diff --git a/src/ontology/stato.owl b/src/ontology/stato.owl index 298ff78..404b364 100644 --- a/src/ontology/stato.owl +++ b/src/ontology/stato.owl @@ -914,6 +914,9 @@ + + + @@ -7296,6 +7299,71 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + true + + + + + + + + + + + + + + + + + + + @@ -20528,6 +20596,59 @@ http://stat.ethz.ch/R-manual/R-patched/library/stats/html/binom.test.html#STATO_0000298 exact binomial test + + + #Welch_t-test + http://purl.obolibrary.org/obo/IAO_0000122 + + + + #Welch_t-test + Welch t-test is a two sample t-test used when the variances of the 2 populations/samples are thought to be unequal (homoskedasticity hypothesis not verified). In this version of the two-sample t-test, the denominator used to form the t-statistics, does not rely on a 'pooled variance' estimate. + + + + #Welch_t-test + Alejandra Gonzalez-Beltran + + + + #Welch_t-test + Orlaith Burke + + + + #Welch_t-test + Philippe Rocca-Serra + + + + #Welch_t-test + Welsh t-test + + + + #Welch_t-test + Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika 34 (1–2): 28–35. doi:10.1093/biomet/34.1-2.28 + + + + #Welch_t-test + adapted from wikipedia: +http://en.wikipedia.org/wiki/Welch's_t_test + +last accessed: 2014-05-06 + + + + #Welch_t-test + t-test for independent means assuming unequal variance + + + + #Welch_t-test + t-test for independent means assuming unequal variance + #covariance @@ -20603,6 +20724,11 @@ It uses a t-distribution for the test and assumes that the variables in the popu #t-test-independent-means Philippe Rocca-Serra + + + #t-test-independent-means + two sample t-test + #t-test-independent-means @@ -20616,12 +20742,12 @@ http://www.psychology.emory.edu/clinical/bliwise/Tutorials/TOM/meanstests/tind.h #t-test-independent-means - t-test for independent means + t-test for independent means assuming equal variance #t-test-independent-means - two sample t-test + t-test for independent means assuming equal variance