-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
490 lines (435 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# -*- coding: utf-8 -*-
from code_xg2 import market_data_pre
from code_xg1 import preprocess_helper, preprocess_helper1, feature_extraction, assign_before
import pandas as pd
from xgboost import XGBRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.preprocessing import StandardScaler
import numpy as np
from sklearn.externals import joblib
import lightgbm as lgb
import datetime
from statsmodels.tsa.stattools import acf, pacf,adfuller
import statsmodels.api as sm
import math
import warnings
import csv
if __name__ == "__main__":
type_set = [ 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18, 21, 19, 8, 20, 23, 0, 5, 24, 11, 25, 26, 27]
market_data = pd.read_excel('/home/fddc1_data/Market Data.xlsx') #!!!
market_data.drop_duplicates(subset=['TICKER_SYMBOL', 'END_DATE_'], inplace=True)
market_data1 = market_data[market_data['END_DATE_'] == '2018/5/31']
market_data1['TYPE'] = market_data1.apply(market_data_pre, axis=1)
market_data1 = market_data1[['TICKER_SYMBOL', 'MARKET_VALUE', 'TYPE']]
# For the data preprocessing and generating the input features
print ('Read income')
income_business = pd.read_excel('/home/fddc1_data/financial_data/Income Statement.xls', 'General Business') #!!!
income_bank = pd.read_excel('/home/fddc1_data/financial_data/Income Statement.xls', 'Bank')
income_securities = pd.read_excel('/home/fddc1_data/financial_data/Income Statement.xls', 'Securities')
income_insurance = pd.read_excel('/home/fddc1_data/financial_data/Income Statement.xls', 'Insurance')
print ('Preprocess income')
income_business_update = preprocess_helper(income_business)
income_bank_update = preprocess_helper(income_bank)
income_securities_update = preprocess_helper(income_securities)
income_insurance_update = preprocess_helper(income_insurance)
print ('Read balance')
balance_business = pd.read_excel('/home/fddc1_data/financial_data/Balance Sheet.xls', 'General Business') #!!!
balance_bank = pd.read_excel('/home/fddc1_data/financial_data/Balance Sheet.xls', 'Bank')
balance_securities = pd.read_excel('/home/fddc1_data/financial_data/Balance Sheet.xls', 'Securities')
balance_insurance = pd.read_excel('/home/fddc1_data/financial_data/Balance Sheet.xls', 'Insurance')
print ('Preprocess balance')
balance_business_update = preprocess_helper1(balance_business)
balance_bank_update = preprocess_helper1(balance_bank)
balance_securities_update = preprocess_helper1(balance_securities)
balance_insurance_update = preprocess_helper1(balance_insurance)
print ('Concatenate')
income_sum = pd.concat([income_business_update, income_bank_update, income_securities_update, income_insurance_update])
balance_sum = pd.concat([balance_business_update, balance_bank_update, balance_securities_update, balance_insurance_update])
print ('Merge')
income_with_market_value = income_sum.merge(market_data1, on='TICKER_SYMBOL')
data_p_summary = income_with_market_value.merge(balance_sum, on=['TICKER_SYMBOL', 'END_DATE'])
data_p_summary['END_DATE_STR'] = data_p_summary['END_DATE'].str.split(',')
data_p_summary.fillna(0, inplace=True)
print ('Adding feature')
preprocessed_data_summary = feature_extraction(data_p_summary)
#处理后的数据preprocessed_data_summary
preprocessed_data_summary.to_excel('/home/118_118/temp/preprocessed_data_summary.xlsx')
submit_path = '/home/fddc1_data/predict_list.csv'
submit_data = pd.read_csv(submit_path, header=None)
submit_data.columns = ['key']
submit_data['TICKER_SYMBOL'] = submit_data.apply(lambda x: str(x['key'][0:6]), axis=1)
data_summary_path = '/home/118_118/temp/preprocessed_data_summary.xlsx'
data_sum = pd.read_excel(data_summary_path)
data_sum['TICKER_SYMBOL'] = data_sum.apply(lambda x: str(x['TICKER_SYMBOL']).zfill(6), axis=1)
# 1. xgboost
print ('xgboost prediction')
in1 = pd.read_csv('/home/fddc1_data/predict_list.csv', header=None)
in1.columns = ['TICKER_SYMBOL_']
in1['TICKER_SYMBOL'] = in1.apply(lambda x: x['TICKER_SYMBOL_'][0:6], axis=1)
submit_symbol = in1['TICKER_SYMBOL'].unique()
xgbsummary = pd.DataFrame()
for t in type_set:
sub_type_data = data_sum[data_sum['TYPE'] == t]
sub_type_data.sort_values(by=['END_DATE'], inplace=True)
length = sub_type_data.TICKER_SYMBOL.count()
unique_symbols = sub_type_data['TICKER_SYMBOL'].unique()
sub_type_data_in = sub_type_data[['isQ1', 'isS1', 'isQ3', 'isA', 'LAST_Q_REVENUE', 'LAST_YEAR_REVENUE', 'LAST_Q_ASSETS', 'LAST_YEAR_ASSETS']]
sub_type_data_out = sub_type_data[['REVENUE']]
model = XGBRegressor(learning_rate =0.1,n_estimators=2200,max_depth=3,min_child_weight=7,gamma=0,subsample=0.8,colsample_bytree=1,reg_alpha=0.005, objective='reg:linear')
model.fit(sub_type_data_in, np.array(sub_type_data_out).ravel())
model_name = 'clf' + str(t)
inter = (x for x in unique_symbols if x in submit_symbol)
for i in inter:
tmp = sub_type_data[sub_type_data['TICKER_SYMBOL'] == i]
predict_data = pd.DataFrame()
result = pd.DataFrame()
predict_data['isQ1'] = [0]
predict_data['isS1'] = [1]
predict_data['isQ3'] = [0]
predict_data['isA'] = [0]
predict_data['LAST_Q_REVENUE'] = tmp[tmp['END_DATE'] == '2018-03-31'].REVENUE.values
predict_data['LAST_YEAR_REVENUE'] = tmp[tmp['END_DATE'] == '2017-06-30'].REVENUE.values
predict_data['LAST_Q_ASSETS'] = tmp[tmp['END_DATE'] == '2018-03-31'].T_ASSETS.values
predict_data['LAST_YEAR_ASSETS'] = tmp[tmp['END_DATE'] == '2017-06-30'].T_ASSETS.values
predict_data.fillna(0, inplace=True)
pre = model.predict(predict_data)
result['TICKER_SYMBOL'] = [i]
result['PREDICTIONS'] = round(pre[0]/1000000,2)
xgbsummary = pd.concat([xgbsummary, result])
xgbsummary['PREDICTIONS'] = xgbsummary.apply(lambda x: x['PREDICTIONS'], axis=1)
xgbsummary.to_csv('/home/118_118/temp/xgbtmp.csv', index=None)
re_xgb = in1.merge(xgbsummary, on='TICKER_SYMBOL')
re_xgb = re_xgb[['TICKER_SYMBOL_', 'PREDICTIONS']]
re_xgb.columns = ['TICKER_SYMBOL', 'XGB_PREDICTIONS']
re_xgb.to_csv('/home/118_118/temp/xgbresult.csv', index=False)
# 2. lightgbm
print('lgb prediction')
params = {
'objective':'regression',
'boosting_type': 'gbdt',
'metric': {'huber'},
'learning_rate':0.05,
'n_estimators':2000,
'bagging_fraction': 0.9,
'bagging_freq': 6,
'feature_fraction': 0.9,
'min_data_in_leaf':14,
'num_leaves':31,
'max_depth': 16,
'max_bin': 280
}
in1 = pd.read_csv('/home/fddc1_data/predict_list.csv', header=None)
in1.columns = ['TICKER_SYMBOL_']
in1['TICKER_SYMBOL'] = in1.apply(lambda x: x['TICKER_SYMBOL_'][0:6], axis=1)
submit_symbol = in1['TICKER_SYMBOL'].unique()
lgbsummary = pd.DataFrame()
for t in type_set:
sub_type_data = data_sum[data_sum['TYPE'] == t]
sub_type_data.sort_values(by=['END_DATE'], inplace=True)
sub_type_data_train = sub_type_data.loc[(sub_type_data['END_DATE'] <= '2018-03-31')]
sub_type_data_test = sub_type_data.loc[sub_type_data['END_DATE'] > '2017-03-31']
length = sub_type_data.TICKER_SYMBOL.count()
unique_symbols = sub_type_data['TICKER_SYMBOL'].unique()
sub_type_data_in_train = sub_type_data_train[['isQ1', 'isS1', 'isQ3', 'isA', 'LAST_Q_REVENUE', 'LAST_YEAR_REVENUE', 'LAST_Q_ASSETS', 'LAST_YEAR_ASSETS']]
sub_type_data_out_train = sub_type_data_train[['REVENUE']]
sub_type_data_in_test = sub_type_data_test[['isQ1', 'isS1', 'isQ3', 'isA', 'LAST_Q_REVENUE', 'LAST_YEAR_REVENUE', 'LAST_Q_ASSETS', 'LAST_YEAR_ASSETS']]
sub_type_data_out_test = sub_type_data_test[['REVENUE']]
lgb_train = lgb.Dataset(sub_type_data_in_train, label=np.array(sub_type_data_out_train).ravel())
lgb_eval = lgb.Dataset(sub_type_data_in_test, label=np.array(sub_type_data_out_test).ravel(), reference=lgb_train)
# train
gbm = lgb.train(params,lgb_train,num_boost_round=500,valid_sets=lgb_eval,early_stopping_rounds=50)
model_name = 'clf' + str(t)
inter = (x for x in unique_symbols if x in submit_symbol)
for i in inter:
tmp = sub_type_data[sub_type_data['TICKER_SYMBOL'] == i]
predict_data = pd.DataFrame()
result = pd.DataFrame()
predict_data['isQ1'] = [0]
predict_data['isS1'] = [1]
predict_data['isQ3'] = [0]
predict_data['isA'] = [0]
predict_data['LAST_Q_REVENUE'] = tmp[tmp['END_DATE'] == '2018-03-31'].REVENUE.values
predict_data['LAST_YEAR_REVENUE'] = tmp[tmp['END_DATE'] == '2017-06-30'].REVENUE.values
predict_data['LAST_Q_ASSETS'] = tmp[tmp['END_DATE'] == '2018-03-31'].T_ASSETS.values
predict_data['LAST_YEAR_ASSETS'] = tmp[tmp['END_DATE'] == '2017-06-30'].T_ASSETS.values
predict_data.fillna(0, inplace=True)
pre = gbm.predict(predict_data, num_iteration=gbm.best_iteration)
result['TICKER_SYMBOL'] = [i]
result['PREDICTIONS'] = round(pre[0]/1000000,2)
lgbsummary = pd.concat([lgbsummary, result])
lgbsummary['PREDICTIONS'] = lgbsummary.apply(lambda x: x['PREDICTIONS'], axis=1)
lgbsummary.to_csv('/home/118_118/temp/lgbtmp.csv', index=None)
re_lgb = in1.merge(lgbsummary, on='TICKER_SYMBOL')
re_lgb = re_lgb[['TICKER_SYMBOL_', 'PREDICTIONS']]
re_lgb.columns=['TICKER_SYMBOL', 'LGB_PREDICTIONS']
re_lgb.to_csv('/home/118_118/temp/lgbresult.csv', index=False)
# 3. gbdt
in1 = pd.read_csv('/home/fddc1_data/predict_list.csv', header=None)
in1.columns = ['TICKER_SYMBOL_']
in1['TICKER_SYMBOL'] = in1.apply(lambda x: x['TICKER_SYMBOL_'][0:6], axis=1)
submit_symbol = in1['TICKER_SYMBOL'].unique()
gbdtsummary = pd.DataFrame()
for t in type_set:
sub_type_data = data_sum[data_sum['TYPE'] == t]
sub_type_data.sort_values(by=['END_DATE'], inplace=True)
length = sub_type_data.TICKER_SYMBOL.count()
unique_symbols = sub_type_data['TICKER_SYMBOL'].unique()
sub_type_data_in = sub_type_data[['isQ1', 'isS1', 'isQ3', 'isA', 'LAST_Q_REVENUE', 'LAST_YEAR_REVENUE', 'LAST_Q_ASSETS', 'LAST_YEAR_ASSETS']]
sub_type_data_out = sub_type_data[['REVENUE']]
model = GradientBoostingRegressor(learning_rate=0.1, max_depth=3,min_samples_split=15, n_estimators=1500, loss='ls')
model.fit(sub_type_data_in, np.array(sub_type_data_out).ravel())
model_name = 'clf' + str(t)
inter = (x for x in unique_symbols if x in submit_symbol)
for i in inter:
tmp = sub_type_data[sub_type_data['TICKER_SYMBOL'] == i]
predict_data = pd.DataFrame()
result = pd.DataFrame()
predict_data['isQ1'] = [0]
predict_data['isS1'] = [1]
predict_data['isQ3'] = [0]
predict_data['isA'] = [0]
predict_data['LAST_Q_REVENUE'] = tmp[tmp['END_DATE'] == '2018-03-31'].REVENUE.values
predict_data['LAST_YEAR_REVENUE'] = tmp[tmp['END_DATE'] == '2017-06-30'].REVENUE.values
predict_data['LAST_Q_ASSETS'] = tmp[tmp['END_DATE'] == '2018-03-31'].T_ASSETS.values
predict_data['LAST_YEAR_ASSETS'] = tmp[tmp['END_DATE'] == '2017-06-30'].T_ASSETS.values
predict_data.fillna(0, inplace=True)
pre = model.predict(predict_data)
result['TICKER_SYMBOL'] = [i]
result['PREDICTIONS'] = round(pre[0]/1000000,2)
gbdtsummary = pd.concat([gbdtsummary, result])
gbdtsummary['PREDICTIONS'] = gbdtsummary.apply(lambda x: x['PREDICTIONS'], axis=1)
gbdtsummary.to_csv('/home/118_118/temp/gbdttmp.csv', index=None)
re_gbdt = in1.merge(gbdtsummary, on='TICKER_SYMBOL')
re_gbdt = re_gbdt[['TICKER_SYMBOL_', 'PREDICTIONS']]
re_gbdt.columns = ['TICKER_SYMBOL', 'GBDT_PREDICTIONS']
re_gbdt.to_csv('/home/118_118/temp/gbdtresult.csv', index=False)
#4.arima
warnings.filterwarnings("ignore")
print('ARIMA MODEL PREDICTION')
submit=pd.read_csv('/home/fddc1_data/predict_list.csv',header=None,names=['Code'])
total_income_sheet=pd.DataFrame(columns=['TICKER_SYMBOL','EXCHANGE_CD','PUBLISH_DATE','END_DATE','FISCAL_PERIOD','REVENUE'])
def load_data(ind_name):
ind_income_sheet= pd.read_excel(r'/home/fddc1_data/financial_data/Income Statement.xls',
sheet_name=ind_name,
dtype={'TICKER_SYMBOL':str})
ind_income_sheet=ind_income_sheet.loc[:,['TICKER_SYMBOL','EXCHANGE_CD','PUBLISH_DATE','END_DATE','FISCAL_PERIOD','REVENUE']]
return ind_income_sheet
ge_income_sheet=load_data('General Business')
bank_income_sheet=load_data('Bank')
insurance_income_sheet=load_data('Insurance')
securities_income_sheet=load_data('Securities')
print('processing data')
total_income_sheet=pd.concat([ge_income_sheet,bank_income_sheet,insurance_income_sheet,securities_income_sheet])
total_income_sheet['Code']=total_income_sheet['TICKER_SYMBOL']+"."+total_income_sheet['EXCHANGE_CD']
submit_income_sheet=total_income_sheet[total_income_sheet['Code'].isin(submit['Code'])]
submit_income_sheet['PUBLISH_DATE_use']=pd.to_datetime(submit_income_sheet['PUBLISH_DATE'])
submit_income_sheet['END_DATE_use']=pd.to_datetime(submit_income_sheet['END_DATE'])
submit_company_sorted=submit_income_sheet.sort_values(axis = 0,ascending = True,by = ['Code','FISCAL_PERIOD','END_DATE','PUBLISH_DATE'])
submit_company_reindex=submit_company_sorted.reset_index(drop=True)
submit_company_dup_id=submit_company_reindex.duplicated(subset=['Code','FISCAL_PERIOD','END_DATE'])
submit_company_dup=submit_company_reindex[submit_company_dup_id.values == False]
income_sheet=submit_company_dup
income_sheet['report_year']=income_sheet['END_DATE_use'].apply(lambda t:t.year)
del submit_company_dup_id,submit_company_reindex,submit_company_sorted
del submit_company_dup,submit_income_sheet,total_income_sheet
###-----将报告数据改成季度营收数据----------
companys_quarterly=pd.DataFrame(columns=['report_year', 'FISCAL_PERIOD', 'REVENUE', 'TICKER_SYMBOL'])
submit['TICKER_SYMBOL']=[x[:6] for x in submit['Code']]
company_name_list=list(submit['TICKER_SYMBOL'].values)
def get_company_quarterly(company_name):
global companys_quarterly
company_df=income_sheet[income_sheet['TICKER_SYMBOL']==company_name]
company_pivot=company_df.pivot(index='report_year',columns='FISCAL_PERIOD',
values='REVENUE')
company_pivot['q1']=company_pivot[3]
company_pivot['q2']=company_pivot[6]-company_pivot[3]
company_pivot['q3']=company_pivot[9]-company_pivot[6]
company_pivot['q4']=company_pivot[12]-company_pivot[9]
company_pivot_m=company_pivot.drop(columns=[3,6,9,12])
company_series=company_pivot_m.stack()
company_quarter=pd.DataFrame(index=company_series.index)
company_quarter['REVENUE']=company_series.values
company_quarter['TICKER_SYMBOL']=company_name
company_quarter.reset_index(inplace=True)
companys_quarterly=pd.concat([companys_quarterly,company_quarter])
#print(company_name)
return company_name
company_quarterly=[get_company_quarterly(x) for x in company_name_list]
print('predict using ARIMA model')
######-------预测---------#####
def station_test(ts):
dftest=adfuller(ts,maxlag=10)
df_p=dftest[1]
if df_p>=0.05:
stationarity=False
elif df_p<0.05:
stationarity=True
return stationarity
def ARMA_MODEL(timeseries):
order=sm.tsa.arma_order_select_ic(timeseries,max_ar=3,max_ma=3,ic='bic')['bic_min_order']
temp_model= sm.tsa.ARMA(timeseries,order).fit()
pred=temp_model.forecast(1)
return pred[0][-1]
def decompose2(timeseries):
station_diff=False
diff1=timeseries.diff(1).dropna()
station_diff1=station_test(diff1)
if station_diff1:
pred=ARMA_MODEL(diff1)+timeseries.values[-1]
station_diff=True
else:
diff4=diff1.diff(4).dropna()
station_diff4=station_test(diff4)
if station_diff4:
pred=ARMA_MODEL(diff4) + timeseries.values[-1] + timeseries.values[-4] - timeseries.values[-5]
station_diff=True
else:
pred=0
station_diff=False
return station_diff,pred
def ARIMA_pred(company_name):
company_quarter=companys_quarterly[companys_quarterly['TICKER_SYMBOL']==company_name]
timeseries=company_quarter['REVENUE']
last_quarter=timeseries.values[-1]
stationarity=station_test(timeseries)
if stationarity:
pred=ARMA_MODEL(timeseries)
stat=True
else:
stat,pred=decompose2(timeseries)
return (company_name,stat,pred,last_quarter)
result=[]
for x in company_name_list:
try:
pred_result=ARIMA_pred(x)
result.append(pred_result)
except:
continue
pred_arima=pd.DataFrame()
pred_arima['TICKER_SYMBOL']=[x[0] for x in result]
pred_arima['arima_stat']=[x[1] for x in result]
pred_arima['arima_pred_q1']=[x[2] for x in result]
print('predict using cycle model')
######-------cyc预测---------#####
def cyclicity_pred(company_name):
company_quarter=companys_quarterly[companys_quarterly['TICKER_SYMBOL']==company_name]
company_quarter_3year=company_quarter[company_quarter['report_year']>2014]
last_quarter=company_quarter_3year['REVENUE'].values[-1]
if len(company_quarter_3year)<12:
cyclicity=False
forcast=last_quarter
return cyclicity,forcast
else:
ACF1 = acf(company_quarter['REVENUE'])[1]
ACF4 = acf(company_quarter['REVENUE'])[4]
if ACF1>ACF4:
cyclicity=False
forcast=list(company_quarter['REVENUE'])[-1]
else:
cyclicity=True
forcast=list(company_quarter['REVENUE'])[-4]
last_quarter=list(company_quarter_3year['REVENUE'])[-1]
return company_name,cyclicity,forcast,last_quarter
pred_result=pd.DataFrame()
pred_result['cyc']=[cyclicity_pred(x) for x in company_name_list]
pred_result['TICKER_SYMBOL']=[x[0] for x in pred_result['cyc']]
pred_result=pd.merge(submit,pred_result,on='TICKER_SYMBOL',how='left')
pred_result['cyc_pred_second']=[x[2] for x in pred_result['cyc']]
pred_result['last_quarter']=[x[2] for x in pred_result['cyc']]
pred_result['cyc_pred']=pred_result['cyc_pred_second']+pred_result['last_quarter']
pred_result=pd.merge(pred_result,pred_arima,on='TICKER_SYMBOL',how='left')
print('fillna arima result')
def fillarima(i):
arima_true=pred_result['arima_stat'][i]
arima_pred=pred_result['arima_pred_q1'][i]
cyc_pred=pred_result['cyc_pred_second'][i]
if arima_true:
arima_pred_m=arima_pred
else:
arima_pred_m=cyc_pred
if np.isnan(arima_pred):
arima_pred_m=cyc_pred
if arima_pred<0:
arima_pred_m=cyc_pred*1.3/1000000
return arima_pred_m
pred_result['arima_pred_m']=[fillarima(i) for i in range(len(pred_result))]
pred_result['arima_pred']=pred_result['arima_pred_m']+pred_result['last_quarter']
pred_result['arima_pred']=pred_result['arima_pred']
nowtime=datetime.datetime.now()
year=nowtime.year
month=nowtime.month
day=nowtime.day
hour=nowtime.hour
minuate=nowtime.minute
second=nowtime.second
print('write result to arimaresult')
arima_result=pd.DataFrame()
arima_result=pred_result[['Code','arima_pred']]
#arima_result.to_csv(r'submit/submit_%s%s%s_%s%s%s.csv' %(year,month,day,hour,minuate,second),
# header=False,index=False)
arima_result.columns=['TICKER_SYMBOL', 'ARIMA_PREDICTIONS']
arima_result['ARIMA_PREDICTIONS']=round(arima_result['ARIMA_PREDICTIONS']/1000000,2)
arima_result.to_csv(r'/home/118_118/temp/arimaresult.csv',index=False)
#数据处理
xgbresult = pd.read_csv('/home/118_118/temp/xgbresult.csv')
csv_reader=csv.reader(open("/home/118_118/temp/xgbresult.csv"))
stockCode=list()
for row in csv_reader:
stockCode.append(row[0][0:6])
xgbresult['TICKER_SYMBOL']=stockCode[1:]
lgbresult = pd.read_csv('/home/118_118/temp/lgbresult.csv')
csv_reader=csv.reader(open("/home/118_118/temp/lgbresult.csv"))
stockCode=list()
for row in csv_reader:
stockCode.append(row[0][0:6])
lgbresult['TICKER_SYMBOL']=stockCode[1:]
gbdtresult = pd.read_csv('/home/118_118/temp/gbdtresult.csv')
csv_reader=csv.reader(open("/home/118_118/temp/gbdtresult.csv"))
stockCode=list()
for row in csv_reader:
stockCode.append(row[0][0:6])
gbdtresult['TICKER_SYMBOL']=stockCode[1:]
arimaresult = pd.read_csv('/home/118_118/temp/arimaresult.csv')
csv_reader=csv.reader(open("/home/118_118/temp/arimaresult.csv"))
stockCode=list()
for row in csv_reader:
stockCode.append(row[0][0:6])
arimaresult['TICKER_SYMBOL']=stockCode[1:]
xgbresult['TICKER_SYMBOL']=xgbresult['TICKER_SYMBOL'].apply(lambda t:int(t))
lgbresult['TICKER_SYMBOL']=lgbresult['TICKER_SYMBOL'].apply(lambda t:int(t))
gbdtresult['TICKER_SYMBOL']=gbdtresult['TICKER_SYMBOL'].apply(lambda t:int(t))
arimaresult['TICKER_SYMBOL']=arimaresult['TICKER_SYMBOL'].apply(lambda t:int(t))
xgbresult.rename(columns={'XGB_PREDICTIONS':'PREDICTIONS'},inplace = True)
lgbresult.rename(columns={'LGB_PREDICTIONS':'PREDICTIONS'},inplace = True)
gbdtresult.rename(columns={'GBDT_PREDICTIONS':'PREDICTIONS'},inplace = True)
arimaresult.rename(columns={'ARIMA_PREDICTIONS':'PREDICTIONS'},inplace = True)
#数据读入完毕
#.....每个行业取在测试集上最好的模型
market_data1=market_data1[market_data1['TICKER_SYMBOL'].isin(stockCode[1:])]
names=locals()
for i in range(28):
names["type%i"%i]=list(market_data1[market_data1['TYPE']==i]['TICKER_SYMBOL'])
result_type=pd.DataFrame(columns=['TICKER_SYMBOL', 'PREDICTIONS'])
type_model=["arima","arima","lgb","lgb","arima","lgb","gbdt","xgb","gbdt","gbdt","arima","xgb","gbdt","lgb","xgb","","lgb","gbdt","xgb","gbdt","xgb","arima"," ","arima","arima","arima","arima","arima"]
for i in range(28):
if type_model[i]=="xgb":
df=xgbresult
if type_model[i]=="lgb":
df=lgbresult
if type_model[i]=="gbdt":
df=gbdtresult
if type_model[i]=="arima":
df=arimaresult
names["df%i"%i]=df[df['TICKER_SYMBOL'].isin(names["type%i"%i])]
for i in range(28):
result_type=pd.concat([result_type,names["df%i"%i]],axis=0)
result_type=result_type.reset_index(drop=True)
result = pd.read_csv('/home/118_118/temp/xgbresult.csv')
result['code']=result['TICKER_SYMBOL'].apply(lambda t:int(t[0:6]))
result['XGB_PREDICTIONS']=0
for i in range(len(result)):
for j in range(len(result_type)):
if result.iloc[i,2]==result_type.iloc[j,0]:
result.iloc[i,1]=result_type.iloc[j,1]
del result['code']
result.to_csv(("/home/118_118/submit/submit_"+datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + ".csv"), header=None, index=False)