A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Example 1:
Input: [1,7,4,9,2,5] Output: 6 Explanation: The entire sequence is a wiggle sequence. Example 2:
Input: [1,17,5,10,13,15,10,5,16,8] Output: 7 Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Example 3:
Input: [1,2,3,4,5,6,7,8,9] Output: 2
贪心算法,每一步向前找最大(小)值。
class Solution(object):
def wiggleMaxLength(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums)==0:
return 0
lenth=1
flag=None
for i in range(1,len(nums)):
if nums[i]>nums[i-1] and flag!=True:
lenth=lenth+1
flag=True
if nums[i]<nums[i-1] and flag!=False:
lenth=lenth+1
flag=False
return lenth