-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
499 lines (435 loc) · 22.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import argparse
import json
import os
import torch
from utils import build_model, get_lr, average_checkpoints, last_n_checkpoints
import time
import gc
from torch.utils.data import DataLoader
from models.loss import WaveFlowLossDataParallel
from mel2samp import Mel2Samp, MAX_WAV_VALUE
from scipy.io.wavfile import write
def load_checkpoint(checkpoint_path, model, optimizer, scheduler):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
if optimizer is not None and scheduler is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
scheduler.load_state_dict(checkpoint_dict['scheduler'])
model_for_loading = checkpoint_dict['model']
# band-aid fix for h_cache, remove it
if 'h_cache' in model_for_loading:
del model_for_loading['h_cache']
try:
model.load_state_dict(model_for_loading)
except RuntimeError:
print("DataParallel weight detected. loading...")
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in model_for_loading.items():
name = k.replace("module.", "") # remove `module.`
new_state_dict[name] = v
# load params
model.load_state_dict(new_state_dict)
print("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return model, optimizer, scheduler, iteration
def load_averaged_checkpoint(checkpoint_path, model, num_avg_ckpt):
# checkpoint_path is dir in this function
assert os.path.isdir(checkpoint_path)
list_checkpoints = last_n_checkpoints(checkpoint_path, num_avg_ckpt)
iteration = torch.load(list_checkpoints[0], map_location='cpu')['iteration']
model_for_loading = average_checkpoints(list_checkpoints, args.epsilon)['model']
try:
model.load_state_dict(model_for_loading)
except RuntimeError:
print("DataParallel weight detected. loading...")
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in model_for_loading.items():
name = k.replace("module.", "") # remove `module.`
new_state_dict[name] = v
# load params
model.load_state_dict(new_state_dict)
print("Loaded averaged checkpoint from '{}' (last iteration {})" .format(
checkpoint_path, iteration))
return model, iteration
def load_checkpoint_warm_start(checkpoint_path, model, optimizer, scheduler):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
model_for_loading = checkpoint_dict['model']
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in model_for_loading.items() if
(k in model_dict) and (model_dict[k].shape == model_for_loading[k].shape)}
model_dict.update(pretrained_dict)
missing_and_unexpected_keys = model.load_state_dict(pretrained_dict, strict=False)
print("WARNING: only part of the model loaded. below are missing and unexpected keys, make sure that they are correct:")
print(missing_and_unexpected_keys)
print("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, scheduler, iteration
def load_averaged_checkpoint_warm_start(checkpoint_path, model, optimizer, scheduler):
# checkpoint_path is dir in this function
assert os.path.isdir(checkpoint_path)
list_checkpoints = last_n_checkpoints(checkpoint_path, args.average_checkpoint)
iteration = 0
model_for_loading = average_checkpoints(list_checkpoints, args.epsilon)['model']
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in model_for_loading.items() if
(k in model_dict) and (model_dict[k].shape == model_for_loading[k].shape)}
model_dict.update(pretrained_dict)
missing_and_unexpected_keys = model.load_state_dict(pretrained_dict, strict=False)
print("WARNING: only part of the model loaded. below are missing and unexpected keys, make sure that they are correct:")
print(missing_and_unexpected_keys)
print("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, scheduler, iteration
def save_checkpoint(model, optimizer, scheduler, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
if hasattr(model, 'module'):
model_state_dict = model.module.state_dict() # dataparallel case
else:
model_state_dict = model.state_dict()
torch.save({'model': model_state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'learning_rate': learning_rate}, filepath)
def train(model, num_gpus, output_directory, epochs, learning_rate, lr_decay_step, lr_decay_gamma,
sigma, iters_per_checkpoint, batch_size, seed, fp16_run,
checkpoint_path, with_tensorboard):
# local eval and synth functions
def evaluate():
# eval loop
model.eval()
epoch_eval_loss = 0
for i, batch in enumerate(test_loader):
with torch.no_grad():
mel, audio = batch
mel = torch.autograd.Variable(mel.cuda())
audio = torch.autograd.Variable(audio.cuda())
outputs = model(audio, mel)
loss = criterion(outputs)
if num_gpus > 1:
reduced_loss = loss.mean().item()
else:
reduced_loss = loss.item()
epoch_eval_loss += reduced_loss
epoch_eval_loss = epoch_eval_loss / len(test_loader)
print("EVAL {}:\t{:.9f}".format(iteration, epoch_eval_loss))
if with_tensorboard:
logger.add_scalar('eval_loss', epoch_eval_loss, iteration)
logger.flush()
model.train()
def synthesize(sigma):
model.eval()
# synthesize loop
if hasattr(model, 'cache_flow_embed'):
model.h_cache = model.cache_flow_embed() # used for flow conditioning models
elif hasattr(model, 'module'): # dataparallel case
if hasattr(model.module, 'cache_flow_embed'):
model.module.h_cache = model.module.cache_flow_embed()
for i, batch in enumerate(synth_loader):
if i == 0:
with torch.no_grad():
mel, _, filename = batch
mel = torch.autograd.Variable(mel.cuda())
try:
audio = model.reverse(mel, sigma)
except AttributeError:
audio = model.module.reverse(mel, sigma)
except NotImplementedError:
print("reverse not implemented for this model. skipping synthesize!")
model.train()
return
audio = audio * MAX_WAV_VALUE
audio = audio.squeeze()
audio = audio.cpu().numpy()
audio = audio.astype('int16')
audio_path = os.path.join(
os.path.join(output_directory, "samples", waveflow_config["model_name"]),
"generate_{}.wav".format(iteration))
write(audio_path, data_config["sampling_rate"], audio)
model.train()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
criterion = WaveFlowLossDataParallel(sigma)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_step, gamma=lr_decay_gamma)
if fp16_run:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
if args.warm_start:
print("INFO: --warm_start. optimizer and scheduler are initialized and strict=False for load_state_dict().")
if args.average_checkpoint == 0:
model, optimizer, scheduler, iteration = load_checkpoint_warm_start(checkpoint_path, model, optimizer, scheduler)
else:
print("INFO: --average_checkpoint > 0. loading an averaged weight of last {} checkpoints...".format(args.average_checkpoint))
model, optimizer, scheduler, iteration = load_averaged_checkpoint_warm_start(checkpoint_path, model, optimizer, scheduler)
else:
model, optimizer, scheduler, iteration = load_checkpoint(checkpoint_path, model, optimizer, scheduler)
iteration += 1 # next iteration is iteration + 1
if num_gpus > 1:
print("num_gpus > 1. converting the model to DataParallel...")
model = torch.nn.DataParallel(model)
trainset = Mel2Samp("train", False, False, **data_config)
train_loader = DataLoader(trainset, num_workers=4, shuffle=True,
batch_size=batch_size,
pin_memory=False,
drop_last=True)
testset = Mel2Samp("test", False, False, **data_config)
test_sampler = None
test_loader = DataLoader(testset, num_workers=4, shuffle=False,
sampler=test_sampler,
batch_size=batch_size,
pin_memory=False,
drop_last=False)
synthset = Mel2Samp("test", True, True, **data_config)
synth_sampler = None
synth_loader = DataLoader(synthset, num_workers=4, shuffle=False,
sampler=synth_sampler,
batch_size=1,
pin_memory=False,
drop_last=False)
# Get shared output_directory ready
if not os.path.isdir(os.path.join(output_directory, waveflow_config["model_name"])):
os.makedirs(os.path.join(output_directory, waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, waveflow_config["model_name"]), 0o775)
print("output directory", os.path.join(output_directory, waveflow_config["model_name"]))
if not os.path.isdir(os.path.join(output_directory, "samples")):
os.makedirs(os.path.join(output_directory, "samples"), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples"), 0o775)
os.makedirs(os.path.join(output_directory, "samples", waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples", waveflow_config["model_name"]), 0o775)
if with_tensorboard:
from tensorboardX import SummaryWriter
logger = SummaryWriter(os.path.join(output_directory, waveflow_config["model_name"], 'logs'))
model.train()
epoch_offset = max(0, int(iteration / len(train_loader)))
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
tic = time.time()
model.zero_grad()
mel, audio = batch
mel = torch.autograd.Variable(mel.cuda())
audio = torch.autograd.Variable(audio.cuda())
outputs = model(audio, mel)
loss = criterion(outputs)
if num_gpus > 1:
reduced_loss = loss.mean().item()
else:
reduced_loss = loss.item()
if fp16_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.mean().backward()
if fp16_run:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 5.)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 5.)
optimizer.step()
toc = time.time() - tic
print("{}:\t{:.9f}, {:.4f} seconds".format(iteration, reduced_loss, toc))
if with_tensorboard:
logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch)
logger.add_scalar('lr', get_lr(optimizer), i + len(train_loader) * epoch)
logger.add_scalar('grad_norm', grad_norm, i + len(train_loader) * epoch)
logger.flush()
if (iteration % iters_per_checkpoint == 0):
checkpoint_path = "{}/waveflow_{}".format(
os.path.join(output_directory, waveflow_config["model_name"]), iteration)
save_checkpoint(model, optimizer, scheduler, learning_rate, iteration,
checkpoint_path)
if iteration != 0:
evaluate()
del mel, audio, outputs, loss
gc.collect()
synthesize(sigma)
iteration += 1
scheduler.step()
evaluate()
def evaluate_master(model, num_gpus, output_directory, epochs, learning_rate, lr_decay_step, lr_decay_gamma,
sigma, iters_per_checkpoint, batch_size, seed, fp16_run,
checkpoint_path, with_tensorboard):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
if args.average_checkpoint == 0:
model, _, _, iteration = load_checkpoint(checkpoint_path, model, None, None)
else:
print("INFO: --average_checkpoint > 0. loading an averaged weight of last {} checkpoints...".format(args.average_checkpoint))
model, iteration = load_averaged_checkpoint(checkpoint_path, model, args.average_checkpoint)
if fp16_run:
raise NotImplementedError("do not run evaluation loop with fp16 mode!")
testset = Mel2Samp("test", True, True, **data_config)
test_sampler = None
test_loader = DataLoader(testset, num_workers=4, shuffle=False,
sampler=test_sampler,
batch_size=1,
pin_memory=False,
drop_last=False)
# Get shared output_directory ready
if not os.path.isdir(os.path.join(output_directory, waveflow_config["model_name"])):
os.makedirs(os.path.join(output_directory, waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, waveflow_config["model_name"]), 0o775)
print("output directory", os.path.join(output_directory, waveflow_config["model_name"]))
if not os.path.isdir(os.path.join(output_directory, "samples")):
os.makedirs(os.path.join(output_directory, "samples"), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples"), 0o775)
os.makedirs(os.path.join(output_directory, "samples", waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples", waveflow_config["model_name"]), 0o775)
criterion = WaveFlowLossDataParallel(sigma)
model.eval()
epoch_eval_loss = 0
for i, batch in enumerate(test_loader):
with torch.no_grad():
mel, audio, filename = batch
mel, audio = mel.cuda(), audio.cuda()
outputs = model(audio, mel)
loss = criterion(outputs)
reduced_loss = loss.item()
epoch_eval_loss += reduced_loss
print("eval data {}: {:.9f}".format(i, reduced_loss))
epoch_eval_loss = epoch_eval_loss / len(test_loader)
print("EVAL_FULL {}:\t{:.9f}".format(iteration, epoch_eval_loss))
model.train()
def synthesize_master(model, num_gpus, temp, output_directory, epochs, learning_rate, lr_decay_step, lr_decay_gamma,
sigma, iters_per_checkpoint, batch_size, seed, fp16_run,
checkpoint_path, with_tensorboard):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
model, _, _, iteration = load_checkpoint(checkpoint_path, model, None, None)
if hasattr(model, 'cache_flow_embed'):
model.h_cache = model.cache_flow_embed(remove_after_cache=True) # used for flow conditioning models
# remove all weight_norm from the model
model.remove_weight_norm()
# fuse mel-spec conditioning layer weights to maximize speed
model.fuse_conditioning_layers()
if fp16_run:
from apex import amp
model, _ = amp.initialize(model, [], opt_level="O3")
synthset = Mel2Samp("test", True, True, **data_config)
synth_sampler = None
synth_loader = DataLoader(synthset, num_workers=4, shuffle=False,
sampler=synth_sampler,
batch_size=1,
pin_memory=False,
drop_last=False)
# Get shared output_directory ready
if not os.path.isdir(os.path.join(output_directory, waveflow_config["model_name"])):
os.makedirs(os.path.join(output_directory, waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, waveflow_config["model_name"]), 0o775)
print("output directory", os.path.join(output_directory, waveflow_config["model_name"]))
if not os.path.isdir(os.path.join(output_directory, "samples")):
os.makedirs(os.path.join(output_directory, "samples"), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples"), 0o775)
os.makedirs(os.path.join(output_directory, "samples", waveflow_config["model_name"]), exist_ok=True)
os.chmod(os.path.join(output_directory, "samples", waveflow_config["model_name"]), 0o775)
# synthesize loop
model.eval()
for i, batch in enumerate(synth_loader):
with torch.no_grad():
mel, _, filename = batch
mel = torch.autograd.Variable(mel.cuda())
if fp16_run:
mel = mel.half()
torch.cuda.synchronize()
tic = time.time()
audio = model.reverse_fast(mel, temp)
torch.cuda.synchronize()
toc = time.time() - tic
print('{}: {:.4f} seconds, {:.4f}kHz'.format(i, toc, audio.shape[1] / toc / 1000))
audio = audio * MAX_WAV_VALUE
audio = audio.squeeze()
audio = audio.cpu().numpy()
audio = audio.astype('int16')
audio_path = os.path.join(
os.path.join(output_directory, "samples", waveflow_config["model_name"]),
"generate_{}_{}_t{}.wav".format(iteration, i, temp))
write(audio_path, data_config["sampling_rate"], audio)
model.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-w', '--warm_start', action='store_true',
help='warm start. i.e. load_state_dict() with strict=False and optimizer & scheduler are initialized.')
parser.add_argument('-v', '--evaluate', action='store_true',
help='evaluate the model with full test set (with full audio clip)')
parser.add_argument('-s', '--synthesize', action='store_true',
help='run synthesize loop only. does not train or evaluate the model.')
parser.add_argument('-t', '--temp', type=float, default=1.,
help='temperature during synthesize loop. defaults to 1. only applicable if -s is specified')
parser.add_argument('-a', '--average_checkpoint', type=int, default=0,
help='checkpoint averaging. averages the given number of latest checkpoints for synthesize.')
parser.add_argument('-e', '--epsilon', type=float, default=None,
help='epsilon value for polyak averaging. only applied if -a > 0. defaults to None (plain averaging)')
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
train_config = config["train_config"]
global data_config
data_config = config["data_config"]
global waveflow_config
waveflow_config = config["waveflow_config"]
num_gpus = torch.cuda.device_count()
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
model = build_model(waveflow_config)
if args.evaluate:
print("INFO: --evaluate is true. running test set evaluation loop...")
torch.backends.cudnn.benchmark = False
print("INFO: torch.backends.cudnn.benchmark is set to False")
evaluate_master(model, num_gpus, **train_config)
print("INFO: evaluation loop done. exiting!")
exit()
if args.synthesize:
print("INFO: --synthesize is true. running synthesize loop...")
torch.backends.cudnn.benchmark = False
print("INFO: torch.backends.cudnn.benchmark is set to False")
synthesize_master(model, num_gpus, args.temp, **train_config)
print("INFO: synthesize loop done. exiting!")
exit()
else:
train(model, num_gpus, **train_config)