-
Notifications
You must be signed in to change notification settings - Fork 767
/
utils.py
611 lines (574 loc) · 29.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from threading import Timer
import re
import shutil
import json
import subprocess
import tempfile
from urllib.error import HTTPError
import requests
import requests.adapters
import time
from transformers import __version__ as transformers_version
from transformers import PreTrainedModel
import packaging.version
from tqdm.auto import tqdm
import os
import itertools
import hashlib
import huggingface_hub
import packaging.version
from pathlib import Path
from typing import List, Optional
HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0")
try:
import accelerate
except ImportError:
HAS_ACCELERATE = False
vars = None
args = None
num_shards: Optional[int] = None
current_shard = 0
from_pretrained_model_name = ""
from_pretrained_index_filename: Optional[str] = None
from_pretrained_kwargs = {}
bar = None
layers_module_names: Optional[List[str]] = None
module_names: Optional[List[str]] = None
named_buffers: Optional[List[tuple]] = None
default_sampler_order = [6, 0, 1, 2, 3, 4, 5]
emit = None
#==================================================================#
# Decorator to prevent a function's actions from being run until
# at least x seconds have passed without the function being called
#==================================================================#
def debounce(wait):
def decorator(fun):
def debounced(*args, **kwargs):
def call_it():
fun(*args, **kwargs)
try:
debounced.t.cancel()
except AttributeError:
pass
debounced.t = Timer(wait, call_it)
debounced.t.start()
return debounced
return decorator
#==================================================================#
# Replace fancy quotes and apostrope's with standard ones
#==================================================================#
def fixquotes(txt):
txt = txt.replace("“", '"')
txt = txt.replace("”", '"')
txt = txt.replace("’", "'")
txt = txt.replace("`", "'")
return txt
#==================================================================#
#
#==================================================================#
def trimincompletesentence(txt):
# Cache length of text
ln = len(txt)
# Find last instance of punctuation (Borrowed from Clover-Edition by cloveranon)
lastpunc = max(txt.rfind("."), txt.rfind("!"), txt.rfind("?"))
# Is this the end of a quote?
if(lastpunc < ln-1):
if(txt[lastpunc+1] == '"'):
lastpunc = lastpunc + 1
if(lastpunc >= 0):
txt = txt[:lastpunc+1]
return txt
#==================================================================#
#
#==================================================================#
def replaceblanklines(txt):
txt = txt.replace("\n\n", "\n")
return txt
#==================================================================#
#
#==================================================================#
def removespecialchars(txt, vars=None):
if vars is None or vars.actionmode == 0:
txt = re.sub(r"[#/@%<>{}+=~|\^]", "", txt)
else:
txt = re.sub(r"[#/@%{}+=~|\^]", "", txt)
return txt
#==================================================================#
# If the next action follows a sentence closure, add a space
#==================================================================#
def addsentencespacing(txt, vars):
# Don't add sentence spacing if submission is empty or starts with whitespace
if(len(txt) == 0 or len(txt) != len(txt.lstrip())):
return txt
# Get last character of last action
if(len(vars.actions) > 0):
if(len(vars.actions[vars.actions.get_last_key()]) > 0):
action = vars.actions[vars.actions.get_last_key()]
lastchar = action[-1] if len(action) else ""
else:
# Last action is blank, this should never happen, but
# since it did let's bail out.
return txt
else:
action = vars.prompt
lastchar = action[-1] if len(action) else ""
if(lastchar != " "):
txt = " " + txt
return txt
def singlelineprocessing(txt, vars):
txt = vars.regex_sl.sub('', txt)
if(len(vars.actions) > 0):
if(len(vars.actions[vars.actions.get_last_key()]) > 0):
action = vars.actions[vars.actions.get_last_key()]
lastchar = action[-1] if len(action) else ""
else:
# Last action is blank, this should never happen, but
# since it did let's bail out.
return txt
else:
action = vars.prompt
lastchar = action[-1] if len(action) else ""
if(lastchar != "\n"):
txt = txt + "\n"
return txt
#==================================================================#
# Cleans string for use in file name
#==================================================================#
def cleanfilename(filename):
filteredcharacters = ('/','\\')
filename = "".join(c for c in filename if c not in filteredcharacters).rstrip()
return filename
#==================================================================#
# Newline substitution for fairseq models
#==================================================================#
def encodenewlines(txt):
if(vars.newlinemode == "s"):
return txt.replace('\n', "</s>")
return txt
def decodenewlines(txt):
if(vars.newlinemode == "s"):
return txt.replace("</s>", '\n')
if(vars.newlinemode == "ns"):
return txt.replace("</s>", '')
return txt
#==================================================================#
# Returns number of layers given an HF model config
#==================================================================#
def num_layers(config):
return config["n_layer"] if isinstance(config, dict) else config.num_layers if hasattr(config, "num_layers") else config.n_layer if hasattr(config, "n_layer") else config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else None
#==================================================================#
# Downloads huggingface checkpoints using aria2c if possible
#==================================================================#
from flask_socketio import emit
def _download_with_aria2(aria2_config: str, total_length: int, directory: str = ".", user_agent=None, force_download=False, use_auth_token=None):
class Send_to_socketio(object):
def write(self, bar):
bar = bar.replace("\r", "").replace("\n", "")
if bar != "":
try:
print('\r' + bar, end='')
try:
emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
except:
pass
eventlet.sleep(seconds=0)
except:
pass
def flush(self):
pass
import transformers
aria2_port = 6799 if vars is None else vars.aria2_port
lengths = {}
s = requests.Session()
s.mount("http://", requests.adapters.HTTPAdapter(max_retries=requests.adapters.Retry(total=120, backoff_factor=1)))
bar = None
done = False
secret = os.urandom(17).hex()
try:
with tempfile.NamedTemporaryFile("w+b", delete=False) as f:
f.write(aria2_config)
f.flush()
p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", directory, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {use_auth_token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
while p.poll() is None:
r = s.post(f"http://localhost:{aria2_port}/jsonrpc", json={"jsonrpc": "2.0", "id": "kai", "method": "aria2.tellActive", "params": [f"token:{secret}"]}).json()["result"]
if not r:
s.close()
if bar is not None:
bar.n = bar.total
bar.close()
p.terminate()
done = True
break
if bar is None:
bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000, file=Send_to_socketio())
visited = set()
for x in r:
filename = x["files"][0]["path"]
lengths[filename] = (int(x["completedLength"]), int(x["totalLength"]))
visited.add(filename)
for k, v in lengths.items():
if k not in visited:
lengths[k] = (v[1], v[1])
bar.n = sum(v[0] for v in lengths.values())
bar.update()
time.sleep(0.1)
path = f.name
except Exception as e:
p.terminate()
raise e
finally:
try:
os.remove(path)
except OSError:
pass
code = p.wait()
if not done and code:
raise OSError(f"aria2 exited with exit code {code}")
def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers
import transformers.modeling_utils
from huggingface_hub import HfFolder
if use_auth_token:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
_revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION
sharded = False
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
if use_auth_token:
headers["authorization"] = f"Bearer {use_auth_token}"
storage_folder = os.path.join(_cache_dir, huggingface_hub.file_download.repo_folder_name(repo_id=pretrained_model_name_or_path, repo_type="model"))
os.makedirs(storage_folder, exist_ok=True)
def is_cached(filename):
try:
huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, local_files_only=True, revision=_revision)
except ValueError:
return False
return True
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
try:
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
except AttributeError:
return
url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=_revision)
if is_cached(filename) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
break
if sharded:
return
else:
sharded = True
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
map_filename = huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
with open(map_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=_revision) for n in filenames]
if not force_download:
urls = [u for u, n in zip(urls, filenames) if not is_cached(n)]
if not urls:
return
blob_paths = []
# This section is a modified version of hf_hub_download from huggingface_hub
# See https://github.com/huggingface/huggingface_hub/blob/main/LICENSE for license
for u, n in zip(urls, filenames):
relative_filename = os.path.join(*n.split("/"))
if not local_files_only:
try:
r = huggingface_hub.file_download._request_wrapper(
method="HEAD",
url=u,
headers=headers,
allow_redirects=False,
follow_relative_redirects=True,
proxies=proxies,
timeout=10,
)
try:
r.raise_for_status()
except HTTPError as e:
error_code = r.headers.get("X-Error-Code")
if error_code != "EntryNotFound":
raise RuntimeError(f"HEAD {u} failed with error code {r.status_code}")
commit_hash = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT)
if commit_hash is not None:
no_exist_file_path = (
Path(storage_folder)
/ ".no_exist"
/ commit_hash
/ relative_filename
)
no_exist_file_path.parent.mkdir(parents=True, exist_ok=True)
no_exist_file_path.touch()
huggingface_hub.file_download._cache_commit_hash_for_specific_revision(
storage_folder, _revision, commit_hash
)
raise
commit_hash = r.headers[huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT]
if commit_hash is None:
raise OSError(
"Distant resource does not seem to be on huggingface.co (missing"
" commit header)."
)
etag = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get(
"ETag"
)
# We favor a custom header indicating the etag of the linked resource, and
# we fallback to the regular etag header.
# If we don't have any of those, raise an error.
if etag is None:
raise OSError(
"Distant resource does not have an ETag, we won't be able to"
" reliably ensure reproducibility."
)
etag = huggingface_hub.file_download._normalize_etag(etag)
# In case of a redirect, save an extra redirect on the request.get call,
# and ensure we download the exact atomic version even if it changed
# between the HEAD and the GET (unlikely, but hey).
# Useful for lfs blobs that are stored on a CDN.
if 300 <= r.status_code <= 399:
url_to_download = r.headers["Location"]
if (
"lfs.huggingface.co" in url_to_download
or "lfs-staging.huggingface.co" in url_to_download
):
# Remove authorization header when downloading a LFS blob
headers.pop("authorization", None)
except (requests.exceptions.SSLError, requests.exceptions.ProxyError):
# Actually raise for those subclasses of ConnectionError
raise
except (
requests.exceptions.ConnectionError,
requests.exceptions.Timeout,
huggingface_hub.file_download.OfflineModeIsEnabled,
):
# Otherwise, our Internet connection is down.
# etag is None
pass
if etag is None:
# In those cases, we cannot force download.
if force_download:
raise ValueError(
"We have no connection or you passed local_files_only, so"
" force_download is not an accepted option."
)
if huggingface_hub.file_download.REGEX_COMMIT_HASH.match(_revision):
commit_hash = _revision
else:
ref_path = os.path.join(storage_folder, "refs", _revision)
with open(ref_path) as f:
commit_hash = f.read()
pointer_path = os.path.join(
storage_folder, "snapshots", commit_hash, relative_filename
)
if os.path.exists(pointer_path):
return pointer_path
# If we couldn't find an appropriate file on disk,
# raise an error.
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise huggingface_hub.file_download.LocalEntryNotFoundError(
"Cannot find the requested files in the disk cache and"
" outgoing traffic has been disabled. To enable hf.co look-ups"
" and downloads online, set 'local_files_only' to False."
)
else:
raise huggingface_hub.file_download.LocalEntryNotFoundError(
"Connection error, and we cannot find the requested files in"
" the disk cache. Please try again or make sure your Internet"
" connection is on."
)
# From now on, etag and commit_hash are not None.
blob_path = os.path.join(storage_folder, "blobs", etag)
pointer_path = os.path.join(
storage_folder, "snapshots", commit_hash, relative_filename
)
os.makedirs(os.path.dirname(blob_path), exist_ok=True)
os.makedirs(os.path.dirname(pointer_path), exist_ok=True)
# if passed revision is not identical to commit_hash
# then revision has to be a branch name or tag name.
# In that case store a ref.
huggingface_hub.file_download._cache_commit_hash_for_specific_revision(storage_folder, _revision, commit_hash)
if os.path.exists(pointer_path) and not force_download:
return pointer_path
if os.path.exists(blob_path) and not force_download:
# we have the blob already, but not the pointer
huggingface_hub.file_download.logger.info("creating pointer to %s from %s", blob_path, pointer_path)
huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path)
return pointer_path
# Some Windows versions do not allow for paths longer than 255 characters.
# In this case, we must specify it is an extended path by using the "\\?\" prefix.
if os.name == "nt" and len(os.path.abspath(blob_path)) > 255:
blob_path = "\\\\?\\" + os.path.abspath(blob_path)
blob_paths.append(blob_path)
filenames = blob_paths
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
for n in filenames:
prefix, suffix = n.rsplit(os.sep, 1)
path = os.path.join(prefix, "kai-tempfile." + suffix + ".aria2")
if os.path.exists(path):
os.remove(path)
path = os.path.join(prefix, "kai-tempfile." + suffix)
if os.path.exists(path):
os.remove(path)
total_length = sum(int(h["Content-Length"]) for h in headers)
aria2_config = "\n".join(f"{u}\n out={os.path.join(prefix, 'kai-tempfile.' + suffix)}" for u, n in zip(urls, filenames) for prefix, suffix in [n.rsplit(os.sep, 1)]).encode()
_download_with_aria2(aria2_config, total_length, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download)
for u, n in zip(urls, filenames):
prefix, suffix = n.rsplit(os.sep, 1)
os.rename(os.path.join(prefix, "kai-tempfile." + suffix), os.path.join(prefix, suffix))
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers
import transformers.modeling_utils
from huggingface_hub import HfFolder
_revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION
if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed
return
if local_files_only: # If local_files_only is true, we obviously don't need to download anything
return
if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path):
return
if proxies:
print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.")
return
if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.22.0.dev0"):
return _transformers22_aria2_hook(pretrained_model_name_or_path, force_download=force_download, cache_dir=cache_dir, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, **kwargs)
if use_auth_token:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
sharded = False
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
if use_auth_token:
headers["authorization"] = f"Bearer {use_auth_token}"
def is_cached(url):
try:
huggingface_hub.cached_download(url, cache_dir=cache_dir, local_files_only=True)
except ValueError:
return False
return True
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
try:
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
except AttributeError:
return
url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=_revision)
if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
break
if sharded:
return
else:
sharded = True
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
map_filename = huggingface_hub.cached_download(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
with open(map_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=_revision) for n in filenames]
if not force_download:
urls = [u for u in urls if not is_cached(u)]
if not urls:
return
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
filenames = [hashlib.sha256(u.encode("utf-8")).hexdigest() + "." + hashlib.sha256(t.encode("utf-8")).hexdigest() for u, t in zip(urls, etags)]
for n in filenames:
path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, "kai-tempfile." + n)
if os.path.exists(path):
os.remove(path)
if force_download:
path = os.path.join(_cache_dir, n + ".json")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, n)
if os.path.exists(path):
os.remove(path)
total_length = sum(int(h["Content-Length"]) for h in headers)
aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode()
_download_with_aria2(aria2_config, total_length, directory=_cache_dir, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download)
for u, t, n in zip(urls, etags, filenames):
os.rename(os.path.join(_cache_dir, "kai-tempfile." + n), os.path.join(_cache_dir, n))
with open(os.path.join(_cache_dir, n + ".json"), "w") as f:
json.dump({"url": u, "etag": t}, f)
#==================================================================#
# Given the path to a pytorch_model.bin.index.json, returns how many
# shards there are in the model
#==================================================================#
def get_num_shards(filename):
with open(filename) as f:
map_data = json.load(f)
return len(set(map_data["weight_map"].values()))
#==================================================================#
# Given the name/path of a sharded model and the path to a
# pytorch_model.bin.index.json, returns a list of weight names in the
# sharded model. Requires lazy loader to be enabled to work properl
#==================================================================#
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers.modeling_utils
import torch
_revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=_revision)
return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))
#==================================================================#
# Given a PreTrainedModel, returns the list of module names that correspond
# to the model's hidden layers.
#==================================================================#
def get_layers_module_names(model: PreTrainedModel) -> List[str]:
names: List[str] = []
def recurse(module, head=""):
for c in module.named_children():
name = head + c[0]
if c[0].isnumeric() and any(c[1].__class__.__name__.endswith(suffix) for suffix in ("Block", "Layer")):
names.append(name)
else:
recurse(c[1], head=name + ".")
recurse(model)
return names
#==================================================================#
# Given a PreTrainedModel, returns the module name that corresponds
# to the model's input embeddings.
#==================================================================#
def get_input_embeddings_module_name(model: PreTrainedModel) -> str:
embeddings = model.get_input_embeddings()
def recurse(module, head=""):
for c in module.named_children():
name = head + c[0]
if c[1] is embeddings:
return name
else:
return recurse(c[1], head=name + ".")
return recurse(model)
#==================================================================#
# Given a PreTrainedModel and a list of module names, returns a list
# of module names such that the union of the set of modules given as input
# and the set of modules returned as output contains all modules in the model.
#==================================================================#
def get_missing_module_names(model: PreTrainedModel, names: List[str]) -> List[str]:
missing_names: List[str] = []
def recurse(module, head=""):
for c in module.named_children():
name = head + c[0]
if any(name.startswith(n) for n in names):
continue
if next(c[1].named_children(), None) is None:
missing_names.append(name)
else:
recurse(c[1], head=name + ".")
recurse(model)
return missing_names