简体中文 | English
ST-GCN is skeleton-based action recognition model proposed in AAAI 2018.
Please refer to FSD-10 data download and preparation doc FSD-10
Please refer to NTU-RGBD data download and preparation doc NTU-RGBD
- Train ST-GCN on FSD-10 scripts:
python3.7 main.py -c configs/recognition/stgcn/stgcn_fsd.yaml
- Turn off
valid
when training, as validation dataset is not available for the competition.
- Train ST-GCN on NTU-RGBD scripts:
python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3" --log_dir=log_stgcn main.py --validate -c configs/recognition/stgcn/stgcn_ntucs.yaml
- config file
stgcn_ntucs.yaml
corresponding to the config of ST-GCN on NTU-RGB+D dataset with cross-subject splits.
- Test scripts:
python3.7 main.py --test -c configs/recognition/stgcn/stgcn_fsd.yaml -w output/STGCN/STGCN_epoch_00060.pdparams
-
Specify the config file with
-c
, specify the weight path with-w
. -
Evaluation results will be saved in
submission.csv
file, final score can be obtained in competition website.
Accuracy on FSD-10 dataset:
Test_Data | Top-1 | checkpoints |
---|---|---|
Test_A | 71.33 | STGCN_fsd.pdparams |
- Test scripts:
python3.7 main.py --test -c configs/recognition/stgcn/stgcn_ntucs.yaml -w output/STGCN/STGCN_best.pdparams
- Specify the config file with
-c
, specify the weight path with-w
.
Accuracy on NTU-RGB+D dataset:
split | Top-1 | checkpoints |
---|---|---|
cross-subject | 82.28 | STGCN_ntucs.pdparams |
To get model architecture file STGCN.pdmodel
and parameters file STGCN.pdiparams
, use:
python3.7 tools/export_model.py -c configs/recognition/stgcn/stgcn_fsd.yaml \
-p data/STGCN_fsd.pdparams \
-o inference/STGCN
- Args usage please refer to Model Inference.
python3.7 tools/predict.py --input_file data/fsd10/example_skeleton.npy \
--config configs/recognition/stgcn/stgcn_fsd.yaml \
--model_file inference/STGCN/STGCN.pdmodel \
--params_file inference/STGCN/STGCN.pdiparams \
--use_gpu=True \
--use_tensorrt=False
example of logs:
Current video file: data/fsd10/example_skeleton.npy
top-1 class: 0
top-1 score: 0.9847044944763184
- Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan, Yuanjun Xiong, Dahua Lin