forked from ltkong218/IFRNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
228 lines (169 loc) · 6.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import sys
import re
import numpy as np
from imageio import imread, imwrite
import numpy as np
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
import torch.nn as nn
import torch.nn.functional as F
def warp(img, flow):
B, _, H, W = flow.shape
xx = torch.linspace(-1.0, 1.0, W).view(1, 1, 1, W).expand(B, -1, H, -1)
yy = torch.linspace(-1.0, 1.0, H).view(1, 1, H, 1).expand(B, -1, -1, W)
grid = torch.cat([xx, yy], 1).to(img)
flow_ = torch.cat([flow[:, 0:1, :, :] / ((W - 1.0) / 2.0), flow[:, 1:2, :, :] / ((H - 1.0) / 2.0)], 1)
grid_ = (grid + flow_).permute(0, 2, 3, 1)
output = F.grid_sample(input=img, grid=grid_, mode='bilinear', padding_mode='border', align_corners=True)
return output
def get_robust_weight(flow_pred, flow_gt, beta):
epe = ((flow_pred.detach() - flow_gt) ** 2).sum(dim=1, keepdim=True) ** 0.5
robust_weight = torch.exp(-beta * epe)
return robust_weight
class AverageMeter():
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def read(file):
if file.endswith('.float3'): return readFloat(file)
elif file.endswith('.flo'): return readFlow(file)
elif file.endswith('.ppm'): return readImage(file)
elif file.endswith('.pgm'): return readImage(file)
elif file.endswith('.png'): return readImage(file)
elif file.endswith('.jpg'): return readImage(file)
elif file.endswith('.pfm'): return readPFM(file)[0]
else: raise Exception('don\'t know how to read %s' % file)
def write(file, data):
if file.endswith('.float3'): return writeFloat(file, data)
elif file.endswith('.flo'): return writeFlow(file, data)
elif file.endswith('.ppm'): return writeImage(file, data)
elif file.endswith('.pgm'): return writeImage(file, data)
elif file.endswith('.png'): return writeImage(file, data)
elif file.endswith('.jpg'): return writeImage(file, data)
elif file.endswith('.pfm'): return writePFM(file, data)
else: raise Exception('don\'t know how to write %s' % file)
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0:
endian = '<'
scale = -scale
else:
endian = '>'
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def writePFM(file, image, scale=1):
file = open(file, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3:
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1:
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n'.encode())
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n'.encode() % scale)
image.tofile(file)
def readFlow(name):
if name.endswith('.pfm') or name.endswith('.PFM'):
return readPFM(name)[0][:,:,0:2]
f = open(name, 'rb')
header = f.read(4)
if header.decode("utf-8") != 'PIEH':
raise Exception('Flow file header does not contain PIEH')
width = np.fromfile(f, np.int32, 1).squeeze()
height = np.fromfile(f, np.int32, 1).squeeze()
flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2))
return flow.astype(np.float32)
def readImage(name):
if name.endswith('.pfm') or name.endswith('.PFM'):
data = readPFM(name)[0]
if len(data.shape)==3:
return data[:,:,0:3]
else:
return data
return imread(name)
def writeImage(name, data):
if name.endswith('.pfm') or name.endswith('.PFM'):
return writePFM(name, data, 1)
return imwrite(name, data)
def writeFlow(name, flow):
f = open(name, 'wb')
f.write('PIEH'.encode('utf-8'))
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
def readFloat(name):
f = open(name, 'rb')
if(f.readline().decode("utf-8")) != 'float\n':
raise Exception('float file %s did not contain <float> keyword' % name)
dim = int(f.readline())
dims = []
count = 1
for i in range(0, dim):
d = int(f.readline())
dims.append(d)
count *= d
dims = list(reversed(dims))
data = np.fromfile(f, np.float32, count).reshape(dims)
if dim > 2:
data = np.transpose(data, (2, 1, 0))
data = np.transpose(data, (1, 0, 2))
return data
def writeFloat(name, data):
f = open(name, 'wb')
dim=len(data.shape)
if dim>3:
raise Exception('bad float file dimension: %d' % dim)
f.write(('float\n').encode('ascii'))
f.write(('%d\n' % dim).encode('ascii'))
if dim == 1:
f.write(('%d\n' % data.shape[0]).encode('ascii'))
else:
f.write(('%d\n' % data.shape[1]).encode('ascii'))
f.write(('%d\n' % data.shape[0]).encode('ascii'))
for i in range(2, dim):
f.write(('%d\n' % data.shape[i]).encode('ascii'))
data = data.astype(np.float32)
if dim==2:
data.tofile(f)
else:
np.transpose(data, (2, 0, 1)).tofile(f)