-
-
Notifications
You must be signed in to change notification settings - Fork 16
/
02-geoviz.qmd
298 lines (208 loc) · 7.89 KB
/
02-geoviz.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Scientific visualization
```{julia}
#| echo: false
#| output: false
import Pkg
Pkg.activate(".")
```
The visualization ecosystem in Julia is evolving very quickly. Among the various
visualization projects, [Makie.jl](https://github.com/MakieOrg/Makie.jl) by
@Danisch2021 is the most advanced for
[scientific visualization](https://en.wikipedia.org/wiki/Scientific_visualization).
Makie.jl is currently organized in backend modules:
- **GLMakie.jl** is the preferred backend for interactive *high-performance* visualization.
- **WGLMakie.jl** is the preferred backend for interactive visualization on the *web browser*.
- **CairoMakie.jl** is the preferred backend for *publication-quality* static visualization.
In this book, we use **CairoMakie.jl**:
```{julia}
import CairoMakie as Mke
```
::: {.callout-note}
We import the backend as `Mke` to avoid polluting the Julia
session with names from the visualization stack.
:::
Makie.jl provides a plot recipe system developed after
[Plots.jl](https://github.com/JuliaPlots/Plots.jl) by @Breloff2023,
which enables automatic visualization of custom Julia types.
The GeoStats.jl framework is integrated with this system,
and provides powerful visualization functions for geospatial
data.
Julia will automatically trigger the compilation of these
visualization functions whenever GeoStats.jl and Makie.jl
are loaded in the same session:
```{julia}
using GeoStats
```
## viz/viz!
The main visualization function that the framework provides is the
`viz`/`viz!` function. The `viz` function *creates a scene* and displays
geometries within a geospatial domain. On the other hand, the `viz!`
function adds more geometries to an *existing scene*.
Let's create a small geotable over a Cartesian grid for illustration purposes:
```{julia}
img = georef((A=rand(10, 10), B=rand(10, 10)))
```
::: {.callout-note}
The `georef` function creates a `CartesianGrid` starting at the origin
whenever the domain is omitted. The size of the grid is taken as the
size of the first array in the named tuple:
```{julia}
img.geometry
```
:::
::: {.callout-note}
## Tip for all users
To create a named tuple with a single key in Julia, we need an
extra comma after the key/value pair:
```{julia}
(A=rand(10, 10),)
```
or a semicolon before the key/value pair:
```{julia}
(; A=rand(10, 10))
```
:::
By default, all geometries are displayed with a single color:
```{julia}
viz(img.geometry)
```
We can pass any vector of [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)
or numbers (automatically converted to colors) to the function via the `color`
option. It is common to pass colors from another column of the geotable:
```{julia}
viz(img.geometry, color = img.A)
```
but any vector with the same length can be passed:
```{julia}
viz(img.geometry, color = 1:length(img.A))
```
The `alpha` option can be used to control the transparency of each geometry
in the domain:
```{julia}
viz(img.geometry, color = img.B, alpha = rand(length(img.B)))
```
Other aesthetic options are available in the official documentation.
As another example, consider the visualization of data over a `GeometrySet`:
```{julia}
gset = GeometrySet([
Triangle((12, 12), (15, 15), (12, 15)),
Quadrangle((5, 12), (10, 15), (10, 18), (5, 15))
])
gis = georef((A=[0.1, 0.2], B=[0.3, 0.4]), gset)
viz(gis.geometry, color = gis.A)
```
We can create a scene with the geometries from the first geotable ("raster data"),
and then add the geometries from the second geotable ("vector data"):
```{julia}
viz(img.geometry)
viz!(gis.geometry)
# display current figure
Mke.current_figure()
```
Let's add an additional set of points and line segments to conclude the example:
```{julia}
viz!([Point(-20, -10), Point(-20, 0), Point(-40, 10)])
viz!([Segment((-40, -10), (0, 0)), Segment((-40, 0), (-20, 10))])
Mke.current_figure()
```
::: {.callout-note}
## Tip for all users
Makie.jl can set the aspect ratio of the axis after the visualization is created.
The following code can be used to adjust the aspect ratio for the data in the scene:
```{julia}
ax = Mke.current_axis()
ax.aspect = Mke.DataAspect()
Mke.current_figure()
```
Alternatively, it is possible to set the aspect ratio in the `viz/viz!` call directly:
```{julia}
viz(CartesianGrid(20, 10), color = 1:200, axis = (; aspect = Mke.DataAspect()))
```
:::
::: {.callout-note}
## Tip for advanced users
Makie.jl dispatches the `viz` and `viz!` functions whenever it encounters
a geospatial domain, a vector of geometries or a single geometry from Meshes.jl.
This means that you can replace `viz` with `Mke.plot` and `viz!` with `Mke.plot!`
in scripts and the result will be the same.
:::
::: {.callout-note}
## Tip for advanced users
In the case of `Mesh` domains, it is also possible to specify a color for each vertex
of the mesh. In this case, the `viz` and `viz!` functions fill in the domain with using
the interpolation routine from the graphics library:
```{julia}
grid = CartesianGrid(10, 10)
fig = Mke.Figure()
viz(fig[1,1], grid, color = 1:nelements(grid))
viz(fig[1,2], grid, color = 1:nvertices(grid))
fig
```
:::
The `viz` and `viz!` functions are aware of coordinate reference systems, which is a quite
unique feature of the framework, explored in the chapter [Map projections](06-projections.qmd).
Below is a preview of this feature in action:
```{julia}
using GeoIO
world = GeoIO.load("data/countries.geojson")
viz(world.geometry, color = 1:nrow(world))
```
## viewer
As geospatial data scientists we are often interested in quick inspection
of intermediate results from multivariate geostatistical analysis. Visualizing
all the variables manually with `viz`/`viz!` can be very time consuming.
To address this issue, the framework provides a basic `viewer` that displays
all variables stored in a geotable:
```{julia}
geotable = georef((A=rand(1000), B=rand(1000)), rand(Point, 1000))
viewer(geotable)
```
::: {.callout-note}
The `rand(Point, 1000)` function call creates `1000` random `Point`s in 3D space.
:::
It adds interactive elements to the scene, including a menu to select the
variable used as color, and a color bar that automatically updates upon
menu selection. The `viewer` will be particularly useful when we start to
work with geospatial transforms in **Part II** of the book. The pipe
operator (`|>`) in Julia will be preferred for reasons that will become
clear later:
```{julia}
geotable = georef((A=rand(1000), B=rand(1000)), CartesianGrid(10, 10, 10))
geotable |> viewer
```
::: {.callout-note}
The `viz/viz!` and the `viewer` automatically select color schemes
for variables based on data science traits from the
[DataScienceTraits.jl](https://github.com/JuliaML/DataScienceTraits.jl)
module. Additionally, the `viewer` recognizes units from the
[Unitful.jl](https://github.com/PainterQubits/Unitful.jl)
module:
```{julia}
geotable = georef((; A=[1,2,3,4]u"m"), CartesianGrid(2, 2))
geotable |> viewer
```
:::
## cbar
Any vector of Julia objects implementing the `getcolors`
function from the [Colorfy.jl](https://github.com/JuliaGraphics/Colorfy.jl)
module can be passed to the `color` option of `viz`/`viz!`.
The final vector of colors will be a function of the `colormap`
and `colorrange` options.
To reproduce this behavior in the colorbar, the framework provides
the `cbar` function. It is similar to Makie's colorbar, but addresses
various practical challenges with `missing` values, units, etc.
```{julia}
grid = CartesianGrid(2, 2)
vals = [1, missing, 3, 4]
cmap = "cividis"
fig = Mke.Figure()
viz(fig[1,1], grid, color = vals, colormap = cmap)
cbar(fig[1,2], vals, colormap = cmap)
fig
```
We are now equipped with a set of visualization functions that can
really improve the speed at which we explore and analyze geospatial data.
These functions provide a consistent set of aesthetic options that we
will cover in more detail with future examples.
Before we start learning the advanced features of the framework, we would
like to say a few words about integration with existing GIS technology.