forked from jingyaogong/minimind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_openai_api.py
407 lines (324 loc) · 14.8 KB
/
my_openai_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# encoding: utf-8
import json
import re
import time
import uuid
import warnings
import tiktoken
import torch
import numpy as np
from typing import List
from flask import Flask, current_app, request, Blueprint, stream_with_context
from flask_cors import CORS
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import PolynomialFeatures
from transformers import AutoTokenizer, AutoModelForCausalLM
from marshmallow import validate, Schema, fields
from pydantic import BaseModel
warnings.filterwarnings('ignore', category=UserWarning)
# ------------------------------------------------------------------------------------------------------------------
DEVICE_NAME = "cuda:0" if torch.cuda.is_available() else "cpu"
DEVICE = torch.device(DEVICE_NAME)
MODEL_PATH = "./minimind-small-T"
TOKENIZE_PATH = MODEL_PATH
max_new_tokens = 2048
temperature = 0.7
top_k = 8
# ------------------------------------------------------------------------------------------------------------------
class Transformers():
def __init__(self, app=None, tokenizer=None, model=None):
# self.chat = None
if app is not None:
self.init_app(app, tokenizer, model)
def init_app(self, app, tokenizer=None, model=None, chat=None):
self.tokenizer = tokenizer
self.model = model
# if chat is None:
# # self.chat = model.chat
# self.chat = self.chat
# gpt2's
def build_chat_input(self, tokenizer, messages: List[dict]):
new_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)[-(max_new_tokens - 1):]
inputs_ids = tokenizer(new_prompt).data['input_ids']
inputs_ids = (torch.tensor(inputs_ids, dtype=torch.long, device=DEVICE)[None, ...])
return inputs_ids, tokenizer.eos_token_id, new_prompt
def chat_stream(self, tokenizer, messages: List[dict], stream=True):
input_ids, eos_token_id, new_prompt = self.build_chat_input(tokenizer, messages)
if stream:
res_y = self.model.generate(input_ids, tokenizer.eos_token_id, max_new_tokens=max_new_tokens,
temperature=temperature, top_k=top_k, stream=True)
y = next(res_y)
history_idx = 0
while y != None:
answer = tokenizer.decode(y[0].tolist())
if answer and answer[-1] == '�':
try:
y = next(res_y)
except:
break
continue
# print(answer)
if not len(answer):
try:
y = next(res_y)
except:
break
continue
yield answer[history_idx:]
try:
y = next(res_y)
except:
break
history_idx = len(answer)
if not stream:
break
def chat_no_stream(self, tokenizer, messages: List[dict]):
input_ids, eos_token_id, new_prompt = self.build_chat_input(tokenizer, messages)
res_y = self.model.generate(input_ids, tokenizer.eos_token_id, max_new_tokens=max_new_tokens,
temperature=temperature, top_k=top_k, stream=False)
y = next(res_y)
answer = tokenizer.decode(y[0].tolist())
return answer
tfs = Transformers()
base_tfs = Transformers()
models_bp = Blueprint('Models', __name__, url_prefix='/v1/models')
chat_bp = Blueprint('Chat', __name__, url_prefix='/v1/chat')
completions_bp = Blueprint('Completions', __name__, url_prefix='/v1/completions')
embedding_bp = Blueprint('Embeddings', __name__, url_prefix='/v1')
def sse(line, field="data"):
return "{}: {}\n\n".format(
field, json.dumps(line, ensure_ascii=False) if isinstance(line, dict) else line)
def empty_cache():
if torch.backends.mps.is_available():
torch.mps.empty_cache()
def create_app():
app = Flask(__name__)
CORS(app)
app.register_blueprint(models_bp)
app.register_blueprint(chat_bp)
app.register_blueprint(completions_bp)
app.register_blueprint(embedding_bp)
@app.after_request
def after_request(resp):
empty_cache()
return resp
tokenizer = AutoTokenizer.from_pretrained(
TOKENIZE_PATH, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH, trust_remote_code=True).to(DEVICE)
# model.generation_config = GenerationConfig.from_pretrained(model_name)
tfs.init_app(app, tokenizer, model)
base_tfs.init_app(app, tokenizer, model)
return app
class ModelSchema(Schema):
id = fields.Str()
object = fields.Str(dump_default="model", metadata={"example": "model"})
created = fields.Int(dump_default=lambda: int(time.time()), metadata={"example": 1695402567})
owned_by = fields.Str(dump_default="owner", metadata={"example": "owner"})
class ModelListSchema(Schema):
object = fields.Str(dump_default="list", metadata={"example": "list"})
data = fields.List(fields.Nested(ModelSchema), dump_default=[])
class ChatMessageSchema(Schema):
role = fields.Str(required=True, metadata={"example": "system"})
content = fields.Str(required=True, metadata={"example": "You are a helpful assistant."})
class CreateChatCompletionSchema(Schema):
model = fields.Str(required=True, metadata={"example": "minimind"})
messages = fields.List(
fields.Nested(ChatMessageSchema), required=True,
metadata={"example": [
ChatMessageSchema().dump({"role": "system", "content": "You are a helpful assistant."}),
ChatMessageSchema().dump({"role": "user", "content": "Hello!"})
]}
)
temperature = fields.Float(load_default=1.0, metadata={"example": 1.0})
top_p = fields.Float(load_default=1.0, metadata={"example": 1.0})
n = fields.Int(load_default=1, metadata={"example": 1})
max_tokens = fields.Int(load_default=None, metadata={"example": None})
stream = fields.Bool(load_default=False, example=False)
presence_penalty = fields.Float(load_default=0.0, example=0.0)
frequency_penalty = fields.Float(load_default=0.0, example=0.0)
class ChatCompletionChoiceSchema(Schema):
index = fields.Int(metadata={"example": 0})
message = fields.Nested(ChatMessageSchema, metadata={
"example": ChatMessageSchema().dump(
{"role": "assistant", "content": "\n\nHello there, how may I assist you today?"}
)})
finish_reason = fields.Str(
validate=validate.OneOf(["stop", "length", "content_filter", "function_call"]),
metadata={"example": "stop"})
class ChatCompletionSchema(Schema):
id = fields.Str(
dump_default=lambda: uuid.uuid4().hex,
metadata={"example": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7"})
object = fields.Constant("chat.completion")
created = fields.Int(dump_default=lambda: int(time.time()), metadata={"example": 1695402567})
model = fields.Str(metadata={"example": "minimind"})
choices = fields.List(fields.Nested(ChatCompletionChoiceSchema))
class ChatDeltaSchema(Schema):
role = fields.Str(metadata={"example": "assistant"})
content = fields.Str(required=True, metadata={"example": "Hello"})
class ChatCompletionChunkChoiceSchema(Schema):
index = fields.Int(metadata={"example": 0})
delta = fields.Nested(ChatDeltaSchema, metadata={"example": ChatDeltaSchema().dump(
{"role": "assistant", "example": "Hello"})})
finish_reason = fields.Str(
validate=validate.OneOf(["stop", "length", "content_filter", "function_call"]),
metadata={"example": "stop"})
class ChatCompletionChunkShema(Schema):
id = fields.Str(
dump_default=lambda: uuid.uuid4().hex,
metadata={"example": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7"})
object = fields.Constant("chat.completion.chunk")
created = fields.Int(dump_default=lambda: int(time.time()), metadata={"example": 1695402567})
model = fields.Str(metadata={"example": "minimind"})
choices = fields.List(fields.Nested(ChatCompletionChunkChoiceSchema))
class CreateCompletionSchema(Schema):
model = fields.Str(required=True, metadata={"example": "minimind"})
prompt = fields.Raw(metadata={"example": "Say this is a test"})
max_tokens = fields.Int(load_default=16, metadata={"example": 256})
temperature = fields.Float(load_default=1.0, metadata={"example": 1.0})
top_p = fields.Float(load_default=1.0, metadata={"example": 1.0})
n = fields.Int(load_default=1, metadata={"example": 1})
stream = fields.Bool(load_default=False, example=False)
logit_bias = fields.Dict(load_default=None, example={})
presence_penalty = fields.Float(load_default=0.0, example=0.0)
frequency_penalty = fields.Float(load_default=0.0, example=0.0)
class CompletionChoiceSchema(Schema):
index = fields.Int(load_default=0, metadata={"example": 0})
text = fields.Str(required=True, metadata={"example": "登鹳雀楼->王之涣\n夜雨寄北->"})
logprobs = fields.Dict(load_default=None, metadata={"example": {}})
finish_reason = fields.Str(
validate=validate.OneOf(["stop", "length", "content_filter", "function_call"]),
metadata={"example": "stop"})
class CompletionUsageSchema(Schema):
prompt_tokens = fields.Int(metadata={"example": 5})
completion_tokens = fields.Int(metadata={"example": 7})
total_tokens = fields.Int(metadata={"example": 12})
class CompletionSchema(Schema):
id = fields.Str(
dump_default=lambda: uuid.uuid4().hex,
metadata={"example": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7"})
object = fields.Constant("text_completion")
created = fields.Int(dump_default=lambda: int(time.time()), metadata={"example": 1695402567})
model = fields.Str(metadata={"example": "minimind"})
choices = fields.List(fields.Nested(CompletionChoiceSchema))
usage = fields.Nested(CompletionUsageSchema)
@stream_with_context
def stream_chat_generate(messages):
delta = ChatDeltaSchema().dump(
{"role": "assistant"})
choice = ChatCompletionChunkChoiceSchema().dump(
{"index": 0, "delta": delta, "finish_reason": None})
yield sse(
ChatCompletionChunkShema().dump({
"model": "minimind",
"choices": [choice]})
)
# 调用 chat 方法并遍历其返回的生成器
for response in tfs.chat_stream(tfs.tokenizer, messages):
delta = ChatDeltaSchema().dump(
{"content": response})
choice = ChatCompletionChunkChoiceSchema().dump(
{"index": 0, "delta": delta, "finish_reason": None})
yield sse(
ChatCompletionChunkShema().dump({
"model": "minimind",
"choices": [choice]})
)
yield sse('[DONE]')
@chat_bp.route("/completions", methods=['POST'])
def create_chat_completion():
create_chat_completion = CreateChatCompletionSchema().load(request.json)
if create_chat_completion["stream"]:
return current_app.response_class(
stream_chat_generate(create_chat_completion["messages"]),
mimetype="text/event-stream"
)
else:
response = tfs.chat_no_stream(tfs.tokenizer, create_chat_completion["messages"])
message = ChatMessageSchema().dump(
{"role": "assistant", "content": response})
choice = ChatCompletionChoiceSchema().dump(
{"index": 0, "message": message, "finish_reason": "stop"})
return ChatCompletionSchema().dump({
"model": "minimind",
"choices": [choice]})
class EmbeddingRequest(BaseModel):
input: List[str]
model: str
@embedding_bp.route("/embeddings", methods=['POST'])
def get_embeddings():
request_data = request.get_json() # 获取 POST 请求体中的 JSON 数据
request_params = EmbeddingRequest(**request_data) # 将 JSON 数据转换为 EmbeddingRequest 对象
def expand_features(embedding, target_length):
poly = PolynomialFeatures(degree=2)
expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
expanded_embedding = expanded_embedding.flatten()
if len(expanded_embedding) > target_length:
# 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
expanded_embedding = expanded_embedding[:target_length]
elif len(expanded_embedding) < target_length:
# 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
expanded_embedding = np.pad(
expanded_embedding, (0, target_length - len(expanded_embedding))
)
return expanded_embedding
def num_tokens_from_string(string: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding('cl100k_base')
num_tokens = len(encoding.encode(string))
return num_tokens
def has_chinese_char(s):
pattern = re.compile(r'[\u4e00-\u9fa5]')
# if bool(pattern.search(s)):
# print('m3e编码')
# else:
# print('bge编码')
return bool(pattern.search(s))
# 计算嵌入向量和tokens数量
embeddings = [embeddings_model_m3e.encode(text)
if has_chinese_char(text)
else embeddings_model_bge.encode(text)
for text in request_params.input]
# 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
embeddings = [
expand_features(embedding, 768) if len(embedding) < 768 else embedding
for embedding in embeddings
]
# Min-Max normalization 归一化
embeddings = [embedding / np.linalg.norm(embedding) for embedding in embeddings]
# 将numpy数组转换为列表
embeddings = [embedding.tolist() for embedding in embeddings]
prompt_tokens = sum(len(text.split()) for text in request_params.input)
total_tokens = sum(num_tokens_from_string(text) for text in request_params.input)
response = {
"data": [
{"embedding": embedding, "index": index, "object": "embedding"}
for index, embedding in enumerate(embeddings)
],
"model": request_params.model,
"object": "list",
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": total_tokens,
},
}
# print(response)
return response
app = create_app()
if __name__ == '__main__':
use_emb = False
try:
import ngrok
import logging
logging.basicConfig(level=logging.INFO)
listener = ngrok.werkzeug_develop()
except Exception:
pass
embeddings_model_m3e = SentenceTransformer('.\\m3e-base', device='cpu') if use_emb else None
embeddings_model_bge = SentenceTransformer('.\\bge-base-en-v1.5', device='cpu') if use_emb else None
app.run(debug=False, host="0.0.0.0", port=8000)