forked from mimoo/RSA-and-LLL-attacks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coppersmith.sage
226 lines (185 loc) · 6.53 KB
/
coppersmith.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import print_function
import time
debug = True
# display matrix picture with 0 and X
def matrix_overview(BB, bound):
for ii in range(BB.dimensions()[0]):
a = ('%02d ' % ii)
for jj in range(BB.dimensions()[1]):
a += '0' if BB[ii,jj] == 0 else 'X'
a += ' '
if BB[ii, ii] >= bound:
a += '~'
print(a)
def coppersmith_howgrave_univariate(pol, modulus, beta, mm, tt, XX):
"""
Coppersmith revisited by Howgrave-Graham
finds a solution if:
* b|modulus, b >= modulus^beta , 0 < beta <= 1
* |x| < XX
"""
#
# init
#
dd = pol.degree()
nn = dd * mm + tt
#
# checks
#
if not 0 < beta <= 1:
raise ValueError("beta should belongs in (0, 1]")
if not pol.is_monic():
raise ArithmeticError("Polynomial must be monic.")
#
# calculate bounds and display them
#
"""
* we want to find g(x) such that ||g(xX)|| <= b^m / sqrt(n)
* we know LLL will give us a short vector v such that:
||v|| <= 2^((n - 1)/4) * det(L)^(1/n)
* we will use that vector as a coefficient vector for our g(x)
* so we want to satisfy:
2^((n - 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n)
so we can obtain ||v|| < N^(beta*m) / sqrt(n) <= b^m / sqrt(n)
(it's important to use N because we might not know b)
"""
if debug:
# t optimized?
print("\n# Optimized t?\n")
print("we want X^(n-1) < N^(beta*m) so that each vector is helpful")
cond1 = RR(XX^(nn-1))
print("* X^(n-1) = ", cond1)
cond2 = pow(modulus, beta*mm)
print("* N^(beta*m) = ", cond2)
print("* X^(n-1) < N^(beta*m) \n-> GOOD" if cond1 < cond2 else "* X^(n-1) >= N^(beta*m) \n-> NOT GOOD")
# bound for X
print("\n# X bound respected?\n")
print("we want X <= N^(((2*beta*m)/(n-1)) - ((delta*m*(m+1))/(n*(n-1)))) / 2 = M")
print("* X =", XX)
cond2 = RR(modulus^(((2*beta*mm)/(nn-1)) - ((dd*mm*(mm+1))/(nn*(nn-1)))) / 2)
print("* M =", cond2)
print("* X <= M \n-> GOOD" if XX <= cond2 else "* X > M \n-> NOT GOOD")
# solution possible?
print("\n# Solutions possible?\n")
detL = RR(modulus^(dd * mm * (mm + 1) / 2) * XX^(nn * (nn - 1) / 2))
print("we can find a solution if 2^((n - 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n)")
cond1 = RR(2^((nn - 1)/4) * detL^(1/nn))
print("* 2^((n - 1)/4) * det(L)^(1/n) = ", cond1)
cond2 = RR(modulus^(beta*mm) / sqrt(nn))
print("* N^(beta*m) / sqrt(n) = ", cond2)
print("* 2^((n - 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n) \n-> SOLUTION WILL BE FOUND" if cond1 < cond2 else "* 2^((n - 1)/4) * det(L)^(1/n) >= N^(beta*m) / sqroot(n) \n-> NO SOLUTIONS MIGHT BE FOUND (but we never know)")
# warning about X
print("\n# Note that no solutions will be found _for sure_ if you don't respect:\n* |root| < X \n* b >= modulus^beta\n")
#
# Coppersmith revisited algo for univariate
#
# change ring of pol and x
polZ = pol.change_ring(ZZ)
x = polZ.parent().gen()
# compute polynomials
gg = []
for ii in range(mm):
for jj in range(dd):
gg.append((x * XX)**jj * modulus**(mm - ii) * polZ(x * XX)**ii)
for ii in range(tt):
gg.append((x * XX)**ii * polZ(x * XX)**mm)
# construct lattice B
BB = Matrix(ZZ, nn)
for ii in range(nn):
for jj in range(ii+1):
BB[ii, jj] = gg[ii][jj]
# display basis matrix
if debug:
matrix_overview(BB, modulus^mm)
# LLL
BB = BB.LLL()
# transform shortest vector in polynomial
new_pol = 0
for ii in range(nn):
new_pol += x**ii * BB[0, ii] / XX**ii
# factor polynomial
potential_roots = new_pol.roots()
print("potential roots:", potential_roots)
# test roots
roots = []
for root in potential_roots:
if root[0].is_integer():
result = polZ(ZZ(root[0]))
if gcd(modulus, result) >= modulus^beta:
roots.append(ZZ(root[0]))
#
return roots
############################################
# Test on Stereotyped Messages
##########################################
print("//////////////////////////////////")
print("// TEST 1")
print("////////////////////////////////")
# RSA gen options (for the demo)
length_N = 1024 # size of the modulus
Kbits = 200 # size of the root
e = 3
# RSA gen (for the demo)
p = next_prime(2^int(round(length_N/2)))
q = next_prime(p)
N = p*q
ZmodN = Zmod(N);
# Create problem (for the demo)
K = ZZ.random_element(0, 2^Kbits)
Kdigits = K.digits(2)
M = [0]*Kbits + [1]*(length_N-Kbits);
for i in range(len(Kdigits)):
M[i] = Kdigits[i]
M = ZZ(M, 2)
C = ZmodN(M)^e
# Problem to equation (default)
P.<x> = PolynomialRing(ZmodN) #, implementation='NTL')
pol = (2^length_N - 2^Kbits + x)^e - C
dd = pol.degree()
# Tweak those
beta = 1 # b = N
epsilon = beta / 7 # <= beta / 7
mm = ceil(beta**2 / (dd * epsilon)) # optimized value
tt = floor(dd * mm * ((1/beta) - 1)) # optimized value
XX = ceil(N**((beta**2/dd) - epsilon)) # optimized value
# Coppersmith
start_time = time.time()
roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX)
# output
print("\n# Solutions")
print("we want to find:",str(K))
print("we found:", str(roots))
print(("in: %s seconds " % (time.time() - start_time)))
print("\n")
############################################
# Test on Factoring with High Bits Known
##########################################
print("//////////////////////////////////")
print("// TEST 2")
print("////////////////////////////////")
# RSA gen
length_N = 1024;
p = next_prime(2^int(round(length_N/2)));
q = next_prime( round(pi.n()*p) );
N = p*q;
# qbar is q + [hidden_size_random]
hidden = 200;
diff = ZZ.random_element(0, 2^hidden-1)
qbar = q + diff;
F.<x> = PolynomialRing(Zmod(N), implementation='NTL');
pol = x - qbar
dd = pol.degree()
# PLAY WITH THOSE:
beta = 0.5 # we should have q >= N^beta
epsilon = beta / 7 # <= beta/7
mm = ceil(beta**2 / (dd * epsilon)) # optimized
tt = floor(dd * mm * ((1/beta) - 1)) # optimized
XX = ceil(N**((beta**2/dd) - epsilon)) # we should have |diff| < X
# Coppersmith
start_time = time.time()
roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX)
# output
print("\n# Solutions")
print("we want to find:", qbar - q)
print("we found:", roots)
print(("in: %s seconds " % (time.time() - start_time)))