This repository has been archived by the owner on Dec 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 463
/
ou_process.py
83 lines (68 loc) · 2.86 KB
/
ou_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import numpy as np
from rl_coach.core_types import RunPhase, ActionType
from rl_coach.exploration_policies.exploration_policy import ContinuousActionExplorationPolicy, ExplorationParameters
from rl_coach.spaces import ActionSpace, BoxActionSpace, GoalsSpace
# Based on on the description in:
# https://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OUProcessParameters(ExplorationParameters):
def __init__(self):
super().__init__()
self.mu = 0
self.theta = 0.15
self.sigma = 0.2
self.dt = 0.01
@property
def path(self):
return 'rl_coach.exploration_policies.ou_process:OUProcess'
# Ornstein-Uhlenbeck process
class OUProcess(ContinuousActionExplorationPolicy):
"""
OUProcess exploration policy is intended for continuous action spaces, and selects the action according to
an Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process implements the action as a Gaussian process, where
the samples are correlated between consequent time steps.
"""
def __init__(self, action_space: ActionSpace, mu: float=0, theta: float=0.15, sigma: float=0.2, dt: float=0.01):
"""
:param action_space: the action space used by the environment
"""
super().__init__(action_space)
self.mu = float(mu) * np.ones(self.action_space.shape)
self.theta = float(theta)
self.sigma = float(sigma) * np.ones(self.action_space.shape)
self.state = np.zeros(self.action_space.shape)
self.dt = dt
def reset(self):
self.state = np.zeros(self.action_space.shape)
def noise(self):
x = self.state
dx = self.theta * (self.mu - x) * self.dt + self.sigma * np.random.randn(len(x)) * np.sqrt(self.dt)
self.state = x + dx
return self.state
def get_action(self, action_values: List[ActionType]) -> ActionType:
if self.phase == RunPhase.TRAIN:
noise = self.noise()
else:
noise = np.zeros(self.action_space.shape)
action = action_values.squeeze() + noise
return action
def get_control_param(self):
if self.phase == RunPhase.TRAIN:
return self.state
else:
return np.zeros(self.action_space.shape)