Skip to content

Latest commit

 

History

History
74 lines (51 loc) · 2.88 KB

README.md

File metadata and controls

74 lines (51 loc) · 2.88 KB

Scenario Execution

Super-Linter OpenSSF Scorecard

Scenario execution is a backend- and middleware-agnostic library written in Python based on the generic scenario description language OpenSCENARIO DSL and pytrees. It reads a scenario definition from a file and then executes it, reusing available checks and actions. It is easily extendable through a library mechanism. This separation of the scenario definition from implementation massively reduces the manual efforts of scenario creation.

To give an impression of the functionality of scenario execution, the following animation shows an example scenario with a turtlebot-like robot in simulation using Nav2 and ROS as middleware to navigate towards a specified navigation goal in a simulated warehouse environment. Once the robot reaches a reference position a box is spawned in front of the robot as an unmapped static obstacle that needs to be avoided. Upon arrival of the goal position, the scenario ends and the simulation gets cleaned up.

scenario execution in action

Documentation

Please find the documentation here.

How to cite

If you use Scenario Execution for Robotics in your scientific work, please cite our paper Scenario Execution for Robotics: A generic, backend-agnostic library for running reproducible robotics experiments and tests

@Article{Pasch2024,
  author = {Pasch, Frederik and Mirus, Florian and Zhang, Yongzhou and Scholl, Kay-Ulrich},
  title = {Scenario Execution for Robotics: A generic, backend-agnostic library for running reproducible robotics experiments and tests},
  journal = {Computing Research Repository (CoRR)},
  year = {2024},
  eprint = {2409.07080},
  archivePrefix = {arXiv},
  primaryClass = {cs.RO},
  url = {https://arxiv.org/abs/2409.07080},
}

Setup

Installation from source as ROS 2 workspace

Clone this repository, update its submodules by running:

git submodule update --init

install the necessary dependencies:

rosdep install  --from-paths . --ignore-src
pip3 install -r requirements.txt

and build it

colcon build

How to run

First, build the packages:

colcon build
source install/setup.bash

To launch a scenario with ROS2:

ros2 run scenario_execution_ros scenario_execution_ros examples/example_scenario/hello_world.osc -t