
Cortex and the Happy Feet 2
Crowd Pipeline

Carsten Kolve - Crowd Supervisor - Dr. D Studios
carsten.kolve@drdstudios.com

mailto:carsten.kolve@drdstudios.com
mailto:carsten.kolve@drdstudios.com

Overview
• Dr. D Studios & Crowds in Happy Feet 2

• Choosing Cortex

• Prototyping

• Crowd System Design

• Integration in 3rd Party Applications

• Crowd Layout Workflow - Maya

• FX and Lighting - Houdini

• Rendering - 3delight

• Conclusions

Dr. D Studios
• Sydney, Australia

• KMM, George Miller / Doug Mitchell

• Happy Feet 2

Happy Feet 2 - Crowds
• 600+ crowd shots, 15 unique character types, FG/MG/BG

• 8 months dev time, 3 developers

• 6 months shot production time, 18 artists

Choosing Cortex

Interface Requirements

Animation / Lensing / Stereo
MAYA

Final Layout / FX / Lighting
HOUDINI

MoCap / MoEdit
NUANCE

Rendering
3DELIGHT

Crowd
MAYA

HOUDINI
PYTHON

?

Base Structure

 Interface PYTHON, C++

 Core C++

 Hosts MAYA, HOU, 3DL, PY ...

Base Structure

 Interface PYTHON, C++

 Core C++

 Hosts MAYA, (HOU), 3DL, PY ...

CORTEX

Prototyping

Basic Character Generation

skeleton

display / render

apply position adapt bind

animation transform terrain geo

bound geo

Skeletons & Animation
• Cortex functionality bound in Python to export assets from Maya

(FromMayaConverters & CompoundData)

• Python procedural to test and preview character animation process

Crowd Layout Rendering
• CompoundData to store layout information

• procedural to render in 3delight

Animation Modification
• procedural modification of animation data

• smooth skinning of skeletons

Attaching Geometry
• attaching geometry to animated skeletons

Crowd System Design

Crowd System
• layout system for pre-created skeletal animation data that is skinned

on demand

• mass animation instancing system, limited motion blending / no
motion synthesis

• focus on fast manual control rather than simulation

Crowd “Callsheet”
• Crowd represented by a Callsheet that associates Characters with

Animation and Terrains

Crowd “Callsheet”

• Characters: skeleton, geometry, bind, materials, grooms etc.

• Animation: skeletal poses over time (lots)

• Terrain: heightfield information

• Callsheet: static lookup table

uid char anim transform terrain

0 emperor danceA M44f mountB

1 adelie danceC M44f mountB

Emerging Structures
• Maya-based interface for most layout work

• Houdini for procedural crowd effects (swarms / flocks)

• Python prototypes (where slow) moved to Cortex dependent C++
libraries or submitted directly to Cortex

• modularisation of functionality into Python function sets & Ops

Crowd Layout Generation
(Maya)

Maya Layout Workflow
• Cortex Op networks for procedural layout modification

• custom Maya MPxSurfaceShape for manual callsheet editing and
display, crowd characters match to components

Maya Layout Workflow
• working with terrains

Maya Layout Workflow
• Maya dependency graph networks of cortex ops

Maya Layout Workflow
• procedural layout examples

Crowd FX
(Houdini)

Houdini FX Workflow
• adding Cortex support to Houdini, Ops & Procedurals + Converter

• Cortex Op networks - reusing the same ops in Houdini written for
Maya

• procedural geometry conversion for fx integration

Houdini FX Workflow
• feeding Houdini data into the crowd system via cortex

Crowd Lighting / Rendering
(Houdini / 3delight)

Rendering Workflow
• Cortex to bridge gap between Maya, Houdini, 3delight

• nested Python Cortex procedurals distribute the crowd rendering
load

• emulation of hero-rendering pipeline: reuse of geometry, shaders,
fur-grooms etc.

Character
Procedural 0

lod 0

lod ..

lod n

Nested Procedurals

Crowd
Procedural

Character
Procedural ..

Character
Procedural m

Houdini Render Network

Conclusions
• Cortex, flexible and TD-friendly base for vfx / feature animation

software development

• well suited to rapid prototyping due to its modular nature and pre-
existing functionality

• easy to re-use / exchange data and functionality across multiple
hosts

• ability to build workflows that enable artists to benefit from the
strength of their preferred host application

