-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluator.py
313 lines (260 loc) · 14.6 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from collections import OrderedDict
from sklearn.metrics import classification_report
import conlleval
import numpy as np
import time
class Evaluator:
"""
Evaluates the results of a joint text classifier.
"""
def __init__(self, label2id_sent, label2id_tok, conll03_eval):
self.id2label_sent = {v: k for k, v in label2id_sent.items()}
self.id2label_tok = {v: k for k, v in label2id_tok.items()}
self.conll03_eval = conll03_eval
self.conll_format = []
self.true_sent = []
self.pred_sent = []
self.true_tok = []
self.pred_tok = []
self.cost_sum = 0.0
self.count_sent = 0.0
self.correct_binary_sent = 0.0
self.count_tok = 0.0
self.correct_binary_tok = 0.0
self.sentence_predicted = {k: 0.0 for k in self.id2label_sent.keys()}
self.sentence_correct = {k: 0.0 for k in self.id2label_sent.keys()}
self.sentence_total = {k: 0.0 for k in self.id2label_sent.keys()}
self.token_predicted = {k: 0.0 for k in self.id2label_tok.keys()}
self.token_correct = {k: 0.0 for k in self.id2label_tok.keys()}
self.token_total = {k: 0.0 for k in self.id2label_tok.keys()}
self.start_time = time.time()
def append_token_data_for_sentence(self, tokens, true_labels_tok, pred_labels_tok):
"""
Gets statistical results for the tokens in a sentence.
"""
self.count_tok += len(true_labels_tok)
# For each token, calculate the same metrics as for the sentence scores.
for token, true_label, pred_label in zip(tokens, true_labels_tok, pred_labels_tok):
self.true_tok.append(true_label)
self.pred_tok.append(pred_label)
if true_label == pred_label:
self.correct_binary_tok += 1.0 # accuracy
self.token_predicted[pred_label] += 1.0 # TP + FP
self.token_total[true_label] += 1.0 # TP + FN
if true_label == pred_label:
self.token_correct[true_label] += 1.0 # TP
if self.conll03_eval is True:
gold_token_label = self.id2label_tok[true_label]
gold_token_label = "B-" + gold_token_label if true_label != 0 else gold_token_label
pred_token_label = self.id2label_tok[pred_label]
pred_token_label = "B-" + pred_token_label if true_label != 0 else pred_token_label
self.conll_format.append(
token + "\t" + gold_token_label + "\t" + pred_token_label)
if self.conll03_eval is True:
self.conll_format.append("")
def append_data(self, cost, batch, sentence_predictions, token_predictions):
"""
Gets statistical results for the sentence and token scores in a batch.
"""
self.cost_sum += cost
self.count_sent += len(batch)
for i, sentence in enumerate(batch):
true_labels_tok = [token.label_tok for token in sentence.tokens]
true_labels_sent = sentence.label_sent
self.true_sent.append(true_labels_sent)
self.pred_sent.append(sentence_predictions[i])
# Calculate accuracy.
if true_labels_sent == sentence_predictions[i]:
self.correct_binary_sent += 1.0
# Calculate TP + FP.
self.sentence_predicted[sentence_predictions[i]] += 1.0
# Calculate TP + FN.
self.sentence_total[true_labels_sent] += 1.0
# Calculate TP.
if true_labels_sent == sentence_predictions[i]:
self.sentence_correct[true_labels_sent] += 1.0
# Get the scores for the tokens in this sentence
self.append_token_data_for_sentence(
[token.value for token in sentence.tokens],
true_labels_tok, list(token_predictions[i])[:len(true_labels_tok)])
@staticmethod
def calculate_metrics(correct, predicted, total):
"""
Calculates the basic metrics.
:param correct: the number of examples predicted as correct that are actually correct.
:param predicted: the number of examples predicted as correct.
:param total: the number of examples that are correct by the gold standard.
:return: the precision, recall, F1 and F05 scores
"""
p = correct / predicted if predicted else 0.0
r = correct / total if total else 0.0
f = 2.0 * p * r / (p + r) if p + r else 0.0
f05 = (1 + 0.5 * 0.5) * p * r / (0.5 * 0.5 * p + r) if 0.5 * 0.5 * p + r else 0.0
return p, r, f, f05
def get_results(self, name, token_labels_available=True):
"""
Gets the statistical results both at the sentence and at the token level.
:param name: train, dev or test (+ epoch number).
:param token_labels_available: whether there are token annotations.
:return: an ordered dictionary containing the collection of results.
"""
results = OrderedDict()
results["name"] = name
results["cost_sum"] = self.cost_sum
results["cost_avg"] = (self.cost_sum / float(self.count_sent)
if self.count_sent else 0.0)
results["count_sent"] = self.count_sent
results["total_correct_sent"] = self.correct_binary_sent
results["accuracy_sent"] = (self.correct_binary_sent / float(self.count_sent)
if self.count_sent else 0.0)
# Calculate the micro and macro averages for the sentence predictions
f_macro_sent, p_macro_sent, r_macro_sent, f05_macro_sent = 0.0, 0.0, 0.0, 0.0
f_non_default_macro_sent, p_non_default_macro_sent, \
r_non_default_macro_sent, f05_non_default_macro_sent = 0.0, 0.0, 0.0, 0.0
for key in self.id2label_sent.keys():
p, r, f, f05 = self.calculate_metrics(
self.sentence_correct[key],
self.sentence_predicted[key],
self.sentence_total[key])
label = "label=%s" % self.id2label_sent[key]
results[label + "_predicted_sent"] = self.sentence_predicted[key]
results[label + "_correct_sent"] = self.sentence_correct[key]
results[label + "_total_sent"] = self.sentence_total[key]
results[label + "_precision_sent"] = p
results[label + "_recall_sent"] = r
results[label + "_f-score_sent"] = f
results[label + "_f05-score_sent"] = f05
p_macro_sent += p
r_macro_sent += r
f_macro_sent += f
f05_macro_sent += f05
if key != 0:
p_non_default_macro_sent += p
r_non_default_macro_sent += r
f_non_default_macro_sent += f
f05_non_default_macro_sent += f05
p_macro_sent /= len(self.id2label_sent.keys())
r_macro_sent /= len(self.id2label_sent.keys())
f_macro_sent /= len(self.id2label_sent.keys())
f05_macro_sent /= len(self.id2label_sent.keys())
p_non_default_macro_sent /= (len(self.id2label_sent.keys()) - 1)
r_non_default_macro_sent /= (len(self.id2label_sent.keys()) - 1)
f_non_default_macro_sent /= (len(self.id2label_sent.keys()) - 1)
f05_non_default_macro_sent /= (len(self.id2label_sent.keys()) - 1)
p_micro_sent, r_micro_sent, f_micro_sent, f05_micro_sent = self.calculate_metrics(
sum(self.sentence_correct.values()),
sum(self.sentence_predicted.values()),
sum(self.sentence_total.values()))
p_non_default_micro_sent, r_non_default_micro_sent, \
f_non_default_micro_sent, f05_non_default_micro_sent = self.calculate_metrics(
sum([value for key, value in self.sentence_correct.items() if key != 0]),
sum([value for key, value in self.sentence_predicted.items() if key != 0]),
sum([value for key, value in self.sentence_total.items() if key != 0]))
results["precision_macro_sent"] = p_macro_sent
results["recall_macro_sent"] = r_macro_sent
results["f-score_macro_sent"] = f_macro_sent
results["f05-score_macro_sent"] = f05_macro_sent
results["precision_micro_sent"] = p_micro_sent
results["recall_micro_sent"] = r_micro_sent
results["f-score_micro_sent"] = f_micro_sent
results["f05-score_micro_sent"] = f05_micro_sent
results["precision_non_default_macro_sent"] = p_non_default_macro_sent
results["recall_non_default_macro_sent"] = r_non_default_macro_sent
results["f-score_non_default_macro_sent"] = f_non_default_macro_sent
results["f05-score_non_default_macro_sent"] = f05_non_default_macro_sent
results["precision_non_default_micro_sent"] = p_non_default_micro_sent
results["recall_non_default_micro_sent"] = r_non_default_micro_sent
results["f-score_non_default_micro_sent"] = f_non_default_micro_sent
results["f05-score_non_default_micro_sent"] = f05_non_default_micro_sent
if token_labels_available or "test" in name:
results["count_tok"] = self.count_tok
results["total_correct_tok"] = self.correct_binary_tok
results["accuracy_tok"] = (self.correct_binary_tok / float(self.count_tok)
if self.count_tok else 0.0)
# Calculate the micro and macro averages for the token predictions.
f_tok_macro, p_tok_macro, r_tok_macro, f05_tok_macro = 0.0, 0.0, 0.0, 0.0
f_non_default_macro_tok, p_non_default_macro_tok, \
r_non_default_macro_tok, f05_non_default_macro_tok = 0.0, 0.0, 0.0, 0.0
for key in self.id2label_tok.keys():
p, r, f, f05 = self.calculate_metrics(
self.token_correct[key], self.token_predicted[key], self.token_total[key])
label = "label=%s" % self.id2label_tok[key]
results[label + "_predicted_tok"] = self.token_predicted[key]
results[label + "_correct_tok"] = self.token_correct[key]
results[label + "_total_tok"] = self.token_total[key]
results[label + "_precision_tok"] = p
results[label + "_recall_tok"] = r
results[label + "_f-score_tok"] = f
results[label + "_tok_f05"] = f05
p_tok_macro += p
r_tok_macro += r
f_tok_macro += f
f05_tok_macro += f05
if key != 0:
p_non_default_macro_tok += p
r_non_default_macro_tok += r
f_non_default_macro_tok += f
f05_non_default_macro_tok += f05
p_tok_macro /= len(self.id2label_tok.keys())
r_tok_macro /= len(self.id2label_tok.keys())
f_tok_macro /= len(self.id2label_tok.keys())
f05_tok_macro /= len(self.id2label_tok.keys())
p_non_default_macro_tok /= (len(self.id2label_tok.keys()) - 1)
r_non_default_macro_tok /= (len(self.id2label_tok.keys()) - 1)
f_non_default_macro_tok /= (len(self.id2label_tok.keys()) - 1)
f05_non_default_macro_tok /= (len(self.id2label_tok.keys()) - 1)
p_tok_micro, r_tok_micro, f_tok_micro, f05_tok_micro = self.calculate_metrics(
sum(self.token_correct.values()),
sum(self.token_predicted.values()),
sum(self.token_total.values()))
p_non_default_micro_tok, r_non_default_micro_tok, \
f_non_default_micro_tok, f05_non_default_micro_tok = self.calculate_metrics(
sum([value for key, value in self.token_correct.items() if key != 0]),
sum([value for key, value in self.token_predicted.items() if key != 0]),
sum([value for key, value in self.token_total.items() if key != 0]))
results["precision_macro_tok"] = p_tok_macro
results["recall_macro_tok"] = r_tok_macro
results["f-score_macro_tok"] = f_tok_macro
results["f05-score_macro_tok"] = f05_tok_macro
results["precision_micro_tok"] = p_tok_micro
results["recall_micro_tok"] = r_tok_micro
results["f-score_micro_tok"] = f_tok_micro
results["f05-score_micro_tok"] = f05_tok_micro
results["precision_non_default_macro_tok"] = p_non_default_macro_tok
results["recall_non_default_macro_tok"] = r_non_default_macro_tok
results["f-score_non_default_macro_tok"] = f_non_default_macro_tok
results["f05-score_non_default_macro_tok"] = f05_non_default_macro_tok
results["precision_non_default_micro_tok"] = p_non_default_micro_tok
results["recall_non_default_micro_tok"] = r_non_default_micro_tok
results["f-score_non_default_micro_tok"] = f_non_default_micro_tok
results["f05-score_non_default_micro_tok"] = f05_non_default_micro_tok
if self.id2label_tok is not None and self.conll03_eval is True:
conll_counts = conlleval.evaluate(self.conll_format)
conll_metrics_overall, conll_metrics_by_type = conlleval.metrics(conll_counts)
results["conll_accuracy"] = (float(conll_counts.correct_tags)
/ float(conll_counts.token_counter))
results["conll_p"] = conll_metrics_overall.prec
results["conll_r"] = conll_metrics_overall.rec
results["conll_f"] = conll_metrics_overall.fscore
results["time"] = float(time.time()) - float(self.start_time)
return results
def get_results_nice_print(self, name, token_labels_available=True):
"""
This method is a wrapper around the statistical results already computed,
just to print them in a nicer format. Can also use it to check the basic metrics.
"""
if self.true_sent and self.pred_sent:
print("*" * 50)
print("Sentence predictions: ")
print(classification_report(
self.true_sent, self.pred_sent, digits=4,
labels=np.array(range(len(self.id2label_sent))),
target_names=[self.id2label_sent[i] for i in range(len(self.id2label_sent))]))
if token_labels_available or "test" in name:
if self.true_tok and self.pred_tok:
print("*" * 50)
print("Token predictions: ")
print(classification_report(
self.true_tok, self.pred_tok, digits=4,
labels=np.array(range(len(self.id2label_tok))),
target_names=[self.id2label_tok[i] for i in range(len(self.id2label_tok))]))