We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Following is the middle results of the training process.
Val loss: 0.007887, accuray: 0.000049 [17/1000][10/109] Loss: 0.006624 [17/1000][20/109] Loss: 0.006612 [17/1000][30/109] Loss: 0.006566 [17/1000][40/109] Loss: 0.006557 [17/1000][50/109] Loss: 0.006572 [17/1000][60/109] Loss: 0.006588 [17/1000][70/109] Loss: 0.006571 [17/1000][80/109] Loss: 0.006521 [17/1000][90/109] Loss: 0.006565 [17/1000][100/109] Loss: 0.006536 Start val -------------------------- => , gt: 蓝芯体验 -------------------------- => , gt: 实物图 -------------------------- => , gt: 13240796631 -------------------------- => , gt: 装 -------------------------- => , gt: 附教学光盘 -------------------------- => , gt: 排行榜 -------------------------- => , gt: VOLVO -------------------------- => , gt: 防漏 -------------------------- => , gt: 全车配件销售 -------------------------- => , gt: 3 Val loss: 0.008278, accuray: 0.000049 [18/1000][10/109] Loss: 0.006544 [18/1000][20/109] Loss: 0.006473 [18/1000][30/109] Loss: 0.006494 [18/1000][40/109] Loss: 0.006514 [18/1000][50/109] Loss: 0.006504 [18/1000][60/109] Loss: 0.006405 [18/1000][70/109] Loss: 0.006445 [18/1000][80/109] Loss: 0.006362 [18/1000][90/109] Loss: 0.006427 [18/1000][100/109] Loss: 0.006379 Start val -------------------------- => , gt: 实物照片 -------------------------- => , gt: BeJiRog -------------------------- => , gt: 34N -------------------------- => , gt: 售后无忧 -------------------------- => , gt: 诚信品质实力 -------------------------- => , gt: 陪伴宝宝益智成长 -------------------------- => , gt: PBA:G25238-300 -------------------------- => , gt: 全国包邮 -------------------------- => , gt: Mrcake蛋糕坊 -------------------------- => , gt: 磨粉
And I print the preds, which is as following: preds = crnn(image) print(preds)
`Start val tensor([[[-0.0718, -4.1044, -4.4439, ..., -4.0910, -4.5487, -4.5314], [-0.0719, -4.1049, -4.4443, ..., -4.0916, -4.5493, -4.5318], [-0.0719, -4.1053, -4.4446, ..., -4.0917, -4.5495, -4.5323], ..., [-0.0719, -4.1050, -4.4444, ..., -4.0917, -4.5494, -4.5320], [-0.0718, -4.1035, -4.4431, ..., -4.0903, -4.5479, -4.5306], [-0.0719, -4.1052, -4.4446, ..., -4.0917, -4.5495, -4.5322]],
[[-0.1057, -4.8053, -5.0113, ..., -4.6961, -5.1657, -5.1004], [-0.1057, -4.8056, -5.0116, ..., -4.6964, -5.1660, -5.1007], [-0.1058, -4.8060, -5.0120, ..., -4.6967, -5.1663, -5.1011], ..., [-0.1057, -4.8060, -5.0119, ..., -4.6967, -5.1664, -5.1011], [-0.1056, -4.8048, -5.0108, ..., -4.6957, -5.1652, -5.0999], [-0.1058, -4.8064, -5.0123, ..., -4.6971, -5.1667, -5.1015]], [[-0.1121, -4.9228, -5.1042, ..., -4.7994, -5.2690, -5.1971], [-0.1121, -4.9231, -5.1044, ..., -4.7997, -5.2693, -5.1973], [-0.1123, -4.9240, -5.1054, ..., -4.8005, -5.2703, -5.1983], ..., [-0.1122, -4.9243, -5.1057, ..., -4.8009, -5.2706, -5.1987], [-0.1119, -4.9215, -5.1028, ..., -4.7983, -5.2677, -5.1956], [-0.1123, -4.9243, -5.1057, ..., -4.8007, -5.2705, -5.1986]], ..., [[-0.1127, -4.9321, -5.1003, ..., -4.8029, -5.2650, -5.1939], [-0.1131, -4.9340, -5.1024, ..., -4.8049, -5.2672, -5.1963], [-0.1131, -4.9348, -5.1033, ..., -4.8056, -5.2682, -5.1972], ..., [-0.1134, -4.9360, -5.1047, ..., -4.8068, -5.2697, -5.1988], [-0.1126, -4.9311, -5.0992, ..., -4.8020, -5.2638, -5.1927], [-0.1133, -4.9362, -5.1050, ..., -4.8070, -5.2700, -5.1991]], [[-0.1122, -4.8674, -5.0035, ..., -4.7231, -5.1638, -5.0904], [-0.1123, -4.8667, -5.0026, ..., -4.7224, -5.1628, -5.0894], [-0.1124, -4.8687, -5.0052, ..., -4.7246, -5.1656, -5.0923], ..., [-0.1125, -4.8685, -5.0049, ..., -4.7243, -5.1654, -5.0920], [-0.1122, -4.8666, -5.0026, ..., -4.7223, -5.1628, -5.0894], [-0.1125, -4.8692, -5.0059, ..., -4.7252, -5.1664, -5.0931]], [[-0.1118, -4.4668, -4.4260, ..., -4.2436, -4.5748, -4.4685], [-0.1118, -4.4662, -4.4251, ..., -4.2429, -4.5739, -4.4674], [-0.1120, -4.4680, -4.4277, ..., -4.2451, -4.5766, -4.4704], ..., [-0.1121, -4.4680, -4.4276, ..., -4.2451, -4.5767, -4.4704], [-0.1118, -4.4661, -4.4250, ..., -4.2427, -4.5736, -4.4672], [-0.1120, -4.4682, -4.4279, ..., -4.2453, -4.5769, -4.4707]]], device='cuda:0')‘
I want to know the reason, thank you!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Following is the middle results of the training process.
And I print the preds, which is as following:
preds = crnn(image)
print(preds)
`Start val
tensor([[[-0.0718, -4.1044, -4.4439, ..., -4.0910, -4.5487, -4.5314],
[-0.0719, -4.1049, -4.4443, ..., -4.0916, -4.5493, -4.5318],
[-0.0719, -4.1053, -4.4446, ..., -4.0917, -4.5495, -4.5323],
...,
[-0.0719, -4.1050, -4.4444, ..., -4.0917, -4.5494, -4.5320],
[-0.0718, -4.1035, -4.4431, ..., -4.0903, -4.5479, -4.5306],
[-0.0719, -4.1052, -4.4446, ..., -4.0917, -4.5495, -4.5322]],
I want to know the reason, thank you!
The text was updated successfully, but these errors were encountered: