-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
33 lines (27 loc) · 1.06 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
from torch.utils.data import Dataset
from transformers import AutoTokenizer
class BERTDataset(Dataset):
"""BERTDataset class for BERT model.
Every dataset should subclass it. All subclasses should override `__getitem__`,
that provides the data and label on a per-sample basis.
Args:
data (pd.DataFrame): The data to be used for training, validation, or testing.
tokenizer (BertTokenizer): The tokenizer to be used for tokenization.
max_length (int, optional): The max sequence length for input to BERT model. Defaults to 128.
topk (int, optional): The number of top evidence sentences to be used. Defaults to 5.
"""
def __init__(
self,
data: pd.DataFrame,
tokenizer: AutoTokenizer,
max_length: int = 128,
topk: int = 5,
):
"""__init__ method for BERTDataset"""
self.data = data.fillna("")
self.tokenizer = tokenizer
self.max_length = max_length
self.topk = topk
def __len__(self):
return len(self.data)