Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

map仅仅只有0.0003 #201

Open
Hichengdong opened this issue Jun 8, 2024 · 6 comments
Open

map仅仅只有0.0003 #201

Hichengdong opened this issue Jun 8, 2024 · 6 comments

Comments

@Hichengdong
Copy link

我使用mini数据集进行了训练,在第22个epoch的时候,程序卡死,然后我对最后的两个epoch进行了验证,结果map出奇的低。
================epoch 20=================
AP: 0.0003
mATE: 1.0000
mASE: 1.0000
mAOE: 1.0000
mAVE: 1.0000
mAAE: 1.0000
NDS: 0.0001
Eval time: 0.4s

Per-class results:
Object Class AP ATE ASE AOE AVE AAE
car 0.003 1.000 1.000 1.000 1.000 1.000
truck 0.000 1.000 1.000 1.000 1.000 1.000
bus 0.000 1.000 1.000 1.000 1.000 1.000
trailer 0.000 1.000 1.000 1.000 1.000 1.000
construction_vehicle 0.000 1.000 1.000 1.000 1.000 1.000
pedestrian 0.000 1.000 1.000 1.000 1.000 1.000
motorcycle 0.000 1.000 1.000 1.000 1.000 1.000
bicycle 0.000 1.000 1.000 1.000 1.000 1.000
traffic_cone 0.000 1.000 1.000 nan nan nan
barrier 0.000 1.000 1.000 1.000 nan nan
================epoch 21=================
AP: 0.0003
mATE: 1.0000
mASE: 1.0000
mAOE: 1.0000
mAVE: 1.0000
mAAE: 1.0000
NDS: 0.0002
Eval time: 0.4s

Per-class results:
Object Class AP ATE ASE AOE AVE AAE
car 0.003 1.000 1.000 1.000 1.000 1.000
truck 0.000 1.000 1.000 1.000 1.000 1.000
bus 0.000 1.000 1.000 1.000 1.000 1.000
trailer 0.000 1.000 1.000 1.000 1.000 1.000
construction_vehicle 0.000 1.000 1.000 1.000 1.000 1.000
pedestrian 0.000 1.000 1.000 1.000 1.000 1.000
motorcycle 0.000 1.000 1.000 1.000 1.000 1.000
bicycle 0.000 1.000 1.000 1.000 1.000 1.000
traffic_cone 0.000 1.000 1.000 nan nan nan
barrier 0.000 1.000 1.000 1.000 nan nan
Testing DataLoader 0: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 162/162 [00:29<00:00, 5.46it/s]
TEST Profiler Report


| Action | Mean duration (s) | Num calls | Total time (s) | Percentage % |

| Total | - | 2823 | 87.467 | 100 % |

| run_test_evaluation | 31.038 | 1 | 31.038 | 35.486 |
| [Strategy]SingleDeviceStrategy.test_step | 0.15896 | 162 | 25.751 | 29.441 |
| [LightningModule]BEVDepthLightningModel.test_epoch_end | 2.6193 | 1 | 2.6193 | 2.9946 |
| [EvaluationEpochLoop].test_dataloader_idx_0_next | 0.010395 | 162 | 1.6839 | 1.9252 |
| [Strategy]SingleDeviceStrategy.batch_to_device | 0.003483 | 162 | 0.56424 | 0.64509 |
| [LightningModule]BEVDepthLightningModel.test_dataloader | 0.099374 | 1 | 0.099374 | 0.11361 |
| [Callback]TQDMProgressBar.on_test_batch_end | 0.00025195 | 162 | 0.040816 | 0.046664 |
| [Callback]ModelSummary.on_test_batch_end | 9.2947e-06 | 162 | 0.0015057 | 0.0017215 |
| [Callback]TQDMProgressBar.on_test_batch_start | 8.4548e-06 | 162 | 0.0013697 | 0.0015659 |
| [LightningModule]BEVDepthLightningModel.on_test_model_train | 0.0010831 | 1 | 0.0010831 | 0.0012383 |
| [LightningModule]BEVDepthLightningModel.on_test_model_eval | 0.00094745 | 1 | 0.00094745 | 0.0010832 |
| [Callback]EMACallback.on_test_batch_start | 4.0783e-06 | 162 | 0.00066068 | 0.00075535 |
| [Callback]TQDMProgressBar.on_test_start | 0.00061182 | 1 | 0.00061182 | 0.00069948 |
| [Callback]EMACallback.on_test_batch_end | 2.4168e-06 | 162 | 0.00039152 | 0.00044762 |
| [LightningModule]BEVDepthLightningModel.test_step_end | 1.8431e-06 | 162 | 0.00029859 | 0.00034137 |
| [Callback]TQDMProgressBar.on_test_end | 0.00028655 | 1 | 0.00028655 | 0.00032761 |
| [Callback]GradientAccumulationScheduler.on_test_batch_end | 1.4585e-06 | 162 | 0.00023627 | 0.00027012 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_batch_end | 1.4072e-06 | 162 | 0.00022797 | 0.00026063 |
| [Callback]ModelSummary.on_test_batch_start | 1.3618e-06 | 162 | 0.00022062 | 0.00025223 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_batch_start | 1.3274e-06 | 162 | 0.00021504 | 0.00024585 |
| [Callback]GradientAccumulationScheduler.on_test_batch_start | 1.1475e-06 | 162 | 0.0001859 | 0.00021253 |
| [LightningModule]BEVDepthLightningModel.on_test_batch_end | 1.0331e-06 | 162 | 0.00016737 | 0.00019135 |
| [LightningModule]BEVDepthLightningModel.on_test_batch_start | 9.7408e-07 | 162 | 0.0001578 | 0.00018041 |
| [Strategy]SingleDeviceStrategy.test_step_end | 8.8581e-07 | 162 | 0.0001435 | 0.00016406 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': None}.setup | 8.6112e-05 | 1 | 8.6112e-05 | 9.845e-05 |
| [Callback]TQDMProgressBar.on_test_epoch_start | 1.1989e-05 | 1 | 1.1989e-05 | 1.3707e-05 |
| [Callback]EMACallback.on_test_epoch_end | 9.393e-06 | 1 | 9.393e-06 | 1.0739e-05 |
| [Callback]ModelSummary.on_test_end | 8.157e-06 | 1 | 8.157e-06 | 9.3258e-06 |
| [Callback]ModelSummary.on_test_start | 6.458e-06 | 1 | 6.458e-06 | 7.3833e-06 |
| [Callback]TQDMProgressBar.setup | 5.747e-06 | 1 | 5.747e-06 | 6.5704e-06 |
| [Callback]EMACallback.teardown | 5.065e-06 | 1 | 5.065e-06 | 5.7907e-06 |
| [LightningModule]BEVDepthLightningModel.on_load_checkpoint | 4.902e-06 | 1 | 4.902e-06 | 5.6044e-06 |
| [Callback]EMACallback.on_test_start | 4.671e-06 | 1 | 4.671e-06 | 5.3403e-06 |
| [LightningModule]BEVDepthLightningModel.on_test_epoch_end | 4.038e-06 | 1 | 4.038e-06 | 4.6166e-06 |
| [LightningModule]BEVDepthLightningModel.configure_callbacks | 3.997e-06 | 1 | 3.997e-06 | 4.5697e-06 |
| [Callback]EMACallback.setup | 3.806e-06 | 1 | 3.806e-06 | 4.3513e-06 |
| [LightningModule]BEVDepthLightningModel.configure_sharded_model | 3.26e-06 | 1 | 3.26e-06 | 3.7271e-06 |
| [Callback]EMACallback.on_epoch_end | 3.089e-06 | 1 | 3.089e-06 | 3.5316e-06 |
| [Callback]EMACallback.on_configure_sharded_model | 2.58e-06 | 1 | 2.58e-06 | 2.9497e-06 |
| [Callback]EMACallback.on_epoch_start | 2.052e-06 | 1 | 2.052e-06 | 2.346e-06 |
| [Callback]TQDMProgressBar.on_test_epoch_end | 2.044e-06 | 1 | 2.044e-06 | 2.3369e-06 |
| [Callback]EMACallback.on_test_epoch_start | 2.032e-06 | 1 | 2.032e-06 | 2.3232e-06 |
| [LightningModule]BEVDepthLightningModel.prepare_data | 1.966e-06 | 1 | 1.966e-06 | 2.2477e-06 |
| [Callback]ModelSummary.on_test_epoch_start | 1.854e-06 | 1 | 1.854e-06 | 2.1196e-06 |
| [Callback]EMACallback.on_before_accelerator_backend_setup | 1.802e-06 | 1 | 1.802e-06 | 2.0602e-06 |
| [Callback]EMACallback.on_test_end | 1.636e-06 | 1 | 1.636e-06 | 1.8704e-06 |
| [Callback]TQDMProgressBar.on_epoch_end | 1.597e-06 | 1 | 1.597e-06 | 1.8258e-06 |
| [LightningModule]BEVDepthLightningModel.on_test_start | 1.552e-06 | 1 | 1.552e-06 | 1.7744e-06 |
| [Callback]TQDMProgressBar.teardown | 1.542e-06 | 1 | 1.542e-06 | 1.7629e-06 |
| [Callback]GradientAccumulationScheduler.on_test_start | 1.4e-06 | 1 | 1.4e-06 | 1.6006e-06 |
| [Callback]GradientAccumulationScheduler.on_test_epoch_start | 1.349e-06 | 1 | 1.349e-06 | 1.5423e-06 |
| [Callback]TQDMProgressBar.on_configure_sharded_model | 1.318e-06 | 1 | 1.318e-06 | 1.5068e-06 |
| [Callback]ModelSummary.setup | 1.296e-06 | 1 | 1.296e-06 | 1.4817e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_start | 1.245e-06 | 1 | 1.245e-06 | 1.4234e-06 |
| [Callback]ModelSummary.on_configure_sharded_model | 1.23e-06 | 1 | 1.23e-06 | 1.4062e-06 |
| [Callback]TQDMProgressBar.on_before_accelerator_backend_setup | 1.215e-06 | 1 | 1.215e-06 | 1.3891e-06 |
| [Callback]GradientAccumulationScheduler.setup | 1.214e-06 | 1 | 1.214e-06 | 1.3879e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.teardown | 1.163e-06 | 1 | 1.163e-06 | 1.3296e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_epoch_end | 1.148e-06 | 1 | 1.148e-06 | 1.3125e-06 |
| [LightningModule]BEVDepthLightningModel.teardown | 1.147e-06 | 1 | 1.147e-06 | 1.3113e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_configure_sharded_model | 1.131e-06 | 1 | 1.131e-06 | 1.2931e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': None}.on_before_accelerator_backend_setup| 1.12e-06 | 1 | 1.12e-06 | 1.2805e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_end | 1.11e-06 | 1 | 1.11e-06 | 1.269e-06 |
| [Callback]GradientAccumulationScheduler.on_test_end | 1.107e-06 | 1 | 1.107e-06 | 1.2656e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_epoch_start | 1.08e-06 | 1 | 1.08e-06 | 1.2347e-06 |
| [Callback]GradientAccumulationScheduler.on_configure_sharded_model | 1.069e-06 | 1 | 1.069e-06 | 1.2222e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_test_epoch_start | 1.054e-06 | 1 | 1.054e-06 | 1.205e-06 |
| [Callback]GradientAccumulationScheduler.on_before_accelerator_backend_setup | 1.037e-06 | 1 | 1.037e-06 | 1.1856e-06 |
| [Callback]ModelSummary.on_test_epoch_end | 1.032e-06 | 1 | 1.032e-06 | 1.1799e-06 |
| [Callback]ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1, 'train_time_interval': None, 'save_on_train_epoch_end': True}.on_epoch_end | 1.026e-06 | 1 | 1.026e-06 | 1.173e-06 |
| [Callback]ModelSummary.teardown | 1.023e-06 | 1 | 1.023e-06 | 1.1696e-06 |
| [Callback]ModelSummary.on_before_accelerator_backend_setup | 9.86e-07 | 1 | 9.86e-07 | 1.1273e-06 |
| [Callback]TQDMProgressBar.on_epoch_start | 9.76e-07 | 1 | 9.76e-07 | 1.1158e-06 |
| [LightningModule]BEVDepthLightningModel.setup | 9.64e-07 | 1 | 9.64e-07 | 1.1021e-06 |
| [Callback]GradientAccumulationScheduler.on_epoch_start | 9.51e-07 | 1 | 9.51e-07 | 1.0873e-06 |
| [Callback]GradientAccumulationScheduler.teardown | 9.42e-07 | 1 | 9.42e-07 | 1.077e-06 |
| [LightningModule]BEVDepthLightningModel.on_test_end | 8.99e-07 | 1 | 8.99e-07 | 1.0278e-06 |
| [Callback]ModelSummary.on_epoch_end | 8.9e-07 | 1 | 8.9e-07 | 1.0175e-06 |
| [Callback]ModelSummary.on_epoch_start | 8.88e-07 | 1 | 8.88e-07 | 1.0152e-06 |
| [Callback]GradientAccumulationScheduler.on_test_epoch_end | 8.81e-07 | 1 | 8.81e-07 | 1.0072e-06 |
| [Callback]GradientAccumulationScheduler.on_epoch_end | 8.39e-07 | 1 | 8.39e-07 | 9.5922e-07 |
| [LightningModule]BEVDepthLightningModel.on_test_epoch_start | 7.55e-07 | 1 | 7.55e-07 | 8.6318e-07 |
| [Strategy]SingleDeviceStrategy.on_test_start | 7.51e-07 | 1 | 7.51e-07 | 8.586e-07 |
| [Strategy]SingleDeviceStrategy.on_test_end | 7.13e-07 | 1 | 7.13e-07 | 8.1516e-07 |
| [LightningModule]BEVDepthLightningModel.on_epoch_start | 6.39e-07 | 1 | 6.39e-07 | 7.3056e-07 |
| [LightningModule]BEVDepthLightningModel.on_epoch_end | 5.36e-07 | 1 | 5.36e-07 | 6.128e-07 |

@Hichengdong
Copy link
Author

运行python bevdepth/exps/nuscenes/mv/bev_depth_lss_r50_256x704_128x128_24e_ema.py -b 1 --gpus 1 进行训练
运行python bevdepth/exps/nuscenes/mv/bev_depth_lss_r50_256x704_128x128_24e_ema.py --ckpt_path outputs/bev_depth_lss_r50_256x704_128x128_24e_ema/lightning_logs/version_2/21.pth -e -b 1 --gpus 1 进行测试

@wansdd
Copy link

wansdd commented Oct 12, 2024

have you solved this problems?

@Hichengdong
Copy link
Author

have you solved this problems?
Not yet, but I used the full nuScenes dataset later.

@wansdd
Copy link

wansdd commented Oct 15, 2024

have you solved this problems?
Not yet, but I used the full nuScenes dataset later.

thank you for your replay, when you used the full nuScenes, Are the results will become batter?

@Hichengdong
Copy link
Author

have you solved this problems?
Not yet, but I used the full nuScenes dataset later.

thank you for your replay, when you used the full nuScenes, Are the results will become batter?

Yes, after using the complete dataset, the results returned to normal.

@Azitt
Copy link

Azitt commented Nov 5, 2024

I'm experiencing the same problem with the "mini" dataset. I didn't do any training—I just used the pretrained model from their GitHub repository and evaluated it, but I got the same results as you did. Do I need to train the model myself to achieve the results they mention in the paper? Also, what about the pretrained model they provided on GitHub?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants