-
Notifications
You must be signed in to change notification settings - Fork 2
/
GAN.py
669 lines (526 loc) · 24.7 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# -*- coding: utf-8 -*-
from sklearn.metrics import confusion_matrix
from plot_confusion_matrix import plot_confusion_matrix
import numpy as np
import torch
import matplotlib.pyplot as plt
plt.ioff()
from log import log
from network import save_fig
import preprocessing as pp
import network
DEFAULT_PARAMS = {
'name' : "Missing_Name",
'start_run' : 0,
'start_epoch' : 0,
'runs' : 1,
'epochs' : 1000,
'save_step' : 100,
'log_name' : 'log',
'dset_L' : 'validation',
'dset_U' : 'validation',
'dset_V' : None,
'ratio_L' : 1.0,
'ratio_U' : 1.0,
'ratio_V' : 1.0,
'FX_sel' : 'basic',
'location' : 'hips',
'prediction' : False,
'evaluate' : False,
'pretrain' : None,
'oversampling' : True,
'batch_size' : 128,
'noise_shape' : 100,
'G_no' : 1,
'D_no' : 1,
'C_no' : 1,
'G_label_sample' : True,
'G_label_factor' : 1,
'G_calc_dis' : False,
'C_basic_train' : True,
'R_active' : True,
'GLR' : 0.0005,
'GB1' : 0.5,
'GB2' : 0.999,
'DLR' : 0.0125,
'DB1' : 0.75,
'DB2' : 0.999,
'CLR' : 0.003,
'CB1' : 0.9,
'CB2' : 0.999,
}
# Load params and overwrite missing ones with default values
# Priority:
# 1. Given parameters
# 2. Saved parameters
# 3. Default parameters
def get_params(**kwargs):
given = locals()['kwargs']
saved = network.load_Parameter(given.get('name','missingNo'))
if saved is None:
saved = DEFAULT_PARAMS
params = {}
for key in DEFAULT_PARAMS:
val = given.get(key,None)
if val is None:
val = saved.get(key,None)
if val is None:
val = DEFAULT_PARAMS.get(key,None)
params[key] = val
params['label'] = pp.get_labels()
return params
def get_prediction_accuracy(params):
pred = pp.get_prediction(params,network.S_PATH+params['name']+'_predictions.txt')
_, Y = pp.get_data(params,params['dset_U'])
if pred is not None and Y is not None:
pred, Y = pp.get_tensor(pred, Y)
acc = get_accuracy(pred, Y)
log("Predicted Accuracy: %f."%( acc ),name=params['log_name'])
def get_accuracy(prediction,label):
C, P = pp.get_tensor(prediction,label)
_, idx_C = C.max(1)
_, idx_P = P.max(1)
cases = list(label.size())[0]
correct = list(torch.where(idx_C==idx_P)[0].size())[0]
return correct/cases
def get_accuracy_binary(prediction,label):
cases = list(label.size())[0]
correct = list(torch.where(prediction.round()==label)[0].size())[0]
return correct/cases
def train_GAN(params):
# -------------------
# Parameters
# -------------------
log(str(params),name=params['log_name'])
# Clear remaining model
if params['ratio_L'] < 1.0 or params['ratio_U'] < 1.0:
network.clear(params['name']+'_R'+str(params['start_run']))
plt.close('all')
# -------------------
# CUDA
# -------------------
cuda = True if torch.cuda.is_available() else False
G_Loss = torch.nn.BCELoss()
D_Loss = torch.nn.BCELoss()
C_Loss = torch.nn.BCELoss()
if cuda:
G_Loss.cuda()
D_Loss.cuda()
C_Loss.cuda()
floatTensor = torch.cuda.FloatTensor
log("CUDA Training.",name=params['log_name'])
network.clear_cache()
else:
floatTensor = torch.FloatTensor
log("CPU Training.",name=params['log_name'])
# -------------------
# Data scaling
# -------------------
'''
XTL ... Original labelled data
XTU ... Original unlabelled data
XTV ... Original validation data
XL ... Labelled data
XU ... Unlabelled data
XV ... Validation data
'''
dset_L = params['dset_L']
dset_U = params['dset_U']
dset_V = params['dset_V']
if dset_L == dset_U:
X, Y = pp.get_data(params,dset_L)
XTL, XTU, YTL, YTU = pp.split_data(X,Y)
else:
XTL, YTL = pp.get_data(params,dset_L)
XTU, YTU = pp.get_data(params,dset_U)
if dset_V is None:
XTV, YTV = XTU, YTU
else:
XTV, YTV = pp.get_data(params,dset_V)
XTL = pp.scale_minmax(XTL)
XTU = pp.scale_minmax(XTU)
XTV = pp.scale_minmax(XTV)
if params['ratio_V'] < 1.0:
XTV, YTV = pp.select_random(XTV,YTV,params['ratio_L'])
log("Selected %s of validation samples."%( format(params['ratio_V'],'0.2f') ),name=params['log_name'])
DL_V = pp.get_dataloader(params, XTV, YTV, batch_size=1024)
# -------------------
# Load accuracy
# -------------------
mat_accuracy_G, mat_accuracy_D, mat_accuracy_C = network.load_Acc(params)
if(params['R_active']):
mat_accuracy_R = network.load_R_Acc(params)
# -------------------
# Final prediction
# -------------------
if(params['prediction']):
Y_pred = torch.zeros(XTU.shape[0],8)
# -------------------
# Start Training
# -------------------
YF = None
PF = None
RF = None
for run in range(params['runs']):
# -------------------
# Labelled Data
# -------------------
XL, YL = XTL, YTL
if params['ratio_L'] < 1.0:
XL, YL = pp.select_random(XL,YL,params['ratio_L'])
log("Selected %s of labelled samples."%( format(params['ratio_L'],'0.2f') ),name=params['log_name'])
count_L = YL.shape[0]
log("Number of labelled samples = %d."%( count_L ),name=params['log_name'])
DL_L = pp.get_dataloader(params, XL, YL)
# -------------------
# Unlabelled Data
# -------------------
XU, YU = XTU, YTU
if params['ratio_U'] < 1.0:
XU, YU = pp.select_random(XU,YU,params['ratio_U'])
log("Selected %s of unlabelled samples."%( format(params['ratio_U'],'0.2f') ),name=params['log_name'])
log("Number of unlabelled samples = %d."%( XU.shape[0] ),name=params['log_name'])
DL_U_iter = pp.get_perm_dataloader(params, XU, YU)
# -------------------
# Networks
# -------------------
G, D, C = network.load_GAN(run,params)
if(params['R_active']):
R = network.load_Ref(run,params)
# -------------------
# Optimizers
# -------------------
optimizer_G = torch.optim.Adam(G.parameters(), lr=params['GLR'], betas=(params['GB1'], params['GB2']))
optimizer_D = torch.optim.Adam(D.parameters(), lr=params['DLR'], betas=(params['DB1'], params['DB2']))
optimizer_C = torch.optim.Adam(C.parameters(), lr=params['CLR'], betas=(params['CB1'], params['CB2']))
if(params['R_active']):
optimizer_R = torch.optim.Adam(R.parameters(), lr=params['CLR'], betas=(params['CB1'], params['CB2']))
# -------------------
# Training
# -------------------
if run >= params['start_run']:
if params['oversampling']:
XL, YL = pp.over_sampling(params, XL, YL)
log("Oversampling: created %d new labelled samples."%( XL.shape[0]-count_L ),name=params['log_name'])
for epoch in range(params['epochs']):
# Jump to start epoch
if run == params['start_run']:
if epoch < params['start_epoch']:
continue
running_loss_G = 0.0
running_loss_D = 0.0
running_loss_C = 0.0
"""
X1, P1 - Labelled Data, predicted Labels (C) | Regular training of classifier
W1 = (X1, Y1), A1 - Labelled Data, actual Labels, predicted Authenticity (D) | Real samples
W2 = (X2, Y2), A2 - Unlabelled Data, predicted Labels (C), predicted Authenticity (D) | Real data with fake labels
W3 = (X3, Y3), A3 - Synthetic Data (G), actual Labels, predicted Authenticity (D) | Fake data with real labels
W4 = (X4, Y4), A4 - Unlabbeled Data, predicted Labels (C), predicted Authenticity (D) | Fake positive to prevent overfitting
XV, YV, PV - Validation Data, actual Labels, predicted Labels (C) | Validation samples
R1, F2, F3, R4 - Real/Fake Labels
"""
for i, data in enumerate(DL_L, 1):
loss_G = []
loss_D = []
loss_C = []
# -------------------
# Train the classifier on real samples
# -------------------
X1, Y1 = data
W1 = torch.cat((X1,Y1),dim=1)
R1 = floatTensor(W1.shape[0], 1).fill_(1.0)
if params['C_basic_train']:
optimizer_C.zero_grad()
P1 = C(X1)
loss = C_Loss(P1, Y1)
loss_C.append(loss)
loss.backward()
optimizer_C.step()
if params['R_active']:
optimizer_R.zero_grad()
PR = R(X1)
loss = C_Loss(PR, Y1)
loss.backward()
optimizer_R.step()
# -------------------
# Train the discriminator to label real samples
# -------------------
optimizer_D.zero_grad()
A1 = D(W1)
loss = D_Loss(A1, R1)
loss_D.append(loss)
loss.backward()
optimizer_D.step()
# -------------------
# Classify unlabelled data
# -------------------
optimizer_C.zero_grad()
X2 = DL_U_iter.get_next()[0]
Y2 = C(X2)
W2 = torch.cat((X2,Y2),dim=1)
# -------------------
# Train the classifier to label unlabelled samples
# -------------------
A2 = D(W2)
R2 = floatTensor(W2.shape[0], 1).fill_(1.0)
loss = C_Loss(A2, R2)
loss_C.append(loss)
loss.backward()
optimizer_C.step()
# -------------------
# Train the discriminator to label predicted samples
# -------------------
optimizer_D.zero_grad()
A2 = D(W2.detach())
F2 = floatTensor(W2.shape[0], 1).fill_(0.0)
loss = D_Loss(A2, F2)
loss_D.append(loss)
loss.backward()
optimizer_D.step()
# -------------------
# Train the discriminator to label fake positive samples
# -------------------
X4 = DL_U_iter.get_next()[0]
Y4 = C(X4)
W4 = torch.cat((X4,Y4),dim=1)
optimizer_D.zero_grad()
A4 = D(W4)
R4 = floatTensor(W4.shape[0], 1).fill_(1.0)
loss = D_Loss(A4, R4)
loss_D.append(loss)
loss.backward()
optimizer_D.step()
# -------------------
# Create Synthetic Data
# -------------------
optimizer_G.zero_grad()
if params['G_label_sample']:
# Selected Labels from a uniform distribution of available labels
Y3 = floatTensor(pp.get_one_hot_labels(params=params,num=Y1.shape[0]*params['G_label_factor']))
else:
# Select labels from current training batch
Y3 = torch.cat(([Y1 for _ in range(params['G_label_factor'])]),dim=0)
Z = floatTensor(np.random.normal(0, 1, (Y3.shape[0], params['noise_shape'])))
I3 = torch.cat((Z,Y3),dim=1)
X3 = G(I3)
W3 = torch.cat((X3,Y3),dim=1)
# -------------------
# Train the generator to fool the discriminator
# -------------------
A3 = D(W3)
R3 = floatTensor(W3.shape[0], 1).fill_(1.0)
loss = G_Loss(A3, R3)
loss_G.append(loss)
loss.backward()
optimizer_G.step()
# -------------------
# Train the discriminator to label synthetic samples
# -------------------
optimizer_D.zero_grad()
A3 = D(W3.detach())
F3 = floatTensor(W3.shape[0], 1).fill_(0.0)
loss = D_Loss(A3, F3)
loss_D.append(loss)
loss.backward()
optimizer_D.step()
# -------------------
# Calculate overall loss
# -------------------
running_loss_G += np.mean([loss.item() for loss in loss_G])
running_loss_D += np.mean([loss.item() for loss in loss_D])
running_loss_C += np.mean([loss.item() for loss in loss_C])
# -------------------
# Post Epoch
# -------------------
logString = "[Run %d/%d] [Epoch %d/%d] [G loss: %f] [D loss: %f] [C loss: %f]"%(run+1, params['runs'], epoch+1, params['epochs'], running_loss_G/(i), running_loss_D/(i), running_loss_C/(i))
log(logString,save=False,name=params['log_name'])
if (epoch+1)%params['save_step'] == 0:
idx = run,int(epoch/params['save_step'])+1
acc_D_real = []
acc_D_vs_C = []
acc_D_vs_G = []
acc_C_real = []
for data in DL_V:
XV, YV = data
# Predict labels
PV = C(XV)
if params['R_active']:
PR = R(XV)
mat_accuracy_R[idx] = get_accuracy(PR, YV)
network.save_Ref(params['name'],run,R)
network.save_R_Acc(params, mat_accuracy_R)
# Generate Synthetic Data
Z = floatTensor(np.random.normal(0, 1, (YV.shape[0], params['noise_shape'])))
IV = torch.cat((Z,YV),dim=1)
XG = G(IV)
# Estimate Discriminator Accuracy
WV1 = torch.cat((XV,YV),dim=1)
WV2 = torch.cat((XV,PV),dim=1)
WV3 = torch.cat((XG,YV),dim=1)
RV1 = floatTensor(WV1.shape[0],1).fill_(1.0)
FV2 = floatTensor(WV2.shape[0],1).fill_(0.0)
FV3 = floatTensor(WV3.shape[0],1).fill_(0.0)
AV1 = D(WV1)
AV2 = D(WV2)
AV3 = D(WV3)
acc_D_real.append(get_accuracy_binary(AV1,RV1))
acc_D_vs_C.append(get_accuracy_binary(AV2,FV2))
acc_D_vs_G.append(get_accuracy_binary(AV3,FV3))
acc_C_real.append(get_accuracy(PV, YV))
acc_D_real = np.mean(acc_D_real)
acc_D_vs_C = np.mean(acc_D_vs_C)
acc_D_vs_G = np.mean(acc_D_vs_G)
acc_D = .5*acc_D_real + .25*acc_D_vs_G + .25*acc_D_vs_C
mat_accuracy_D[idx] = acc_D
acc_C_real = np.mean(acc_C_real)
acc_C_vs_D = 1.0 - acc_D_vs_C
acc_C = .5*acc_C_real + .5*acc_C_vs_D
mat_accuracy_C[idx] = acc_C_real
acc_G = 1.0 - acc_D_vs_G
mat_accuracy_G[idx] = acc_G
logString = "[Run %d/%d] [Epoch %d/%d] [G acc: %f] [D acc: %f | vs Real: %f | vs G: %f | vs C: %f] [C acc: %f | vs Real: %f | vs D: %f]"%(run+1, params['runs'], epoch+1, params['epochs'], acc_G, acc_D, acc_D_real, acc_D_vs_G, acc_D_vs_C, acc_C, acc_C_real, acc_C_vs_D)
log(logString,save=True,name=params['log_name'])
network.save_GAN(params['name'],run,G,D,C)
params['start_epoch'] = epoch+1
network.save_Parameter(params)
network.save_Acc(params, mat_accuracy_G, mat_accuracy_D, mat_accuracy_C)
# End of Training Run
params['start_run'] = run+1
params['start_epoch'] = 0
network.save_Parameter(params)
# -------------------
# Post Run
# -------------------
acc_C_real = []
for data in DL_V:
XV, YV = data
# # Generate Synthetic Data
# Z = floatTensor(np.random.normal(0, 1, (YV.shape[0], params['noise_shape'])))
# IV = torch.cat((Z,YV),dim=1)
# XG = G(IV)
# Classify Validation data
PC = C(XV)
acc_C_real.append(get_accuracy(PC, YV))
if params['R_active']:
if RF == None:
RF = R(XV)
else:
RF = torch.cat((RF, R(XV).detach()), 0)
if YF == None:
YF = YV
PF = PC
else:
YF = torch.cat((YF, YV), 0)
PF = torch.cat((PF, PC), 0)
mat_accuracy_C[run] = np.mean(acc_C_real)
# -------------------
# Final prediction
# -------------------
if(params['prediction']):
C.hard = False
XP = pp.get_tensor(XTU,None)[0]
YP = C(XP)
Y_pred += YP.cpu().detach()
C.hard = True
# -------------------
# Post Training
# -------------------
timeline = np.arange(0,params['epochs']+1,params['save_step'])
# -------------------
# Plot Accuracy
# -------------------
acc_G = np.mean(mat_accuracy_G,axis=0)
std_G = np.std(mat_accuracy_G,axis=0)
acc_D = np.mean(mat_accuracy_D,axis=0)
std_D = np.std(mat_accuracy_D,axis=0)
acc_C = np.mean(mat_accuracy_C,axis=0)
std_C = np.std(mat_accuracy_C,axis=0)
if params['R_active']:
acc_R = np.mean(mat_accuracy_R,axis=0)
fig, ax = plt.subplots()
legend = []
cmap = plt.get_cmap('gnuplot')
indices = np.linspace(0, cmap.N, 7)
colors = [cmap(int(i)) for i in indices]
ax.plot(timeline,acc_C,c=colors[0],linestyle='solid')
ax.fill_between(timeline, acc_C-std_C, acc_C+std_C, alpha=0.3, facecolor=colors[0])
legend.append("Accuracy $A_C$")
ax.plot(timeline,acc_D,c=colors[1],linestyle='dashed')
ax.fill_between(timeline, acc_D-std_D, acc_D+std_D, alpha=0.3, facecolor=colors[1])
legend.append("Accuracy $A_D$")
ax.plot(timeline,acc_G,c=colors[2],linestyle='dotted')
ax.fill_between(timeline, acc_G-std_G, acc_G+std_G, alpha=0.3, facecolor=colors[2])
legend.append("Accuracy $A_G$")
Y_max = 1.15
if params['R_active']:
ax.plot(timeline,acc_R,c=colors[3],linestyle='dashdot')
legend.append("Accuracy $A_R$")
perf = np.zeros_like(acc_C)
perf[0] = 0.0
perf[1:] = (acc_C[1:]-acc_R[1:])/acc_R[1:]
ax.plot(timeline,perf+1,c=colors[4],linestyle='solid')
legend.append("Performance $P_C$")
ax.set_xlim(0.0,params['epochs'])
ax.set_ylim(0.0,Y_max)
ax.legend(legend,fontsize=20)
ax.set_xlabel('Epoch',fontsize=20)
ax.set_ylabel('Accuracy',fontsize=20)
ax.grid()
save_fig(params,'eval',fig)
# -------------------
# Compare Classifier to Baseline
# -------------------
if params['R_active']:
maxC = np.argmax(acc_C, axis=0)
bestC = acc_C[maxC]
maxR = np.argmax(acc_R, axis=0)
bestR = acc_R[maxR]
log(' - Peak Accuracy: C: %s after %d epochs | R: %s after %d epochs | Inc: %s'%(
format((bestC),'0.4f'),timeline[maxC],
format((bestR),'0.4f'),timeline[maxR],
format((bestC-bestR)/bestR,'0.4f')),name='results')
Y_max = max(Y_max,max(perf+1)+0.025)
maxP = np.argmax(perf, axis=0)
log(' - Hightest $P_C$: %s after %d epochs.'%(format((perf[maxP]),'0.4f'),timeline[maxP]),name='results')
adva = np.zeros_like(acc_C)
for i,v1 in enumerate(acc_C):
for j,v2 in enumerate(acc_R):
if v2>=v1:
adva[i] = j-i
break
maxA = np.argmax(adva, axis=0)
log(' - Biggest Advantage: %d epochs after %d epochs.'%(adva[maxA]*params['save_step'],timeline[maxA]),name='results')
# -------------------
# Log Results
# -------------------
if params['evaluate']:
log(" - %s ( %s | %s ): [C acc: %f ( ± %f )]"%(params['name'],params['dset_V'],params['location'],acc_C[-1],std_C[-1]),name='results')
else:
log(" - "+params['name']+": [C acc: %f ( ± %f )] [D acc: %f ( ± %f )] [G acc: %f ( ± %f )]"%(acc_C[-1],std_C[-1],acc_D[-1],std_D[-1],acc_G[-1],std_G[-1]),name='results')
# -------------------
# Generate Confusion Matrix
# -------------------
YF = pp.one_hot_to_labels(params,YF)
PF = pp.one_hot_to_labels(params,PF)
con_mat = confusion_matrix(YF, PF, labels=None, sample_weight=None, normalize='true')
if params['evaluate']:
plot_confusion_matrix(con_mat,params,name='%s_%s'%(params['dset_V'],params['location']),title='Confusion matrix')
else:
plot_confusion_matrix(con_mat,params,name='C',title='Confusion matrix')
if params['R_active']:
RF = pp.one_hot_to_labels(params,RF)
con_mat = confusion_matrix(YF, RF, labels=None, sample_weight=None, normalize='true')
plot_confusion_matrix(con_mat,params,name='R',title='Confusion matrix')
# -------------------
# Final prediction
# -------------------
if(params['prediction']):
network.make_dir_pre()
pred = torch.argmax(Y_pred,axis=1)
f = open(network.S_PATH+params['name']+'_predictions.txt', "w")
for y in pred:
f.write(' '.join(['%.6f'%(float(y.item()+1))]*500)+'\n')
f.close()
if __name__ == "__main__":
import main
main.main()