Stepper 21 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8825, a stepper motor controller integral circuit from Texas Instruments. It is a PWM micro-stepping stepper motor driver with up to 1/32 micro-stepping resolution and a built-in micro-stepper indexer. The driver has two H-bridge drivers and is intended to drive a bipolar stepper motor in a voltage supply operating range of 8.2V up to 45V.
- Author : Stefan Filipovic
- Date : Apr 2023.
- Type : I2C type
We provide a library for the Stepper 21 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Stepper 21 Click driver.
stepper21_cfg_setup
Config Object Initialization function.
void stepper21_cfg_setup ( stepper21_cfg_t *cfg );
stepper21_init
Initialization function.
err_t stepper21_init ( stepper21_t *ctx, stepper21_cfg_t *cfg );
stepper21_default_cfg
Click Default Configuration function.
err_t stepper21_default_cfg ( stepper21_t *ctx );
stepper21_set_step_mode
This function sets the step mode resolution settings.
err_t stepper21_set_step_mode ( stepper21_t *ctx, uint8_t mode );
stepper21_set_direction
This function sets the motor direction by setting the DIR pin logic state.
void stepper21_set_direction ( stepper21_t *ctx, uint8_t dir );
stepper21_drive_motor
This function drives the motor for the specific number of steps at the selected speed.
void stepper21_drive_motor ( stepper21_t *ctx, uint32_t steps, uint8_t speed );
This example demonstrates the use of the Stepper 21 Click board by driving the motor in both directions for a desired number of steps.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
stepper21_cfg_t stepper21_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
stepper21_cfg_setup( &stepper21_cfg );
STEPPER21_MAP_MIKROBUS( stepper21_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == stepper21_init( &stepper21, &stepper21_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( STEPPER21_ERROR == stepper21_default_cfg ( &stepper21 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Drives the motor clockwise for 200 full steps and then counter-clockiwse for 400 quarter steps with 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.
void application_task ( void )
{
log_printf ( &logger, " Move 200 full steps clockwise \r\n\n" );
stepper21_set_step_mode ( &stepper21, STEPPER21_MODE_FULL_STEP );
stepper21_set_direction ( &stepper21, STEPPER21_DIR_CW );
stepper21_drive_motor ( &stepper21, 200, STEPPER21_SPEED_FAST );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf ( &logger, " Move 400 quarter steps counter-clockwise \r\n\n" );
stepper21_set_step_mode ( &stepper21, STEPPER21_MODE_QUARTER_STEP );
stepper21_set_direction ( &stepper21, STEPPER21_DIR_CCW );
stepper21_drive_motor ( &stepper21, 400, STEPPER21_SPEED_VERY_FAST );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.Stepper21
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.