diff --git a/src/hashing/xxhash.h b/src/hashing/xxhash.h index 14a7fe9..9b922b4 100644 --- a/src/hashing/xxhash.h +++ b/src/hashing/xxhash.h @@ -1,7 +1,7 @@ /* * xxHash - Extremely Fast Hash algorithm * Header File - * Copyright (C) 2012-2021 Yann Collet + * Copyright (C) 2012-2023 Yann Collet * * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) * @@ -130,6 +130,7 @@ * } * @endcode * + * * @anchor streaming_example * **Streaming** * @@ -165,6 +166,77 @@ * } * @endcode * + * Streaming functions generate the xxHash value from an incremental input. + * This method is slower than single-call functions, due to state management. + * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. + * + * An XXH state must first be allocated using `XXH*_createState()`. + * + * Start a new hash by initializing the state with a seed using `XXH*_reset()`. + * + * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. + * + * The function returns an error code, with 0 meaning OK, and any other value + * meaning there is an error. + * + * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. + * This function returns the nn-bits hash as an int or long long. + * + * It's still possible to continue inserting input into the hash state after a + * digest, and generate new hash values later on by invoking `XXH*_digest()`. + * + * When done, release the state using `XXH*_freeState()`. + * + * + * @anchor canonical_representation_example + * **Canonical Representation** + * + * The default return values from XXH functions are unsigned 32, 64 and 128 bit + * integers. + * This the simplest and fastest format for further post-processing. + * + * However, this leaves open the question of what is the order on the byte level, + * since little and big endian conventions will store the same number differently. + * + * The canonical representation settles this issue by mandating big-endian + * convention, the same convention as human-readable numbers (large digits first). + * + * When writing hash values to storage, sending them over a network, or printing + * them, it's highly recommended to use the canonical representation to ensure + * portability across a wider range of systems, present and future. + * + * The following functions allow transformation of hash values to and from + * canonical format. + * + * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(), + * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(), + * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(), + * + * @code{.c} + * #include + * #include "xxhash.h" + * + * // Example for a function which prints XXH32_hash_t in human readable format + * void printXxh32(XXH32_hash_t hash) + * { + * XXH32_canonical_t cano; + * XXH32_canonicalFromHash(&cano, hash); + * size_t i; + * for(i = 0; i < sizeof(cano.digest); ++i) { + * printf("%02x", cano.digest[i]); + * } + * printf("\n"); + * } + * + * // Example for a function which converts XXH32_canonical_t to XXH32_hash_t + * XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano) + * { + * XXH32_hash_t hash = XXH32_hashFromCanonical(&cano); + * return hash; + * } + * @endcode + * + * * @file xxhash.h * xxHash prototypes and implementation */ @@ -182,6 +254,33 @@ extern "C" { * @{ */ #ifdef XXH_DOXYGEN +/*! + * @brief Gives access to internal state declaration, required for static allocation. + * + * Incompatible with dynamic linking, due to risks of ABI changes. + * + * Usage: + * @code{.c} + * #define XXH_STATIC_LINKING_ONLY + * #include "xxhash.h" + * @endcode + */ +# define XXH_STATIC_LINKING_ONLY +/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */ + +/*! + * @brief Gives access to internal definitions. + * + * Usage: + * @code{.c} + * #define XXH_STATIC_LINKING_ONLY + * #define XXH_IMPLEMENTATION + * #include "xxhash.h" + * @endcode + */ +# define XXH_IMPLEMENTATION +/* Do not undef XXH_IMPLEMENTATION for Doxygen */ + /*! * @brief Exposes the implementation and marks all functions as `inline`. * @@ -226,7 +325,7 @@ extern "C" { #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ && !defined(XXH_INLINE_ALL_31684351384) -/* this section should be traversed only once */ + /* this section should be traversed only once */ # define XXH_INLINE_ALL_31684351384 /* give access to the advanced API, required to compile implementations */ # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ @@ -448,7 +547,7 @@ extern "C" { ***************************************/ #define XXH_VERSION_MAJOR 0 #define XXH_VERSION_MINOR 8 -#define XXH_VERSION_RELEASE 1 +#define XXH_VERSION_RELEASE 2 /*! @brief Version number, encoded as two digits each */ #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) @@ -491,7 +590,7 @@ typedef uint32_t XXH32_hash_t; && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include -typedef uint32_t XXH32_hash_t; + typedef uint32_t XXH32_hash_t; #else # include @@ -524,10 +623,6 @@ typedef uint32_t XXH32_hash_t; /*! * @brief Calculates the 32-bit hash of @p input using xxHash32. * - * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s - * - * See @ref single_shot_example "Single Shot Example" for an example. - * * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. * @param seed The 32-bit seed to alter the hash's output predictably. @@ -537,62 +632,44 @@ typedef uint32_t XXH32_hash_t; * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * - * @return The calculated 32-bit hash value. + * @return The calculated 32-bit xxHash32 value. * - * @see - * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): - * Direct equivalents for the other variants of xxHash. - * @see - * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. + * @see @ref single_shot_example "Single Shot Example" for an example. */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); -/*! - * Streaming functions generate the xxHash value from an incremental input. - * This method is slower than single-call functions, due to state management. - * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. - * - * An XXH state must first be allocated using `XXH*_createState()`. - * - * Start a new hash by initializing the state with a seed using `XXH*_reset()`. - * - * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. - * - * The function returns an error code, with 0 meaning OK, and any other value - * meaning there is an error. - * - * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. - * This function returns the nn-bits hash as an int or long long. - * - * It's still possible to continue inserting input into the hash state after a - * digest, and generate new hash values later on by invoking `XXH*_digest()`. - * - * When done, release the state using `XXH*_freeState()`. - * - * @see streaming_example at the top of @ref xxhash.h for an example. - */ - +#ifndef XXH_NO_STREAM /*! * @typedef struct XXH32_state_s XXH32_state_t * @brief The opaque state struct for the XXH32 streaming API. * * @see XXH32_state_s for details. + * @see @ref streaming_example "Streaming Example" */ typedef struct XXH32_state_s XXH32_state_t; /*! * @brief Allocates an @ref XXH32_state_t. * - * Must be freed with XXH32_freeState(). - * @return An allocated XXH32_state_t on success, `NULL` on failure. + * @return An allocated pointer of @ref XXH32_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH32_freeState(). + * + * @see @ref streaming_example "Streaming Example" */ XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); /*! * @brief Frees an @ref XXH32_state_t. * - * Must be allocated with XXH32_createState(). * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). - * @return XXH_OK. + * + * @return @ref XXH_OK. + * + * @note @p statePtr must be allocated with XXH32_createState(). + * + * @see @ref streaming_example "Streaming Example" + * */ XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); /*! @@ -608,23 +685,24 @@ XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_ /*! * @brief Resets an @ref XXH32_state_t to begin a new hash. * - * This function resets and seeds a state. Call it before @ref XXH32_update(). - * * @param statePtr The state struct to reset. * @param seed The 32-bit seed to alter the hash result predictably. * * @pre * @p statePtr must not be `NULL`. * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note This function resets and seeds a state. Call it before @ref XXH32_update(). + * + * @see @ref streaming_example "Streaming Example" */ XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); /*! * @brief Consumes a block of @p input to an @ref XXH32_state_t. * - * Call this to incrementally consume blocks of data. - * * @param statePtr The state struct to update. * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. @@ -636,47 +714,36 @@ XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + * + * @see @ref streaming_example "Streaming Example" */ XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); /*! * @brief Returns the calculated hash value from an @ref XXH32_state_t. * - * @note - * Calling XXH32_digest() will not affect @p statePtr, so you can update, - * digest, and update again. - * * @param statePtr The state struct to calculate the hash from. * * @pre * @p statePtr must not be `NULL`. * - * @return The calculated xxHash32 value from that state. + * @return The calculated 32-bit xxHash32 value from that state. + * + * @note + * Calling XXH32_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + * + * @see @ref streaming_example "Streaming Example" */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ -/* - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * This the simplest and fastest format for further post-processing. - * - * However, this leaves open the question of what is the order on the byte level, - * since little and big endian conventions will store the same number differently. - * - * The canonical representation settles this issue by mandating big-endian - * convention, the same convention as human-readable numbers (large digits first). - * - * When writing hash values to storage, sending them over a network, or printing - * them, it's highly recommended to use the canonical representation to ensure - * portability across a wider range of systems, present and future. - * - * The following functions allow transformation of hash values to and from - * canonical format. - */ - /*! * @brief Canonical (big endian) representation of @ref XXH32_hash_t. */ @@ -687,11 +754,13 @@ typedef struct { /*! * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. * - * @param dst The @ref XXH32_canonical_t pointer to be stored to. + * @param dst The @ref XXH32_canonical_t pointer to be stored to. * @param hash The @ref XXH32_hash_t to be converted. * * @pre * @p dst must not be `NULL`. + * + * @see @ref canonical_representation_example "Canonical Representation Example" */ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); @@ -704,44 +773,75 @@ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t * @p src must not be `NULL`. * * @return The converted hash. + * + * @see @ref canonical_representation_example "Canonical Representation Example" */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); +/*! @cond Doxygen ignores this part */ #ifdef __has_attribute # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) #else # define XXH_HAS_ATTRIBUTE(x) 0 #endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* + * C23 __STDC_VERSION__ number hasn't been specified yet. For now + * leave as `201711L` (C17 + 1). + * TODO: Update to correct value when its been specified. + */ +#define XXH_C23_VN 201711L +/*! @endcond */ +/*! @cond Doxygen ignores this part */ /* C-language Attributes are added in C23. */ -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute) # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) #else # define XXH_HAS_C_ATTRIBUTE(x) 0 #endif +/*! @endcond */ +/*! @cond Doxygen ignores this part */ #if defined(__cplusplus) && defined(__has_cpp_attribute) # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define XXH_HAS_CPP_ATTRIBUTE(x) 0 #endif +/*! @endcond */ +/*! @cond Doxygen ignores this part */ /* * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute * introduced in CPP17 and C23. * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough */ -#if XXH_HAS_C_ATTRIBUTE(x) -# define XXH_FALLTHROUGH [[fallthrough]] -#elif XXH_HAS_CPP_ATTRIBUTE(x) +#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) # define XXH_FALLTHROUGH [[fallthrough]] #elif XXH_HAS_ATTRIBUTE(__fallthrough__) -# define XXH_FALLTHROUGH __attribute__ ((fallthrough)) +# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) #else -# define XXH_FALLTHROUGH +# define XXH_FALLTHROUGH /* fallthrough */ #endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* + * Define XXH_NOESCAPE for annotated pointers in public API. + * https://clang.llvm.org/docs/AttributeReference.html#noescape + * As of writing this, only supported by clang. + */ +#if XXH_HAS_ATTRIBUTE(noescape) +# define XXH_NOESCAPE __attribute__((noescape)) +#else +# define XXH_NOESCAPE +#endif +/*! @endcond */ + /*! * @} @@ -764,7 +864,7 @@ typedef uint64_t XXH64_hash_t; && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include -typedef uint64_t XXH64_hash_t; + typedef uint64_t XXH64_hash_t; #else # include # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL @@ -793,9 +893,6 @@ typedef uint64_t XXH64_hash_t; /*! * @brief Calculates the 64-bit hash of @p input using xxHash64. * - * This function usually runs faster on 64-bit systems, but slower on 32-bit - * systems (see benchmark). - * * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. * @param seed The 64-bit seed to alter the hash's output predictably. @@ -805,35 +902,149 @@ typedef uint64_t XXH64_hash_t; * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * - * @return The calculated 64-bit hash. + * @return The calculated 64-bit xxHash64 value. * - * @see - * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): - * Direct equivalents for the other variants of xxHash. - * @see - * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. + * @see @ref single_shot_example "Single Shot Example" for an example. */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed); +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); /******* Streaming *******/ +#ifndef XXH_NO_STREAM /*! * @brief The opaque state struct for the XXH64 streaming API. * * @see XXH64_state_s for details. + * @see @ref streaming_example "Streaming Example" */ typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ + +/*! + * @brief Allocates an @ref XXH64_state_t. + * + * @return An allocated pointer of @ref XXH64_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH64_freeState(). + * + * @see @ref streaming_example "Streaming Example" + */ XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); + +/*! + * @brief Frees an @ref XXH64_state_t. + * + * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState(). + * + * @return @ref XXH_OK. + * + * @note @p statePtr must be allocated with XXH64_createState(). + * + * @see @ref streaming_example "Streaming Example" + */ XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); -XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); -XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); -XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); +/*! + * @brief Copies one @ref XXH64_state_t to another. + * + * @param dst_state The state to copy to. + * @param src_state The state to copy from. + * @pre + * @p dst_state and @p src_state must not be `NULL` and must not overlap. + */ +XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); + +/*! + * @brief Resets an @ref XXH64_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note This function resets and seeds a state. Call it before @ref XXH64_update(). + * + * @see @ref streaming_example "Streaming Example" + */ +XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); + +/*! + * @brief Consumes a block of @p input to an @ref XXH64_state_t. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + * + * @see @ref streaming_example "Streaming Example" + */ +XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); +/*! + * @brief Returns the calculated hash value from an @ref XXH64_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated 64-bit xxHash64 value from that state. + * + * @note + * Calling XXH64_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + * + * @see @ref streaming_example "Streaming Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ + +/*! + * @brief Canonical (big endian) representation of @ref XXH64_hash_t. + */ typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); + +/*! + * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t. + * + * @param dst The @ref XXH64_canonical_t pointer to be stored to. + * @param hash The @ref XXH64_hash_t to be converted. + * + * @pre + * @p dst must not be `NULL`. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); + +/*! + * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t. + * + * @param src The @ref XXH64_canonical_t to convert. + * + * @pre + * @p src must not be `NULL`. + * + * @return The converted hash. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); #ifndef XXH_NO_XXH3 @@ -864,14 +1075,22 @@ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canoni * at competitive speeds, even without vector support. Further details are * explained in the implementation. * - * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, - * ZVector and scalar targets. This can be controlled via the @ref XXH_VECTOR - * macro. For the x86 family, an automatic dispatcher is included separately - * in @ref xxh_x86dispatch.c. + * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD + * implementations for many common platforms: + * - AVX512 + * - AVX2 + * - SSE2 + * - ARM NEON + * - WebAssembly SIMD128 + * - POWER8 VSX + * - s390x ZVector + * This can be controlled via the @ref XXH_VECTOR macro, but it automatically + * selects the best version according to predefined macros. For the x86 family, an + * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c. * * XXH3 implementation is portable: * it has a generic C90 formulation that can be compiled on any platform, - * all implementations generage exactly the same hash value on all platforms. + * all implementations generate exactly the same hash value on all platforms. * Starting from v0.8.0, it's also labelled "stable", meaning that * any future version will also generate the same hash value. * @@ -881,206 +1100,510 @@ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canoni * reduces the amount of mixing, resulting in faster speed on small inputs. * It's also generally simpler to manipulate a scalar return type than a struct. * - * The API supports one-shot hashing, streaming mode, and custom secrets. + * The API supports one-shot hashing, streaming mode, and custom secrets. + */ +/*-********************************************************************** +* XXH3 64-bit variant +************************************************************************/ + +/*! + * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @note + * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however + * it may have slightly better performance due to constant propagation of the + * defaults. + * + * @see + * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @note + * seed == 0 produces the same results as @ref XXH3_64bits(). + * + * This variant generates a custom secret on the fly based on default secret + * altered using the @p seed value. + * + * While this operation is decently fast, note that it's not completely free. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); + +/*! + * The bare minimum size for a custom secret. + * + * @see + * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), + * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). + */ +#define XXH3_SECRET_SIZE_MIN 136 + +/*! + * @brief Calculates 64-bit variant of XXH3 with a custom "secret". + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @pre + * The memory between @p data and @p data + @p len must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p data may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * It's possible to provide any blob of bytes as a "secret" to generate the hash. + * This makes it more difficult for an external actor to prepare an intentional collision. + * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). + * However, the quality of the secret impacts the dispersion of the hash algorithm. + * Therefore, the secret _must_ look like a bunch of random bytes. + * Avoid "trivial" or structured data such as repeated sequences or a text document. + * Whenever in doubt about the "randomness" of the blob of bytes, + * consider employing @ref XXH3_generateSecret() instead (see below). + * It will generate a proper high entropy secret derived from the blob of bytes. + * Another advantage of using XXH3_generateSecret() is that + * it guarantees that all bits within the initial blob of bytes + * will impact every bit of the output. + * This is not necessarily the case when using the blob of bytes directly + * because, when hashing _small_ inputs, only a portion of the secret is employed. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); + + +/******* Streaming *******/ +#ifndef XXH_NO_STREAM +/* + * Streaming requires state maintenance. + * This operation costs memory and CPU. + * As a consequence, streaming is slower than one-shot hashing. + * For better performance, prefer one-shot functions whenever applicable. + */ + +/*! + * @brief The opaque state struct for the XXH3 streaming API. + * + * @see XXH3_state_s for details. + * @see @ref streaming_example "Streaming Example" + */ +typedef struct XXH3_state_s XXH3_state_t; +XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); + +/*! + * @brief Copies one @ref XXH3_state_t to another. + * + * @param dst_state The state to copy to. + * @param src_state The state to copy from. + * @pre + * @p dst_state and @p src_state must not be `NULL` and must not overlap. + */ +XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); + +/*! + * @brief Resets an @ref XXH3_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret with default parameters. + * - Call this function before @ref XXH3_64bits_update(). + * - Digest will be equivalent to `XXH3_64bits()`. + * + * @see @ref streaming_example "Streaming Example" + * + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); + +/*! + * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret from `seed`. + * - Call this function before @ref XXH3_64bits_update(). + * - Digest will be equivalent to `XXH3_64bits_withSeed()`. + * + * @see @ref streaming_example "Streaming Example" + * + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); + +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * `secret` is referenced, it _must outlive_ the hash streaming session. + * + * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, + * and the quality of produced hash values depends on secret's entropy + * (secret's content should look like a bunch of random bytes). + * When in doubt about the randomness of a candidate `secret`, + * consider employing `XXH3_generateSecret()` instead (see below). + * + * @see @ref streaming_example "Streaming Example" + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); + +/*! + * @brief Consumes a block of @p input to an @ref XXH3_state_t. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + * + * @see @ref streaming_example "Streaming Example" + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated XXH3 64-bit hash value from that state. + * + * @note + * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + * + * @see @ref streaming_example "Streaming Example" */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ + +/* note : canonical representation of XXH3 is the same as XXH64 + * since they both produce XXH64_hash_t values */ + + /*-********************************************************************** -* XXH3 64-bit variant +* XXH3 128-bit variant ************************************************************************/ /*! - * @brief 64-bit unseeded variant of XXH3. + * @brief The return value from 128-bit hashes. + * + * Stored in little endian order, although the fields themselves are in native + * endianness. + */ +typedef struct { + XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ + XXH64_hash_t high64; /*!< `value >> 64` */ +} XXH128_hash_t; + +/*! + * @brief Calculates 128-bit unseeded variant of XXH3 of @p data. + * + * @param data The block of data to be hashed, at least @p length bytes in size. + * @param len The length of @p data, in bytes. + * + * @return The calculated 128-bit variant of XXH3 value. * - * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however + * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead + * for shorter inputs. + * + * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however * it may have slightly better performance due to constant propagation of the * defaults. * - * @see - * XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms - * @see - * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants - * @see - * XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version. + * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(const void* input, size_t length); - -/*! - * @brief 64-bit seeded variant of XXH3 +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); +/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. * - * This variant generates a custom secret on the fly based on default secret - * altered using the `seed` value. + * @param data The block of data to be hashed, at least @p length bytes in size. + * @param len The length of @p data, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. * - * While this operation is decently fast, note that it's not completely free. + * @return The calculated 128-bit variant of XXH3 value. * * @note * seed == 0 produces the same results as @ref XXH3_64bits(). * - * @param input The data to hash - * @param length The length - * @param seed The 64-bit seed to alter the state. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(const void* input, size_t length, XXH64_hash_t seed); - -/*! - * The bare minimum size for a custom secret. + * This variant generates a custom secret on the fly based on default secret + * altered using the @p seed value. * - * @see - * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), - * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). + * While this operation is decently fast, note that it's not completely free. + * + * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. */ -#define XXH3_SECRET_SIZE_MIN 136 - +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); /*! - * @brief 64-bit variant of XXH3 with a custom "secret". + * @brief Calculates 128-bit variant of XXH3 with a custom "secret". + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @return The calculated 128-bit variant of XXH3 value. * * It's possible to provide any blob of bytes as a "secret" to generate the hash. * This makes it more difficult for an external actor to prepare an intentional collision. - * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). + * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). * However, the quality of the secret impacts the dispersion of the hash algorithm. * Therefore, the secret _must_ look like a bunch of random bytes. * Avoid "trivial" or structured data such as repeated sequences or a text document. * Whenever in doubt about the "randomness" of the blob of bytes, - * consider employing "XXH3_generateSecret()" instead (see below). + * consider employing @ref XXH3_generateSecret() instead (see below). * It will generate a proper high entropy secret derived from the blob of bytes. * Another advantage of using XXH3_generateSecret() is that * it guarantees that all bits within the initial blob of bytes * will impact every bit of the output. * This is not necessarily the case when using the blob of bytes directly * because, when hashing _small_ inputs, only a portion of the secret is employed. + * + * @see @ref single_shot_example "Single Shot Example" for an example. */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); - +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); /******* Streaming *******/ +#ifndef XXH_NO_STREAM /* * Streaming requires state maintenance. * This operation costs memory and CPU. * As a consequence, streaming is slower than one-shot hashing. * For better performance, prefer one-shot functions whenever applicable. + * + * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). + * Use already declared XXH3_createState() and XXH3_freeState(). + * + * All reset and streaming functions have same meaning as their 64-bit counterpart. */ /*! - * @brief The state struct for the XXH3 streaming API. + * @brief Resets an @ref XXH3_state_t to begin a new hash. * - * @see XXH3_state_s for details. + * @param statePtr The state struct to reset. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret with default parameters. + * - Call it before @ref XXH3_128bits_update(). + * - Digest will be equivalent to `XXH3_128bits()`. + * + * @see @ref streaming_example "Streaming Example" */ -typedef struct XXH3_state_s XXH3_state_t; -XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); -XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); -XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); -/* - * XXH3_64bits_reset(): - * Initialize with default parameters. - * digest will be equivalent to `XXH3_64bits()`. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); -/* - * XXH3_64bits_reset_withSeed(): - * Generate a custom secret from `seed`, and store it into `statePtr`. - * digest will be equivalent to `XXH3_64bits_withSeed()`. +/*! + * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret from `seed`. + * - Call it before @ref XXH3_128bits_update(). + * - Digest will be equivalent to `XXH3_128bits_withSeed()`. + * + * @see @ref streaming_example "Streaming Example" */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); /*! - * XXH3_64bits_reset_withSecret(): + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * * `secret` is referenced, it _must outlive_ the hash streaming session. - * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, + * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, * and the quality of produced hash values depends on secret's entropy * (secret's content should look like a bunch of random bytes). * When in doubt about the randomness of a candidate `secret`, * consider employing `XXH3_generateSecret()` instead (see below). + * + * @see @ref streaming_example "Streaming Example" */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); - -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); - -/* note : canonical representation of XXH3 is the same as XXH64 - * since they both produce XXH64_hash_t values */ - - -/*-********************************************************************** -* XXH3 128-bit variant -************************************************************************/ +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); /*! - * @brief The return value from 128-bit hashes. + * @brief Consumes a block of @p input to an @ref XXH3_state_t. + * + * Call this to incrementally consume blocks of data. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. * - * Stored in little endian order, although the fields themselves are in native - * endianness. */ -typedef struct { - XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ - XXH64_hash_t high64; /*!< `value >> 64` */ -} XXH128_hash_t; +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); /*! - * @brief Unseeded 128-bit variant of XXH3 + * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t. * - * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead - * for shorter inputs. + * @param statePtr The state struct to calculate the hash from. * - * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however - * it may have slightly better performance due to constant propagation of the - * defaults. + * @pre + * @p statePtr must not be `NULL`. * - * @see - * XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms - * @see - * XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants - * @see - * XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version. - */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(const void* data, size_t len); -/*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); -/*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); - -/******* Streaming *******/ -/* - * Streaming requires state maintenance. - * This operation costs memory and CPU. - * As a consequence, streaming is slower than one-shot hashing. - * For better performance, prefer one-shot functions whenever applicable. + * @return The calculated XXH3 128-bit hash value from that state. * - * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). - * Use already declared XXH3_createState() and XXH3_freeState(). + * @note + * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update, + * digest, and update again. * - * All reset and streaming functions have same meaning as their 64-bit counterpart. */ - -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); - -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ /* Following helper functions make it possible to compare XXH128_hast_t values. * Since XXH128_hash_t is a structure, this capability is not offered by the language. * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ /*! - * XXH128_isEqual(): - * Return: 1 if `h1` and `h2` are equal, 0 if they are not. + * @brief Check equality of two XXH128_hash_t values + * + * @param h1 The 128-bit hash value. + * @param h2 Another 128-bit hash value. + * + * @return `1` if `h1` and `h2` are equal. + * @return `0` if they are not. */ XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); /*! * @brief Compares two @ref XXH128_hash_t + * * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. * - * @return: >0 if *h128_1 > *h128_2 - * =0 if *h128_1 == *h128_2 - * <0 if *h128_1 < *h128_2 + * @param h128_1 Left-hand side value + * @param h128_2 Right-hand side value + * + * @return >0 if @p h128_1 > @p h128_2 + * @return =0 if @p h128_1 == @p h128_2 + * @return <0 if @p h128_1 < @p h128_2 */ -XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(const void* h128_1, const void* h128_2); +XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); /******* Canonical representation *******/ typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; -XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); + + +/*! + * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t. + * + * @param dst The @ref XXH128_canonical_t pointer to be stored to. + * @param hash The @ref XXH128_hash_t to be converted. + * + * @pre + * @p dst must not be `NULL`. + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); + +/*! + * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t. + * + * @param src The @ref XXH128_canonical_t to convert. + * + * @pre + * @p src must not be `NULL`. + * + * @return The converted hash. + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); #endif /* !XXH_NO_XXH3 */ @@ -1189,6 +1712,7 @@ struct XXH64_state_s { #define XXH3_INTERNALBUFFER_SIZE 256 /*! + * @internal * @brief Default size of the secret buffer (and @ref XXH3_kSecret). * * This is the size used in @ref XXH3_kSecret and the seeded functions. @@ -1261,22 +1785,47 @@ struct XXH3_state_s { * Note that this doesn't prepare the state for a streaming operation, * it's still necessary to use XXH3_NNbits_reset*() afterwards. */ -#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } +#define XXH3_INITSTATE(XXH3_state_ptr) \ + do { \ + XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \ + tmp_xxh3_state_ptr->seed = 0; \ + tmp_xxh3_state_ptr->extSecret = NULL; \ + } while(0) /*! - * simple alias to pre-selected XXH3_128bits variant + * @brief Calculates the 128-bit hash of @p data using XXH3. + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param seed The 64-bit seed to alter the hash's output predictably. + * + * @pre + * The memory between @p data and @p data + @p len must be valid, + * readable, contiguous memory. However, if @p len is `0`, @p data may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 128-bit XXH3 value. + * + * @see @ref single_shot_example "Single Shot Example" for an example. */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); /* === Experimental API === */ /* Symbols defined below must be considered tied to a specific library version. */ /*! - * XXH3_generateSecret(): + * @brief Derive a high-entropy secret from any user-defined content, named customSeed. + * + * @param secretBuffer A writable buffer for derived high-entropy secret data. + * @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_DEFAULT_SIZE. + * @param customSeed A user-defined content. + * @param customSeedSize Size of customSeed, in bytes. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. * - * Derive a high-entropy secret from any user-defined content, named customSeed. * The generated secret can be used in combination with `*_withSecret()` functions. * The `_withSecret()` variants are useful to provide a higher level of protection * than 64-bit seed, as it becomes much more difficult for an external actor to @@ -1324,11 +1873,14 @@ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(const void* data, size_t len, XXH6 * } * @endcode */ -XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize); +XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); /*! * @brief Generate the same secret as the _withSeed() variants. * + * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes + * @param seed The 64-bit seed to alter the hash result predictably. + * * The generated secret can be used in combination with *`*_withSecret()` and `_withSecretandSeed()` variants. * @@ -1360,15 +1912,21 @@ XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secr * } * }; * @endcode - * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes - * @param seed The seed to seed the state. */ -XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed); +XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); /*! + * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data. + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. + * * These variants generate hash values using either - * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) - * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX). + * @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes) + * or @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX). * * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. * `_withSeed()` has to generate the secret on the fly for "large" keys. @@ -1392,25 +1950,63 @@ XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_ * because only portions of the secret are employed for small data. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t -XXH3_64bits_withSecretandSeed(const void* data, size_t len, - const void* secret, size_t secretSize, +XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, + XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed); -/*! @copydoc XXH3_64bits_withSecretandSeed() */ +/*! + * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. + * + * @param input The block of data to be hashed, at least @p len bytes in size. + * @param length The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t -XXH3_128bits_withSecretandSeed(const void* input, size_t length, - const void* secret, size_t secretSize, +XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, + XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); -/*! @copydoc XXH3_64bits_withSecretandSeed() */ +#ifndef XXH_NO_STREAM +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, - const void* secret, size_t secretSize, +XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, + XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); -/*! @copydoc XXH3_64bits_withSecretandSeed() */ +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, - const void* secret, size_t secretSize, +XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, + XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); - +#endif /* !XXH_NO_STREAM */ #endif /* !XXH_NO_XXH3 */ #endif /* XXH_NO_LONG_LONG */ @@ -1509,19 +2105,47 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, * inline small `memcpy()` calls, and it might also be faster on big-endian * systems which lack a native byteswap instruction. However, some compilers * will emit literal byteshifts even if the target supports unaligned access. - * . + * * * @warning * Methods 1 and 2 rely on implementation-defined behavior. Use these with * care, as what works on one compiler/platform/optimization level may cause * another to read garbage data or even crash. * - * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. + * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. * * Prefer these methods in priority order (0 > 3 > 1 > 2) */ # define XXH_FORCE_MEMORY_ACCESS 0 +/*! + * @def XXH_SIZE_OPT + * @brief Controls how much xxHash optimizes for size. + * + * xxHash, when compiled, tends to result in a rather large binary size. This + * is mostly due to heavy usage to forced inlining and constant folding of the + * @ref XXH3_family to increase performance. + * + * However, some developers prefer size over speed. This option can + * significantly reduce the size of the generated code. When using the `-Os` + * or `-Oz` options on GCC or Clang, this is defined to 1 by default, + * otherwise it is defined to 0. + * + * Most of these size optimizations can be controlled manually. + * + * This is a number from 0-2. + * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed + * comes first. + * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more + * conservative and disables hacks that increase code size. It implies the + * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, + * and @ref XXH3_NEON_LANES == 8 if they are not already defined. + * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. + * Performance may cry. For example, the single shot functions just use the + * streaming API. + */ +# define XXH_SIZE_OPT 0 + /*! * @def XXH_FORCE_ALIGN_CHECK * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() @@ -1543,9 +2167,11 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, * * In these cases, the alignment check can be removed by setting this macro to 0. * Then the code will always use unaligned memory access. - * Align check is automatically disabled on x86, x64 & arm64, + * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips * which are platforms known to offer good unaligned memory accesses performance. * + * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. + * * This option does not affect XXH3 (only XXH32 and XXH64). */ # define XXH_FORCE_ALIGN_CHECK 0 @@ -1567,11 +2193,28 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the * compiler full control on whether to inline or not. * - * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using - * -fno-inline with GCC or Clang, this will automatically be defined. + * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if + * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. */ # define XXH_NO_INLINE_HINTS 0 +/*! + * @def XXH3_INLINE_SECRET + * @brief Determines whether to inline the XXH3 withSecret code. + * + * When the secret size is known, the compiler can improve the performance + * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). + * + * However, if the secret size is not known, it doesn't have any benefit. This + * happens when xxHash is compiled into a global symbol. Therefore, if + * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. + * + * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers + * that are *sometimes* force inline on -Og, and it is impossible to automatically + * detect this optimization level. + */ +# define XXH3_INLINE_SECRET 0 + /*! * @def XXH32_ENDJMP * @brief Whether to use a jump for `XXH32_finalize`. @@ -1593,6 +2236,17 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, */ # define XXH_OLD_NAMES # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ + +/*! + * @def XXH_NO_STREAM + * @brief Disables the streaming API. + * + * When xxHash is not inlined and the streaming functions are not used, disabling + * the streaming functions can improve code size significantly, especially with + * the @ref XXH3_family which tends to make constant folded copies of itself. + */ +# define XXH_NO_STREAM +# undef XXH_NO_STREAM /* don't actually */ #endif /* XXH_DOXYGEN */ /*! * @} @@ -1607,9 +2261,19 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, # endif #endif +#ifndef XXH_SIZE_OPT + /* default to 1 for -Os or -Oz */ +# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) +# define XXH_SIZE_OPT 1 +# else +# define XXH_SIZE_OPT 0 +# endif +#endif + #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ - /* don't check on x86, aarch64, or arm when unaligned access is available */ -# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ + /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ +# if XXH_SIZE_OPT >= 1 || \ + defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */ # define XXH_FORCE_ALIGN_CHECK 0 # else @@ -1618,14 +2282,22 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, #endif #ifndef XXH_NO_INLINE_HINTS -# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ - || defined(__NO_INLINE__) /* -O0, -fno-inline */ +# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ # define XXH_NO_INLINE_HINTS 1 # else # define XXH_NO_INLINE_HINTS 0 # endif #endif +#ifndef XXH3_INLINE_SECRET +# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ + || !defined(XXH_INLINE_ALL) +# define XXH3_INLINE_SECRET 0 +# else +# define XXH3_INLINE_SECRET 1 +# endif +#endif + #ifndef XXH32_ENDJMP /* generally preferable for performance */ # define XXH32_ENDJMP 0 @@ -1640,7 +2312,9 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, /* ************************************* * Includes & Memory related functions ***************************************/ -#if defined(XXH_NO_STDLIB) +#if defined(XXH_NO_STREAM) +/* nothing */ +#elif defined(XXH_NO_STDLIB) /* When requesting to disable any mention of stdlib, * the library loses the ability to invoked malloc / free. @@ -1720,6 +2394,11 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) # define XXH_NO_INLINE static #endif +#if XXH3_INLINE_SECRET +# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE +#else +# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE +#endif /* ************************************* @@ -1745,14 +2424,17 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) # include /* note: can still be disabled with NDEBUG */ # define XXH_ASSERT(c) assert(c) #else -# define XXH_ASSERT(c) ((void)0) +# if defined(__INTEL_COMPILER) +# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c)) +# else +# define XXH_ASSERT(c) XXH_ASSUME(c) +# endif #endif /* note: use after variable declarations */ #ifndef XXH_STATIC_ASSERT # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ -# include -# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) +# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) # else @@ -1778,11 +2460,19 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) * XXH3_initCustomSecret_scalar(). */ #if defined(__GNUC__) || defined(__clang__) -# define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var)) +# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var)) #else # define XXH_COMPILER_GUARD(var) ((void)0) #endif +/* Specifically for NEON vectors which use the "w" constraint, on + * Clang. */ +#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__) +# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var)) +#else +# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0) +#endif + /* ************************************* * Basic Types ***************************************/ @@ -1797,6 +2487,7 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) typedef XXH32_hash_t xxh_u32; #ifdef XXH_OLD_NAMES +# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly" # define BYTE xxh_u8 # define U8 xxh_u8 # define U32 xxh_u32 @@ -1889,7 +2580,7 @@ static xxh_u32 XXH_read32(const void* ptr) /* * Portable and safe solution. Generally efficient. - * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html + * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html */ static xxh_u32 XXH_read32(const void* memPtr) { @@ -1965,6 +2656,51 @@ static int XXH_isLittleEndian(void) # define XXH_HAS_BUILTIN(x) 0 #endif + + +/* + * C23 and future versions have standard "unreachable()". + * Once it has been implemented reliably we can add it as an + * additional case: + * + * ``` + * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) + * # include + * # ifdef unreachable + * # define XXH_UNREACHABLE() unreachable() + * # endif + * #endif + * ``` + * + * Note C++23 also has std::unreachable() which can be detected + * as follows: + * ``` + * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) + * # include + * # define XXH_UNREACHABLE() std::unreachable() + * #endif + * ``` + * NB: `__cpp_lib_unreachable` is defined in the `` header. + * We don't use that as including `` in `extern "C"` blocks + * doesn't work on GCC12 + */ + +#if XXH_HAS_BUILTIN(__builtin_unreachable) +# define XXH_UNREACHABLE() __builtin_unreachable() + +#elif defined(_MSC_VER) +# define XXH_UNREACHABLE() __assume(0) + +#else +# define XXH_UNREACHABLE() +#endif + +#if XXH_HAS_BUILTIN(__builtin_assume) +# define XXH_ASSUME(c) __builtin_assume(c) +#else +# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } +#endif + /*! * @internal * @def XXH_rotl32(x,r) @@ -2124,7 +2860,7 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) acc += input * XXH_PRIME32_2; acc = XXH_rotl32(acc, 13); acc *= XXH_PRIME32_1; -#if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) +#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) /* * UGLY HACK: * A compiler fence is the only thing that prevents GCC and Clang from @@ -2154,9 +2890,12 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) * can load data, while v3 can multiply. SSE forces them to operate * together. * - * This is also enabled on AArch64, as Clang autovectorizes it incorrectly - * and it is pointless writing a NEON implementation that is basically the - * same speed as scalar for XXH32. + * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing + * the loop. NEON is only faster on the A53, and with the newer cores, it is less + * than half the speed. + * + * Additionally, this is used on WASM SIMD128 because it JITs to the same + * SIMD instructions and has the same issue. */ XXH_COMPILER_GUARD(acc); #endif @@ -2231,41 +2970,41 @@ XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) } else { switch(len&15) /* or switch(bEnd - p) */ { case 12: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 8: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 4: XXH_PROCESS4; return XXH32_avalanche(hash); case 13: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 9: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 5: XXH_PROCESS4; XXH_PROCESS1; return XXH32_avalanche(hash); case 14: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 10: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 6: XXH_PROCESS4; XXH_PROCESS1; XXH_PROCESS1; return XXH32_avalanche(hash); case 15: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 11: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 7: XXH_PROCESS4; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 3: XXH_PROCESS1; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 2: XXH_PROCESS1; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 1: XXH_PROCESS1; - XXH_FALLTHROUGH; + XXH_FALLTHROUGH; /* fallthrough */ case 0: return XXH32_avalanche(hash); } XXH_ASSERT(0); @@ -2325,7 +3064,7 @@ XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) { -#if 0 +#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH32_state_t state; XXH32_reset(&state, seed); @@ -2344,6 +3083,7 @@ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t s /******* Hash streaming *******/ +#ifndef XXH_NO_STREAM /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) { @@ -2448,24 +3188,11 @@ XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); } - +#endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ -/*! - * @ingroup XXH32_family - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * - * The canonical representation uses big endian convention, the same convention - * as human-readable numbers (large digits first). - * - * This way, hash values can be written into a file or buffer, remaining - * comparable across different systems. - * - * The following functions allow transformation of hash values to and from their - * canonical format. - */ +/*! @ingroup XXH32_family */ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); @@ -2532,7 +3259,7 @@ static xxh_u64 XXH_read64(const void* ptr) /* * Portable and safe solution. Generally efficient. - * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html + * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html */ static xxh_u64 XXH_read64(const void* memPtr) { @@ -2765,9 +3492,9 @@ XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment /*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) +XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) { -#if 0 +#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH64_state_t state; XXH64_reset(&state, seed); @@ -2785,7 +3512,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t s } /******* Hash Streaming *******/ - +#ifndef XXH_NO_STREAM /*! @ingroup XXH64_family*/ XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) { @@ -2799,13 +3526,13 @@ XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) } /*! @ingroup XXH64_family */ -XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) +XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) { XXH_memcpy(dstState, srcState, sizeof(*dstState)); } /*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) +XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) { XXH_ASSERT(statePtr != NULL); memset(statePtr, 0, sizeof(*statePtr)); @@ -2818,7 +3545,7 @@ XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t s /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH_errorcode -XXH64_update (XXH64_state_t* state, const void* input, size_t len) +XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) { if (input==NULL) { XXH_ASSERT(len == 0); @@ -2869,7 +3596,7 @@ XXH64_update (XXH64_state_t* state, const void* input, size_t len) /*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state) +XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) { xxh_u64 h64; @@ -2887,12 +3614,12 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state) return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); } - +#endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ /*! @ingroup XXH64_family */ -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); @@ -2900,7 +3627,7 @@ XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t } /*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) +XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) { return XXH_readBE64(src); } @@ -2921,11 +3648,19 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src /* === Compiler specifics === */ #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ -# define XXH_RESTRICT /* disable */ +# define XXH_RESTRICT /* disable */ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ # define XXH_RESTRICT restrict +#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \ + || (defined (__clang__)) \ + || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \ + || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)) +/* + * There are a LOT more compilers that recognize __restrict but this + * covers the major ones. + */ +# define XXH_RESTRICT __restrict #else -/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ # define XXH_RESTRICT /* disable */ #endif @@ -2939,10 +3674,26 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src # define XXH_unlikely(x) (x) #endif +#ifndef XXH_HAS_INCLUDE +# ifdef __has_include +/* + * Not defined as XXH_HAS_INCLUDE(x) (function-like) because + * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion) + */ +# define XXH_HAS_INCLUDE __has_include +# else +# define XXH_HAS_INCLUDE(x) 0 +# endif +#endif + #if defined(__GNUC__) || defined(__clang__) +# if defined(__ARM_FEATURE_SVE) +# include +# endif # if defined(__ARM_NEON__) || defined(__ARM_NEON) \ - || defined(__aarch64__) || defined(_M_ARM) \ - || defined(_M_ARM64) || defined(_M_ARM64EC) + || (defined(_M_ARM) && _M_ARM >= 7) \ + || defined(_M_ARM64) || defined(_M_ARM64EC) \ + || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE()) /* WASM SIMD128 via SIMDe */ # define inline __inline__ /* circumvent a clang bug */ # include # undef inline @@ -3053,7 +3804,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src * Note that these are actually implemented as macros. * * If this is not defined, it is detected automatically. - * @ref XXH_X86DISPATCH overrides this. + * internal macro XXH_X86DISPATCH overrides this. */ enum XXH_VECTOR_TYPE /* fake enum */ { XXH_SCALAR = 0, /*!< Portable scalar version */ @@ -3065,14 +3816,19 @@ enum XXH_VECTOR_TYPE /* fake enum */ { */ XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ - XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */ + XXH_NEON = 4, /*!< + * NEON for most ARMv7-A, all AArch64, and WASM SIMD128 + * via the SIMDeverywhere polyfill provided with the + * Emscripten SDK. + */ XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ + XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ }; /*! * @ingroup tuning * @brief Selects the minimum alignment for XXH3's accumulators. * - * When using SIMD, this should match the alignment reqired for said vector + * When using SIMD, this should match the alignment required for said vector * type, so, for example, 32 for AVX2. * * Default: Auto detected. @@ -3088,12 +3844,16 @@ enum XXH_VECTOR_TYPE /* fake enum */ { # define XXH_AVX512 3 # define XXH_NEON 4 # define XXH_VSX 5 +# define XXH_SVE 6 #endif #ifndef XXH_VECTOR /* can be defined on command line */ -# if ( \ +# if defined(__ARM_FEATURE_SVE) +# define XXH_VECTOR XXH_SVE +# elif ( \ defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ + || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE()) /* wasm simd128 via SIMDe */ \ ) && ( \ defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ @@ -3114,6 +3874,17 @@ enum XXH_VECTOR_TYPE /* fake enum */ { # endif #endif +/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ +#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) +# ifdef _MSC_VER +# pragma warning(once : 4606) +# else +# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." +# endif +# undef XXH_VECTOR +# define XXH_VECTOR XXH_SCALAR +#endif + /* * Controls the alignment of the accumulator, * for compatibility with aligned vector loads, which are usually faster. @@ -3133,16 +3904,26 @@ enum XXH_VECTOR_TYPE /* fake enum */ { # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ # define XXH_ACC_ALIGN 64 +# elif XXH_VECTOR == XXH_SVE /* sve */ +# define XXH_ACC_ALIGN 64 # endif #endif #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 # define XXH_SEC_ALIGN XXH_ACC_ALIGN +#elif XXH_VECTOR == XXH_SVE +# define XXH_SEC_ALIGN XXH_ACC_ALIGN #else # define XXH_SEC_ALIGN 8 #endif +#if defined(__GNUC__) || defined(__clang__) +# define XXH_ALIASING __attribute__((may_alias)) +#else +# define XXH_ALIASING /* nothing */ +#endif + /* * UGLY HACK: * GCC usually generates the best code with -O3 for xxHash. @@ -3166,112 +3947,21 @@ enum XXH_VECTOR_TYPE /* fake enum */ { */ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ + && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ # pragma GCC push_options # pragma GCC optimize("-O2") #endif - #if XXH_VECTOR == XXH_NEON + /* - * NEON's setup for vmlal_u32 is a little more complicated than it is on - * SSE2, AVX2, and VSX. - * - * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. - * - * To do the same operation, the 128-bit 'Q' register needs to be split into - * two 64-bit 'D' registers, performing this operation:: - * - * [ a | b ] - * | '---------. .--------' | - * | x | - * | .---------' '--------. | - * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] - * - * Due to significant changes in aarch64, the fastest method for aarch64 is - * completely different than the fastest method for ARMv7-A. - * - * ARMv7-A treats D registers as unions overlaying Q registers, so modifying - * D11 will modify the high half of Q5. This is similar to how modifying AH - * will only affect bits 8-15 of AX on x86. - * - * VZIP takes two registers, and puts even lanes in one register and odd lanes - * in the other. - * - * On ARMv7-A, this strangely modifies both parameters in place instead of - * taking the usual 3-operand form. - * - * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the - * lower and upper halves of the Q register to end up with the high and low - * halves where we want - all in one instruction. - * - * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } - * - * Unfortunately we need inline assembly for this: Instructions modifying two - * registers at once is not possible in GCC or Clang's IR, and they have to - * create a copy. + * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3 + * optimizes out the entire hashLong loop because of the aliasing violation. * - * aarch64 requires a different approach. - * - * In order to make it easier to write a decent compiler for aarch64, many - * quirks were removed, such as conditional execution. - * - * NEON was also affected by this. - * - * aarch64 cannot access the high bits of a Q-form register, and writes to a - * D-form register zero the high bits, similar to how writes to W-form scalar - * registers (or DWORD registers on x86_64) work. - * - * The formerly free vget_high intrinsics now require a vext (with a few - * exceptions) - * - * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent - * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one - * operand. - * - * The equivalent of the VZIP.32 on the lower and upper halves would be this - * mess: - * - * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } - * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } - * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } - * - * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): - * - * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); - * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); - * - * This is available on ARMv7-A, but is less efficient than a single VZIP.32. - */ - -/*! - * Function-like macro: - * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) - * { - * outLo = (uint32x2_t)(in & 0xFFFFFFFF); - * outHi = (uint32x2_t)(in >> 32); - * in = UNDEFINED; - * } + * However, GCC is also inefficient at load-store optimization with vld1q/vst1q, + * so the only option is to mark it as aliasing. */ -# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ - && (defined(__GNUC__) || defined(__clang__)) \ - && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM)) -# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ - do { \ - /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ - /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ - /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ - __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ - (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ - (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ - } while (0) -# else -# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ - do { \ - (outLo) = vmovn_u64 (in); \ - (outHi) = vshrn_n_u64 ((in), 32); \ - } while (0) -# endif +typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; /*! * @internal @@ -3289,7 +3979,7 @@ enum XXH_VECTOR_TYPE /* fake enum */ { #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ { - return *(uint64x2_t const*)ptr; + return *(xxh_aliasing_uint64x2_t const *)ptr; } #else XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) @@ -3297,46 +3987,86 @@ XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); } #endif + +/*! + * @internal + * @brief `vmlal_u32` on low and high halves of a vector. + * + * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with + * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32` + * with `vmlal_u32`. + */ +#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11 +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + /* Inline assembly is the only way */ + __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs)); + return acc; +} +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + /* This intrinsic works as expected */ + return vmlal_high_u32(acc, lhs, rhs); +} +#else +/* Portable intrinsic versions */ +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs)); +} +/*! @copydoc XXH_vmlal_low_u32 + * Assume the compiler converts this to vmlal_high_u32 on aarch64 */ +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs)); +} +#endif + /*! * @ingroup tuning * @brief Controls the NEON to scalar ratio for XXH3 * - * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and - * 2 lanes on scalar by default. + * This can be set to 2, 4, 6, or 8. * - * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the - * emulated 64-bit arithmetic is too slow. + * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used. * - * Modern ARM CPUs are _very_ sensitive to how their pipelines are used. + * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those + * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU + * bandwidth. * - * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't - * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions, - * you are only using 2/3 of the CPU bandwidth. - * - * This is even more noticable on the more advanced cores like the A76 which + * This is even more noticeable on the more advanced cores like the Cortex-A76 which * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. * - * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the - * remaining lanes will use scalar instructions. This improves the bandwidth - * and also gives the integer pipelines something to do besides twiddling loop - * counters and pointers. + * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes + * and 2 scalar lanes, which is chosen by default. + * + * This does not apply to Apple processors or 32-bit processors, which run better with + * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes. * * This change benefits CPUs with large micro-op buffers without negatively affecting - * other CPUs: + * most other CPUs: * * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | * |:----------------------|:--------------------|----------:|-----------:|------:| * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | + * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | * * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. * + * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning + * it effectively becomes worse 4. + * * @see XXH3_accumulate_512_neon() */ # ifndef XXH3_NEON_LANES # if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ - && !defined(__OPTIMIZE_SIZE__) + && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 # define XXH3_NEON_LANES 6 # else # define XXH3_NEON_LANES XXH_ACC_NB @@ -3353,27 +4083,42 @@ XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) * inconsistent intrinsics, spotty coverage, and multiple endiannesses. */ #if XXH_VECTOR == XXH_VSX +/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, + * and `pixel`. This is a problem for obvious reasons. + * + * These keywords are unnecessary; the spec literally says they are + * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd + * after including the header. + * + * We use pragma push_macro/pop_macro to keep the namespace clean. */ +# pragma push_macro("bool") +# pragma push_macro("vector") +# pragma push_macro("pixel") +/* silence potential macro redefined warnings */ +# undef bool +# undef vector +# undef pixel + # if defined(__s390x__) # include # else -/* gcc's altivec.h can have the unwanted consequence to unconditionally - * #define bool, vector, and pixel keywords, - * with bad consequences for programs already using these keywords for other purposes. - * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. - * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, - * but it seems that, in some cases, it isn't. - * Force the build macro to be defined, so that keywords are not altered. - */ -# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) -# define __APPLE_ALTIVEC__ -# endif # include # endif +/* Restore the original macro values, if applicable. */ +# pragma pop_macro("pixel") +# pragma pop_macro("vector") +# pragma pop_macro("bool") + typedef __vector unsigned long long xxh_u64x2; typedef __vector unsigned char xxh_u8x16; typedef __vector unsigned xxh_u32x4; +/* + * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue. + */ +typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING; + # ifndef XXH_VSX_BE # if defined(__BIG_ENDIAN__) \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) @@ -3425,8 +4170,9 @@ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) /* s390x is always big endian, no issue on this platform */ # define XXH_vec_mulo vec_mulo # define XXH_vec_mule vec_mule -# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) +# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ + /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ # define XXH_vec_mulo __builtin_altivec_vmulouw # define XXH_vec_mule __builtin_altivec_vmuleuw # else @@ -3447,13 +4193,28 @@ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) # endif /* XXH_vec_mulo, XXH_vec_mule */ #endif /* XXH_VECTOR == XXH_VSX */ +#if XXH_VECTOR == XXH_SVE +#define ACCRND(acc, offset) \ +do { \ + svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ + svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ + svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ + svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ + svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ + svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ + svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ + acc = svadd_u64_x(mask, acc, mul); \ +} while (0) +#endif /* XXH_VECTOR == XXH_SVE */ /* prefetch * can be disabled, by declaring XXH_NO_PREFETCH build macro */ #if defined(XXH_NO_PREFETCH) # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ #else -# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ +# if XXH_SIZE_OPT >= 1 +# define XXH_PREFETCH(ptr) (void)(ptr) +# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ # include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) @@ -3490,6 +4251,8 @@ XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, }; +static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */ +static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */ #ifdef XXH_OLD_NAMES # define kSecret XXH3_kSecret @@ -3694,7 +4457,7 @@ XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) { h64 = XXH_xorshift64(h64, 37); - h64 *= 0x165667919E3779F9ULL; + h64 *= PRIME_MX1; h64 = XXH_xorshift64(h64, 32); return h64; } @@ -3708,9 +4471,9 @@ static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) { /* this mix is inspired by Pelle Evensen's rrmxmx */ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); - h64 *= 0x9FB21C651E98DF25ULL; + h64 *= PRIME_MX2; h64 ^= (h64 >> 35) + len ; - h64 *= 0x9FB21C651E98DF25ULL; + h64 *= PRIME_MX2; return XXH_xorshift64(h64, 28); } @@ -3882,6 +4645,14 @@ XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, XXH_ASSERT(16 < len && len <= 128); { xxh_u64 acc = len * XXH_PRIME64_1; +#if XXH_SIZE_OPT >= 1 + /* Smaller and cleaner, but slightly slower. */ + unsigned int i = (unsigned int)(len - 1) / 32; + do { + acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); + acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); + } while (i-- != 0); +#else if (len > 32) { if (len > 64) { if (len > 96) { @@ -3896,11 +4667,14 @@ XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, } acc += XXH3_mix16B(input+0, secret+0, seed); acc += XXH3_mix16B(input+len-16, secret+16, seed); - +#endif return XXH3_avalanche(acc); } } +/*! + * @brief Maximum size of "short" key in bytes. + */ #define XXH3_MIDSIZE_MAX 240 XXH_NO_INLINE XXH_PUREF XXH64_hash_t @@ -3915,13 +4689,17 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, #define XXH3_MIDSIZE_LASTOFFSET 17 { xxh_u64 acc = len * XXH_PRIME64_1; - int const nbRounds = (int)len / 16; - int i; + xxh_u64 acc_end; + unsigned int const nbRounds = (unsigned int)len / 16; + unsigned int i; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); for (i=0; i<8; i++) { acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); } - acc = XXH3_avalanche(acc); + /* last bytes */ + acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); XXH_ASSERT(nbRounds >= 8); + acc = XXH3_avalanche(acc); #if defined(__clang__) /* Clang */ \ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ @@ -3948,11 +4726,13 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, #pragma clang loop vectorize(disable) #endif for (i=8 ; i < nbRounds; i++) { - acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); + /* + * Prevents clang for unrolling the acc loop and interleaving with this one. + */ + XXH_COMPILER_GUARD(acc); + acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); } - /* last bytes */ - acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); - return XXH3_avalanche(acc); + return XXH3_avalanche(acc + acc_end); } } @@ -3968,6 +4748,47 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, # define ACC_NB XXH_ACC_NB #endif +#ifndef XXH_PREFETCH_DIST +# ifdef __clang__ +# define XXH_PREFETCH_DIST 320 +# else +# if (XXH_VECTOR == XXH_AVX512) +# define XXH_PREFETCH_DIST 512 +# else +# define XXH_PREFETCH_DIST 384 +# endif +# endif /* __clang__ */ +#endif /* XXH_PREFETCH_DIST */ + +/* + * These macros are to generate an XXH3_accumulate() function. + * The two arguments select the name suffix and target attribute. + * + * The name of this symbol is XXH3_accumulate_() and it calls + * XXH3_accumulate_512_(). + * + * It may be useful to hand implement this function if the compiler fails to + * optimize the inline function. + */ +#define XXH3_ACCUMULATE_TEMPLATE(name) \ +void \ +XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ + const xxh_u8* XXH_RESTRICT input, \ + const xxh_u8* XXH_RESTRICT secret, \ + size_t nbStripes) \ +{ \ + size_t n; \ + for (n = 0; n < nbStripes; n++ ) { \ + const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ + XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ + XXH3_accumulate_512_##name( \ + acc, \ + in, \ + secret + n*XXH_SECRET_CONSUME_RATE); \ + } \ +} + + XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) { if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); @@ -4036,7 +4857,7 @@ XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, /* data_key = data_vec ^ key_vec; */ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ - __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); + __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); /* xacc[0] += swap(data_vec); */ @@ -4046,6 +4867,7 @@ XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, *xacc = _mm512_add_epi64(product, sum); } } +XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) /* * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. @@ -4079,13 +4901,12 @@ XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) /* xacc[0] ^= (xacc[0] >> 47) */ __m512i const acc_vec = *xacc; __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); - __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); /* xacc[0] ^= secret; */ __m512i const key_vec = _mm512_loadu_si512 (secret); - __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); + __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); /* xacc[0] *= XXH_PRIME32_1; */ - __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); + __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); @@ -4100,7 +4921,8 @@ XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) XXH_ASSERT(((size_t)customSecret & 63) == 0); (void)(&XXH_writeLE64); { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); - __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64)); + __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); + __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); __m512i* const dest = ( __m512i*) customSecret; @@ -4108,14 +4930,7 @@ XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ XXH_ASSERT(((size_t)dest & 63) == 0); for (i=0; i < nbRounds; ++i) { - /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', - * this will warn "discards 'const' qualifier". */ - union { - const __m512i* cp; - void* p; - } remote_const_void; - remote_const_void.cp = src + i; - dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); + dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); } } } @@ -4151,7 +4966,7 @@ XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, /* data_key = data_vec ^ key_vec; */ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ - __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); /* xacc[i] += swap(data_vec); */ @@ -4161,6 +4976,7 @@ XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, xacc[i] = _mm256_add_epi64(product, sum); } } } +XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) @@ -4183,7 +4999,7 @@ XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* xacc[i] *= XXH_PRIME32_1; */ - __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); @@ -4215,12 +5031,12 @@ XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTR XXH_ASSERT(((size_t)dest & 31) == 0); /* GCC -O2 need unroll loop manually */ - dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); - dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); - dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); - dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); - dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); - dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); + dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); + dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); + dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); + dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); + dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); + dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); } } @@ -4267,6 +5083,7 @@ XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, xacc[i] = _mm_add_epi64(product, sum); } } } +XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) @@ -4345,14 +5162,28 @@ XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, /*! * @internal - * @brief The bulk processing loop for NEON. + * @brief The bulk processing loop for NEON and WASM SIMD128. * * The NEON code path is actually partially scalar when running on AArch64. This * is to optimize the pipelining and can have up to 15% speedup depending on the * CPU, and it also mitigates some GCC codegen issues. * * @see XXH3_NEON_LANES for configuring this and details about this optimization. + * + * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit + * integers instead of the other platforms which mask full 64-bit vectors, + * so the setup is more complicated than just shifting right. + * + * Additionally, there is an optimization for 4 lanes at once noted below. + * + * Since, as stated, the most optimal amount of lanes for Cortexes is 6, + * there needs to be *three* versions of the accumulate operation used + * for the remaining 2 lanes. + * + * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap + * nearly perfectly. */ + XXH_FORCE_INLINE void XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, @@ -4360,53 +5191,144 @@ XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, { XXH_ASSERT((((size_t)acc) & 15) == 0); XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); - { - uint64x2_t* const xacc = (uint64x2_t *) acc; + { /* GCC for darwin arm64 does not like aliasing here */ + xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc; /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ - uint8_t const* const xinput = (const uint8_t *) input; - uint8_t const* const xsecret = (const uint8_t *) secret; + uint8_t const* xinput = (const uint8_t *) input; + uint8_t const* xsecret = (const uint8_t *) secret; size_t i; - /* AArch64 uses both scalar and neon at the same time */ +#ifdef __wasm_simd128__ + /* + * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret + * is constant propagated, which results in it converting it to this + * inside the loop: + * + * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0) + * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0) + * ... + * + * This requires a full 32-bit address immediate (and therefore a 6 byte + * instruction) as well as an add for each offset. + * + * Putting an asm guard prevents it from folding (at the cost of losing + * the alignment hint), and uses the free offset in `v128.load` instead + * of adding secret_offset each time which overall reduces code size by + * about a kilobyte and improves performance. + */ + XXH_COMPILER_GUARD(xsecret); +#endif + /* Scalar lanes use the normal scalarRound routine */ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { XXH3_scalarRound(acc, input, secret, i); } - for (i=0; i < XXH3_NEON_LANES / 2; i++) { - uint64x2_t acc_vec = xacc[i]; + i = 0; + /* 4 NEON lanes at a time. */ + for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { + /* data_vec = xinput[i]; */ + uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16)); + uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); + /* key_vec = xsecret[i]; */ + uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16)); + uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); + /* data_swap = swap(data_vec) */ + uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); + uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); + /* data_key = data_vec ^ key_vec; */ + uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); + uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); + + /* + * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a + * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to + * get one vector with the low 32 bits of each lane, and one vector + * with the high 32 bits of each lane. + * + * The intrinsic returns a double vector because the original ARMv7-a + * instruction modified both arguments in place. AArch64 and SIMD128 emit + * two instructions from this intrinsic. + * + * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] + * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] + */ + uint32x4x2_t unzipped = vuzpq_u32( + vreinterpretq_u32_u64(data_key_1), + vreinterpretq_u32_u64(data_key_2) + ); + /* data_key_lo = data_key & 0xFFFFFFFF */ + uint32x4_t data_key_lo = unzipped.val[0]; + /* data_key_hi = data_key >> 32 */ + uint32x4_t data_key_hi = unzipped.val[1]; + /* + * Then, we can split the vectors horizontally and multiply which, as for most + * widening intrinsics, have a variant that works on both high half vectors + * for free on AArch64. A similar instruction is available on SIMD128. + * + * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi + */ + uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi); + uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi); + /* + * Clang reorders + * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s + * c += a; // add acc.2d, acc.2d, swap.2d + * to + * c += a; // add acc.2d, acc.2d, swap.2d + * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s + * + * While it would make sense in theory since the addition is faster, + * for reasons likely related to umlal being limited to certain NEON + * pipelines, this is worse. A compiler guard fixes this. + */ + XXH_COMPILER_GUARD_CLANG_NEON(sum_1); + XXH_COMPILER_GUARD_CLANG_NEON(sum_2); + /* xacc[i] = acc_vec + sum; */ + xacc[i] = vaddq_u64(xacc[i], sum_1); + xacc[i+1] = vaddq_u64(xacc[i+1], sum_2); + } + /* Operate on the remaining NEON lanes 2 at a time. */ + for (; i < XXH3_NEON_LANES / 2; i++) { /* data_vec = xinput[i]; */ uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); /* key_vec = xsecret[i]; */ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); - uint64x2_t data_key; - uint32x2_t data_key_lo, data_key_hi; /* acc_vec_2 = swap(data_vec) */ - uint64x2_t acc_vec_2 = vextq_u64(data_vec, data_vec, 1); + uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1); /* data_key = data_vec ^ key_vec; */ - data_key = veorq_u64(data_vec, key_vec); - /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); - * data_key_hi = (uint32x2_t) (data_key >> 32); - * data_key = UNDEFINED; */ - XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); - /* acc_vec_2 += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ - acc_vec_2 = vmlal_u32 (acc_vec_2, data_key_lo, data_key_hi); - /* xacc[i] += acc_vec_2; */ - acc_vec = vaddq_u64 (acc_vec, acc_vec_2); - xacc[i] = acc_vec; + uint64x2_t data_key = veorq_u64(data_vec, key_vec); + /* For two lanes, just use VMOVN and VSHRN. */ + /* data_key_lo = data_key & 0xFFFFFFFF; */ + uint32x2_t data_key_lo = vmovn_u64(data_key); + /* data_key_hi = data_key >> 32; */ + uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32); + /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */ + uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi); + /* Same Clang workaround as before */ + XXH_COMPILER_GUARD_CLANG_NEON(sum); + /* xacc[i] = acc_vec + sum; */ + xacc[i] = vaddq_u64 (xacc[i], sum); } - } } +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); - { uint64x2_t* xacc = (uint64x2_t*) acc; + { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc; uint8_t const* xsecret = (uint8_t const*) secret; - uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); size_t i; + /* WASM uses operator overloads and doesn't need these. */ +#ifndef __wasm_simd128__ + /* { prime32_1, prime32_1 } */ + uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1); + /* { 0, prime32_1, 0, prime32_1 } */ + uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32)); +#endif + /* AArch64 uses both scalar and neon at the same time */ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { XXH3_scalarScrambleRound(acc, secret, i); @@ -4414,47 +5336,37 @@ XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) for (i=0; i < XXH3_NEON_LANES / 2; i++) { /* xacc[i] ^= (xacc[i] >> 47); */ uint64x2_t acc_vec = xacc[i]; - uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); - uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); + uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); + uint64x2_t data_vec = veorq_u64(acc_vec, shifted); /* xacc[i] ^= xsecret[i]; */ - uint64x2_t key_vec = XXH_vld1q_u64 (xsecret + (i * 16)); - uint64x2_t data_key = veorq_u64 (data_vec, key_vec); - + uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); + uint64x2_t data_key = veorq_u64(data_vec, key_vec); /* xacc[i] *= XXH_PRIME32_1 */ - uint32x2_t data_key_lo, data_key_hi; - /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); - * data_key_hi = (uint32x2_t) (xacc[i] >> 32); - * xacc[i] = UNDEFINED; */ - XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); - { /* - * prod_hi = (data_key >> 32) * XXH_PRIME32_1; - * - * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will - * incorrectly "optimize" this: - * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); - * shifted = vshll_n_u32(tmp, 32); - * to this: - * tmp = "vmulq_u64"(a, b); // no such thing! - * shifted = vshlq_n_u64(tmp, 32); - * - * However, unlike SSE, Clang lacks a 64-bit multiply routine - * for NEON, and it scalarizes two 64-bit multiplies instead. - * - * vmull_u32 has the same timing as vmul_u32, and it avoids - * this bug completely. - * See https://bugs.llvm.org/show_bug.cgi?id=39967 - */ - uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); - /* xacc[i] = prod_hi << 32; */ - prod_hi = vshlq_n_u64(prod_hi, 32); - /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ - xacc[i] = vmlal_u32(prod_hi, data_key_lo, prime); - } +#ifdef __wasm_simd128__ + /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */ + xacc[i] = data_key * XXH_PRIME32_1; +#else + /* + * Expanded version with portable NEON intrinsics + * + * lo(x) * lo(y) + (hi(x) * lo(y) << 32) + * + * prod_hi = hi(data_key) * lo(prime) << 32 + * + * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector + * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits + * and avoid the shift. + */ + uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi); + /* Extract low bits for vmlal_u32 */ + uint32x2_t data_key_lo = vmovn_u64(data_key); + /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ + xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); +#endif } } } - #endif #if (XXH_VECTOR == XXH_VSX) @@ -4465,23 +5377,23 @@ XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { /* presumed aligned */ - unsigned int* const xacc = (unsigned int*) acc; - xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ - xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ + xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; + xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */ + xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */ xxh_u64x2 const v32 = { 32, 32 }; size_t i; for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { /* data_vec = xinput[i]; */ - xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); + xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i); /* key_vec = xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* shuffled = (data_key << 32) | (data_key >> 32); */ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); /* acc_vec = xacc[i]; */ - xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i); + xxh_u64x2 acc_vec = xacc[i]; acc_vec += product; /* swap high and low halves */ @@ -4490,18 +5402,18 @@ XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, #else acc_vec += vec_xxpermdi(data_vec, data_vec, 2); #endif - /* xacc[i] = acc_vec; */ - vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i); + xacc[i] = acc_vec; } } +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); - { xxh_u64x2* const xacc = (xxh_u64x2*) acc; - const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; + { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; + const xxh_u8* const xsecret = (const xxh_u8*) secret; /* constants */ xxh_u64x2 const v32 = { 32, 32 }; xxh_u64x2 const v47 = { 47, 47 }; @@ -4513,7 +5425,7 @@ XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); /* xacc[i] ^= xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* xacc[i] *= XXH_PRIME32_1 */ @@ -4527,8 +5439,148 @@ XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) #endif +#if (XXH_VECTOR == XXH_SVE) + +XXH_FORCE_INLINE void +XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + uint64_t *xacc = (uint64_t *)acc; + const uint64_t *xinput = (const uint64_t *)(const void *)input; + const uint64_t *xsecret = (const uint64_t *)(const void *)secret; + svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); + uint64_t element_count = svcntd(); + if (element_count >= 8) { + svbool_t mask = svptrue_pat_b64(SV_VL8); + svuint64_t vacc = svld1_u64(mask, xacc); + ACCRND(vacc, 0); + svst1_u64(mask, xacc, vacc); + } else if (element_count == 2) { /* sve128 */ + svbool_t mask = svptrue_pat_b64(SV_VL2); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 2); + svuint64_t acc2 = svld1_u64(mask, xacc + 4); + svuint64_t acc3 = svld1_u64(mask, xacc + 6); + ACCRND(acc0, 0); + ACCRND(acc1, 2); + ACCRND(acc2, 4); + ACCRND(acc3, 6); + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 2, acc1); + svst1_u64(mask, xacc + 4, acc2); + svst1_u64(mask, xacc + 6, acc3); + } else { + svbool_t mask = svptrue_pat_b64(SV_VL4); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 4); + ACCRND(acc0, 0); + ACCRND(acc1, 4); + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 4, acc1); + } +} + +XXH_FORCE_INLINE void +XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, + const xxh_u8* XXH_RESTRICT input, + const xxh_u8* XXH_RESTRICT secret, + size_t nbStripes) +{ + if (nbStripes != 0) { + uint64_t *xacc = (uint64_t *)acc; + const uint64_t *xinput = (const uint64_t *)(const void *)input; + const uint64_t *xsecret = (const uint64_t *)(const void *)secret; + svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); + uint64_t element_count = svcntd(); + if (element_count >= 8) { + svbool_t mask = svptrue_pat_b64(SV_VL8); + svuint64_t vacc = svld1_u64(mask, xacc + 0); + do { + /* svprfd(svbool_t, void *, enum svfprop); */ + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(vacc, 0); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, vacc); + } else if (element_count == 2) { /* sve128 */ + svbool_t mask = svptrue_pat_b64(SV_VL2); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 2); + svuint64_t acc2 = svld1_u64(mask, xacc + 4); + svuint64_t acc3 = svld1_u64(mask, xacc + 6); + do { + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(acc0, 0); + ACCRND(acc1, 2); + ACCRND(acc2, 4); + ACCRND(acc3, 6); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 2, acc1); + svst1_u64(mask, xacc + 4, acc2); + svst1_u64(mask, xacc + 6, acc3); + } else { + svbool_t mask = svptrue_pat_b64(SV_VL4); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 4); + do { + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(acc0, 0); + ACCRND(acc1, 4); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 4, acc1); + } + } +} + +#endif + /* scalar variants - universal */ +#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__)) +/* + * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they + * emit an excess mask and a full 64-bit multiply-add (MADD X-form). + * + * While this might not seem like much, as AArch64 is a 64-bit architecture, only + * big Cortex designs have a full 64-bit multiplier. + * + * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit + * multiplies expand to 2-3 multiplies in microcode. This has a major penalty + * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline. + * + * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does + * not have this penalty and does the mask automatically. + */ +XXH_FORCE_INLINE xxh_u64 +XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) +{ + xxh_u64 ret; + /* note: %x = 64-bit register, %w = 32-bit register */ + __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc)); + return ret; +} +#else +XXH_FORCE_INLINE xxh_u64 +XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) +{ + return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc; +} +#endif + /*! * @internal * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). @@ -4551,7 +5603,7 @@ XXH3_scalarRound(void* XXH_RESTRICT acc, xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ - xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); + xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]); } } @@ -4569,13 +5621,14 @@ XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, #if defined(__GNUC__) && !defined(__clang__) \ && (defined(__arm__) || defined(__thumb2__)) \ && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ - && !defined(__OPTIMIZE_SIZE__) + && XXH_SIZE_OPT <= 0 # pragma GCC unroll 8 #endif for (i=0; i < XXH_ACC_NB; i++) { XXH3_scalarRound(acc, input, secret, i); } } +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) /*! * @internal @@ -4627,10 +5680,10 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) const xxh_u8* kSecretPtr = XXH3_kSecret; XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); -#if defined(__clang__) && defined(__aarch64__) +#if defined(__GNUC__) && defined(__aarch64__) /* * UGLY HACK: - * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are + * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are * placed sequentially, in order, at the top of the unrolled loop. * * While MOVK is great for generating constants (2 cycles for a 64-bit @@ -4645,7 +5698,7 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) * ADD * SUB STR * STR - * By forcing loads from memory (as the asm line causes Clang to assume + * By forcing loads from memory (as the asm line causes the compiler to assume * that XXH3_kSecretPtr has been changed), the pipelines are used more * efficiently: * I L S @@ -4662,17 +5715,11 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) */ XXH_COMPILER_GUARD(kSecretPtr); #endif - /* - * Note: in debug mode, this overrides the asm optimization - * and Clang will emit MOVK chains again. - */ - XXH_ASSERT(kSecretPtr == XXH3_kSecret); - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; int i; for (i=0; i < nbRounds; i++) { /* - * The asm hack causes Clang to assume that kSecretPtr aliases with + * The asm hack causes the compiler to assume that kSecretPtr aliases with * customSecret, and on aarch64, this prevented LDP from merging two * loads together for free. Putting the loads together before the stores * properly generates LDP. @@ -4685,7 +5732,7 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) } -typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); +typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); @@ -4693,82 +5740,63 @@ typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); #if (XXH_VECTOR == XXH_AVX512) #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 +#define XXH3_accumulate XXH3_accumulate_avx512 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 #elif (XXH_VECTOR == XXH_AVX2) #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 +#define XXH3_accumulate XXH3_accumulate_avx2 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 #elif (XXH_VECTOR == XXH_SSE2) #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 +#define XXH3_accumulate XXH3_accumulate_sse2 #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 #elif (XXH_VECTOR == XXH_NEON) #define XXH3_accumulate_512 XXH3_accumulate_512_neon +#define XXH3_accumulate XXH3_accumulate_neon #define XXH3_scrambleAcc XXH3_scrambleAcc_neon #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #elif (XXH_VECTOR == XXH_VSX) #define XXH3_accumulate_512 XXH3_accumulate_512_vsx +#define XXH3_accumulate XXH3_accumulate_vsx #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar +#elif (XXH_VECTOR == XXH_SVE) +#define XXH3_accumulate_512 XXH3_accumulate_512_sve +#define XXH3_accumulate XXH3_accumulate_sve +#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar +#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + #else /* scalar */ #define XXH3_accumulate_512 XXH3_accumulate_512_scalar +#define XXH3_accumulate XXH3_accumulate_scalar #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #endif - - -#ifndef XXH_PREFETCH_DIST -# ifdef __clang__ -# define XXH_PREFETCH_DIST 320 -# else -# if (XXH_VECTOR == XXH_AVX512) -# define XXH_PREFETCH_DIST 512 -# else -# define XXH_PREFETCH_DIST 384 -# endif -# endif /* __clang__ */ -#endif /* XXH_PREFETCH_DIST */ - -/* - * XXH3_accumulate() - * Loops over XXH3_accumulate_512(). - * Assumption: nbStripes will not overflow the secret size - */ -XXH_FORCE_INLINE void -XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, - const xxh_u8* XXH_RESTRICT input, - const xxh_u8* XXH_RESTRICT secret, - size_t nbStripes, - XXH3_f_accumulate_512 f_acc512) -{ - size_t n; - for (n = 0; n < nbStripes; n++ ) { - const xxh_u8* const in = input + n*XXH_STRIPE_LEN; - XXH_PREFETCH(in + XXH_PREFETCH_DIST); - f_acc512(acc, - in, - secret + n*XXH_SECRET_CONSUME_RATE); - } -} +#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ +# undef XXH3_initCustomSecret +# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar +#endif XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; @@ -4780,7 +5808,7 @@ XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); for (n = 0; n < nb_blocks; n++) { - XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); + f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); } @@ -4788,12 +5816,12 @@ XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, XXH_ASSERT(len > XXH_STRIPE_LEN); { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); - XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); + f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); /* last stripe */ { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ - f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); + XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); } } } @@ -4838,12 +5866,12 @@ XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secre XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, const void* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); + XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); @@ -4857,13 +5885,15 @@ XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, * It's important for performance to transmit secret's size (when it's static) * so that the compiler can properly optimize the vectorized loop. * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. + * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE + * breaks -Og, this is XXH_NO_INLINE. */ -XXH_FORCE_INLINE XXH64_hash_t +XXH3_WITH_SECRET_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; - return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); + return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); } /* @@ -4877,7 +5907,7 @@ XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; (void)secret; (void)secretLen; - return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); + return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); } /* @@ -4894,18 +5924,20 @@ XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, XXH64_hash_t seed, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble, XXH3_f_initCustomSecret f_initSec) { +#if XXH_SIZE_OPT <= 0 if (seed == 0) return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc512, f_scramble); + f_acc, f_scramble); +#endif { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; f_initSec(secret, seed); return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), - f_acc512, f_scramble); + f_acc, f_scramble); } } @@ -4913,12 +5945,12 @@ XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, * It's important for performance that XXH3_hashLong is not inlined. */ XXH_NO_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSeed(const void* input, size_t len, - XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) +XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)secret; (void)secretLen; return XXH3_hashLong_64b_withSeed_internal(input, len, seed, - XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); + XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); } @@ -4951,27 +5983,27 @@ XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, /* === Public entry point === */ /*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t length) +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) { return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSecret(const void* input, size_t length, const void* secret, size_t secretSize) +XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSeed(const void* input, size_t length, XXH64_hash_t seed) +XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) { return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); } XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSecretandSeed(const void* input, size_t length, const void* secret, size_t secretSize, XXH64_hash_t seed) +XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { if (length <= XXH3_MIDSIZE_MAX) return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); @@ -4980,7 +6012,7 @@ XXH3_64bits_withSecretandSeed(const void* input, size_t length, const void* secr /* === XXH3 streaming === */ - +#ifndef XXH_NO_STREAM /* * Malloc's a pointer that is always aligned to align. * @@ -5047,6 +6079,16 @@ static void XXH_alignedFree(void* p) } } /*! @ingroup XXH3_family */ +/*! + * @brief Allocate an @ref XXH3_state_t. + * + * @return An allocated pointer of @ref XXH3_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH3_freeState(). + * + * @see @ref streaming_example "Streaming Example" + */ XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) { XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); @@ -5056,6 +6098,17 @@ XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) } /*! @ingroup XXH3_family */ +/*! + * @brief Frees an @ref XXH3_state_t. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * + * @return @ref XXH_OK. + * + * @note Must be allocated with XXH3_createState(). + * + * @see @ref streaming_example "Streaming Example" + */ XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) { XXH_alignedFree(statePtr); @@ -5064,7 +6117,7 @@ XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) /*! @ingroup XXH3_family */ XXH_PUBLIC_API void -XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) +XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) { XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); } @@ -5098,7 +6151,7 @@ XXH3_reset_internal(XXH3_state_t* statePtr, /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset(XXH3_state_t* statePtr) +XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) { if (statePtr == NULL) return XXH_ERROR; XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); @@ -5107,7 +6160,7 @@ XXH3_64bits_reset(XXH3_state_t* statePtr) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) +XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) { if (statePtr == NULL) return XXH_ERROR; XXH3_reset_internal(statePtr, 0, secret, secretSize); @@ -5118,7 +6171,7 @@ XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) +XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) { if (statePtr == NULL) return XXH_ERROR; if (seed==0) return XXH3_64bits_reset(statePtr); @@ -5130,7 +6183,7 @@ XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64) +XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) { if (statePtr == NULL) return XXH_ERROR; if (secret == NULL) return XXH_ERROR; @@ -5140,35 +6193,61 @@ XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, return XXH_OK; } -/* Note : when XXH3_consumeStripes() is invoked, - * there must be a guarantee that at least one more byte must be consumed from input - * so that the function can blindly consume all stripes using the "normal" secret segment */ -XXH_FORCE_INLINE void +/*! + * @internal + * @brief Processes a large input for XXH3_update() and XXH3_digest_long(). + * + * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block. + * + * @param acc Pointer to the 8 accumulator lanes + * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block* + * @param nbStripesPerBlock Number of stripes in a block + * @param input Input pointer + * @param nbStripes Number of stripes to process + * @param secret Secret pointer + * @param secretLimit Offset of the last block in @p secret + * @param f_acc Pointer to an XXH3_accumulate implementation + * @param f_scramble Pointer to an XXH3_scrambleAcc implementation + * @return Pointer past the end of @p input after processing + */ +XXH_FORCE_INLINE const xxh_u8 * XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, const xxh_u8* XXH_RESTRICT input, size_t nbStripes, const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { - XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ - XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); - if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { - /* need a scrambling operation */ - size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; - size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; - XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); - f_scramble(acc, secret + secretLimit); - XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); - *nbStripesSoFarPtr = nbStripesAfterBlock; - } else { - XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); + const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE; + /* Process full blocks */ + if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) { + /* Process the initial partial block... */ + size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr; + + do { + /* Accumulate and scramble */ + f_acc(acc, input, initialSecret, nbStripesThisIter); + f_scramble(acc, secret + secretLimit); + input += nbStripesThisIter * XXH_STRIPE_LEN; + nbStripes -= nbStripesThisIter; + /* Then continue the loop with the full block size */ + nbStripesThisIter = nbStripesPerBlock; + initialSecret = secret; + } while (nbStripes >= nbStripesPerBlock); + *nbStripesSoFarPtr = 0; + } + /* Process a partial block */ + if (nbStripes > 0) { + f_acc(acc, input, initialSecret, nbStripes); + input += nbStripes * XXH_STRIPE_LEN; *nbStripesSoFarPtr += nbStripes; } + /* Return end pointer */ + return input; } #ifndef XXH3_STREAM_USE_STACK -# ifndef __clang__ /* clang doesn't need additional stack space */ +# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ # define XXH3_STREAM_USE_STACK 1 # endif #endif @@ -5178,7 +6257,7 @@ XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t* XXH_RESTRICT const state, const xxh_u8* XXH_RESTRICT input, size_t len, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { if (input==NULL) { @@ -5194,7 +6273,8 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state, * when operating accumulators directly into state. * Operating into stack space seems to enable proper optimization. * clang, on the other hand, doesn't seem to need this trick */ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc)); + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; + XXH_memcpy(acc, state->acc, sizeof(acc)); #else xxh_u64* XXH_RESTRICT const acc = state->acc; #endif @@ -5202,7 +6282,7 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state, XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); /* small input : just fill in tmp buffer */ - if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { + if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) { XXH_memcpy(state->buffer + state->bufferedSize, input, len); state->bufferedSize += (XXH32_hash_t)len; return XXH_OK; @@ -5224,57 +6304,20 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state, &state->nbStripesSoFar, state->nbStripesPerBlock, state->buffer, XXH3_INTERNALBUFFER_STRIPES, secret, state->secretLimit, - f_acc512, f_scramble); + f_acc, f_scramble); state->bufferedSize = 0; } XXH_ASSERT(input < bEnd); - - /* large input to consume : ingest per full block */ - if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) { + if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; - XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar); - /* join to current block's end */ - { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar; - XXH_ASSERT(nbStripesToEnd <= nbStripes); - XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512); - f_scramble(acc, secret + state->secretLimit); - state->nbStripesSoFar = 0; - input += nbStripesToEnd * XXH_STRIPE_LEN; - nbStripes -= nbStripesToEnd; - } - /* consume per entire blocks */ - while(nbStripes >= state->nbStripesPerBlock) { - XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512); - f_scramble(acc, secret + state->secretLimit); - input += state->nbStripesPerBlock * XXH_STRIPE_LEN; - nbStripes -= state->nbStripesPerBlock; - } - /* consume last partial block */ - XXH3_accumulate(acc, input, secret, nbStripes, f_acc512); - input += nbStripes * XXH_STRIPE_LEN; - XXH_ASSERT(input < bEnd); /* at least some bytes left */ - state->nbStripesSoFar = nbStripes; - /* buffer predecessor of last partial stripe */ - XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); - XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN); - } else { - /* content to consume <= block size */ - /* Consume input by a multiple of internal buffer size */ - if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { - const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; - do { - XXH3_consumeStripes(acc, + input = XXH3_consumeStripes(acc, &state->nbStripesSoFar, state->nbStripesPerBlock, - input, XXH3_INTERNALBUFFER_STRIPES, - secret, state->secretLimit, - f_acc512, f_scramble); - input += XXH3_INTERNALBUFFER_SIZE; - } while (inputbuffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); - } - } + input, nbStripes, + secret, state->secretLimit, + f_acc, f_scramble); + XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); + } /* Some remaining input (always) : buffer it */ XXH_ASSERT(input < bEnd); XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); @@ -5283,7 +6326,7 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state, state->bufferedSize = (XXH32_hash_t)(bEnd-input); #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 /* save stack accumulators into state */ - memcpy(state->acc, acc, sizeof(acc)); + XXH_memcpy(state->acc, acc, sizeof(acc)); #endif } @@ -5292,10 +6335,10 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state, /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) +XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) { return XXH3_update(state, (const xxh_u8*)input, len, - XXH3_accumulate_512, XXH3_scrambleAcc); + XXH3_accumulate, XXH3_scrambleAcc); } @@ -5304,37 +6347,40 @@ XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, const unsigned char* secret) { + xxh_u8 lastStripe[XXH_STRIPE_LEN]; + const xxh_u8* lastStripePtr; + /* * Digest on a local copy. This way, the state remains unaltered, and it can * continue ingesting more input afterwards. */ XXH_memcpy(acc, state->acc, sizeof(state->acc)); if (state->bufferedSize >= XXH_STRIPE_LEN) { + /* Consume remaining stripes then point to remaining data in buffer */ size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; size_t nbStripesSoFar = state->nbStripesSoFar; XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock, state->buffer, nbStripes, secret, state->secretLimit, - XXH3_accumulate_512, XXH3_scrambleAcc); - /* last stripe */ - XXH3_accumulate_512(acc, - state->buffer + state->bufferedSize - XXH_STRIPE_LEN, - secret + state->secretLimit - XXH_SECRET_LASTACC_START); + XXH3_accumulate, XXH3_scrambleAcc); + lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN; } else { /* bufferedSize < XXH_STRIPE_LEN */ - xxh_u8 lastStripe[XXH_STRIPE_LEN]; + /* Copy to temp buffer */ size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); - XXH3_accumulate_512(acc, - lastStripe, - secret + state->secretLimit - XXH_SECRET_LASTACC_START); + lastStripePtr = lastStripe; } + /* Last stripe */ + XXH3_accumulate_512(acc, + lastStripePtr, + secret + state->secretLimit - XXH_SECRET_LASTACC_START); } /*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) { const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; if (state->totalLen > XXH3_MIDSIZE_MAX) { @@ -5350,7 +6396,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), secret, state->secretLimit + XXH_STRIPE_LEN); } - +#endif /* !XXH_NO_STREAM */ /* ========================================== @@ -5419,7 +6465,7 @@ XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_ m128.low64 ^= (m128.high64 >> 3); m128.low64 = XXH_xorshift64(m128.low64, 35); - m128.low64 *= 0x9FB21C651E98DF25ULL; + m128.low64 *= PRIME_MX2; m128.low64 = XXH_xorshift64(m128.low64, 28); m128.high64 = XXH3_avalanche(m128.high64); return m128; @@ -5543,6 +6589,16 @@ XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, { XXH128_hash_t acc; acc.low64 = len * XXH_PRIME64_1; acc.high64 = 0; + +#if XXH_SIZE_OPT >= 1 + { + /* Smaller, but slightly slower. */ + unsigned int i = (unsigned int)(len - 1) / 32; + do { + acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); + } while (i-- != 0); + } +#else if (len > 32) { if (len > 64) { if (len > 96) { @@ -5553,6 +6609,7 @@ XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); } acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); +#endif { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; h128.high64 = (acc.low64 * XXH_PRIME64_1) @@ -5574,25 +6631,34 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); { XXH128_hash_t acc; - int const nbRounds = (int)len / 32; - int i; + unsigned i; acc.low64 = len * XXH_PRIME64_1; acc.high64 = 0; - for (i=0; i<4; i++) { + /* + * We set as `i` as offset + 32. We do this so that unchanged + * `len` can be used as upper bound. This reaches a sweet spot + * where both x86 and aarch64 get simple agen and good codegen + * for the loop. + */ + for (i = 32; i < 160; i += 32) { acc = XXH128_mix32B(acc, - input + (32 * i), - input + (32 * i) + 16, - secret + (32 * i), + input + i - 32, + input + i - 16, + secret + i - 32, seed); } acc.low64 = XXH3_avalanche(acc.low64); acc.high64 = XXH3_avalanche(acc.high64); - XXH_ASSERT(nbRounds >= 4); - for (i=4 ; i < nbRounds; i++) { + /* + * NB: `i <= len` will duplicate the last 32-bytes if + * len % 32 was zero. This is an unfortunate necessity to keep + * the hash result stable. + */ + for (i=160; i <= len; i += 32) { acc = XXH128_mix32B(acc, - input + (32 * i), - input + (32 * i) + 16, - secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), + input + i - 32, + input + i - 16, + secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed); } /* last bytes */ @@ -5600,7 +6666,7 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, - 0ULL - seed); + (XXH64_hash_t)0 - seed); { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; @@ -5617,12 +6683,12 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); + XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); @@ -5649,38 +6715,41 @@ XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, { (void)seed64; (void)secret; (void)secretLen; return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_accumulate_512, XXH3_scrambleAcc); + XXH3_accumulate, XXH3_scrambleAcc); } /* * It's important for performance to pass @p secretLen (when it's static) * to the compiler, so that it can properly optimize the vectorized loop. + * + * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE + * breaks -Og, this is XXH_NO_INLINE. */ -XXH_FORCE_INLINE XXH128_hash_t +XXH3_WITH_SECRET_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, - XXH3_accumulate_512, XXH3_scrambleAcc); + XXH3_accumulate, XXH3_scrambleAcc); } XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, - XXH3_f_accumulate_512 f_acc512, + XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble, XXH3_f_initCustomSecret f_initSec) { if (seed64 == 0) return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc512, f_scramble); + f_acc, f_scramble); { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; f_initSec(secret, seed64); return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), - f_acc512, f_scramble); + f_acc, f_scramble); } } @@ -5693,7 +6762,7 @@ XXH3_hashLong_128b_withSeed(const void* input, size_t len, { (void)secret; (void)secretLen; return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, - XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); + XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); } typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, @@ -5724,7 +6793,7 @@ XXH3_128bits_internal(const void* input, size_t len, /* === Public XXH128 API === */ /*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) { return XXH3_128bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), @@ -5733,7 +6802,7 @@ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) +XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_128bits_internal(input, len, 0, (const xxh_u8*)secret, secretSize, @@ -5742,7 +6811,7 @@ XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_ /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) +XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), @@ -5751,7 +6820,7 @@ XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) +XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { if (len <= XXH3_MIDSIZE_MAX) return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); @@ -5760,14 +6829,14 @@ XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t -XXH128(const void* input, size_t len, XXH64_hash_t seed) +XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_withSeed(input, len, seed); } /* === XXH3 128-bit streaming === */ - +#ifndef XXH_NO_STREAM /* * All initialization and update functions are identical to 64-bit streaming variant. * The only difference is the finalization routine. @@ -5775,42 +6844,41 @@ XXH128(const void* input, size_t len, XXH64_hash_t seed) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset(XXH3_state_t* statePtr) +XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) { return XXH3_64bits_reset(statePtr); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) +XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) +XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) { return XXH3_64bits_reset_withSeed(statePtr, seed); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed) +XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) +XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) { - return XXH3_update(state, (const xxh_u8*)input, len, - XXH3_accumulate_512, XXH3_scrambleAcc); + return XXH3_64bits_update(state, input, len); } /*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) { const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; if (state->totalLen > XXH3_MIDSIZE_MAX) { @@ -5834,7 +6902,7 @@ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), secret, state->secretLimit + XXH_STRIPE_LEN); } - +#endif /* !XXH_NO_STREAM */ /* 128-bit utility functions */ #include /* memcmp, memcpy */ @@ -5852,7 +6920,7 @@ XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) * <0 if *h128_1 < *h128_2 * =0 if *h128_1 == *h128_2 */ /*! @ingroup XXH3_family */ -XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) +XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) { XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; @@ -5866,7 +6934,7 @@ XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) /*====== Canonical representation ======*/ /*! @ingroup XXH3_family */ XXH_PUBLIC_API void -XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) +XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) { @@ -5879,7 +6947,7 @@ XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t -XXH128_hashFromCanonical(const XXH128_canonical_t* src) +XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) { XXH128_hash_t h; h.high64 = XXH_readBE64(src); @@ -5903,7 +6971,7 @@ XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode -XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize) +XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) { #if (XXH_DEBUGLEVEL >= 1) XXH_ASSERT(secretBuffer != NULL); @@ -5948,7 +7016,7 @@ XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSee /*! @ingroup XXH3_family */ XXH_PUBLIC_API void -XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) +XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed) { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; XXH3_initCustomSecret(secret, seed); @@ -5961,7 +7029,7 @@ XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) /* Pop our optimization override from above */ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ + && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ # pragma GCC pop_options #endif @@ -5976,5 +7044,5 @@ XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) #if defined (__cplusplus) -} +} /* extern "C" */ #endif \ No newline at end of file