-
Notifications
You must be signed in to change notification settings - Fork 107
/
cryptonight.c
732 lines (636 loc) · 24.4 KB
/
cryptonight.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
#undef unlikely
#undef likely
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
#define unlikely(expr) (__builtin_expect(!!(expr), 0))
#define likely(expr) (__builtin_expect(!!(expr), 1))
#else
#define unlikely(expr) (expr)
#define likely(expr) (expr)
#endif
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#define VARIANT1_1(p) \
do if (variant > 0) \
{ \
const uint8_t tmp = ((const uint8_t*)(p))[11]; \
const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; \
static const uint32_t table = 0x75310; \
((uint8_t*)(p))[11] = tmp ^ ((table >> index) & 0x30); \
} while(0)
#define VARIANT1_2(p) \
(p) ^= tweak1_2
#define VARIANT1_INIT() \
if (variant > 0 && inlen < 43) \
{ \
fprintf(stderr, "Cryptonight variants need at least 43 bytes of data"); \
_exit(1); \
} \
const uint64_t tweak1_2 = variant > 0 ? *(const uint64_t*)(((const uint8_t*)input)+35) ^ ctx->state.hs.w[24] : 0
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert((SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert((SKEIN_SUCCESS == r));
}
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
#ifdef __x86_64__
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
// Credit to Wolf for optimizing this function
static inline size_t e2i(const uint8_t* a) {
return ((uint32_t *)a)[0] & 0x1FFFF0;
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo;
#ifdef __amd64
__asm__("mul %%rdx":
"=a" (lo), "=d" (hi):
"a" (*(uint64_t *)a), "d" (*(uint64_t *)dst));
#else
lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi);
#endif
lo += ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
#endif /* __x86_64__ */
struct cryptonight_ctx {
uint8_t long_state[MEMORY] __attribute((aligned(16)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint8_t a[AES_BLOCK_SIZE] __attribute__((aligned(16)));
uint8_t b[AES_BLOCK_SIZE] __attribute__((aligned(16)));
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16)));
oaes_ctx* aes_ctx;
};
struct cryptonight_aesni_ctx {
uint8_t long_state[MEMORY] __attribute((aligned(16)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16)));
oaes_ctx* aes_ctx;
};
#ifdef __x86_64__
void cryptonight_hash_dumb(void* output, const void* input, const uint32_t inlen, struct cryptonight_ctx* ctx, int variant) {
size_t i, j;
keccak1600(input, inlen, (uint8_t *)&ctx->state.hs);
if (!ctx->aes_ctx)
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
VARIANT1_INIT();
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; (i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; (i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
VARIANT1_1(ctx->long_state + j);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
VARIANT1_2(*((uint64_t*)(ctx->long_state + e2i(ctx->c) + 8)));
/* Iteration 3 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
VARIANT1_1(ctx->long_state + j);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
VARIANT1_2(*((uint64_t*)(ctx->long_state + e2i(ctx->b) + 8)));
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; (i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t*)(&ctx->state.hs), 24);
/*memcpy(hash, &state, 32);*/
//if((ctx->state.hs.b[0] & 3) == 1) exit(0);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
//memcpy(output, ctx->state.hs.b, 32);
}
#endif
#ifdef __x86_64__
#include <x86intrin.h>
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_hash_aesni(void *restrict output, const void *restrict input, const uint32_t inlen, struct cryptonight_ctx *restrict ct0, int variant)
{
struct cryptonight_aesni_ctx *ctx = (struct cryptonight_aesni_ctx *)ct0;
uint8_t ExpandedKey[256];
size_t i, j;
keccak1600(input, inlen, (uint8_t *)&ctx->state.hs);
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
VARIANT1_INIT();
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *)ctx->long_state;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i b_x = _mm_load_si128((__m128i *)ctx->b);
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
a[0] = ctx->a[0];
a[1] = ctx->a[1];
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
{
__m128i c_x = _mm_load_si128((__m128i *)&ctx->long_state[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *)a);
uint64_t c[2];
c_x = _mm_aesenc_si128(c_x, a_x);
_mm_store_si128((__m128i *)c, c_x);
__builtin_prefetch(&ctx->long_state[c[0] & 0x1FFFF0], 0, 1);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i *)&ctx->long_state[a[0] & 0x1FFFF0], b_x);
VARIANT1_1(ctx->long_state + (a[0] & 0x1FFFF0));
uint64_t *nextblock = (uint64_t *)&ctx->long_state[c[0] & 0x1FFFF0];
uint64_t b[2];
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
uint64_t *dst = (uint64_t *)&ctx->long_state[c[0] & 0x1FFFF0];
dst[0] = a[0];
VARIANT1_2(a[1]);
dst[1] = a[1];
VARIANT1_2(a[1]);
a[0] ^= b[0];
a[1] ^= b[1];
b_x = c_x;
__builtin_prefetch(&ctx->long_state[a[0] & 0x1FFFF0], 0, 3);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf(ctx->state.hs.w, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}
#elif defined(__aarch64__)
struct cryptonight_aesv8_ctx {
uint8_t long_state[MEMORY] __attribute((aligned(16)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint64_t c[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
oaes_ctx* aes_ctx;
};
/* ARMv8-A optimized with NEON and AES instructions.
* Copied from the x86-64 AES-NI implementation. It has much the same
* characteristics as x86-64: there's no 64x64=128 multiplier for vectors,
* and moving between vector and regular registers stalls the pipeline.
*/
#include <arm_neon.h>
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
#define U64(x) ((uint64_t *) (x))
#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
#define __mul() __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(ctx->c[0]), "r"(ctx->b[0]) ); \
__asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(ctx->c[0]), "r"(ctx->b[0]) );
#define pre_aes() \
j = state_index(ctx->a); \
_c = vld1q_u8(&ctx->long_state[j]); \
_a = vld1q_u8((const uint8_t *)ctx->a); \
#define post_aes() \
vst1q_u8((uint8_t *)ctx->c, _c); \
_b = veorq_u8(_b, _c); \
vst1q_u8(&ctx->long_state[j], _b); \
VARIANT1_1(&ctx->long_state[j]); \
j = state_index(ctx->c); \
p = U64(&ctx->long_state[j]); \
ctx->b[0] = p[0]; ctx->b[1] = p[1]; \
{ uint64_t hi, lo; \
__mul(); \
ctx->a[0] += hi; ctx->a[1] += lo; }\
p = U64(&ctx->long_state[j]); \
p[0] = ctx->a[0]; p[1] = ctx->a[1]; \
VARIANT1_2(p[1]);
ctx->a[0] ^= ctx->b[0]; ctx->a[1] ^= ctx->b[1]; \
_b = _c; \
/* Note: this was based on a standard 256bit key schedule but
* it's been shortened since Cryptonight doesn't use the full
* key schedule. Don't try to use this for vanilla AES.
*/
static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) {
static const int rcon[] = {
0x01,0x01,0x01,0x01,
0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d, // rotate-n-splat
0x1b,0x1b,0x1b,0x1b };
__asm__(
" eor v0.16b,v0.16b,v0.16b\n"
" ld1 {v3.16b},[%0],#16\n"
" ld1 {v1.4s,v2.4s},[%2],#32\n"
" ld1 {v4.16b},[%0]\n"
" mov w2,#5\n"
" st1 {v3.4s},[%1],#16\n"
"\n"
"1:\n"
" tbl v6.16b,{v4.16b},v2.16b\n"
" ext v5.16b,v0.16b,v3.16b,#12\n"
" st1 {v4.4s},[%1],#16\n"
" aese v6.16b,v0.16b\n"
" subs w2,w2,#1\n"
"\n"
" eor v3.16b,v3.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v3.16b,v3.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v6.16b,v6.16b,v1.16b\n"
" eor v3.16b,v3.16b,v5.16b\n"
" shl v1.16b,v1.16b,#1\n"
" eor v3.16b,v3.16b,v6.16b\n"
" st1 {v3.4s},[%1],#16\n"
" b.eq 2f\n"
"\n"
" dup v6.4s,v3.s[3] // just splat\n"
" ext v5.16b,v0.16b,v4.16b,#12\n"
" aese v6.16b,v0.16b\n"
"\n"
" eor v4.16b,v4.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v4.16b,v4.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v4.16b,v4.16b,v5.16b\n"
"\n"
" eor v4.16b,v4.16b,v6.16b\n"
" b 1b\n"
"\n"
"2:\n" : : "r"(key), "r"(expandedKey), "r"(rcon));
}
/* An ordinary AES round is a sequence of SubBytes, ShiftRows, MixColumns, AddRoundKey. There
* is also an InitialRound which consists solely of AddRoundKey. The ARM instructions slice
* this sequence differently; the aese instruction performs AddRoundKey, SubBytes, ShiftRows.
* The aesmc instruction does the MixColumns. Since the aese instruction moves the AddRoundKey
* up front, and Cryptonight's hash skips the InitialRound step, we have to kludge it here by
* feeding in a vector of zeros for our first step. Also we have to do our own Xor explicitly
* at the last step, to provide the AddRoundKey that the ARM instructions omit.
*/
static inline void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks)
{
const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0};
uint8x16_t tmp;
int i;
for (i=0; i<nblocks; i++)
{
uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
tmp = vaeseq_u8(tmp, zero);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[0]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[1]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[2]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[3]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[4]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[5]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[6]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[7]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[8]);
tmp = vaesmcq_u8(tmp);
tmp = veorq_u8(tmp, k[9]);
vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
}
}
static inline void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{
const uint8x16_t *k = (const uint8x16_t *)expandedKey;
const uint8x16_t *x = (const uint8x16_t *)xor;
uint8x16_t tmp;
int i;
for (i=0; i<nblocks; i++)
{
uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
tmp = vaeseq_u8(tmp, x[i]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[0]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[1]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[2]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[3]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[4]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[5]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[6]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[7]);
tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[8]);
tmp = vaesmcq_u8(tmp);
tmp = veorq_u8(tmp, k[9]);
vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
}
}
void cryptonight_hash_aesni(void *restrict output, const void *restrict input, const uint32_t inlen, struct cryptonight_ctx *restrict ct0, int variant)
{
struct cryptonight_aesv8_ctx *ctx = (struct cryptonight_aesv8_ctx *)ct0;
uint8_t expandedKey[240];
uint8x16_t _a, _b, _c;
const uint8x16_t zero = {0};
size_t i, j;
uint64_t *p = NULL;
/* CryptoNight Step 1: Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */
keccak1600(input, inlen, (uint8_t *)&ctx->state.hs);
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
VARIANT1_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
*/
aes_expand_key(ctx->state.hs.b, expandedKey);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{
aes_pseudo_round(ctx->text, ctx->text, expandedKey, INIT_SIZE_BLK);
memcpy(&ctx->long_state[i * INIT_SIZE_BYTE], ctx->text, INIT_SIZE_BYTE);
}
U64(ctx->a)[0] = U64(&ctx->state.k[0])[0] ^ U64(&ctx->state.k[32])[0];
U64(ctx->a)[1] = U64(&ctx->state.k[0])[1] ^ U64(&ctx->state.k[32])[1];
U64(ctx->b)[0] = U64(&ctx->state.k[16])[0] ^ U64(&ctx->state.k[48])[0];
U64(ctx->b)[1] = U64(&ctx->state.k[16])[1] ^ U64(&ctx->state.k[48])[1];
/* CryptoNight Step 3: Bounce randomly 1 million times through the mixing buffer,
* using 500,000 iterations of the following mixing function. Each execution
* performs two reads and writes from the mixing buffer.
*/
_b = vld1q_u8((const uint8_t *)ctx->b);
for(i = 0; i < ITER / 2; i++)
{
pre_aes();
_c = vaeseq_u8(_c, zero);
_c = vaesmcq_u8(_c);
_c = veorq_u8(_c, _a);
post_aes();
}
/* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds
* of AES encryption to mix the random data back into the 'text' buffer. 'text'
* was originally created with the output of Keccak1600. */
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
aes_expand_key(&ctx->state.hs.b[32], expandedKey);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{
// add the xor to the pseudo round
aes_pseudo_round_xor(ctx->text, ctx->text, expandedKey, &ctx->long_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
}
/* CryptoNight Step 5: Apply Keccak to the state again, and then
* use the resulting data to select which of four finalizer
* hash functions to apply to the data (Blake, Groestl, JH, or Skein).
* Use this hash to squeeze the state array down
* to the final 256 bit hash output.
*/
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t*)(&ctx->state.hs), 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}
#endif /* __x86_64__ */
struct cryptonight_ctx* cryptonight_ctx(){
struct cryptonight_ctx *ret;
#ifdef _WIN32
ret = calloc(1, sizeof(*ret));
#else
ret = mmap(0, sizeof(*ret), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB|MAP_POPULATE, 0, 0);
if (ret == MAP_FAILED)
ret = calloc(1, sizeof(*ret));
if (ret) {
madvise(ret, sizeof(*ret), MADV_RANDOM|MADV_WILLNEED|MADV_HUGEPAGE);
if (!geteuid())
mlock(ret, sizeof(*ret));
}
#endif
return ret;
}