor((ii-1)/2)+1,pre,rem(ii+1,2)));
if logout
argsout = sprintf('''%s %s %s "[%d %d %d]" "[%f %f %f]" "[%f %f %f]" "[%d %d %d %d %d %d]" %d> %s/output-%05d.log''',compiledfunc,inputfiles{ii},outfile,...
11*ones(1,3),3.4055002*ones(1,3),4.0498447*ones(1,3),ROI,rt,outputlogfold,ii);
mysub = sprintf('qsub -pe batch %d -l d_rt=%d -N %s -j y -o %s -b y -cwd -V %s\n',numcores,esttime,name,outputlogfold,argsout);
else
argsout = sprintf('''%s %s %s "[%d %d %d]" "[%f %f %f]" "[%f %f %f]" "[%d %d %d %d %d %d]" %d''',compiledfunc,inputfiles{ii},outfile,...
11*ones(1,3),3.4055002*ones(1,3),4.0498447*ones(1,3),ROI,rt);
mysub = sprintf('qsub -pe batch %d -l d_rt=%d -N %s -j y -o %s -b y -cwd -V %s\n',numcores,esttime,name,'/dev/null',argsout);
end
curveDescriptor(inputfiles{ii},outfile,sprintf('[%d %d %d]',11*ones(1,3)),sprintf('[%f %f %f]',3.4055002*ones(1,3)),sprintf('[%f %f %f]',4.0498447*ones(1,3)),...
sprintf('[%d %d %d %d %d %d]',ROI),sprintf('%d',rt))
fwrite(fid,mysub);
end
unix(sprintf('chmod +x %s',myfile));
fclose(fid);
end
% %%
% if 0
% nbins = max(10,2^round(log2(length(unique(des(:,5))))-1));
% iThr = getThresh(des(:,5),nbins);
%
% des_ = des(des(:,5)>=iThr,:);
% % check uniformity
% %%
% nbins = round((dims([2 1 3])./[100 100 50]));
% [accArr edges ctrs] = histn(des_(:,1:3),dims([2 1 3]),nbins)
% %%
% [aa,bb] = ndgrid(edges{1},edges{2})
%
% %%
% figure, imshow(squeeze(max(It,[],3)),[])
% hold on
% myplot3(des_(:,1:3)+1,'ro')
%
% elseif 0
% %%i
% for ithr = 0:.1:.9
% if sum(des(:,5)>ithr) < 5e3
% break
% end
% end
%
% desSorted = des(des(:,5)>ithr,:);
%
% figure, imshow(squeeze(max(It,[],3)),[])
% hold on
% myplot3(desSorted(:,1:3)+1,'.')
% % myplot3(desSorted(id,1:3),'o')
%
% elseif 0
% %% TODO: return uniform sampling over spatial domain
% % sort based on strength
% [vals,inds] = sort(des(:,5),'descend');
% desSorted = des(inds,:);
% % get decision threshold
% desthr = getThresh(vals);
%
% % eps-sampling
% Mdl = KDTreeSearcher(desSorted(:,1:3));
% query=rangesearch(Mdl,desSorted(:,1:3),15);
%
% keepthese = NaN(size(desSorted,1),1);
% for idx = 1:size(query,1)
% if ~isnan(keepthese(idx))
% continue
% end
% queidx = query{idx};
% keepthese(queidx(1)) = 1;
% keepthese(queidx(2:end)) = 0;
% end
% %
% id = find(keepthese);
% % figure, imshow(squeeze(max(It,[],3)),[0 1e3])
% % hold on
% % myplot3(desSorted(:,1:3),'.')
% % myplot3(desSorted(id,1:3),'o')
% end
%
%
%