From 0f81ef39e6a10e13dcacfa04fb897b44ced60b5d Mon Sep 17 00:00:00 2001 From: Artur Gower Date: Fri, 16 Aug 2024 17:55:28 +0100 Subject: [PATCH] add --- .../reflection_transmission_low_freq.nb | 504 +++++++++++++----- 1 file changed, 381 insertions(+), 123 deletions(-) diff --git a/docs/src/theory/reflection_transmission_low_freq.nb b/docs/src/theory/reflection_transmission_low_freq.nb index bf09caa..baad6c8 100644 --- a/docs/src/theory/reflection_transmission_low_freq.nb +++ b/docs/src/theory/reflection_transmission_low_freq.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 35217, 977] -NotebookOptionsPosition[ 32433, 921] -NotebookOutlinePosition[ 32821, 937] -CellTagsIndexPosition[ 32778, 934] +NotebookDataLength[ 46591, 1235] +NotebookOptionsPosition[ 43605, 1177] +NotebookOutlinePosition[ 43993, 1193] +CellTagsIndexPosition[ 43950, 1190] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -523,39 +523,286 @@ Cell[BoxData[{ RowBox[{ RowBox[{"Sin", "[", "\[Theta]1", "]"}], "/", "k2"}]}]}]}], " ", "}"}]}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"subsol", " ", "=", " ", - RowBox[{ - RowBox[{"Flatten", "@", - RowBox[{"Solve", "[", + RowBox[{"subsol", " ", "=", " ", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{"Solve", "[", + RowBox[{ RowBox[{ - RowBox[{ - RowBox[{"Thread", "[", - RowBox[{"eqs", "==", " ", "0"}], "]"}], "//.", "subSnells"}], ",", - RowBox[{"{", - RowBox[{"R", ",", "T", ",", "P1", ",", "P2"}], "}"}]}], "]"}]}], - RowBox[{"(*", - RowBox[{"/.", " ", - RowBox[{"k1", " ", "->", " ", - RowBox[{"Q", " ", "k2", " ", - RowBox[{"\[Rho]1", "/", "\[Rho]2"}]}]}]}], "*)"}], " ", "//", - "Simplify"}]}], ";"}]}], "Input", + RowBox[{"Thread", "[", + RowBox[{"eqs", "==", " ", "0"}], "]"}], "//.", "subSnells"}], ",", + RowBox[{"{", + RowBox[{"R", ",", "T", ",", "P1", ",", "P2"}], "}"}]}], "]"}]}], + RowBox[{"(*", + RowBox[{"/.", " ", + RowBox[{"k1", " ", "->", " ", + RowBox[{"Q", " ", "k2", " ", + RowBox[{"\[Rho]1", "/", "\[Rho]2"}]}]}]}], "*)"}], " ", "//", + "Simplify"}]}]}], "Input", CellChangeTimes->{{3.916310757596171*^9, 3.916310803825959*^9}, { 3.9163108371698017`*^9, 3.916310849889801*^9}, {3.9163109011375837`*^9, 3.916311027162562*^9}, {3.916311115609462*^9, 3.916311284904895*^9}, { 3.9163113799386*^9, 3.916311394482524*^9}, {3.916311426640787*^9, 3.9163114270258093`*^9}, 3.916311474276861*^9, {3.916382402189849*^9, - 3.9163824234690104`*^9}}, - CellLabel-> - "In[235]:=",ExpressionUUID->"55751fef-0974-4177-ba5a-bc71fb3567d7"], + 3.9163824234690104`*^9}, 3.9169793377431507`*^9}, + CellLabel->"In[23]:=",ExpressionUUID->"55751fef-0974-4177-ba5a-bc71fb3567d7"], Cell[BoxData[ RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}]], "Output", CellChangeTimes->{3.9163114748345833`*^9, 3.916311852898614*^9, - 3.9163824296590137`*^9}, - CellLabel-> - "Out[248]=",ExpressionUUID->"ffb48aff-f928-4266-8c50-76e7ba3f860b"] + 3.9163824296590137`*^9, 3.916979292269546*^9, 3.916979338036211*^9}, + CellLabel->"Out[36]=",ExpressionUUID->"d23a16fe-8428-427c-93eb-78158897f762"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"R", "\[Rule]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k1", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"k2", " ", "\[Rho]1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"k2", " ", "\[Rho]1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k1", "2"], " ", + SuperscriptBox["\[Rho]2", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k1", " ", + "k2", " ", "\[Rho]1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k2", "2"], " ", + SuperscriptBox["\[Rho]1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}]]}], ",", + RowBox[{"T", "\[Rule]", + FractionBox[ + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", + RowBox[{"(", + RowBox[{"x1", "-", "x2"}], ")"}], " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"k2", " ", + RowBox[{"(", + RowBox[{"x1", "+", "x2"}], ")"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]], " ", "k1", + " ", "k2", " ", "\[Rho]1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k1", "2"], " ", + SuperscriptBox["\[Rho]2", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k1", " ", + "k2", " ", "\[Rho]1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k2", "2"], " ", + SuperscriptBox["\[Rho]1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}]]}], ",", + RowBox[{"P1", "\[Rule]", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "x1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"k2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]], " ", "k1", + " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"k2", " ", "\[Rho]1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k1", "2"], " ", + SuperscriptBox["\[Rho]2", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k1", " ", + "k2", " ", "\[Rho]1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k2", "2"], " ", + SuperscriptBox["\[Rho]1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}]]}], ",", + RowBox[{"P2", "\[Rule]", + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"k2", " ", + RowBox[{"(", + RowBox[{"x1", "+", + RowBox[{"2", " ", "x2"}]}], ")"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]], " ", "k1", + " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"k2", " ", "\[Rho]1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k1", "2"], " ", + SuperscriptBox["\[Rho]2", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k1", + " ", "k2", " ", "\[Rho]1", " ", "\[Rho]2", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", + SuperscriptBox["k2", "2"], " ", + SuperscriptBox["\[Rho]1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}]]}]}]}], + "}"}]], "Output", + CellChangeTimes->{3.9163114748345833`*^9, 3.916311852898614*^9, + 3.9163824296590137`*^9, 3.916979292269546*^9, 3.9169793380771847`*^9}, + CellLabel->"Out[39]=",ExpressionUUID->"92b5dd1d-1291-41b8-b15d-6eada467d5ca"] }, Open ]], Cell[CellGroupData[{ @@ -594,8 +841,7 @@ Cell[BoxData[ CellChangeTimes->{{3.9163115735325537`*^9, 3.916311684079542*^9}, { 3.9163819903119593`*^9, 3.9163820323579607`*^9}, {3.916382138712728*^9, 3.916382178342121*^9}, {3.916382455244184*^9, 3.916382455708098*^9}}, - CellLabel-> - "In[254]:=",ExpressionUUID->"fa57b4ab-8700-426a-812d-7d22e665f9e6"], + CellLabel->"In[40]:=",ExpressionUUID->"fa57b4ab-8700-426a-812d-7d22e665f9e6"], Cell[BoxData[ FractionBox[ @@ -645,9 +891,35 @@ Cell[BoxData[ CellChangeTimes->{{3.916311625302472*^9, 3.916311687922065*^9}, 3.91631186514664*^9, {3.9163820128719797`*^9, 3.916382032936818*^9}, { 3.916382172674266*^9, 3.9163821786813383`*^9}, {3.9163824325172873`*^9, - 3.916382455928849*^9}}, - CellLabel-> - "Out[254]=",ExpressionUUID->"8b738751-193a-47a2-b717-fccc1434b137"] + 3.916382455928849*^9}, 3.9169792945538483`*^9, 3.916979359088944*^9}, + CellLabel->"Out[40]=",ExpressionUUID->"a40f6309-5623-4495-a241-bc245d1675eb"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"4", " ", "C1", " ", "C2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "k2", " ", + RowBox[{"(", + RowBox[{"x1", "+", "x2"}], ")"}]}]]}], + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"C1", "+", "C2"}], ")"}], "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1"}]]}], "-", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"C1", "-", "C2"}], ")"}], "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + "2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2"}]]}]}]]], "Output", + CellChangeTimes->{{3.916311625302472*^9, 3.916311687922065*^9}, + 3.91631186514664*^9, {3.9163820128719797`*^9, 3.916382032936818*^9}, { + 3.916382172674266*^9, 3.9163821786813383`*^9}, {3.9163824325172873`*^9, + 3.916382455928849*^9}, 3.9169792945538483`*^9, 3.916979359090062*^9}, + CellLabel->"Out[41]=",ExpressionUUID->"dcbc02b8-c450-447c-88f1-42d77fdfeb7d"] }, Open ]], Cell[CellGroupData[{ @@ -685,8 +957,7 @@ Cell[BoxData[ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "k2", " ", "x1"}]]}]}]], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.916382507581944*^9, 3.916382525413583*^9}}, - CellLabel-> - "In[256]:=",ExpressionUUID->"ddfbfa82-f116-4c7e-a778-31889c380ac4"], + CellLabel->"In[20]:=",ExpressionUUID->"ddfbfa82-f116-4c7e-a778-31889c380ac4"], Cell[BoxData[ FractionBox[ @@ -709,16 +980,21 @@ Cell[BoxData[ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "k2", " ", RowBox[{"(", RowBox[{"x1", "-", "x2"}], ")"}]}]]}]}]]], "Output", - CellChangeTimes->{3.916382525698091*^9}, - CellLabel-> - "Out[256]=",ExpressionUUID->"7fac7d07-c1fd-48bf-8214-dd25ff83690b"] + CellChangeTimes->{3.916382525698091*^9, 3.9169792961830187`*^9}, + CellLabel->"Out[20]=",ExpressionUUID->"3bb6f47a-0fc2-4758-b135-d5ef731fc276"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ - RowBox[{"T", "/.", "subsol"}], " "}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"T", "/.", "subsol"}], " ", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]1", "->", "0"}], ",", + RowBox[{"\[Theta]2", "->", "0"}]}], "}"}]}], " ", "//", + "FullSimplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Series", "[", RowBox[{ @@ -733,105 +1009,85 @@ Cell[BoxData[{ 3.916311027162562*^9}, {3.916311115609462*^9, 3.916311284904895*^9}, { 3.9163113799386*^9, 3.916311394482524*^9}, {3.916311426640787*^9, 3.9163114316724854`*^9}, {3.916311501992298*^9, 3.916311513031917*^9}, - 3.916311550328291*^9, {3.916311672007854*^9, 3.9163116771677237`*^9}}, - CellLabel-> - "In[225]:=",ExpressionUUID->"2f57086d-3898-4086-82cd-a2df5438364d"], + 3.916311550328291*^9, {3.916311672007854*^9, 3.9163116771677237`*^9}, + 3.9169794622556763`*^9}, + CellLabel->"In[44]:=",ExpressionUUID->"2f57086d-3898-4086-82cd-a2df5438364d"], Cell[BoxData[ FractionBox[ - RowBox[{"2", " ", + RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "k1", " ", "x1", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]], " ", - RowBox[{"(", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k2", " ", - "\[Rho]1", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k1", " ", + RowBox[{"(", + RowBox[{"x1", "-", "x2"}], ")"}]}], "+", + RowBox[{"k2", " ", + RowBox[{"(", + RowBox[{"x1", "+", "x2"}], ")"}]}]}], ")"}]}]], " ", "k1", " ", "k2", + " ", "\[Rho]1", " ", "\[Rho]2"}], RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2"}]]}], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"k2", " ", "\[Rho]1"}], "-", + RowBox[{"k1", " ", "\[Rho]2"}]}], ")"}], "2"]}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "k1", " ", "x1", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]], " ", - RowBox[{"(", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]], "-", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x2", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]]}], ")"}], " ", "k1", " ", - "\[Rho]2", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "k2", " ", "x1"}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"k2", " ", "\[Rho]1"}], "+", + RowBox[{"k1", " ", "\[Rho]2"}]}], ")"}], "2"]}]}]]], "Output", + CellChangeTimes->{{3.916311237105019*^9, 3.916311276539239*^9}, { + 3.91631138089069*^9, 3.916311395524109*^9}, 3.916311431869031*^9, { + 3.91631148778719*^9, 3.91631151429007*^9}, 3.916311550522767*^9, { + 3.916311672280308*^9, 3.916311688956715*^9}, 3.916311865195397*^9, + 3.916979297423603*^9, {3.916979455890686*^9, 3.9169794638942833`*^9}}, + CellLabel->"Out[44]=",ExpressionUUID->"ee90c3f0-41f2-497b-9b1a-c56a4b3e0128"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "x1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"k1", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", - RowBox[{"2", " ", "k2", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]], "+", - SuperscriptBox["\[ExponentialE]", + FractionBox[ RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["k2", "2"], " ", "\[Rho]1"}], + RowBox[{"2", " ", "k1", " ", "\[Rho]2"}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "k1", " ", RowBox[{"(", RowBox[{ - RowBox[{"k1", " ", "x1", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", - RowBox[{"2", " ", "k2", " ", "x2", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]], "+", - RowBox[{"2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"(", RowBox[{ - RowBox[{"k1", " ", "x2", " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", - RowBox[{"k2", " ", - RowBox[{"(", - RowBox[{"x1", "+", "x2"}], ")"}], " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}], ")"}]}]]}]}], ")"}], - " ", "k2", " ", "\[Rho]1", " ", - RowBox[{"Cos", "[", "\[Theta]2", "]"}]}]}]]], "Output", - CellChangeTimes->{{3.916311237105019*^9, 3.916311276539239*^9}, { - 3.91631138089069*^9, 3.916311395524109*^9}, 3.916311431869031*^9, { - 3.91631148778719*^9, 3.91631151429007*^9}, 3.916311550522767*^9, { - 3.916311672280308*^9, 3.916311688956715*^9}, 3.916311865195397*^9}, - CellLabel-> - "Out[225]=",ExpressionUUID->"bc59f864-54e0-4a98-88f3-f19ae677cbc5"], - -Cell[BoxData[ - InterpretationBox[ - RowBox[{"1", "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", "k1", " ", - RowBox[{"(", - RowBox[{"\[Rho]1", "-", "\[Rho]2"}], ")"}], " ", - RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", "d"}], - RowBox[{"2", " ", "\[Rho]1"}]], "+", + RowBox[{"-", "2"}], " ", "\[Rho]1"}], "+", "\[Rho]2"}], ")"}]}], + RowBox[{"2", " ", "\[Rho]1"}]]}], ")"}], " ", "d"}], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "d", "]"}], "2"], SeriesData[$CellContext`d, 0, {}, 0, 2, 1], Editable->False]}], SeriesData[$CellContext`d, 0, {1, Complex[0, - Rational[-1, - 2]] $CellContext`k1 $CellContext`\[Rho]1^(-1) ($CellContext`\[Rho]1 - \ -$CellContext`\[Rho]2) Cos[$CellContext`\[Theta]1]}, 0, 2, 1], + Rational[ + 1, 2]] $CellContext`k1^(-1) $CellContext`k2^2 \ +$CellContext`\[Rho]1/$CellContext`\[Rho]2 + Complex[0, + Rational[ + 1, 2]] $CellContext`k1 $CellContext`\[Rho]1^(-1) ((-2) $CellContext`\ +\[Rho]1 + $CellContext`\[Rho]2)}, 0, 2, 1], Editable->False]], "Output", CellChangeTimes->{{3.916311237105019*^9, 3.916311276539239*^9}, { 3.91631138089069*^9, 3.916311395524109*^9}, 3.916311431869031*^9, { 3.91631148778719*^9, 3.91631151429007*^9}, 3.916311550522767*^9, { - 3.916311672280308*^9, 3.916311688956715*^9}, 3.916311865196876*^9}, - CellLabel-> - "Out[226]=",ExpressionUUID->"6f3a18d5-a39c-450e-9089-7df0e80659f1"] + 3.916311672280308*^9, 3.916311688956715*^9}, 3.916311865195397*^9, + 3.916979297423603*^9, {3.916979455890686*^9, 3.916979463909054*^9}}, + CellLabel->"Out[45]=",ExpressionUUID->"faf97621-e52d-46d6-8ec9-74656776e3b3"] }, Open ]], Cell[CellGroupData[{ @@ -957,25 +1213,27 @@ Cell[10034, 295, 683, 18, 64, "Output",ExpressionUUID->"76976d20-2cfb-47b0-b25a- Cell[10732, 316, 384, 9, 58, "Input",ExpressionUUID->"0028ab2b-a57b-4f16-ae70-6bbe3d5fc8e7"], Cell[11119, 327, 1202, 30, 70, "Input",ExpressionUUID->"f518e691-2764-48d5-93d6-9b4a69e0aebd"], Cell[CellGroupData[{ -Cell[12346, 361, 6348, 188, 621, "Input",ExpressionUUID->"55751fef-0974-4177-ba5a-bc71fb3567d7"], -Cell[18697, 551, 249, 6, 33, "Output",ExpressionUUID->"ffb48aff-f928-4266-8c50-76e7ba3f860b"] +Cell[12346, 361, 6335, 186, 621, "Input",ExpressionUUID->"55751fef-0974-4177-ba5a-bc71fb3567d7"], +Cell[18684, 549, 289, 5, 33, "Output",ExpressionUUID->"d23a16fe-8428-427c-93eb-78158897f762"], +Cell[18976, 556, 10858, 248, 248, "Output",ExpressionUUID->"92b5dd1d-1291-41b8-b15d-6eada467d5ca"] }, Open ]], Cell[CellGroupData[{ -Cell[18983, 562, 1293, 35, 74, "Input",ExpressionUUID->"fa57b4ab-8700-426a-812d-7d22e665f9e6"], -Cell[20279, 599, 2118, 50, 65, "Output",ExpressionUUID->"8b738751-193a-47a2-b717-fccc1434b137"] +Cell[29871, 809, 1289, 34, 74, "Input",ExpressionUUID->"fa57b4ab-8700-426a-812d-7d22e665f9e6"], +Cell[31163, 845, 2160, 49, 65, "Output",ExpressionUUID->"a40f6309-5623-4495-a241-bc245d1675eb"], +Cell[33326, 896, 1042, 25, 60, "Output",ExpressionUUID->"dcbc02b8-c450-447c-88f1-42d77fdfeb7d"] }, Open ]], Cell[CellGroupData[{ -Cell[22434, 654, 1275, 34, 57, "Input",ExpressionUUID->"ddfbfa82-f116-4c7e-a778-31889c380ac4"], -Cell[23712, 690, 765, 23, 60, "Output",ExpressionUUID->"7fac7d07-c1fd-48bf-8214-dd25ff83690b"] +Cell[34405, 926, 1271, 33, 57, "Input",ExpressionUUID->"ddfbfa82-f116-4c7e-a778-31889c380ac4"], +Cell[35679, 961, 785, 22, 60, "Output",ExpressionUUID->"3bb6f47a-0fc2-4758-b135-d5ef731fc276"] }, Open ]], Cell[CellGroupData[{ -Cell[24514, 718, 875, 19, 52, "Input",ExpressionUUID->"2f57086d-3898-4086-82cd-a2df5438364d"], -Cell[25392, 739, 2891, 68, 69, "Output",ExpressionUUID->"bc59f864-54e0-4a98-88f3-f19ae677cbc5"], -Cell[28286, 809, 1048, 24, 58, "Output",ExpressionUUID->"6f3a18d5-a39c-450e-9089-7df0e80659f1"] +Cell[36501, 988, 1073, 25, 52, "Input",ExpressionUUID->"2f57086d-3898-4086-82cd-a2df5438364d"], +Cell[37577, 1015, 1461, 37, 62, "Output",ExpressionUUID->"ee90c3f0-41f2-497b-9b1a-c56a4b3e0128"], +Cell[39041, 1054, 1465, 35, 60, "Output",ExpressionUUID->"faf97621-e52d-46d6-8ec9-74656776e3b3"] }, Open ]], Cell[CellGroupData[{ -Cell[29371, 838, 1837, 48, 121, "Input",ExpressionUUID->"1e0f5f1e-e6b5-4cb1-8547-d22264967da6"], -Cell[31211, 888, 1182, 28, 61, "Output",ExpressionUUID->"e811459d-cd1f-4826-97ac-1c2cb268777d"] +Cell[40543, 1094, 1837, 48, 121, "Input",ExpressionUUID->"1e0f5f1e-e6b5-4cb1-8547-d22264967da6"], +Cell[42383, 1144, 1182, 28, 61, "Output",ExpressionUUID->"e811459d-cd1f-4826-97ac-1c2cb268777d"] }, Open ]] }, Open ]] }, Open ]]